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Abstract

The convex hull of n+ 1 affinely independent vertices of the unit n-cube I"™ is called a
0/1-simplex. It is nonobtuse if none its dihedral angles is obtuse, and acute if additionally
none of them is right. In terms of linear algebra, acute 0/1-simplices in I™ can be described
by nonsingular 0/1-matrices P of size n x n whose Gramians G = PT P have an inverse
that is strictly diagonally dominant, with negative off-diagonal entries [6] [7].

The first part of this paper deals with giving a detailed description of how to efficiently
compute, by means of a computer program, a representative from each orbit of an acute
0/1-simplex under the action of the hyperoctahedral group B, [17] of symmetries of I™. A
side product of the investigations is a simple code that computes the cycle indezx of B,
which can in explicit form only be found in the literature [11] for n < 6. Using the
computed cycle indices for Bs,...,B1; in combination with Pélya’s theory of enumeration
shows that acute 0/1-simplices are extremely rare among all 0/1-simplices.

In the second part of the paper, we study the 0/1-matrices that represent the acute
0/1-simplices that were generated by our code from a mathematical perspective. One
of the patterns observed in the data involves unreduced upper Hessenberg 0/1-matrices of
size n X n, block-partitioned according to certain integer compositions of n. These patterns
will be fully explained using a so-called One Neighbor Theorem [3]. Additionally, we are
able to prove that the volumes of the corresponding acute simplices are in one-to-one
correspondence with the part of Kepler’s Tree of Fractions [1l 25] that enumerates Q N
(0,1). Another key ingredient in the proofs is the fact that the Gramians of the unreduced
upper Hessenberg matrices involved are strictly ultrametric [14l, [27] matrices.

Keywords: Acute simplex; 0/1-matrix; Hadamard conjecture; hyperoctahedral group; cycle
index; Polya enumeration theorem; Kepler’s tree of fractions; strictly ultrametric matrix.

1 Introduction

A 0/1-simplex is an n-dimensional 0/1-polytope [24] with n + 1 vertices. Equivalently, it is
the convex hull of n + 1 of the 2" elements of the set B™ of vertices of the unit n-cube I"
whenever this hull has dimension n. To support the mathematical studies of 0/1-simplices,
and in particular of those whose dihedral angles are all nonobtuse or even acute [7], we
investigate how to enumerate such 0/1-simplices modulo the action of the hyperoctahedral
group B,, of symmetries of I™ by means of a computer program. The motivation to generate
such computational data was quite appropriately phrased by Giinther Ziegler in Chapter 1 of
Lectures on 0/1-Polytopes [24], as “Low-dimensional intuition does not work!”.
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Figure 1: 0/1-matrices with maximal determinant that represent acute 0/1-simplices.

This statement expresses the fact that although it is tempting to formulate conjectures
on n-dimensional 0/1-polytopes and related 0/1-matrices based on computational data ob-
tained for a few small values of n, these conjectures often fail to be true. Finding out that
a conjecture is false using general mathematical arguments may be much harder than gen-
erating the necessary computational data for large enough n to disprove it, not in the least
because the tendency towards a conjecture is rather to believe its validity and aim to prove
it. This is why we concentrate on the enumeration problem for acute 0/1-simplices. Using
the date produced by the enumeration, we will also formulate and prove some mathematical
results on certain classes of 0/1-matrices. We will summarize the most important of these
results in Section First, in Section [Tl we give two examples that illustrate Ziegler’s
claim above, also based on the computational data.

Remark 1.1 Especially the larger 0/1-matrices in this paper we will often display as a picture
of an array with black and white squares representing its ones and zeros, respectively.

1.1 Two examples that illustrate Ziegler’s claim above

A first example of a statement that is valid in I™ for n < 8 but that does not hold in [ 9is
the following. In Figure [Il we display 0/1-matrices P having maximal absolute value of the
determinant, when ranging over all those n X n matrices whose n columns together with the
origin are the vertices of a so-called acute 0/1-simplex. See Definition [5.]for a linear algebraic
characterization acute 0/1-simplices and the 0/1-matrices associated with them.

For n < 8, these values turn out to be even maximal when ranging over all 0/1-matrices of
size n x n. However, the maximal determinant over all 9 x 9 0/1-matrices is 144 and not 96.

This, of course, disproves the conjecture that maximal determinants of 0/1-matrices are
attained by 0/1-matrices that represent acute 0/1-simplices. Notwithstanding, the Hadamard
maximal determinant conjecture [19] is equivalent [I8] with the existence of a regular simplex
in I"™ for dimensions n whose remainder after devision by 4 equals 3. Regular simplices
have acute dihedral angles, and indeed, the 3 x 3 and the 7 x 7 matrix in Figure [Il are so-
called Hadamard matrices. This motivates a further study of acute 0/1-simplices and their
determinants, as the set of acute 0/1-simplices is a small and highly structured set in which the
Hadamard matrices figure as the most structured ones. It thus puts the Hadamard matrices
in a wider context in which, as far as we know, they have not yet been studied.

As a second example in which low dimensional intuition does not work, here is a statement
that holds in I™ for all n < 7: the Gramian G = PP of any 0/1-matrix P whose columns
together with the origin are the vertices of an acute simplex is a strictly ultrametric matrix
[14, 27]. A strictly ultrametric matrix is a highly structured positive matrix in the sense that



all its 3 x 3 principal submatrices are, modulo simultaneous permutation of rows and columns,
of the form

d b a
b ¢ a |, with a<b<c<d and a<f. (1)
a a f

Even though the columns of the two 8 x 8 matrices displayed in Figure 2] together with the
origin are indeed vertices of acute 0/1-simplices in I, their Gramians are however not strictly
ultrametric. In both matrices, the inner products between columns 3, 7, and 8 do not satisfy
the relations in (IJ), not even after simultaneous row- and column permutations.
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Figure 2: Examples of 0/1-matrices representing acute 0/1-simplices whose Gramians are not ultra-
metric. Columns 3,6,7 do not satisfy the inequalities in ().

We will return to strictly ultrametric and related matrices in Section [6] because they will
turn out to be a powerful tool to prove our main results. See also [2] for a detailed account
on the geometric properties of the special type of simplices whose Gramians are ultrametric.

1.2 Main results obtained from analyzing the generated data

A positive result in this context is as follows. Let n > 3, and let the ordered tupel A =
(A,...,Ak) be a composition of the integer n — 1 whose first and last part are at least 2.
Associate with A the n x n matrix H) as is done for the example A = (3,1,2,2) in Figure Bl
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Figure 3: The matrix Hy for a composition A = (A1,..., Ag) of n — 1 with first and last parts larger
than one, and its determinant as numerator of the continued fraction [A1;\a, ..., Ak].

The matrix H) is constructed as an unreduced upper Hessenberg matrix with identity
matrices I; of size A\; x A; covering the lower co-diagonal from top left to bottom right. The
matrices I1,..., I define a checkerboard pattern in Hy above I, ..., I}, with blocks containing
either only ones, or only zero entries, where the blocks directly bordering I; and I, contain
only ones. This uniquely defines Hy in terms of the composition A.

In Section we will prove the following results in this context.



Theorem 1.2 Let H be an n X n unreduced upper Hessenberg 0/1-matriz whose columns
and the origin are the n + 1 vertices of a simplexr S C I"™ with acute dihedral angles only.
Then, possibly after exchanging its first two rows and/or last two columns, H is equal to the
matriz Hy for some composition X = (A1,..., \;) of n—1 with first and last parts larger than
one. Moreover,

1
|det(Hy)| = fi, where i _ A+ — ged(fr, g1) = 1. (2)
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Conversely, each such matriz Hy has the property that its Gramian is strictly ultrametric,
which implies that its columns together with the origin are the vertices of an acute 0/1-simplex.

As a corollary of this theorem, all attainable absolute values of the determinant function on
the set of all unreduced n x n upper Hessenberg 0/1-matrices H for which (HTH) ! is a
diagonally dominant Stieltjes matrix with negative off-diagonal entries, can be explicitly read

from a part of Kepler’s Tree of Fractions [25]. This part is depicted in Figure [l It has the

fraction 1 as root. The children of a vertex g are z%q and ﬁ. Transversing the tree level

by level corresponds to an enumeration of all the rationals QN (0, 1).
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Figure 4: Part of Kepler’s Tree of Fractions and absolute determinants of the matrices Hy.

The circled integers displayed in Figure @ below each vertex equal the sum of numerator and
denominator of the fraction belonging to that vertex. At level k these integers correspond to
the absolute values of the determinants of each of the 2¥ matrices H) of size (k+4) x (k+4).

Observe that the determinants in the rightmost branch in the tree equal the Fibonacci
numbers, which were proved in [I2] to be the maximal value of the determinant function over
all n x n Hessenberg 0/1-matrices. We can now conclude that this maximum is (also) attained
by matrices representing acute simplices. More generally we see that any branch of the tree
that, starting at a given vertex p/q corresponding to the determinantal value p + ¢, extends



only to the right, yields a Fibonacci-type sequence d,(j),
dr(j+2) =dp(j) +dr(j +1) with dp(=1)=p, dv(0)=¢ and dr(1)=p+gq, (3)

whereas any branch from a vertex p/q that extends only to the left, yields a family of acute
0/1-simplices with determinants increasing linearly as

de(§) = jp +q. (4)

The corresponding matrices Hy in this latter case have integer compositions of which the
last part increases by one when the size of H) increases by one while all the other parts of A
remain the same. The existence of such families with linearly increasing determinants was
first observed in [4]. In Section [6l we give a full explanation of their structure.

1.3 Outline

Our aim is to give a self-contained account of all necessary ingredients. For this, we first recall
in Section 2l the group structure of B,, and the permutation subgroup of Sor it induces on the
set B™ of 0/1-vectors of length n. These induced permutations were studied by Harrison and
High, who derived a formula in [2I] for the corresponding cycle index polynomial Z, of B,.
This formula was later claimed to be simplified by Chen in [I0], who also studied the induced
permutations of the edges of I™. Unfortunately, in view of the standard counting paradigm
of Pélya [28], neither formula allows a straightforward evaluation, modulo the induced action
of B,, on B™, of the number sfl of 0/1-polytopes in I"™ with k vertices. Therefore, here we
will aim for a more pragmatic approach, also motivated by the fact that for n > 6 we failed
to find explicit expressions for Z,, in the literature. First, in Section [2, we give transparent
algorithmic descriptions of how to compute Z,, by means of a simple computer code. This
code yields Z,, as a table of coefficients and exponents of monomials in a minimal effort: the
table for n = 9 in Section [7 was, for instance, produced on a simple laptop within half a
second. As a next step, in Section [B] we explain how to compute, modulo the action of B,
the numbers €F of 0/1-polytopes with k vertices by applying Pélya’s theory to the specific
situation at hand. Again, the emphasis is to show how to algorithmically obtain the concrete
values of 6’; by means of a computer code, using the tables for the cycle indices of B,,. As
we will be interested in 0/1-simplices, we pay special attention to the values k < n + 1. In
Section [7] we present a selection of the numbers produced by the algorithms.

