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RIGHT-JUMPS AND PATTERN AVOIDING PERMUTATIONS

CYRIL BANDERIER AND JEAN-LUC BARIL AND CÉLINE MOREIRA DOS SANTOS

Abstract. We study the iteration of the process "a particle jumps to the right" in
permutations. We prove that the set of permutations obtained in this model after a given
number of iterations from the identity is a class of pattern avoiding permutations. We
characterize the elements of the basis of this class and we enumerate these "forbidden
minimal patterns" by giving their bivariate exponential generating function: we achieve
this via a catalytic variable, the number of left-to-right maxima. We show that this
generating function is a D-finite function satisfying a nice differential equation of order 2.
We give some congruence properties for the coefficients of this generating function, and
we show that their asymptotics involves a rather unusual algebraic exponent (the golden
ratio (1 +

√
5)/2) and some unusual closed-form constants. We end by proving a limit

law: a forbidden pattern of length n has typically (ln n)/
√

5 left-to-right maxima, with
Gaussian fluctuations.

1 Introduction

In computer science, many algorithms related to sorting a permutation were analyzed and

it was shown that their behaviors are linked to nice combinatorial properties (see e.g. [18]).

Their complexity can be analyzed in terms of memory needed, or number of key operations

(like comparisons or pointer swaps). An important family of algorithms, like the so-called

"insertion" algorithms, or "in situ" permutations, are quite efficient in terms of number of

pointer swaps (but are not the fastest ones in terms of comparisons). Because of this higher

cost, they were much less studied than the faster stack sorting algorithms. Like for the stack

algorithms, instead of seeing them as a couple input/output, we can see them like a process:

input/set of intermediate steps. This opens a full realm of questions on such processes, and

they often lead to nice links with other parts of mathematics (like the link between trees,

birth and death processes, random walks, in probability theory, or permutations and Young

tableaux in algebraic combinatorics). Our article will investigate such a link.
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Another motivation to analyze such processes is coming from bioinformatics. Indeed, in

genomics, a crucial study is to estimate the similarity of two genomes. This consists of

finding the length of a shortest path of evolutionary mutations that transform one genome

into another. Usually, the main operations used in the rearrangement of a genome are of

three different types: substitutions (one gene is replaced with another), insertions (a gene

is added) and deletions (a gene is removed). For instance, we refer to [14, 21] for an

explanation of these operations, and the notions of transposons or jumping genes.

As the problem is too hard in full generality, many simpler mathematical models of the

genome were given: one of them is using permutations of {1, 2, . . . , n} where each gene is

assigned to a number [12]. Following the idea of transposition mutations [14], our motivation

is to find some combinatorial properties in terms of pattern avoiding permutations whenever

one element is deleted and inserted in a position located on its right. This operation will be

called a right-jump.

1 2 3 4 5 6 7  1 2 4 5 6 3 7

Figure 1. A right-jump in the permutation σ = 1 2 3 4 5 6 7. In this article,

we investigate the structure of permutations obtained after several iterations of

such right-jumps.

This operation is a variant of the genome duplication, which consists in copying a part

of the original genome inserted into itself, followed by the loss of one copy of each of the

duplicated genes. In particular, it is comparable to the whole duplication-random loss model

studied in [10]. Although there are many connections between these models, it is surprising

that the behavior of their combinatorial properties depends of different parameters: the

right-jump model reveals some links with left-to-right maximum statistics [3, 5], while the

whole duplication-random loss model reveals links with descent statistics [4, 6, 7, 8, 10, 20].

In the literature, such right-jumps in permutation are also found in the domain of sorting

theory. Indeed, it corresponds (modulo a mirror symmetry) to the insertion-sorting algo-

rithms [18] on permutations. Since the seminal work of Knuth on this subject, many articles

related to sorting with a stack exhibit some links with pattern avoiding permutations. While

for insertion sorting algorithms (also the subject of a vivid literature), only one study exhibits

some links with pattern avoiding permutations: more precisely, in his thesis [19], Magnùsson

proves that the set of permutations that can be sorted with one step of the insertion-sorting

operator is the class of permutations avoiding the three patterns 321, 312 and 2143.
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Plan of the article. In Section 2, we recall some basic facts on permutations patterns.

In Section 3, we generalize the result of Magnùsson by studying the iteration of right-jumps

in terms of pattern avoiding permutations: we prove that the set of permutations obtained

from the identity after a given number of right-jumps is the class of permutations avoiding

some patterns, which we characterize. In Section 4, we enumerate these forbidden patterns

by giving their bivariate exponential generating function (involving an additional parameter:

the number of left-to-right maxima), and we give the corresponding asymptotics and limit

law. En passant, we also give some modular congruences for our main enumeration sequence.

In Section 5, we conclude with several possible prolongations of this work.

2 Patterns in permutations

In this section, we give some classical definitions and properties on patterns in permu-

tations. Sn will be the set of permutations of length n. The graphical representation of

a permutation σ = σ1σ2 · · · σn is the set of points in the plane at coordinates (i, σi) for

i ∈ JnK1. For instance, the permutation 5 3 6 2 1 4 8 7 has a graphical representation

illustrated in Figure 2. A left-to-right maximum of σ ∈ Sn is a value σi, 1 ≤ i ≤ n, such

that σj ≤ σi for j ≤ i. A value σi of σ, 1 ≤ i ≤ n which is not a left-to-right maximum

will be called a non-left-to-right-maximum of σ. For instance, if σ = 5 3 6 2 1 4 8 7 then

the left-to-right maxima are 5, 6, 8 and the non-left-to-right-maxima are 1, 2, 3, 4, 7.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Figure 2. The graphical representation of σ = 5 3 6 2 1 4 8 7. We show an

occurrence of a pattern 213 with a blue dashed line; the left-to-right maxima are

green and the non-left-to-right-maxima are black.