In Section Ml we change our perspective from 0/1-polytopes and two-colorings to 0/1-
matrices. A 0/1-polytope ¢ with k vertices can trivially be represented by a 0/1-matrix of
size n X k whose columns are the vertices of ¢. Although convenient, this unfortunately
introduces another non-trivial redundancy, as there are k! matrices having this property.
Consequently, we investigate how to establish whether two given 0/1-matrices represent 0/1-
polytopes in the same orbit under 5,,. From all 0/1-matrices representing all the 0/1-polytopes
in the same orbit under B,,, we select one designated matrix, the minimal matriz representa-
tion P*, and study its properties. As a first application, this concept enables us to enumerate
all 0/1-triangles in I"™ modulo the action of B,: we give the minimal matrix representation
of each of the 2 distinct orbits of 0/1-triangles under B,, using O(1) arithmetic operations
per triangle. We do the same for the subset of acute 0/1-triangles. Basically, we parametrize
both sets with the points with integer coordinates in a three-dimensional polyhedron, which
in both cases turns out to be a simple tetrahedron. We also derive an explicit formula for their



cardinalities by counting the integer points in the respective tetrahedra. In theory, the same
can be done for k-simplices. This however results in enumerating and counting the points
with integer coordinates in a polytope of dimension 2¥ — 1 constrained by at most (k + 1)!
inequalities. Although the enumeration would still cost O(1) per k-simplex independent of n,
the dependence on k makes such enumeration impractical.

As a consequence of this intractability, in Section [Bl we use the assistance of the computer
to extend the minimal matrix representations of the acute 0/1-triangles from Section @ into
minimal matrix representations of acute 0/1-tetrahedra, and similarly further into minimal
matrix representations of all acute 0/1-simplices with n + 1 vertices. Since acute simplices
have acute facets [16], each minimal matrix representation of an acute 0/1-tetrahedron equals
a minimal matrix representation 7' of an acute 0/1-triangle with one additional column t
appended. Hence, in theory, one could append one by one all feasible columns ¢ to T" such
that [T'|t] represents an acute tetrahedron, discard the ones that do not yield a minimal
matrix representation, and continue to add more columns. Unfortunately, the verification of
minimality is computationally much more expensive than verifying acuteness. It may thus be
much quicker to find out if [T'|¢t] can be extended to the desired number of columns, then to
find out if it is minimal. This saves computational effort if it cannot be acutely extended.

| nf1[2[3] 4] 5[ 6] 7] 8] 9] 10 1]
am)[IT0]1] 1] 2 6 13 29 67] 162] 392
s(n) | 1[1]6[27]472 19735 | 2773763 | 1245930065 | 1.8¢12 | 8.7¢15 | 1.3¢20

Table 1: The number a(n) of acute 0/1 n-simplices in I™ related to their total number s(n). All
cardinalities are modulo the action of B,,.

According to the data from Table[I] (see also Section [7), acute n-simplices in I™ are extremely
rare. Thus it seems likely that simply extending a minimal matrix representation until no
acute extensions are available anymore is quicker than discarding the matrix representations
that are not minimal. However, it turns out that the amount of data in the intermediate
phases becomes unacceptably large. Thus, the challenge to make our algorithms as efficiently
as possible is therefore nontrivial, and involves the well-known struggle between time and
memory requirements. It requires a subtle balance between spending time in computing
minimal matrix representations, and allowing the data to take more and more memory space.
Along the way, and also for the purpose of mathematical analysis, we introduce the sets of
candidate acute extensions C™(S) and of acute extensions A"(S) of a given acute simplex S C
I". Using the theory of symmetric inverse M-matrices (also called Stieltjes matrices) [22,
23], it is possible to derive relations between the members of these sets that make their
computation in many cases much less expensive than at first sight. In Section we display
the minimal matrix representations of all the acute 0/1-simplices in I" for n € {3,4,...,9}.

In Section [6] we analyze these minimal matrix representations. Proofs of the results given
in Section will be based on the so-called One Neighbor Theorem for acute 0/1-simplices
[3]. This theorem states that the set C"(.S) of candidate acute extentions of a simplex S C I"
with n vertices consists of at most two antipodal points. As a consequence, only points in
higher dimensional cubes that project orthogonally on this antipodal pair can be added to
form acute 0/1-simplices with more vertices. If one demands their matrix representation to
be unreduced upper Hessenberg, this limits the possible options even further. What results is



a complete description of the corresponding simplices in Section together with the values
of the determinants of their matrix representations in terms of continued fractions. Apart
from the One Neighbor Theorem, we also use the properties of strictly ultrametric matrices
[27] to prove acuteness of the simplices involved.

2 The hyperoctahedral group B,

Write I"™ = [0, 1]™ for the unit n-cube and B™ = {0,1}" for the set of its vertices. Let B,, be
the set of all rigid transformations h : I — I"™. Endowing B,, with the usual composition of
map as multiplication rule, it becomes the hyperoctahedral group of n-cube symmetries, with
the dihedral group Bs and the octahedral group Bs as well-known instances. Each h € B,
bijectively maps k-facets of I™ to k-facets and thus induces a permutation of these k-facets;
in particular, it permutes B™. To describe this latter permutation, we choose the following
bijection 8 as numbering of B™. It interprets the 0/1-vector v € B™ as a binary number.

M 6 7
{1] g:B"—{0,...,2" — 1}

v (20,2800 2n )y

Figure 5: Binary-to-decimal numbering /3 of the vertex set B™ of I", depicted for n = 3.

Each h € B,, induces a permutation 7, € Son of the numbers 0,...,2" — 1 via § by
e {0,...,2" =1} = {0,...,2" =1} : ks (Boho BN (k). (5)

In Section Bl we will count the number of 0/1-polytopes modulo n-cube symmetries using
Pélya’s Theorem [28]. For this we need to know how many permutations m, of which cycle
type are induced in Son when h ranges over B,,. Recalling that any permutation 7 of £ objects
can be written as the product of disjoint cycles, we can define the cycle type of .

Definition 2.1 (Cycle type) If 7 € S, has t; cycles of length ¢ in its cycle factorization,
then the vector
t(m) = (t1,...,te), with t1-14+---+t,-L=1¢, (6)

is an integer partition of £ called the cycle type of .

From basic algebra we know that the cycle types of two permutations in Sy coincide if and
only if they are conjugate.

Lemma 2.2 Let n,7 € Sy, then t(7) = t(r) if and only if # = 0~ om oo for some o € Sy.
An important consequence is the following corollary, whose formulation uses (&).

Corollary 2.3 If two elements h, h are conjugate in B, then t(m),) = t(m;) in Son.



Proof. The mapping B, — Son : f + w7 is an injective homomorphism. Therefore, if
h=gohog! then m; = myom, om,'. Lemma [Z2 now proves the statement. O

g

Remark 2.4 The table in (I9) constitutes an example of the fact that ¢(m,) = t(m),) while g
and h are not conjugate in B,,, hence the converse implication in Corollary 2.3] does not hold.

Corollary 2.3 shows that counting how many permutations of which type are induced by the
elements of B,, reduces to the following two tasks,

e find the cycle type of m;, of a single element h from each conjugacy class of B,
e count the number of elements in each conjugacy class of B,,.

Before performing these tasks in Section [2.3] we recall some basic facts about B,,. We identify
two subgroups B;, and BP of B,, and show that B,, = B x B¢. This enables us to associate
with each h € B,, a so-called signed permutation. The corresponding signed cycle type of such
a signed permutation will then be used to describe and count the conjugacy classes of B,
and consequently, the number and cycle type of their induced permutations in Son.

2.1 The subgroups B & B?: complementations & permutations

Let the n-tupel (e1, ..., e,) be the standard basis for R". For j € {1,...,n}, let¢; : I" — I" :
Trre;+x— 2ejeij be the reflection in the affine hyperplane 2z; = 1. The set {c1,..., ¢y}
generates a subgroup By, of B,,. Note that ¢; o c; = ¢; o¢; and c? = id. Thus, the mapping

n C . __ wi w2 w
B" — By : w—cy=ctocy?o---ocy" (7)

is a bijection, showing that |BS| = 2™. One can verify that ¢, (v) = xor(w,v) = (w+ v) mod 2,
where xor is the logical exclusive or operation performed entry-wise on the pair w,v € B™.
Next, for each j € {2,...,n}, consider the reflection s; : I" — I" : x = 2 — (e1 —¢;)(e1 —
ej) Tz in the hyperplane z; = z;. The set {so,...,s,} generates a subgroup Bj of B,,. The
action of s; on v € B" interchanges the first and jth entry of v. Since each permutation of n
objects is a product of transpositions with the first object [15], we conclude that |Bh| = n!.

For each permutation u = [u(1),...,u(n)] € S,, we write p, for the element from B}
defined by its action on B™ as

(Pu) (V) = vou= (V) Vum) - (®)

Definition 2.5 (Coordinate complementation and permutation) An element ¢, € B¢
will be called a coordinate complementation and an element p, € Bl a coordinate permutation.

Example 2.6 Consider the group Bs of unit cube symmetries. It contains a subgroup B of
order 8 = 23 with generators c1,ca, c3, the reflections in the planes 2x; = 1, and a subgroup
BE of order 6 = 3! with generators sy and s, the reflectors in the planes v1 = x2 and x1 = 3.

To illustrate the actions of elements from BS and BY, let for instance w = 0,1,1)7,
then c,, € B acts on I? as depicted in the right part of Figure [7 Note that ¢y, = c10cy =
ce ocy. Also given is its induced permutation m., € Ss. Next, given the permutation u =
[3 1 2] € S3, the action of p, € Bh on I3 is depicted on the left, also together with its induced
permutation m,, € Sg. Observe that p, = s3 0 s, but that the product s3 o sy does not
equal p,,. &



2.2 B, and the group of signed permutations of n objects

An n-cube symmetry h € B,, is a rigid transformation and thus an affine isometry. As such,
it is uniquely determined by the combination of both the items (1) and (2), being

(1) the vertex v € B™ that is mapped to the origin by h,
(2) how the n vertices of I" at distance one from v are mapped to e1, ..., e,.

Note that ¢, is the unique element from B¢ with ¢,(v) = 0. Also note that p,(0) = 0
and p(e) = e for all p, € B, where e = €1 + - -+ + e, is the all-ones vector. Thus, we have
that

{hGBn | h(v):()} = {h:puocv | puegz}- (9)

Also observe that each p, € Bb corresponds to a unique permutation of the basis vectors.
Corollary 2.7 For each h € B, there exist unique pair p, € Bh and ¢, € BS such that
Puocy =h= Cpy(v) © Pu- (10)

One of the consequences of the uniqueness is that the order |B,| of B, equals n!2". Another
consequence is that we can now identify with each h € B,, a so-called signed permutation.

Definition 2.8 (Signed permutation) We will index h € B,, as hy,, where the vector w,
called a signed permutation, has entries given by

wj =u; ifv;=0 and w;=71; ifv; =1, (11)
where u and v are the indexes of the unique p, € Bh and ¢, € BS such that h = py o c,.

The set of all signed permutations of n objects is obviously isomorphic to B,,.

2.3 Conjugacy classes and signed cycle types in B,

We now introduce the signed cycle type of a signed permutation. It will have the property
that two elements in B,, are conjugate if and only if they have the same signed cycle type.

Definition 2.9 (Signed cycle type) Let h = p, o ¢, with p, € Bh and ¢, € BS. For each
cycle v in the decomposition of the permutation u into disjoint cycles, set

X =Y v (12)

JE€Y

C1 C2 c3 52 S3

Figure 6: Generators of B3: complementations ¢y, co, c3 and the permutations se and s3.
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Figure 7: A complementation c¢,,, a permutation p,, and their induced permutations in Ss.

Let uy be the product of the cycles v of u for which x(vy) is even, and u_ such that u = ujou_.
Then the 2 X n array

_f tluy)
t:l:(h) - { t(u_) ) (13)
where t is the cycle type from Definition 2], is called the signed cycle type of h.

Note that the signed cycle types of the elements h € B,, are in one-to-one correspondence with
the double partitions [17] of n, which are ordered pairs of partitions of k and ¢ with k+ ¢ = n.

Example 2.10 Let h,, € Big be the ten-cube symmetry indezed by the signed permutation
w=[2674819510 3. (14)

Then hy = py © ¢y, with v = (0,1,0,1,0,1,0,0,1,0)" and u = 2674819510 3]. The
latter can be written as a product of cycles as u = (12 6)(3 7 910)(4)(5 8). This results
in x(126) = v +vy+vs =2 and similarly, x(58) = 0, and x(37910) = x(4) = 1.
Therefore, ux = (12 6)(5 8) and u— = (3 7910)(4) and thus,

_J (0,1,1,0,0,0,0,0,0,0)
Blh) = { (1,0,0,1,0,0,0,0,0,0) ~ (15
is the signed cycle type of h, corresponding to the partitions 2+ 3 and 1+ 4 of 5. &

In view of Corolary 2.3 we will now state one of the main results in this section.
Theorem 2.11 Two elements g, h € B,, are conjugate in B, if and only t1(g) = t+(h).

Thus, we have been successful in our aim to characterize the conjugacy classes of B,,. Now we
will consider the question of counting the number of elements of each of these classes. Firstly,
Definition 2T implies that Sy has p(¢) conjugacy classes, where p(¢) stands for the number of
integer partitions of £. The sizes of these classes are well known.

Proposition 2.12 The size of each conjugacy class of Sy, being the number of o € Sy such
that t(o) = (t1,...,te) for a given cycle type (t1,...,tp) equals

L 1l
|:7f:|_1t1'...'€tf-t1!'...'tg!‘ (16)
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Similarly, writing A(n) for the number of double partitions of n, we have that A(n) is the
number of conjugacy classes of B,, and that

Am) =3 p(k)p(n — ). (17)
k=0

For illustration, we list here the first few values of p and A in Table 2

| njJof1]2] 3] 4] 5] 6] 7] 8] 9] 10[ 11] 12] 13]
pin) [1]1]2] 3] 5] 7|11 15| 22] 30] 42] 56| 77] 101
A(n) [[1]2]5]10[20]36]65] 110185 [300 | 481 | 752 | 1165 | 1770

Table 2: Sequences A000041 and A000712 in the Online Encyclopedia of Integer Sequences.

Proposition 2.13 The number of elements in B,, of the signed cycle type
- (tl, e ,tn) n k 4 n—>"(t;+s;)
ty(h) = { (51, 50) equals ; ) 5 2 iTsi), (18)
where k=1t1-14+---4+t,-nand  =s1-14+---+ s, -n are the sums of the respective parts.

Proof. The only factor that needs explanation is the power of two. A cycle of length m
can be given signs in 2 ways, 2! of which resulting in an even number of signs and 2™~!
of which in an odd number of signs. O

2.4 An algorithm for the cycle index of B,

We are now able to answer the question how many permutations in Son of which cycle type
are induced by the 2"n! elements of B,, by implementing the following algorithm.

Algorithm 1: Counting and tabulating the induced permutations of B,,.

Let n € N be given.

Step 1. Generate the A(n) double partitions (74,7—) F (k,£) of n.

Step 2. For each such double partition, construct a single h € B,, with signed cycle type

w={ ) {7

and evaluate the expression in (I8) to count how many of them there are.
Step 3. Compute the type t(7},) of the permutation 75, € Son induced by h.
Step 4. Accumulate the result of Steps 2 and 3 over all double partitions in a table.

Example 2.14 The conjugacy classes of Bs are indexed by the ten double partitions of 3.
Below we list these ten, and at their left we show how many elements of that type there are
m Bg.



) (0,0,0) ) (0,0,0) ) (0,0,0) ) (1,0,0) ) (1,0,0)
1'{<3,uO> 6'{<1,170> 8'{<0,071> 3'{<2,0,0> 6'{<0,1,0>

Table [J lists for each conjugacy class its cardinality, together with one element h € B3 from
that class, and the cycle type of its induced permutation m, in Sg.

#] n | h [ h | n [[#]
1] (1)(2)3) ] (8,0,0,0,0,0,0,0) || (0,4,0,0,0,0,0,0) | ()(2)(3) || 1
6 | (D2 3)[(4,2,0,0,0,0,0,0) | (0,0,0,2,0,0,0,0) | (1)(2 3) || 6 (19)
8| (T 2 3)[(2,0,2,0,0,0,0,0) | (0,1,0,0,0,1,0,0) | 1 2 3) | 8
3 L ME)A3) ] (0,4,0,0,0,0,0,0) || (0,4,0,0,0,0,0,0) | (H(2)(3) || 3
6 | (I 2)(3)[(0,4,0,0,0,0,0,0) | (0,0,0,2,0,0,0,0) | (1)(2 3) || 6

Table 3: Cycle types of induced permutations and their cardinality.

It also illustrates Remark [2.4]: elements from distinct conjugacy classes of Bz may induce
permutations in Sg the same cycle type. Table [ groups them together.

| # | i |
1 ] (8,0,0,0,0,0,0,0)
6 | (4,2,0,0,0,0,0,0)
13| (0,4,0,0,0,0,0,0)
8 1 (2,0,2,0,0,0,0,0)
12| (0,0,0,2,0,0,0,0)
8 1(0,1,0,0,0,1,0,0)

Table 4: Cycle index of B3 in tabulated form.
Note that instead of computing the cycle types of the induced permutations of all 2"n!
elements of By, we need to compute only A(n) of them. &
The usual way in which Table [l is expressed, is as a cycle index polynomial [8, 2§].

Definition 2.15 The cycle index of the induced permutations on B,, of the hyperoctahedral
group is the polynomial

24(n)
1 .
Zn(x1, ..., m0) = 1B, > I =it (20)

heB, i=1

Here, t; is the i-th entry of t(my) and £ is the Landau function, which assigns to n the largest
order of an element from the symmetric group 5,. Its values

1,1,2,3,4,6,6,12, 15, 20, 30, 30, 60, 60, 84, . .. (21)
can be found as sequence A000793 of the Online Encyclopedia of Integer Sequences.

Combining Table @) and (20]), the cycle index polynomial Zs of Bs can be found as

1
Z3(x1, 9, X3, T4, T5, Tg) = e (m? + 62123 + 1375 + 82323 + 1227 + 8z26) - (22)
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Further explicit expressions for the cycle index polynomials Z,, of B, can be found in the
literature [11] only for n < 6. The above rather simple algorithm implemented on a personal
computer can produce the table corresponding to Z,, of the form (36]) for each n < 10 within a
second. In the papers [10, 21], the cycle type t(7p,) of the permutation 7, € Son induced by h is
expressed in terms of the signed cycle type of the signed permutation corresponding to h € B,,.
Although algebraically of interest, their expressions are unfortunately too abstract to generate
explicit numbers in a straightforward way. The above algorithm solves that problem.

3 The 0/1-polytopes in the unit n-cube

A 0/1-polytope [24] is the convex hull of a (possibly empty) subset V' C B". Since distinct
subsets of B™ give rise to distinct 0/1-polytopes, we can and prefer to define a 0/1-polytope
alternatively but equivalently as a map ¢ : B"™ — {0, 1}, using the obvious correspondence

c:B" - {0,1}: v—1l&sveV. (23)

Such a map can be seen as a two-coloring of the vertices of I™ with “colors” 0 and 1. We denote
the set of all maps B" — {0,1} by P,, and write PX C P, for all ¢ € P, with the property
that precisely k elements of B™ are mapped to 1: these correspond to the 0/1-polytopes with
exactly k vertices. Observe that

2n 2n 2n
A n
k k 2
n = d | = ‘ = =922, 24

P= Ukt P =Y =3 (%) (21

k=0 k=0 k=0
The double-exponential growth of |P,,| in n is illustrated in the below table. Already for n = 6
it exceeds (by one) the number of grains of rice that the poor merchant claimed from the king
in the legend of the chess board, as displayed in Table [

n |[0|1] 2 3 4 ) 6
|Pol | 2| 4|16 | 256 | 65536 | 4294967296 | 18446744073709551616

Table 5: Doubly exponential growth of the number |P,,| of 0/1-polytopes in I".

We assign to each 0/1-polytope ¢ the unique integer NV'(c) between 0 and 22" — 1 as

N(c) = Z c(v)2°W) (25)

veEB”
where (8 is the binary-to-decimal numbering of v € B" introduced in Figure

Example 3.1 Depicted below are the 0/1-polytopes c in the unit square. A circle is drawn
around v € B? if and only if c(v) = 1. The number in the center of each square is N(c).