1In this article, we write JnK for {1, 2, . . . , n}.
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A permutation π of length k, is a pattern of a permutation σ ∈ Sn if there is a subsequence

of σ which is order-isomorphic to π, i.e., if there is a subsequence σi1
. . . σik

of σ with

1 ≤ i1 < · · · < ik ≤ n and such that σiℓ
< σim

whenever πℓ < πm. We write π ≺ σ to

denote that π is a pattern of σ. A permutation σ that does not contain π as a pattern

is said to avoid π. For example, σ = 2413 contains the patterns 231, 132, 213 and

312, but σ avoids the patterns 123 and 321. The set of all permutations avoiding the

patterns π1, . . . , πk is denoted Avoid(π1, . . . , πk). We say that Avoid(π1, . . . , πk) is a class

of pattern avoiding permutations of basis {π1, . . . , πk}. For instance, we refer to the book

of Kitaev [16] and Bóna [5] to deepen these notions. A set C of permutations is stable for

the involvement relation ≺ if, for any σ ∈ C, for any π ≺ σ, then we also have π ∈ C.

Now, we formulate a definition that is crucial for the present study.

Definition 1 (Permutation basis and basis permutations). If a set C of permutations is

stable for the involvement relation ≺, then C is a class of pattern avoiding permutations:

C = Avoid(B). The basis B of forbidden patterns is then given by

B = {σ /∈ C, ∀π ≺ σ with π 6= σ, π ∈ C} .

In other words, the basis B is the set of minimal permutations σ that do not belong to C,

where minimal is intended in the sense of the pattern-involvement relation ≺ on permuta-

tions, that is: if π ≺ σ and π 6= σ then π ∈ C. Notice that B might be infinite. We call

basis permutations the permutations belonging to B.

Equipped with these definitions, our mission consists now in giving a description of the

"basis permutations" belonging to the basis Bp (i.e. the permutations which are the "minimal

forbidden patterns") for the set Cp of permutations at distance at most p from the identity.

3 Iteration of right-jumps in permutations: a structural description of the for-

bidden patterns

In this section we study the iteration of right-jumps in terms of pattern avoiding permu-

tations. We establish that the set Cp of permutations obtained from the identity after at

most p right-jumps is a class of permutations avoiding some patterns that we characterize.

Lemma 1 (Characterization of the distance). A permutation obtained from the identity

after p right-jumps contains at most p non-left-to-right-maxima.

Proof. This first lemma belongs to the category of claims for which the proof could be in one

word: "trivial", or in a boring half-page if we want to write a rigorous proof. Well, let us go

for this boring half-page proof by induction. The result holds for p = 1; indeed a right-jump

transformation of the identity permutation creates the permutation 1 2 . . . (i − 1) (i +

1) . . . (j − 1) i j . . . n for 1 ≤ i < j, where i is the only one non-left-to-right-maximum.
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Now, let us assume that each permutation π obtained from the identity after (p−1) right-

jumps contains at most p − 1 non-left-to-right-maxima. Let σ be a permutation obtained

from the identity after p right-jumps. Using the recurrence hypothesis, σ is obtained from

a permutation π with at most p − 1 non-left-to-right-maxima by moving an element πi,

1 ≤ i ≤ n, in a position located on its right.

We distinguish two cases: (1) πi is a non-left-to-right-maximum, and (2) πi is a left-to-

right maximum.

Case (1): Since πi is a non-left-to-right-maximum, there is j < i such that πj is a left-

to-right maximum satisfying πj > πi. Since we move πi on its right, πj remains on the

left of πi in σ which implies that πi is a non-left-to-right-maximum in σ. Using the same

argument, any non-left-to-right-maximum πk in π remains a non-left-to-right-maximum in

σ. Moreover, let πk be a left-to-right maximum in π, i.e., πj < πk for all j < k. Since

the right-jump transformation moves on the right a non-left-to-right-maximum, all values

on the left of πk in σ are yet lower than πk, which proves that πk remains a left-to-right

maximum in σ. Therefore, σ contains at most p − 1 non-left-to-right-maxima (as π does).

Case (2): πi is a left-to-right maximum, i.e., πj < πi for all j < i. Since πi is moved on

its right, any left-to-right maximum located on the left of πi in π remains also a left-to-right

maximum in σ. On the other hand, any left-to-right maximum located on the right of πi in π

is greater than πi and thus, it remains a left-to-right maximum in σ. Therefore, the number

of left-to-right maxima in σ is at least the number of left-to-right maxima in π minus one

(we do not consider πi). This means that the number of non-left-to-right-maxima in σ is

at most p.

Considering the two previous cases, an induction completes the proof. �

We now derive our first enumeration result for the set Dp of permutations at distance

p from the identity (i.e. the set of permutations reachable from the identity with p right-

jumps, but that one cannot reach with less than p right-jumps: Cp = ∪k∈JpKDk, and this

union is disjoint).

Theorem 1 (Permutations after p right-jumps). The set Dp of permutations at distance

p from the identity is the set of permutations with exactly p non-left-to-right-maxima.