Obviously, N(c) + N(¢) = 2¥" — 1 for complementary 0/1-polytopes, by which we mean
polytopes ¢ and ¢ such that (¢ + ¢)(v) =1 for all v € B".

13



15 14 13 12 11 10 9 8

Figure 8: The sixteen 0/1-polytopes in I? and their numbering given in (25]). O

3.1 Cube symmetries acting on 0/1-polytopes: 0/1-equivalence

Each element h of the hyperoctahedral group B,, induces a permutation Hj of P, by Hy, :
Pp — Pn : ¢+ coh. For each fixed k it restricts to a permutation of P*¥ C P,. Via the
numbering A defined in (25]) it moreover induces a permutation

I : {0,...,2°" =1} = {0,...,2%" —1}: k> (Mo HyoN 1) (k). (26)
It turns out to be of interest to know the cardinalities |S| and |S¥| of the sets
S={(h,c)eB,xP, | c=coh} and S*={(h,¢)€B,xPF | c=coh}. (27)
Before explaining why, we present an example.

Example 3.2 For each of the eight h € Bsy, the permutations I, of {0,...,15} are given in
Table[d. The (bold) fized points correspond to S, and are added up per row and per column.

[BoxP, JO[1]2[3[4][5][6]7[8[o]0[11[12[13[14][15] |
id 0[1[2[3[4]5[6]7[8]9[10][11]12]13]14]15] 16

e 0[2[1[3 [8|10[9[11[4[6] 5 |7 [12]14][13][15] 4

cs 0[4|8|12[1 |5 [9[13[2[6[10[14] 3 |7 [11]15] 4
cioc; |08 |4[12[2[10[6 [ 14|19 5 [13]3 [11] 7 [15] 4
51 0[1[4]5 [2]3[6] 7 [8[9[12][13[10]1114]15] 8
sioc; |0 |4|1[5 [8[12[9[13[2[6] 3 |7 [10]14]11]15] 2
sioc; |02 81013 |9|11[4|6]12]14] 5 |7 [13][15] 2
siocioc; |08 |2[10[4 126|141 |9] 3 [11] 5 [13] 7 |15] 8
[8[2[2[2]2]24]2[2[4[2[2[2]2]2]38 [48]

Table 6: The action of B3 on the 16 0/1-polytopes in I2.

We see directly that |S| = 48. After identifying the 0/1-polytopes with k vertices for given k €
{0,...,4}, we moreover find that |S°| =8, |S'| =38, |S?| = 16, |S?| = 8, and |S*| = 8. O

It may decrease complexity and uncover structure when we consider all elements in the orbit
En(c) of a 0/1-polytope ¢ (elements in the same column of the above table) as equivalent.

Definition 3.3 (0/1-equivalence) Two 0/1-polytopes c,¢ € Py, for which there exists an h €
B,, such that ¢ = co h are called 0/1-equivalent.

14



It is clear that 0/1-equivalence of 0/1-polytopes implies their congruence; however, the con-
verse does not hold [24]. Thus, 0/1-equivalence is a finer type of equivalence than congruence.

We will now count the number &, of 0/1-equivalence classes of 0/1-polytopes. Since 0/1-
equivalent 0/1-polytopes have the same number of vertices, we will count the number 6’; of
0/1-equivalence classes of 0/1-polytopes with k vertices, after which &, = ", k.

Lemma 3.4 The number sfl of 0/1-equivalence classes of 0/1-polytopes with k vertices equals

) 1 |Sel

k c

€n . |gn(C)| |Bn|, where S, { GB | C COh} ( 8)
Pk cePk

% all é € PF that belong to &,(c) contribute one to the sum.
This proves the first equality in (28]). Next, if h € B, is such that coh = ¢ # ¢, then also
cohgoh = ¢if and only if hy € S.. Thus, for each ¢ € &,(c) there are exactly |S.| elements
of B,, that map ¢ onto ¢, proving the second equality. O

Proof. Trivially, given ¢ € PF

Corollary 3.5 We have that

27L
eb =1 and sn:ﬂ dueto Y [S.|=IS* and D ISF| =S| (29)
=0

n
’Bn’ ’ n’ cePk k=

Using this corollary we can continue to look at the example for n = 2.

Example 3.6 (continued) Since for n = 2 there are 48 elements in S, by Corollary [3.3 we
find 48/8 = 6 distinct 0/1-equivalence classes of 0/1-polytopes, being

{0}, {1,2,4,8}, {3,5,10,12}, {6,9}, {7,11,13,14} and {15}, (30)

consisting of 0/1-polytopes with zero, one, two, two, three, and four vertices, respectively. For
all the 0/1-polytopes with, for instance, two vertices, the fized points add up to 16, confirming
the existence of two distinct 0/1-equivalence classes in 7322. &

3.2 Counting 0/1-polytopes invariant under a given symmetry

Counting the elements of S can be done by counting for each ¢ € P, the number of elements
of the set S, from (28)). Alternatively, one can also count for each h € B,, the number of
elements of the set

Sp={ceP, | c=coh}. (31)

This is the Cauchy-Frobenius Lemma, also known as Burnside’s Lemma []]. Note that count-
ing S, corresponds to counting the fixed points per column of Table [0l

Proposition 3.7 For given h € B,,, ¢ = coh if and only if for each cycle of my, ¢ is constant
on the pre-image under 8 of all numbers in that cycle.

As a consequence, the number of 0/1-polytopes that are invariant under a given h € B,
with t(7p) = (t1,...,t2n) equals the number of subsets of the set of the t; + - -+ + ton cycles
of 7 h-

15



Corollary 3.8 Let h € B, be given with t(wp,) = (t1,...,tan). Then the cardinality |Sp| of
the set Sy, equals |Sp| = 201 Ftan

Proof. According to Proposition B.7], the numbers within the same cycle of 7, must either
all be mapped to 0 or all be mapped to 1 by co 871. O

The number of 0/1-polytopes with k vertices that are invariant under a given cube sym-
metry h equals the number of subsets of the set of ¢; + -+ + tan cycles of 7, whose lengths
sum to k.

Theorem 3.9 Let h € B, be given with 7 = t(mwp) = (t1,...,t2n), and let k < 2™. The
cardinality |SF| of the set Sk = {c € P¥ | c¢=coh} equals

t .
SF| = Z a(t,k), where a(1,K) = H (;), (32)
Kk j=1 "
and where the sum ranges over all integer partitions k of k.

Proof. Let (kq,...,Kkk) be a partition of k. The number of ways that this partition can be
selected from the partition (¢y,...,t,) of n equals the product over all j € {1,...,k} of the
number of ways that x; cycles of length j can be selected from the ¢; cycles of length j. [

Corollary 3.10 The number of 0/1-equivalence classes of P¥ equals

ek = |B—1n| SO S alt(m), ). (33)

heB, kEEk
Example 3.11 Consider the induced permutation m, of the vertices of I® with cycle type
t(mp) = (4,2,0,0,0,0,0,0), (34)

which consists of 4+ 2 = 6 cycles. Hence, the number of 0/1-polytopes that are mapped upon
themselves by h equals 26 = 64, which illustrates Corollary [3.8. To illustrate Theorem [3.9,
consider the five partitions of k =4, being 1 +1+1+1=1414+2=143=24+2=4 and
their corresponding cycle types,

(4,0,0,0), (2,1,0,0), (1,0,1,0), (0,2,0,0), (0,0,0,1). (35)

Only the first, second, and fourth partition contribute to the sum in (32), which evaluates to

BEEE OO EEEE = w

Thus, each h € B, with induced cycle type t(my) as in (34), leaves invariant fourteen 0/1-
polytopes in I? with four vertices. See also Table[7 in the next evample. &
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3.3 Counting the 0/1-equivalence classes of P*

Corollary B.I0 in combination with the considerations in Section [2] give a way to compute the
number |PF| of 0/1-equivalence classes of 0/1-polytopes with k vertices as follows.

Algorithm 2. Let integers n,k with 0 < k < 2" be given.
(1) Use Algorithm 1 from Section 2.4]to generate the cycle index Z,, of B,, in tabulated form.
(2) Generate a second table with the p(k) partitions of k, see for instance [26].
(3) For each cycle type 7 = (t1,...,ton) F 2" from the first table:
(a) sum the numbers a(7, k) from ([B2) over all k F k;
(b) multiply the result by the number of h € B,, for which t(m) = t.
(4) Sum over all 7 = (t1,...,tan) F 2" from the first table.

To illustrate this algorithm, we perform it in detail in the example below.

Example 3.12 We consider the case n =3 and k = 4. The part of Table[7 to the left of the
6 x 5 block in boldface is the table representing Zs from Table (7).

0 1 0 2 4 K1

0 0 2 1 0 Ko

0 1] 0] 0] 0] &s

1 0 0 0 0 Kq

12 0O 0 0 2 2 0| O 0 0 24
8 0O 1 0 0 0| 0| O 0 0 0
13 0 4 0 O 0| 0| 6 0 0 78
8 2 0 2 0 0| 4| 0 0 0 32
6 4 2 0 O 0| O 112 1 84
1 8 0 0 0 0| 0| O 0|70 70
(48 [ f, f» f; fa [ 24|32 4] 72 76 || 288 |

Table 7: Computation of the numbers a(r, k).

The part of Table [] above the boldface part contains the five partitions of 4. Note that only
the values of t1,...,ts are needed to be able to compute each of the numbers a(r,k). The
numbers 1,12,1 in the fifth row in boldface are the ones computed in (30) of the previous
example. The sum 288 of the numbers in the 6 x5 block divided by the order 48 of B3 equals 6,
indeed the number of nonequivalent 0/1-tetrahedra in the cube, including two degenerate ones,
as depicted in Figure[d. &

Remark 3.13 The combinatorial road [8, (28] to arrive at the same result is to substitute in
the cycle index polynomial Z,, of B, in (20) the expressions x; = b' +w'. Then the coefficient
of the monomial w*b®" =% in the ewxpansion equals |P¥|. Although theoretically elegant and
valuable, and widely applicable, it is not very suited for computing concrete numerical values.

The methodology described in Sections [2] and ] leads to a way to compute the number of
0/1-polytopes in I™ modulo the symmetries of I"™. See also Section [7 for some explicitly
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X

Figure 9: Representatives of each of the six 0/1-equivalence classes of all 0/1-tetrahedra.

computed values. It does not yield a specific element from each 0/1-equivalence class. In the
next section we will investigate this enumeration problem.

4 Minimal matrix representations of 0/1-polytopes

We will now designate in each 0/1-equivalence class &,(c) of a 0/1-polytope ¢ some special
representatives. One of them we denote as the minimal representative from that equivalence
class. Obvious candidates for such minimal representatives are the 0/1-polytopes ¢ for which

N(c) <N(coh) forall h € B,, (37)

where N is the numbering defined in (25). However, with this definition it may happen
that ¢ € P* is a minimal representative, whereas none of its facets in %=1 is minimal. For
computational purposes, we prefer a minimal representative to have that property.

4.1 Matrix representations of 0/1-polytopes

A natural way to represent a 0/1-polytope ¢, alternative to a mapping ¢ : B” — {0,1}, is by
means of 0/1-matrices whose colums are the vertices of c.

Definition 4.1 (Matrix representation) If the columns of a matrix P of size n x k are
precisely the k distinct vertices of a 0/1-polytope ¢ C P,'f, we will call P a matriz representation
of ¢. With each matrix representation P we associate the integer vectors

v(P)=v) PII; and pu(P) = IyPuwy, (38)

where
ol = (29,2,...,2"Y) and w] = <2k—1,...,21,20), (39)

and where II; is the unique k x k column permutation matrix sorting the k entries of v, PII;
from left to right in increasing order, and Ily any n X n row permutation matrix sorting the n
possibly non-distinct entries of Il Pw;, from top to bottom in non-increasing order.

The permutations I, IIs depend on P, but this dependence is suppressed from the notation.
As P has distinct columns, each ¢ € PF has exactly k! distinct matrix representations.

18



Proposition 4.2 The following statements are equivalent:

(1) Py and P, are matriz representations of the same 0/1-polytope c € PF;
(2) there ezists a k x k permutation matriz 11 such that Py = PI1;

(3) v(P) = v(P).

Proof. This is because that no vertex of I™ is a convex combination of other vertices of I™,
hence 0/1-polytopes are uniquely determined by their vertex set. O

Due to the equivalence (1) < (3) in Proposition 2] and with a slight abuse of notation,
we will use v(c) also for a 0/1-polytope ¢ € P, and assign to it the vector v(c) taken by any
matrix representation P of ¢. Note that v : P, — {0,...,2"}* is injective.

For given ¢ € PX we will write M(c) for the set of all matrix representations of all ¢ €
En(c). This induces an equivalence relation on the set Z of all matrix representations of
0/1-polytopes, that we will denote by P, ~ P,. Before studying this equivalence on Z, we
introduce two simpler relations.

Definition 4.3 (Row complementation/permutation) A 0/l-matrix P is a row com-
plementation of Py, denoted by Py ~ Py, if it results from P, after exchanging the zeros and
ones in a subset of its rows; it is a row permutation of Py, denoted by P R Py if there exists
a permutation matrix II such that P, = I1P;. O

Both < and £ are equivalence relations on Z. The 2" row complementations applied to
a given P € Z result in matrix representations of each of the 0/1-polytopes in an orbit
under the action of the subgroup B C B,,, whereas the n! row permutations of P are matrix
representations of those in an orbit under the action of the subgroup B}, C B,,. Thus, following
Section 2] a matrix representation of each 0/1-polytope that is in the same 0/1-equivalence
class of a given ¢ € P,’j can be obtained by performing each of the 2"n! combined row
complementations and permutations to a given matrix representation P of c.

4.2 Verification of 0/1-equivalence of matrix representations

For given P, P, € B™* let r; = Pywy, and ro = Pywy, where wy, is the vector from (339).
If P, ~ P, then the j-th entries of 7 and 79 are equal in case the j-th rows of P, and P»
are equal, and add up to 2¥ — 1 in case these rows are complementary. Hence, verification
whether P; <~ P, can be done in at most O(nk) operations, which is dominated by the costs

of computing r, and ro. Verifying whether P; £ P, asks to inspect if the n-vector rq is a
permutation of 7y, requiring O(nk + nlogn) operations.

The combination of these two observations yields the following, which can be seen as a
variant of stating that rq is a signed permutation of 79, see Section

Proposition 4.4 Let P;, P, € Z. There exists an R € B"*F such that
P2 RA P, (40)

if and only if the 2n entries of the two n-vectors r1 and (28 — 1)e — 1 are a permutation of
the 2n entries of the two n-vectors ro and (2% — 1)e — ro.

The verification if P, X R <~ Py requires O(nk+ 2nlog(2n)) = O(nk+nlogn) operations.
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Example 4.5 Consider matrices Py and Py, with 11 = Piws and ro = Pywy computed as

01 10 i 6 0110 i 6
P1w4 = 0 01O 9 = 2 and P2w4 = 1 1 10 9 = 14
0 001 1 1 1101 1 13

Then P, ~ R X Py for some R € B34, because the entries (6,2,1,9,13,14) of the two 3-
vectors r1 and 15e — 11 can be permuted into the entries (6,14,13,9,1,2) of ro and 15e — rs.
Indeed, Py is obtained by exchanging and complementing the second and third row of Py. <

Proposition d.2]showed that if P; and P, are matrix representations of the same 0/1-polytope,
then P, = P,II for a permutation matrix II that can be found by inspecting if s1 = v,;r P isa
permutation of so = v; Py, with vy, from (39). To verify if P; ~ Ps, or in other words, if P; is a
column permutation of a row complementation and row permutation of P, is computationally
much more complex.

Proposition 4.6 Let P, P, € Z. Then Py ~ Py if and only if there exists an R € Z and a
permutation matriz I1 such that
P2 RL P, (41)

the verification of which can be done in O(k!(nk + nlogn)) operations.

Proof. The verification can be done by looping over all k! permutation matrices IT and
performing the verification in Proposition [4.4] for each of them. O

Remark 4.7 Relation (&I]) holds if there exist permutation matrices II; and Ils such that
I, P, < Pylls. (42)

This more symmetric formulation suggests that in order to verify if P; ~ P», one can establish

the existence of permutation matrices II; and Il such that II; P, ~ Pyl in two ways:

e for each Ilo, verify if there exists II; such that II1 P, ~ Polls;

e for each Ily, verify if there exists Il such that II1 P, ~ PyIls.

The second strategy would require an efficient way to verify the existence of a column per-
mutation of P, such that it equals a row complementation of the given matrix II; P;. This
verification is far less trivial than the one in Proposition 4.4l Nevertheless, if & > n+ 1, there
are ways to repair this and make the second strategy more economic than the first. Because
our main interest is 0/1-simplices for which k < n + 1, we will not go into detail.

4.3 Minimal matrix representations and their properties

The lexicographical order < on the integer vectors v(P) associated with the matrix represen-
tations P of 0/1-polytopes ¢ € P,, induces a total order on P, as well as on Z.

Definition 4.8 (Minimal representative) The minimal representative of a c € PF in £,(c)
is the unique 0/1-polytope c¢* € &,(c) for which v(c*) < v(d) for all d € &,(c*),d # c*.

The minimal representative c* of ¢ € P¥ has k! distinct matrix representations, of which we
designate one as the minimal matrix representation.
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Definition 4.9 (Minimal matrix representation) The minimal matriz representation of
¢ € P, in M(c) is the unique matrix representation P* of ¢* for which v,] P* = v(P*), in
other words, whose column numbers v, P* are strictly increasing.

We will now study further properties of minimal matrix representations of 0/1-equivalence
classes of 0/1-polytopes. The following result proves a desirable property, mentioned already
at the beginning of this section.

Lemma 4.10 Let P* be a minimal matriz representation of a 0/1-polytope ¢ € 775. Then
for each j € {1,...,k — 1}, the submatrizx P;‘ of P* consisting of its j leftmost columns is a

minimal matriz representation of a 0/1-polytope cj € 77%.

Proof. Let P* € B"** be a minimal matrix representation. Then by Definition E.9] ?)71— pP*
is increasing, and hence, so is v, P;_,. To arrive at a contradiction, assume that P;_; is not
a minimal matrix representation. Then there exists a row permutation II such that I1P}_, S
P,y and v(P,_1) < v(P}_;). But this means that ITP* ~ P, where P is a matrix whose k —
1 leftmost columns equal Pr_q. Irrespective of the rightmost column of P, this implies
that v(P) < v(P*), contradicting the minimality of P*. This proves that P} ; is a minimal
matrix representation, and hence inductively, the minimality of all P]* O

Corollary 4.11 Any minimal representative of a 0/1-polytope with k vertices contains a
minimal representative of a 0/1-polytope with k — 1 vertices.

Corollary 4.12 The first column of a minimal matriz representation P* of a 0/1-polytope ¢ €
Pk equals 0 € R™.

Proof. According to Lemma [£TI0 the first column of P* is a minimal matrix representation
of a 0/1-polytope with one vertex. Clearly, this is the zero vector. O

By Definition &8, v(P*) = v,) P*, which means that the integer vector v,] P* is increasing.
The next lemma proves that additionally, P*w, is non-increasing from top to bottom.

Lemma 4.13 Let P* be a minimal matriz representation of a 0/1-polytope ¢ € PE. Then
Pruy = p(P*) (43)
or equivalently, P*wy is non-increasing from top to bottom.

Proof. Write p; for row ¢ of P* and p; for row j of P*. Assume that 1 < i < j <n
and piwy < p;wk, contradicting the statement to prove. Then

p=, ?lnnk} {piec # pjec} (44)
exists and equals the index of the leftmost column in which p; and p; differ. The assump-
tion pjwy < pjwy implies that pfey = 0 and pje,, = 1. Write P for the matrix that results
after the transposition of rows i and j of P*. Then the first p — 1 columns of P* and P
coincide. However, in column p, the one in row j is exchanged with the zero in row i above
it. As a result, UZ P =< UZ P*, contradicting that P* is a minimal matrix representation. [

In Figure [I0 we display four elements cj,...,cs from E3(c;) of a tetrahedron ¢;. The
stabilizer S;, of ¢; in Bs contains two elements, hence |E3(c1)| = 24. We also display matrix
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C1 2 C3

¢4
[0 10 074 01 10][6 [0 10 17[5 001 1][3
001 1/([3 0010 00102 000 1|1
L0 00 1][1 000 1][1 L0 00 1][1 011 1][7
[0 1 2 6] [0 1 3 4] [0 1 2 5] [0 45 7]

Figure 10: Four 0/1-equivalent 0/1-tetrahedra with corresponding matrix representations.

representations for ¢y, ..., c4, all with increasing column numbers.