Accordingly, the number dn,p of permutations of length n in Dp is counted by the Stirling

numbers s(n, n − p):

dn,p = s(n, n − p) =
∑

0≤j≤h≤p

(−1)j

(

h

j

)(

n − 1 + h

p + h

)(

n + p

p − h

)

(j − h)p+h

h!
.

Proof. After considering Lemma 1, it suffices to prove that any permutation σ with at most

p non-left-to-right-maxima can be obtained from the identity after p right-jumps. Let σ

be a permutation with p ≥ 1 non-left-to-right-maxima. Let us assume that the leftmost
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non-left-to-right-maximum is σi and let j < i be the position of the smallest left-to-right

maximum σj such that σj > σi. Then we set σ′ = σ1 . . . σj−1σiσj . . . σi−1σi+1 . . . σn. Since

we have σj > σi and also σi > σj−1 (if σj−1 exists), σi becomes a left-to-right maximum

in σ′. Thus, σ′ contains exactly p − 1 non-left-to-right-maxima and by construction, σ can

be obtained from σ′ by a right-jump. This proves that permutations at distance p from the

identity are exactly the permutations with n−p left-to-right-maxima, which are known to be

counted by s(n, n − p) the signless Stirling number of the first kind (see [13] for the closed-

form formula due to Schlömilch, and sequence A094638 in [24] for many occurrences of the

corresponding triangular array). For instance, the values of dn,p for n = 7 and 0 ≤ p < 7

are 1, 21, 175, 735, 1624, 1764, 720. �

The following corollary says a little more on the lattice structure associated to our process

"a particle jumps to the right".

Corollary 1 (Changing the starting point and sorting algorithms). Let σ and π be two

permutations and tσ−1·π be the number of non-left-to-right-maxima in σ−1 · π, then tσ−1·π

right-jumps are necessary to obtain π from σ. In particular, if tσ−1 is the number of non-

left-to-right-maxima in σ−1, then tσ−1 right-jumps are necessary and sufficient to sort by

insertion the permutation σ into the identity.

Proof. Let σ be a permutation and tσ be the number of its non-left-to-right-maxima, then

tσ right-jumps are necessary and sufficient to obtain σ from the identity. Therefore, tσ−1·π

transformations are sufficient and necessary to obtain σ−1 · π from the identity. We set

t = tσ−1·π and let χ0 = Id, χ1, . . . , χt−1, χt = σ−1 ·π be a shortest path between the identity

and σ−1 ·π. Now, let us prove that if a permutation β is obtained from α by one right-jump,

then for any permutation γ, γ · β is also obtained from γ · α by one right-jump. Indeed,

if we have α = α1α2 . . . αn then β can be written β = α1 . . . αi−1αi+1 . . . αj−1αiαj . . . αn.

Composing by a permutation γ, we obtain γ · α = γ(α1)γ(α2) . . . γ(αn) and γ · β =

γ(α1) . . . γ(αi−1)γ(αi+1) . . . γ(αj−1)γ(αi)γ(αj) . . . γ(αn) which proves that γ · β is also

obtained from γ · α by one right-jump. So if we compose by σ at each step of the above

shortest path, then we obtain a shortest path of tσ−1·π right-jumps from σ to π, which

completes the proof. �

Since the set Cp of permutations obtained after p right-jumps is stable for the relation ≺,

Cp is also a class Avoid(Bp) of pattern avoiding permutations where Bp is the basis consisting

of minimal (relatively to the pattern-involvement relation ≺) permutations σ that are not in

Cp (see Definition 1). Theorem 2 gives the explicit description of these basis permutations.
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(iii)

σ2 σi σj σt σk

(ii) n − 1

(iv)

Figure 3. An illustration of Theorem 2 that characterizes the basis permuta-

tions of Bp. Condition (i) states such a basis permutation has p + 1 non-left-to-

right maxima (drawn in black here, while left-to-right maxima are drawn in green

color), condition (ii) states that n − 1 is not a left-to-right maximum, condition

(iii) states that σ2 is not a left-to-right maximum, and condition (iv) states that

there is a "higher" non-left-to-right maximum between 3 left-to-right maxima.

Theorem 2 (Structural description of the basis permutations). A permutation σ ∈ Sn

belongs to the basis Bp of forbidden patterns, if and only if the following conditions hold:

(i) σ contains exactly p + 1 non-left-to-right-maxima.

(ii) n − 1 is a non-left-to-right-maximum.

(iii) σ2 is a non-left-to-right-maximum.

(iv) For any three left-to-right maxima, σi, σj and σk (with i < j < k) such that there is

no left-to-right maximum between them, there exists a non-left-to-right-maximum

σt (with j < t < k) satisfying σt > σi.

Proof. Let σ ∈ Sn be a permutation belonging to the basis Bp, i.e., σ /∈ Cp and π ≺ σ

implies π ∈ Cp. Throughout this proof, we refer to Figure 3 for an illustration of the three

conditions (ii), (iii) and (iv).

- First, the deletion of a non-left-to-right-maximum in σ decreases the number of non-left-

to-right-maxima by one exactly. Therefore, the minimality of σ implies that σ necessarily

contains exactly p + 1 non-left-to-right-maxima, which proves (i).