Without proof, we mention the following facts for illustration.

e N(ca) < N(c) for all ¢ € E(c1), but none of its triangular facets is A/-minimal;

e c3 is the unique minimal representative of E3(cy);

e 1i(cq) is not nonincreasing, hence ¢4 is not the minimal representative of E(c;);

e no 0/1-polytope formed by two or three vertices of ¢4 is a minimal representative;
e ¢ has all properties proved above of the minimal representative, but is not it.

Now, let P be any matrix representation of a 0/1-simplex ¢ with & < n + 1 vertices. For
each j € {1,...,k}, write P; for the matrix obtained from P by first complementing those
rows in P that have an entry 1 in column 7, and then swapping columns 1 and j of the result.
Each matrix P; corresponds to ¢ with one of its vertices placed at the origin. Hence, due to
Corollary 12} there exists a j € {1,...,k} such that

P* =TI, P11,

for some permutation matrices II; and Il3, and where 115 leaves the first column of P; invari-
ant. Instead of applying all the n!(k — 1)! permutations and verifying which of them result
in P*, we can use that by Lemma[£13], the row numbers P*wy, are non-increasing. Therefore,
for each of the (k — 1)! choices for IIy, it suffices to simply sort the rows of P;jIIs. Then P*
must be among the resulting k(k — 1)! = k! matrices, (k —1)! for each value of j € {1,...,k}.

Summarized in algorithmic form, this reads as follows.

Algorithm 3: Computing the minimal matrix representation P* of a 0/1-simplex c.

Let P be any matrix representation of c¢. Define Py, ..., P as described above.

For j =1,...,k;

(1) apply all (k —1)! column permutations Iy to P; that leave its first column invariant;
(2) for each of those, apply any row permutation II; for which II; P;IIow, is non-increasing;

(3) store the matrix P]* = II; P;II, for which II; P;IIaw), is lexicographically minimal.
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Each P7 can be seen as a local minimizer over all matrices that can be obtained from P; by
permuting its rows and columns. The minimal among all k local minima is then P*.

Corollary 4.14 A 0/1-polytope with k wvertices has at most k! distinct matriz representa-
tions P with Pe; = 0 and with Pwy nonincreasing.

We will now use Algorithm 3 to enumerate the minimal representatives and their minimal
matrix representations of all 0/1-triangles in I", and in particular of the subset of all acute
0/1-triangles. These minimal matrix representations of 0/1-triangles will be extended by a
computer code to minimal matrix representations of nonobtuse and acute 0/1-simplices.

4.4 All minimal matrix representations of 0/1-triangles

Let T € P2 be a 0/1-triangle. We will characterize its minimal matrix representation T* . By
Definition @9, we know that v,] T* is increasing; by Corollary @12, the first column of T™*
equals zero; and by Lemma [4.13] T*ws3 is non-increasing. Therefore, we know that

T = for certain a+b+c+d=n, (45)

Qo o
o O OO
S O = =
O = O =

and where the right-hand side stands for the n x 3 matrix whose top a rows equal [0 1 1], whose
next b rows equal [0 1 0] and so on. Of course, T is not minimal for all values of a,b, c,d.
For instance, if b > ¢ it is not. In that case, swapping the second and third column of 7% and
sorting the rows, leads to a matrix with a smaller second column number: 20+¢ < 2040,

To further specify a,b, ¢, d, we compute the k! = 6 matrices that are generated by Algo-
rithm 3, with start matrix 77" = T for some choice of a,b,c,d. Each of those six matrices
is of the same form as in (45), but with the numbers a, b, c,d of repeated rows permuted.
Instead of writing down the matrices, we only present in Table [§] their corresponding permu-
tations of a, b, ¢, d, in three sets of two, each pair belonging to one of the matrices 17,75, 15,
where T7 =T,

Qe o
QT 0
QLI T

ISR SEIS

QL O o
Q0

Table 8: Induced (block-)permutations.

Observe that Table [8 basically consists, in fact, of all six permutations of a, b, c.

Theorem 4.15 The matriz T™ is the minimal matriz representation of a 0/1-triangle T
in I if and only if it is of the form ({3) with

1<a+b and a+b+c<n and a<b<e (46)

Proof. Consider the column numbers of 1%,

o Ty = (o, gutb 1 gatbte _gatb | ga 1) . (47)
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Necessary and sufficient conditions for this vector to be lexicographically minimal over all
permutations of a, b, ¢ are as follows. The second entry is minimal if and only if a +b < a+¢
and a + b < b+ ¢, hence if and only if b < ¢ and a < ¢. If this is the case, additionally the
third entry is minimal if and only if a < b. The fact that a + b 4+ ¢ must be bounded above
by n is trivial. The additional bound 1 < a + b is a necessary and sufficient condition for the
three vertices of 7 to be distinct. O

Corollary 4.16 Let T™ be a minimal matrix representation of a 0/1-triangle T in I™. Then:
e ifa =0 then T is a right triangle;
e if a > 0 then T has acute angles only.

Proof. Suppose that a = 0. Then dueto 1 < a+band a <b < c¢in ([6), we have that 1 <b
and 1 < ¢ and thus, 7% in (45]) obviously represents a nondegenerate right triangle. If 0 < a,
then again due to (48]), also 0 < b < ¢. This shows that the difference between the second
and third column is not orthogonal to either one of them, and thus is 7™ not right. Finally,
since no triangle in I™ can have obtuse angles, also the second bullet is proved. O

Theorem establishes a bijection between the minimal matrix representations of all

0/1-triangles in I"™ and the set all points (except the origin due to 1 < a + b) with integer
coordinates in the polyhedron K in the nonnegative octant of R? defined by the inequalities

0<a, 0<b, 0<c and a+b+c<n and a<b<ec (48)

A closer inspection shows that K is a tetrahedron, the intersection of the so-called path-
tetrahedron P defined by the inequalities 0 < a < b < ¢ < n, and the cube-corner C' defined
by 0 <a,0 <b,0<canda+b+ c<n. This is depicted in Figure 11l

Remark 4.17 The right triangles correspond to the integer points in the bottom facet of K.

Because the cube [0,1]? can be subdivided into six congruent path tetrahedra all sharing the
same long diagonal, K is one of six congruent parts of the cube corner. In fact, each of those
six parts corresponds to exactly one of the matrices in Table 8

v —b v — b v —b
C C C

P C
) 0 om

P:0<a<b<c<n andC: a+b+c<n K=PnNnC

Figure 11: The tetrahedron K as intersection a path tetrahedron P and a cube corner C.

Obviously, with the above characterizations, the enumeration of all minimal matrix represen-
tations of all 0/1-triangles, or of those of all acute 0/1-triangles is now a trivial matter.
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4.5 Simple explicit expressions for 2

The number of equivalence classes €2 of 0/1-triangles in I"™ was in principle counted in Sec-
tion Bl using Pélya’s theory of counting. However, it did not provide a simple expression for
this number, nor did it count the number of acute triangles. To do this here, we use the
following change of variables,

p=a+b g=a+ec, and r=a. (49)
The conditions on a,b and ¢ in Theorem [4.I5] are equivalent to the conditions
1<p<q<p+qg—2r<n—r<n. (50)

We will count the triples (p,q,r) satisfying (50) by fixing a value for r and counting the
tupels (p, q) that satisfy the resulting equation, and summing over the feasible values of r.

Lemma 4.18 Let m > 1 be an integer. The number of integer tupels (x,y) satisfying

l<z<y<m-—ux (51)

212 2

where || is the floor-operator and [-] the ceil-operator.

equals

Proof. Only for values of x with 1 <z < |m/2], we have that x < m — z. The number of
integers between such an x and m — x equals m + 1 — 2x. This leads to a total of

lm/2]
m 1 |m m
;(mﬂ—m)_bJ(mH)—lng<bJ+1> (53)
tupels (z,y) that satisfy (5I). Splitting m = [% ] + [ %] leads to the statement. O

Corollary 4.19 The number of 0/1-equivalence classes of right triangles in I™ equals

H o

Proof. Combining Corollary [£16 with the change of variables in (49]) shows that we may
set 7 =0 in (B0) and continue to count to number of tupels (p, q) satisfying

1<p<qg<p+qg<n (55)
Since the inequality ¢ < p+ ¢ is always valid, it can be removed. Thus, we only need to count

the number of tupels (p, ¢) such that 1 < p < ¢ < n — p, which was done in Lemma I8 O

In the next lemma we will count equivalence classes of triangles for fixed values of r > 1.
It will turn out that if 37 > n, there are no solutions. Moreover, substituting » = 0 in (56])
below does not yield the result of Corollary 191 After its proof it is explained why not.

Lemma 4.20 For given r > 1 with 3r < n, the number of tupels (p,q) satisfying (520) equals

V_:ZJJJ "n—327‘+2-“ (56)
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Proof. Let » > 1 be fixed. If p < 2r, there are no integers ¢ that satisfy the third
inequality ¢ < p+ ¢ — 2r in (B0). If p > 2r, this inequality holds for all ¢ and can thus be
removed. Thus, we only need to count the tupels (p, ¢) for which

2r<p<qg<n+r-—p. (57)

For such tupels to exist, we need that 2r < n+7r—p, but since p > 2r this translates into 2r <
n + r — 2r. This explains the requirement 3r < n in the statement of this lemma. To count
the tupels, subtract 2r — 1 from each term in (57)), and define z = p— (2r—1),y = q¢— (2r—1),
and z =n — 3r + 2, then

1<z<y<n4+r—z—-22r—-1)=n—-3r+2—zx=z—ux. (58)

Applying Lemma 18] gives the number of tupels (x,y) satisfying these inequalities in terms
of z, and substituting back z = n — 3r + 2 proves the statement. O

Remark 4.21 Choosing r = 0 in (56) does not give (54]). This is because setting r = 0 in
(B7)) does not imply 1 < p, as is required, whereas for r > 1, it does.

We will now count the number of equivalence classes of acute triangles. First another lemma.

Lemma 4.22 For nonnegative integers k we have that (kmod2)? = kmod 2, and hence

kllk| (k—kmod2\ (k+kmod2) 1
| [£] = (ohmdz) (Erbmod) 1o gy g
Moreover,
S kmod2 = V“J, and V— LgJJ - V“J. (60)
2 2 3
k=1
Proof. Elementary, and thus left to the reader. O

Theorem 4.23 The number of 0/1-equivalence classes of acute triangles in I™ equals

2 3 2
{n + 3n 6n+9J. (61)

72

Proof. = We need to sum the expression in (56]) over all r > 1 satisfying 3r < n. Now,
since (n — 3r 4+ 2)mod 2 = (n — r) mod 2, we find using Lemma [£.22] that

15] 15] 15]
n—3r+2||n—-3r+2 1 1
E { 5 J{ 5 —‘—45 (n—3r+2) _ZE n — r)mod 2. (62)

r=1 r=1 r=1

w\:

The first sum in the right-hand side of (62]) can be evaluated using standard expressions for
sums of squares as

15)

3 ose+ 2= 2] e o 1-3[2) 2 2] (2] 1) G131+ )- w0

w\:
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Using Lemma [4.22] again, the second sum in the right-hand side of (62)) evaluates to

15] n—1 n—|z]-1 " n 1
;(n—r)mod2:;rmod2— ; rmod2:L§J—{ 3 J (64)

Combining (62)), ([63]) and (64]), the number of equivalence classes of acute 0/1-triangles equals

]+ (-1-3[5]) +3[5] (5] +) @IEI+) - [5]+ [*5)) 4
4

To verify that this expression equals (61l is a tedious task, but can be done as follows. First,
we substitute n = 6k + ¢ with £ € {0,...,5} into (6I]), which after simplifications results in

1, 1

3¢ ¢ _iu—J, (66)

6k>
3

1 1
WADE + - (Pl —-1)k+ | =0
(+1) +2(£ +0—1) 4{366 + 57 it g

where we have used that 241 and ¢? + ¢ —1 = £({+ 1) — 1 are both odd, which implies that
the sum of the first three terms in (66]) is indeed an integer for all k£ and /.

Next, substitute n = 6k + ¢ with ¢ € {0,1,2} in (G5), and note that it simplifies to
3,93 2 L o
6" + 5 (20+ 1) k +§(£ +0—1)k, (67)

which equals the expression in (66]) because for ¢ € {0, 1,2} the floor results in zero. Finally,
set n = 6k + ¢ with ¢ € {3,4,5} in (63]). After simplification there remains

1 1 1
61c3+g(2£+1)1<;2+§(£2+£—1)1c+Z <£2—2£+1— gJ + V%J) (68)

Comparing (66) with (68]), it can be easily verified that for ¢ € {3,4,5},

1/, 0 (41 1 g 1, 1 1
(P-4 | ) = | P+ P 42|
G AR I R R R T T (69)

And this proves the theorem. O

In Table [ are listed the numbers r,, and a,, of 0/1-equivalence classes of right and acute
0/1-triangles and their sum d,, for small values of n.

[ n2]3[4] 5] 6] 7] 8] 9J10]11]12] 13] 14| 15] 16] 17|
ro 1274 6] 9]12[16[20[25[30[36] 42 49[ 56 [ 64 [ 72
an [O]1]2] 4] 7[11]16[23[31[41 53] 67| 83102 [ 123 | 147
do [ 1]3]6]10]16[23]32]43[56]71[89][109 |132 | 158 | 187 | 219

Table 9: Right, acute, and all 0/1-triangles in I modulo the action of B,,.
In the OEIS, the sequence r,, has label A002620, sequence a,, has label A181120, and d,, has

label A034198. Only the latter has as description “number of distinct triangles on vertices
of n-dimensional cube”, the other two are not associated with counting triangles in 1.
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5 Minimal representatives of acute 0/1-simplices

We will now describe how to generate by means of a computer program minimal matrix
representations of each 0/1-equivalence class of so-called acute 0/1-simplices, which are 0/1-
simplices having only acute dihedral angles. They form the higher dimensional generalizations
of the acute 0/1-triangles from the previous section.

Definition 5.1 (Acute k-simplex) Let ¢ € P with 1 < k& < n be a nondegenerate k-
simplex in I". Let R* € B"*(+1) be the minimal matrix representation of ¢. Let P be
the n x k matrix with the nonzero columns of R*. If the k x k Gramian G = P ' P satisfies:

(1) each off-diagonal entry of G~ is negative (G™! is strictly Stieltjes),
(2) each row sum of G~! is positive (G~! is diagonally dominant),

then c is called an acute 0/1-k-simplex.

The properties (1) and (2) are purely geometric, and concern the dihedral angles of the simplex,
for which we refer to [6] [7] for details. These angles are invariant under the action of B,,.
This guarantees that the concept of acute 0/1-simplex is well-defined using only the minimal
matrix representation. Note that G is invertible as ¢ is assumed nondegenerate.

As examples of acute simplices, in Figure we display on the left the only acute 0/1-
tetrahedron in I®, and on the right the only acute 0/1-4-simplex in I*. Both are members
of the family of so-called antipodal simplices in I™. An antipodal n-simplex in I" is 0/1-
equivalent with the simplex whose vertices are the origin and all v € B"™ with exactly one
entry equal to zero. For this family, the matrices P and G from Definition [5.1] are, indexed
by n,

eT

P, = [ . ] , and Gy, =1I,+ee +(n—3eue, (70)

In—l e n

As before, e is the all-ones vector of appropriate length and I, is the £ x £ identity matrix. It
is easy to verify that G~! satisfies the criteria (1) and (2) in Definition [5.1] for the family of
antipodal simplices to be acute.

Ry = (0] P3] / Ry =

0] Py]

e
_= o
o O O O
S O ==
(=3 =N
—_ o O =
== O

L —
o o O

= = O
S

Figure 12: An acute antipodal n-simplex for n = 3 (left) and n = 4 (right) together with their
minimal matrix representations R; and Rj and their nonsingular parts P; and P, that satisfy the
conditions in Definition (511
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Remark 5.2 The tetrahedral facet T of the antipodal 4-simplex represented by the first
four columns K of the matrix R} is congruent to the regular tetrahedron in the left picture.
They are, however, not 0/1-equivalent. Indeed, T' does not lie in a three-dimensional cubic
facet of I, and this property is invariant under the action of B;. A congruence ) mapping
one onto the other is, for instance,

11 1 -1
1f1 1 -1 1

CE=31 1 21 1 1 ’ (7)
-1 1 1 1

but this congruence () is not a member of By.

5.1 Acute 0/1-simplices and their candidate acute extensions

Here we will list a number of properties of acute simplices that are relevant in the context of
their computational enumeration. Some of them are new, others are simply valid for acute
simplices in general [6], [7, [16].

Proposition 5.3 ([16]) Each (-facet of an acute 0/1-k-simplex is an acute 0/1-C-simplex.

This corresponds to the well-known linear algebraic statement that the inverse of each prin-
cipal k£ x k submatrix of G is also a diagonally dominant strictly Stieltjes matrix. Together
with Lemma [.10] this proves the following.

Corollary 5.4 Let P* be the minimal matriz representation of an acute simplexr ¢ € PE.
Then for each j € {1,...,k—1}, the submatriz Pr of P* consisting of its j leftmost columns

is a minimal matriz representation of an acute simplex c; € Pi.

Corollary [5.4shows in particular that the first three columns of any minimal matrix represen-
tation of an acute 0/1-simplex form a minimal matrix representation of an acute 0/1-triangle.

Definition 5.5 (Acute extensions of S) Let S C I" be an acute 0/1-simplex with k£ <n
vertices. The set A™(S) of acute extensions of S consists of all v € B™ such that conv(S,v) is
an acute 0/1-simplex with k& + 1 vertices.

The following classical result formulates a necessary condition for a vertex v € B™ of I" to be
an element of the set A™(S) just defined.

Proposition 5.6 ([16]) Let S be an acute n-simplex. Then each vertex of S projects orthog-
onally into the interior of its opposite (n—1)-dimensional facet.

Definition 5.7 (Candidate acute extensions of S) Let S C I" be an acute 0/1-simplex
with & < n vertices. The set C"(S) of candidate acute extensions of S consists of all v € B"
such that v projects orthogonally into the interior of S.

Remark 5.8 Due to Proposition (5.6] we have that A™(S) C C"(S). The sets are in general
not equal. This can be seen in Figure For each of the acute triangular facets 7 of the
antipodal 0/1-tetrahedron in I3, there exist two vertices of I3 that project in the interior
of T, but only the convex hull of T with one of them yields an acute tetrahedron.
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We will now investigate on a linear algebraic level when v € C"(S) or even v € A™(S). For
this, let P € B"** with 1 < k < n be such that G = P P satisfies the conditions (1) and
(2) in Definition B.1} and let v € B™. Consider the matrix [Plv]. Its Gramian G is a simple
update of G. Also its inverse G~ is an update of the inverse H of G, as depicted in Figure I3l

G = Gl =
update G g and invert H+ hshT | —sh
G=P'P H=G"
g= Py h=Hg
T ok T
’}/ZUTU g Y s_lzv—gTh sh s

Figure 13: Updating the inverse of an updated Gramian.

Note that G is positive semi-definite. It is invertible if and only if s > 0. This condition will
turn out to be automatically fulfilled if v projects in the interior of its opposite facet.

Lemma 5.9 The vertex v is an element of € C™(S) if and only if h >0 and e"h < 1.

Proof. Observe that the orthogonal projection of v on the column span of P equals Ph,
because

Ph=P(P"P)'PTy. (72)

To lie in the interior of the corresponding facet of S, Ph must be a convex combination in
which all vertices of that facet, including the origin, participate nontrivially. Thus, the entries
of h must be positive and up to less than one. O

Corollary 5.10 Ifh >0 and e' h < 1 then s > 0.

Proof. If v projects in the interior of its opposite facet, then in particular, v is not equal to
a vertex of that facet. Also, no vertex of I is a convex combination of any of the others.
Thus, the convex hull of the facet and v has nonzero volume. O

The diagram in Figure [[3] and Lemma [5.9] again show that even if v € C™(S), it does
not need to be in A™(S). Indeed, because hsh' > 0, the updated matrix H + hsh' may
have nonnegative off-diagonal entries and violate condition (1) in Definition 5l Moreover,
condition (2) may also be violated, as the row sums of G~! equal

MR HE e 73)

and if v € C™(S) then according to Lemma[5.9, h'e—1 < 0. Although this implies that p > 0,
some of the remaining entries of » may be negative, in spite of He > 0.

Suppose now that [P|v] is indeed such, that v € C"(S) but that v ¢ A™(S). For some w €
B™, consider the matrix

[ Pl ] with Gramian G =
0| w

PP ‘ Py
vl P ‘ viv4wlw
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In comparison with the Gramian G in Figure [[3] only the bottom right entry has changed.
Obviously, it ww is large enough, the corresponding value of s will decrease so much, that
the off-diagonal entries of H + hsh' are negative, and the row sums in (73) positive.

In other words, if a vertex v projects in the interior of an acute facet F', then by moving v
orthogonally away from F', the simplex conv(F,v) will ultimately always become acute.

The above discussion proves the following theorem.