- For a contradiction, assume that (ii) is not satisfied, i.e., n − 1 is a left-to-right

maximum. Since n is always a left-to-right maximum, n is on the right of n−1 in σ. Thus,

the permutation π obtained by deleting n from σ also contains p+1 non-left-to-right-maxima

(a non-left-to-right-maximum on the right of n in σ remains a non-left-to-right-maximum

on the right of n − 1 in π). Therefore, π does not belong to Cp which gives a contradiction

with the minimality of σ.
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- For a contradiction, assume that (iii) is not satisfied, i.e., σ2 is a left-to-right maximum

and thus, σ1 is smaller than σ2. Thus, the permutation π obtained by deleting σ1 from σ

also contains p + 1 non-left-to-right-maxima. Indeed, a non-left-to-right-maximum σi in σ

such that σi < σ1 becomes a non-left-to-right-maximum σi < σ2 − 1 in π. Moreover, a

non-left-to-right-maximum σi in σ such that σi > σ1 (there is ℓ, 2 ≤ ℓ < i, with σi < σℓ)

becomes a non-left-to-right-maximum σi − 1 in π with σi − 1 < σℓ − 1. Therefore, π does

not belong to Cp which gives a contradiction with the minimality of σ.

- For a contradiction, assume that (iv) is not satisfied; i.e., there are (i, j, k), 1 ≤ i < j <

k ≤ n, such that σi, σj and σk are three consecutive left-to-right maxima of σ (consecutive

means that there is no other left-to-right maximum between σi and σj and between σj and

σk), and such that there is no non-left-to-right-maximum σℓ, j < ℓ < k, verifying σi < σℓ.

Let π be the permutation obtained from σ by deleting σj . It is clear that any non-left-to-

right-maximum on the left of σj in σ remains a non-left-to-right-maximum in π. Let σℓ,

ℓ > k, be a non-left-to-right-maximum on the right of σk in σ. If σℓ < σj then σℓ < σk − 1

and σℓ remains a non-left-to-right-maximum in π. If σℓ > σj then there is σt, t ≥ k, such

that σℓ ≤ σt ≥ σk, and thus, there is σt − 1 on the left of σk − 1 in π with σt − 1 > σk − 1

which means that σℓ − 1 is a non-left-to-right-maximum in π. Let σℓ (j < ℓ < k) be a

non-left-to-right-maximum between σj and σk in σ. Assuming that (iv) is not satisfied, we

deduce that σℓ < σi, and σℓ remains a non-left-to-right-maximum in π. Finally, π contains

also p + 1 non-left-to-right-maxima which gives a contradiction with the minimality of σ.

Conversely, let σ be a permutation satisfying (i), (ii), (iii) and (iv) and π be a permu-

tation obtained by deleting σi, 1 ≤ i ≤ n, from σ. Let us prove that π belongs to Cp, that

is, π contains at most p non-left-to-right-maxima.

- If σi is a non-left-to-right-maximum of σ, then π has exactly p non-left-to-right-maxima

and thus, π ∈ Cp.

- Now, let us assume that σi is a left-to-right maximum of σ. If σi = n, then (ii) implies

that n−1 is a non-left-to-right-maximum of σ and a left-to-right maximum in π; this implies

that π contains p non-left-to-right-maxima and thus, π ∈ Cp. If σi = σ1, then (iii) implies

that σ2 is a non-left-to-right-maximum of σ and σ2 −1 is a left-to-right maximum in π; this

implies that π contains p non-left-to-right-maxima and thus, π ∈ Cp. If there exists (j, k),

1 ≤ j < i < k ≤ n, such that σj and σk are left-to-right maxima (we choose j the greatest

possible and k the lowest possible with this property). Then, (iv) implies that there is σℓ,

i < ℓ < k, such that σj < σℓ < σi (we choose the lowest possible ℓ > i). Thus, σℓ is a

non-left-to-right-maximum in σ and becomes a left-to-right maximum in π, which implies

that π contains exactly p non-left-to-right-maxima, and thus π ∈ Cp.

Finally, the permutation π necessarily belongs to Cp, which completes the proof. �
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Corollary 2 (Length of the forbidden patterns). Permutations of Bp have length ≤ 2(p+1)

and ≥ p + 2. As a consequence, Bp is a finite set.

Proof. Conditions (ii), (iii) and (iv) of Theorem 2 imply that the number of left-to-right

maxima in a basis permutation is at most the number of non-left-to-right-maxima. Since a

basis permutation of Bp has p+1 non-left-to-right-maxima, its length is at most 2(p+1). �

For instance, the basis for p = 0, 1, 2 are respectively B0 = {21}, B1 = {312, 321, 2143},

and B2 = {4123, 4132, 4213, 4231, 4312, 4321, 21534, 21543, 31254, 32154, 31524, 31542,

32514, 32541, 214365}.

4 Enumerative results for basis permutations

In order to obtain a recursive formula for the number bn,p of permutations of length n in

the basis Bp, we present the following preliminary lemma.

Lemma 2 (A recursive description). Let σ ∈ Sn be a basis permutation having p ≥ 1 non-

left-to-right-maxima and such that σℓ+1 = n, ℓ ≥ 0. Let α be the subsequence σ1σ2 . . . σℓ

and π be the permutation in Sℓ isomorphic to α. Then, π is a basis permutation with

p − n + ℓ + 1 non-left-to-right-maxima.

Proof. Any permutation σ can be uniquely written σ = αnβ where α and β are two

subsequences of JnK. Let ℓ be the length of α and let π = π1π2 . . . πℓ be the permutation

of JℓK that is isomorphic to the subsequence α. Let us prove that π is minimal.

Since σ is minimal, it satisfies the three conditions (ii), (iii) and (iv) of Theorem 2.

Since all elements in β are non-left-to-right-maxima in σ, π contains exactly p − (n − 1 − ℓ)

non-left-to-right-maxima and thus, n − p − 1 left-to-right maxima.

- The condition (iii) of Theorem 2 on σ does not involve the part nβ. Therefore, π

satisfies (iii).

- The deletion of nβ in σ preserves the condition (iv) on π. Thus, π satisfies (iv).

- Let σi, σj and σℓ+1 = n, 1 ≤ i < j ≤ ℓ, be the last three left-to-right maxima of

σ. After the deletion of nβ, the two left-to-right maxima of σ, σi and σj , are respectively

transported in π into πi and πj = ℓ. Condition (iv) on σ ensures that there is σk, between σj

and n such that σk > σi. The greatest value σk satisfying this property is then transported

in π into ℓ − 1, which proves that ℓ − 1 is on the right of ℓ in π. Thus, π satisfies (ii).

Using Theorem 2, the permutation π is a basis permutation with p + ℓ − n + 1 non-left-

to-right-maxima. �
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Theorem 3 (An infinite recursion). The number bn,p of basis permutations of length n in

Bp (or equivalently having exactly p + 1 non-left-to-right-maxima) is given by the following

recurrence relation (for p < n − 2):

bn,p =
p−1
∑

ℓ=0

(ℓ + 1)! ·
(

n − 2

ℓ

)

· bn−ℓ−2,p−ℓ−1

anchored with bn,p = 0 if p < (n − 2)/2 or p > n − 2, and bn,n−2 = (n − 1)! for n > 1.

Proof. Any permutation σ of length n ≥ 1 contains at least one left-to-right maximum and

thus, at most n − 1 non-left-to-right-maxima which implies that bn,p = 0 for n ≤ p + 1.

Using the proof of Corollary 2, we also have bn,p = 0 for n > 2(p + 1). Moreover, the basis

permutations of length n with n − 1 non-left-to-right-maxima are the permutations of the

form nα where α ∈ Sn−1. So, we have bn,n−2 = (n − 1)! for n > 1.

Now, let us prove the recursive relation. Let σ ∈ Sn be a basis permutation with p + 1

non-left-to-right-maxima. We consider its unique decomposition σ = αnβ where α and β

are some subsequences of JnK. Let ℓ + 2, ℓ ≥ 0, be the length of nβ and let π be the

permutation in Sn−ℓ−2 isomorphic to α. Using Lemma 2, π is minimal with p − ℓ − 1 non-

left-to-right-maxima. So, we can associate to σ = αnβ the pair (π, γ) where π ∈ Sn−ℓ−2

is minimal with p − ℓ − 1 non-left-to-right-maxima and γ ∈ Sℓ+1 is isomorphic to β.

Conversely, let π be a basis permutation of length n − ℓ − 2 with p − ℓ − 1 non-left-to-

right-maxima and γ ∈ Sℓ+1. We construct a basis permutation σ of length n with p + 1

non-left-to-right-maxima as follows. From γ ∈ Sℓ+1, we construct a subsequence β of

Jn − 1K of length ℓ + 1 such that β contains the value n − 1 and such that β is isomorphic

to γ. Since n − 1 belongs to β, its position in β also is the position of the greatest value

of γ. So, β is characterized by the choice of ℓ values among Jn − 2K. Now, we define the

unique subsequence α of Jn − 2K\X isomorphic to π where X is the set of values used in

β. This construction ensures that σ = αnβ is a basis permutation of length n with p + 1

non-left-to-right-maxima, and so σ ∈ Bp. So, there are
(

n−2
ℓ

)

possibilities to choose β and

(ℓ+1)! possibilities to choose γ and bn−ℓ−2,p−ℓ−1 possibilities to choose a basis permutation

π ∈ Sn−ℓ−2 with p − ℓ − 1 non-left-to-right-maxima. Varying ℓ from 0 to p − 1, we obtain

the recursive formula. �

Theorem 3 allows us to find the bivariate exponential generating function for the number

of basis permutations with respect to the number of non-left-to-right-maxima.
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Theorem 4 (Closed-form for the bivariate generating function). Consider the bivariate

exponential generating function B(x, y) =
∑

n≥0,p≥0 bn,p
xnyp

n!
where the coefficient of xnyp

n!

is the number bn,p of basis permutations of length n in Bp. Then, we have

B(x, y) =
1

2y

√

1 + 4/y − 1
√

1 + 4/y
·(1−xy)

1

2
(1+

√
1+4/y)+

1

2y

√

1 + 4/y + 1
√

1 + 4/y
·(1−xy)

1

2
(1−

√
1+4/y)−1

y
.

Proof. Setting Fp(x) :=
∑

n≥0 bn,n−p
xn

n!
and F (x, y) :=

∑

p≥0 Fp(x)yp, we have B(x, y) =

F (xy, 1/y). (We work with the generating function Fp(x) of the (bn,n−p)’s rather than the

generating function of the (bn,p)’s because then the derivation of the proof is simpler).

Taking the second derivative of F (x, y) with respect to x gives

∂2
xF (x, y) = ∂2

x





∑

p≥0

Fp(x)yp



 = ∂2
xF0(x) + ∂2

xF1(x)y + ∂2
xF2(x)y2 +

∑

p≥3

∂2
xFp(x)yp . (1)

Now, the recursive relation of Theorem 3 for bn+2,n−p+2 implies for p ≥ 3:

∂2
xFp(x) =

∑

n≥0

bn+2,n−p+2
xn

n!
=
∑

n≥0

xn

n!

n−p+1
∑

ℓ=0

(ℓ + 1)! ·
(

n

ℓ

)

· bn−ℓ,(n−ℓ)−(p−1)

=
∑

n≥0

(n + 1)!
xn

n!
·
∑

n≥0

bn,n−p+1
xn

n!
=

1

(1 − x)2
Fp−1(x).

Plugging this recurrence into the differential equation (1) (and using F0(x) = F1(x) = 0)

gives:

∂2
xF (x, y) = ∂2

xF2(x)y2 +
∑

p≥2

y

(1 − x)2
Fp(x)yp.

It thus remains to simplify F2; well, the initial conditions of Theorem 3 (bn,n−2 = (n − 1)!

and bn,p = 0 for n < 2), implies that

F2(x) =
∑

n≥2

bn,n−2
xn

n!
=
∑

n≥2

(n − 1)!

n!
xn = − ln(1 − x) − x .

This leads to the main differential equation:

∂2
xF (x, y) = ∂2

xF2(x)y2 +
y

(1 − x)2
F (x, y) =

y

(1 − x)2
(y + F (x, y)) . (2)

First, by "plug & prove", the solutions of ∂2
xF (x) = yF (x)/(1−x)2 are a linear combina-

tion of (1−x)α, with α = (1+
√

1 + 4y)/2, or α = (1−√
1 + 4y)/2. Now, F (x, y) = −y is

a trivial particular solution of the non homogeneous differential equation (2), so the general

solution of this differential equation is of the form:

F (x, y) = K(y) · (1 − x)
1

2
(1+

√
1+4y) + L(y) · (1 − x)

1

2
(1−

√
1+4y) − y.
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Since F (0, y) = 0 and ∂F (x,y)
∂x

⌋x=0 = 0, we respectively deduce the two equations

K(y) + L(y) − y = 0 and − K(y) · (1 +
√

1 + 4y) − L(y) · (1 −
√

1 + 4y) = 0 ,

thus we obtain

K(y) =
y

2

√
1 + 4y − 1√

1 + 4y
and L(y) =

y

2

√
1 + 4y + 1√

1 + 4y
.

This gives

F (x, y) =
y

2

√
1 + 4y − 1√

1 + 4y
· (1 − x)

1

2
(1+

√
1+4y) +

y

2

√
1 + 4y + 1√

1 + 4y
· (1 − x)

1

2
(1−

√
1+4y) − y ,

and therefore the theorem, as B(x, y) = F (xy, 1/y). �

Theorem 5 (Asymptotics). The exponential generating function for the number of basis

permutations with respect to their length is given by

B(x) = B(x, 1) =
∑

n≥0

bn
xn

n!
=

√
5 − 1

2
√

5
· (1 − x)

1+
√

5

2 +

√
5 + 1

2
√

5
· (1 − x)

1−

√

5

2 − 1.

It is a D-finite transcendental function satisfying the following differential equation

B(x) − (1 − x)2∂2
xB(x) + 1 = 0, B(0) = B′(0) = 0 . (3)

Equivalently, its coefficients bn satisfy the recurrence

bn+2 = 2nbn+1 + (1 + n − n2)bn, b0 = b1 = 0, b2 = 1 ,

and the asymptotics is given by

bn ∼ φ√
5 Γ(φ − 1)

1

n2−φ
(1 + o(1)) ,

where φ is the golden ratio φ = (1 +
√

5)/2, and Γ(z) :=
∫+∞

0 tz−1 exp(−t)dt is the Euler

Gamma function.

Accordingly, a permutation of length has a probability asymptotically 0 to be an element

of the basis of forbidden pattern, however, this probability is not “very small” as it decays

only polynomially:

Prob(s ∈ Sn belongs to ∪p Bp) =
bn

n!
≈ 0.499/n.381(1 + o(1)) .

Proof. Setting y = 1 in the bivariate exponential generating function given in Theorem 4

gives B(x). If a function B(z) =
∑

bnzn is D-finite (it is satisfying a linear differential equa-

tions, with polynomial coefficients in z), then its coefficients bn are polynomially recursive

(or "P-recursive"): they satisfy a linear recurrence, with polynomial coefficients in n. See

e.g. [13, 25] for more on these two equivalent notions. Starting from the building blocks
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(1 − x)a, which are D-finite, and then using the closure properties of D-finite functions (by

sum and product) gives the differential equation (3) (this is e.g. implemented in the Gfun

Maple package, see [23]). The recurrence is obtained by extracting the coefficient of xn on

both sides of the differential equation. The asymptotics follows from a singularity analysis

(see [13]) on each term of the shape (1−x)a, indeed, for any a ∈ R which is not an integer,

one has:

[xn](1 − x)a =
1

Γ(−a)n1+a

(

1 +
1

2
a(a + 1)

1

n
+ O(

1

n2
)
)

. �

Note that B(x, y) is D-finite in the variable x:

1 + yB(x, y) − (1 − xy)2∂2
xB(x, y) = 0 with B(0, y) = (∂xB)(0, y) = 0,

but it is not D-finite in the variable y. This follows from a saddle point analysis on B(1, y) =
∑

n βnyn, indeed the asymptotics of βn then involves arbitrarily large (ln n)d, while the

asymptotics of a D-finite function can only have a finite sum of such powers of log, see [13].

This argument is thus similar to a proof that (1 − y)1−y is not D-finite.

Remark [Irrational critical exponent]: In combinatorics and in statistical physics, most

of the asymptotics of integer sequences are of the shape bn ∼ CnαAn, and the exponent

α which appears there is a key quantity: its value is often the signature of some universal

phenomena (in physics, it is called "critical exponent"). For D-finite sequences, the theory

implies that it is an algebraic number, however, this exponent is very often -3/2, or a

dyadic number (for the reasons explained in [2]), or a rational number (due to a results

on G-functions). Indeed, a theorem (resulting from the works of Katz, André, Chudnovky

& Chudnovsky, see [9]) states that G-functions (D-finite functions with integer coefficients

and non zero radius of convergence) have a rational critical exponent. Now, instead of

considering the exponential generating function B(x) =
∑

bnxn/n!, we may consider its

inverse Borel transform, i.e. the ordinary generating function
∑

bnxn. It is also a D-finite

function, because D-finite functions are closed by Hadamard product, and therefore the

Borel transform (and the inverse Borel transform) of a D-finite function is D-finite (i.e. if

the sequence bn is P-recursive, so are n!bn and bn/n!). We have thus a new D-finite function

with integer coefficients and irrational critical exponent (involving the golden ratio φ), but

this is not contradicting the G-function theorem, because, due to the multiplication by n!,

we now have a 0 radius of convergence. In conclusion, we have here one of the few examples

in combinatorics of a problem leading to an irrational critical exponent. Other examples are

given via the KPZ formula in physics, or via quantities related to quadtrees, see [13].
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For such a combinatorial structure Bp, it could be possible that the complementary set has

a nicer structure, those permutations not in the basis are for sure counted by un = n! − bn;

this sequence satisfies un+3 = (n + 1)(n2 − n − 1)un − (3n2 + 3n − 1)un+1 + 3(n + 1)un+2,

which is still a quite nice recurrence but of one order more than the recurrence for bn, so it

is a heuristic confirmation than bn is a more fundamental sequence.

The first values of bn (the number of basis permutations of length n) are 1, 2, 7, 32, 179,

1182, 8993, 77440 for 2 ≤ n ≤ 9. We added this sequence to the On-line Encyclopedia of

Integer Sequences [24]:

p\n 2 3 4 5 6 7 8 9 10 11 #Bp

0 1 1

1 2 1 3

2 6 8 1 15

3 24 58 18 1 101

4 120 444 244 32 1 841

5 720 3708 3104 700 50 8232

6 5040 33984 39708 13400 78732

Σ 1 2 7 32 179 1182 8993 77440 744425 7901410

Table 1. Number bn,p of basis permutations of length n (the "minimal forbidden

patterns" of Bp, or equivalently, with p + 1 non-left-to-right-maxima) where 2 ≤
n ≤ 11 and 0 ≤ p ≤ 6 (OEIS A265163). The last column contains βp :=

∑

n bn,p

(OEIS A265164); the last line contains bn :=
∑

p bn,p (OEIS A265165).

There is a vast literature in number theory analyzing the modular congruences of famous

sequences (Pascal triangle, Fibonacci, Catalan, Motzkin, Apéry numbers [11, 26, 22, 15]).

The properties of bn mod m are sometimes called "supercongruences" when m is the power

of a prime number: many articles considered m = 2r, or m = 3r. We now give a result

which holds for any m (not necessarily the power of a prime number).

Theorem 6 (Supercongruences for D-finite functions).

Any P-recurrence P0(n)un =
∑r

i=1 Pi(n)un−i, for which the polynomial P0(n) is ultimately

invertible mod m (i.e. gcd(P0(n), m) = 1, for all n large enough) is ultimately periodic2

mod m, and there is an algorithm to get this period.

In particular, recurrences such that P0(n) = 1 are periodic. Accordingly, our sequence

bn mod m is periodic for any m.

2In the sequel, we will omit the word "ultimately": a periodic sequence of period p is thus a sequence for
which un+p = un for all large enough n. Some authors use the terminology "eventually periodic" instead.
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Proof. Indeed, as the leading term P0 is invertible, we can write:

un mod m =
r
∑

i=1

Pi(n) mod m

P0(n) mod m
(un−i mod m) ,

in which each term has just a finite set of possible values. What is more, for any polynomial

P (n) with integer coefficients, P (n) mod m is of period p, for some p|m. (This follows

from the fact that the sum and the product is preserving periodicity mod m, as we did not

require in the definition of "period" that m is the smallest m such that the sequence is

m periodic). Therefore, one can then construct a Markov chain (an automaton) listing all

the possible 2r-tuples of values mod m for the un−i and their coefficients Pi, where the

recurrence dictates the transitions in this Markov Chain. The pigeon-hole principle implies

that there is a loop in this finite graph, and this gives our period.

Besides, starting with the Ansatz that un = un+p for n ∈ [n1 +1, n1 +p] (such a p can be

found by brute-force, as n1 has to be smaller than the number of states in the automaton,

and p has to be smaller than m2r), it is enough to check that this property goes on for r +1

steps to prove that un is p periodic. �

This theorem explains the periodic behavior of bn mod m. By brute-force computation,

we can get bn mod m, for any given m. For example bn mod 15 is periodic of period 12: for

n ≥ 9, one has bn mod 15 = (10, 5, 10, 10, 0, 10, 5, 10, 5, 5, 0, 5)∞. The period can be quite

large, for example bn mod 3617 has period 26158144. We computed the period of bn mod m

for all m ≤ 4000; this sequence of periods is given by OEIS A265166 and seems to satisfy

some nice congruences:

Conjecture 1 (Explicit periods for the D-finite sequence bn).

We write Period(bn mod m) = p if and only if ∃n1 ∈ N such that for all n > n1, bn+p =

bn mod m, and there is no smaller p > 0 for which this holds.

Let bn+2 = 2nbn+1 + (1 + n − n2)bn, b0 = b1 = 0, b2 = 1, then

a) Period(bn mod m) = 1 if and only if m is a product (possibly reduced to one single

factor) of (non necessarily distinct) primes in 0, 1, 4 mod 5.

b) Period(bn mod m) = 2 if and only if m/2 is a product (possibly reduced to one

single factor) of (non necessarily distinct) primes in 0, 1, 4 mod 5.

c) If the period is not 1, then it is an even number.

d) For any prime p, Period(bn mod p)|2p(p − 1).

e) For any prime p not in 0, 1, 4 mod 5, (and pr 6= 4),

Period(bn mod pr) = pr Period(bn mod p) .

f) If m = pe1

1 . . . pek

k (where the pi’s are distinct primes), then

Period(bn mod m) = lcm(Period(bn mod pe1

1 ), . . . , Period(bn mod pek

k )) ,
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where lcm stands for the least common multiple (it is possible to reformulate this

formula using the Carmichael function λ, or the Euler totient function φ).

Some of these claims are obviously interdependent. We did not try to prove the above

conjectures, as they are a little bit too far from the main topics of our article, however,

we do believe that they are interesting as they are typical of phenomena happening for

many recurrences in general, and it would be nice to have a methodology to prove all

this type of properties on the full class of D-finite sequences (following the cycles in the

automata corresponding to the one mentioned in the proof of Theorem 6 should prove the

multiplicative properties mentioned in our conjecture).

Nota bene: it is not always the case that P-recursive sequences are periodic mod p. E.g.,

it was proven than Motzkin numbers are not periodic mod m [17], and it seems that

(n + 3)(n + 2)un = 8(n − 1)(n − 2)u(n − 2) + (7n2 + 7n − 2)u(n − 1) , u0 = 0, u1 = 1 ,

is also not periodic mod m, for any m > 2 (this P-recursive sequence counts a famous

class of permutations, the Baxter permutations). This is coherent with our Theorem 6, as

the leading term in the recurrence (the factor (n + 3)(n + 2)) is not invertible mod m, for

infinitely many n.

We end by proving the following limit law:

Theorem 7 (Limit Law). In the model where all permutations of length n are equidis-

tributed, a random permutation of length n in ∪Bp is typically a member of Bp, for

p ∼ n− (ln n)/
√

5, with Gaussian fluctuations. Equivalently, the average number of left-to-

right-maxima in a random basis permutation is p ∼ (ln n)/
√

5 with Gaussian fluctuations.

Proof. This follows from the closed-expression for B(x, y), or from a singularity analysis

of the differential equation. Indeed, the average and standard deviation follow from the

computation of ∂yB(x, y) and ∂2
yB(x, y) at y = 1. The Gaussian limit law follows from

the quasi-power theorem of Hwang applied to a variable exponent perturbation or to our

non-confluent differential equation (see Theorem IX.11 and Theorem IX.18 from [13]). �

As a random permutation of Sn has ln n left-to-right maxima on average, the above

theorem quantifies to what extent the right-jump process kills the left-to-right maxima

when one starts from the identity permutation.
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5 Conclusion

In this article, we analyzed the iteration of the process "a particle jumps to the right" in

a permutation, and we gave the typical properties of the patterns which are not reached

after p moves. This is one of the first enumerations of an infinite basis (of the forbidden

patterns, for a permutation class). We expect our approach (introducing a catalytic variable

and getting a D-finite function) to work in many other cases. However, we already know

a nice permutation class for which the basis is non D-finite. Indeed, as an extension of

this work, an interesting question is to consider a model in which both right-jumps and

left-jumps are allowed: this is a very natural process, also related to sorting algorithms and

bioinformatics process. In a for-coming work, we show that for this new model, the basis

of forbidden minimal patterns for permutations obtained by p iterations of the process is

related to Young Tableaux with 2 equal first rows (but it is no more D-finite, unlike the pure

right-jump iteration process that we considered in this article).

Another natural question is: is it the case that using e.g. the Foata correspondence

between records and cycles in permutations, there is an elegant process corresponding to

a "particle jumps to the right", with permutations at distance p from identity being then

counted in terms of cycles in the permutation?

It is interesting that the asymptotics of the process analyzed in the present article are

not classical, but involve nice constants, and nice recurrences. To get some more direct

"bijective" proofs (or the "proof from the Book") of our formulae is also an interesting

question: as a credo, it cannot be the case that such nice formulae are only reached by

solving differential equations (like we did in this article). It may be the case that a generating

tree [1] approach leads to the simple recurrence we get for bn.

Last but not least, we already mentioned a vast literature of publications in number

theory analyzing the modular congruences of famous sequences (Pascal triangle, Fibonacci,

Catalan, Motzkin, Apéry numbers, . . . , [11, 26]). It seems to us that our approach to tackle

them at the level of D-finite functions is new (see also [22, 15]), and it would be worth to

analyze these properties in full generality. Is it possible to get faster proof than our mixture

of Anzatz + brute force proof? We proved that fn mod m (where m can be any integer)

is a periodic function (of period bounded by a polynomial in m), and we can make explicit

this period and the values of fn mod m for any given m. The question is then: is it possible

to give an "a priori" direct formula for fn mod m ? We do not think that such a "universal"

formula exists, but it is natural to ask what its "cost" (in the sense of complexity theory): it

may be possible that there is a formula (or an algorithm) less costly than a polynomial-time

algorithm.
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