Theorem 5.11 Let S be an acute 0/1-simplex in I™. Consider I"™ as a facet of I"™™. Let
the first n entries of v € BT correspond to the vertices of I"™. Then:

crtm(S) = { _ ;’} _ | vec™sS), we Bm} . (74)
and _
APm(S) S { Z; | ve AMS), we Bm}. (75)

Moreover, for each v € C™(S) there exists an ¢ such that
ww>l e [ Z} } € A8, (76)

provided that m is large enough.

Proof. Statement ([74]) follows because the right-hand side consists precisely of those vertices
of I"™™ whose orthogonal projection on I" land in C™(S). The claims in (75) and (76]) follow
from the above discussion. O

Note that the optimal value of ¢ in (7€) can, in principle, be computed as soon as the
data H, h,g and ~ are available, as is visible from Figure [13]

Figure [I4] serves to illustrate the claims of Theorem .11l Consider the acute 0/1-
triangle 7 with vertices 0,3,5, in the numbering of Figure {4 The set C3(7) consists of
vertices 1 and 6, as both project in the interior of 7. Only vertex 6 is an element of A3(T).
Indeed, the tetrahedron formed by 1 and T is not acute: it has right dihedral angles. How-
ever, each of the vertices 9, 17,25 orthogonally above vertex 1 forms an acute 0/1-tetrahedron
with 7" and thus belong to .A%(T), as do the ones 14,22, 30 orthogonally above vertex 6.

The value of Theorem [5.11] is that in order to determine the set A™(S) of a given minimal
representative of an acute 0/1-simplex S, the computational work can be reduced to:

e find the smallest k& < n for which S € I* and determine C*(S);
e determine which v € C*(S) are in A*(S);
o for each v € C*(S) \ A*(S), determine the value of £ in (70)).

After doing so, all remaining vertices of v € B"™ that are in A"(S) can now be easily listed
without having to verify acuteness of the simplex conv(S, v).

The next theorem is not difficult, but will play a central role in the enumeration problem.

Theorem 5.12 Let S C I™ be an acute 0/1-simplex with k vertices. If S is an acute 0/1-
simplex in I™ having S as a facet, then each vertex of S belongs to S or to A™(S).
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Figure 14: Impression of the structure of the sets A*(7) and C*(T) for increasing values of £. The
white vertex is not in A%(7) but the ones “orthogonally above” it, are in A*(T).

Proof. Let v be a vertex of S that does not belong to S. Then conv(S,v) is a facet of S.
Since S is acute, Proposition [5.3] shows that conv(S,v) is acute, and thus v € A"(S5). O
In the language of Figure[I4] Theorem [B.12]expresses that each acute 0/1-simplex having T

as a triangular facet, has all its vertices amongst the black bullets. Note that for each of these
black bullets, its projection on the triangle 7 is the orthocenter of 7.

Corollary 5.13 Let T be a facet of an acute 0/1-simplex S. Then A™(S) C A™(T).

Theorem shows the importance of administrating the set of acute extensions in the
process of building acute 0/1-simplices from the starting point of a minimal representative
an acute 0/1-triangle 7. Adding vertices to 7, the set of acute extensions of the resulting
simplices becomes smaller and smaller as the dimension of the simplex become larger, hence
reducing the amount of work to be done to build all minimal representatives of 0/1-simplices
having 7 as minimal triangular facet.

It remains necessary to work with the concept of minimal matrix representations, to reduce
the amount of data to be computed. Not only after the construction process but also during.

5.2 Minimal acute extensions of acute 0/1-simplices

Let 7* be a minimal representative of an acute 0/1-triangle in I” with minimal matrix
representation 7. Thus, the vertices of 7* are the column vectors of T*. Now, consider
the p matrices of size n x 4 defined by

[T*|t1], .., [T*[tp), (77)
where A"(T*) = {t1,...,tp} is the set of acute extensions of T*.

Proposition 5.14 FEach minimal matriz representation of each acute 0/1-tetrahedron having
T* as minimal triangular facet, is among the matrices in (77).

Proof. This follows immediately from Corollary 5.4l and the fact that there are no other t €
I™ such that [T*|t] is an acute 0/1-tetrahedron. O

Consequently, we can subdivide the set of acute extensions of a minimal representative of
an acute 0/1-simplex into a minimal and a non-minimal part.
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Definition 5.15 (Minimal acute extensions) The set A"(7*) of acute extensions of a
minimal representative 7* of an acute 0/1-simplex with k& < n vertices, with minimal matrix
representation 7, is subdivided as

ANT*) ={t e A™(T*) | [T*|t] is a minimal matrix representation},
and its complement A} (7*) in A™(T™).
The results of Section Ml immediately show that the following matrices in (77) are in AZ(7*):
(1) the ones for which the column number v, t; of t; is smaller than v,] T*es;

(2) the ones for which the row numbers [T*|t;]Jws are not non-increasing,.

To make the subdivision of A™(7*) in (77) into AZ(7*) and AZ(T*) complete, one may use
an adapted version of Algorithm 3; adapted in the sense that it should be aborted as soon as
a matrix representation is encountered that proves that [17|t;] is not minimal.

Remark 5.16 Note that if

i T |t} , m

then [T™|tjlws is not non-increasing if t? itself is not non-increasing. Thus, for a number
of t € A"(T*) it may be directly indicated that they do not belong to t € A?(T*).

Suppose that it has been established that the matrix [T7|t/] is a minimal matrix representation
of a 0/1-tetrahedron with minimal representative 7*. In order to continue the construction
process of acute 0/1-simplices efficiently, either in a depth-first or a breadth-first fashion, the
data structures of acute candidates and acute extensions of 7* need to be updated.

Remark 5.17 It may happen that while ¢ is not a minimal acute extension of some acute
0/1-simplex 7%, it is indeed a minimal acute extension of an acute simplex having 7* as
minimal facet. Indeed, let

T = and to = (78)

OO OO O
eNeNal S
OO = O
~
=
|
O OO
o o o

Then both #; and ty are acute extensions of 7. Only ¢ is a minimal acute extension of T,
whereas ty is not due to criterion (2) above. But t2 is a minimal acute extension of the
minimal matrix representation [T*|t;].

Due to Corollary 513 we have that A™(7T*) C A™(T*). To determine A™(T*) ezxactly, it
may not be necessary to verify for each t € A"(T*) whether the convex hull conv(7*,¢)
of T* and ¢ is an acute 0 /1-simplex. Indeed, if T* C I* for some k < n, it suffices to find out
which t € A*(T*) are in C*(7T*) and which of these are in A¥(7*) and then use Theorem F.111

Example 5.18 The matriz T* € B3 in (79) with vertex numbers 0,3 and 13, is a minimal
matrix representation of a minimal representative T* of an acute 0/1-triangle. Clearly T* C
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I*. The vertices from I* that are in C*(T*) are listed by their vertex numbers 1,5,6,9,10
and 14 as well as their 0/1-vectors. The numbers in the row indicated by A*(T*) correspond
to the smallest value m of entries equal to one need to be appended to the vector above it such
that it becomes an element of A™T™(T*).

(T 1] 5] 6] 9]t0]14]

01 1 I[1] 0] L] 0] 0
o[1] o o] of 1/ of 1] 1
ofo| 1 o] 1| 10|01

T =010 1 0 0 0 1 1 1 (79)
Opop o [ATH 1] t]o[] 1] 0] 0]
010] O [T [[17]21[22]25][26][30]

E
[t
w

AS(T*) |33 ]37]38]41[42]46
49 | 53 | 54 | 57 | 58 | 62

Thus, the vertices 6,10 and 14 are in A*(T*), and the vertices 1,5 and 9 are candidates
that need only one additional 1 to become acute extensions. This is wvisible in the next
row, where the vertex numbers of additional wertices in A°(T*) are displayed, which are
the ones from CA(T*) plus 2* = 16. Finally, the elements from AS(T*) additional to the
ones from A*(T*) and A>(T*) are precisely those with 25 = 32 added. It can easily be
verified that only 14,17,21,22,30,49,53, 54,62 remain after removing the ones that fall un-
der the items (1) or (2) below Definition [.10. It is also not hard to see that the ma-
triz T* with column numbers 0,3,13,21 s indeed a minimal matriz representation of a
0/1-tetrahedron T* C I°. To determine AS(T*), we re-investigate the each of the ver-
tices 1,5,6,9,10,14,17, 21,22, 25, 26,30 and indicate whether it belongs to CO(T*) or A3(T*)
or neither. This determines which of the vertices in 33,37,38,41,42,46,49,53, 54,57, 58,62
are additionally in AS(7). O

6 A special class of acute 0/1-simplices

Here we analyze the computational results of the codes presented in Section [l Looking at
the structure of the 0/1-matrices presented there, we observe some patterns. Although not all
patters can be mathematically accounted for, there is one pattern that can be fully explained.

Remark 6.1 Since each first column of a minimal matrix representation is zero according
to Corollary B.12], we will omit this redundant column from the notation. What remains is a
square matrix, whose Gramian has an inverse that is a diagonally dominant strictly Stieltjes
matrix, and which we will also call a minimal matrix representation. See Definition [5.1]

6.1 Acute simplices (upper Hessenberg matrix representations)

The computational results in Section [l show that all acute 0/1-simplices in I3, I* and I° have
a minimal matrix representation that is an unreduced upper Hessenberg matriz. For n > 6,
many, but not all of them are unreduced upper Hessenberg. A closer inspection of these
matrices shows that each of them corresponds to a unique composition of the integer n—1.

Definition 6.2 (Integer composition) A composition of an integer n in k parts is an or-
dered k-tupel A = (A\q,...,A;) with \; € N with the property that n = A1 + X + -+ + Ap.
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In Figure we depict the observed correspondence, restricted to n < 7, as a binary tree.
The first n—1 entries in the first row of each matrix form an integer composition (A, ..., \g)
of n—1, by considering consecutive entries with the same value as belonging to the same part.
The last n—1 entries of the last column show the same composition.
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Figure 15: Upper Hessenberg matrix representations and integer compositions.

The horizontal and vertical lines separating the parts of both compositions, subdivide
the matrix in blocks. There are k identity matrices of consecutive sizes Ay X Aq,..., Ax X A\
containing the first sub-diagonal. The blocks above those identity matrices alternatingly
contain only zeros or only ones, starting with ones directly above the identity matrices.

Remark 6.3 In Figure[I5] the matrix corresponding to the composition 2+ 4 of 6 is missing.
This is because it is not a minimal matrix representation. The matrix that is a minimal
matrix representation of the corresponding simplex is not upper Hessenberg. In Figure [I6] it
is depicted to its right. The same is done for the compositions 2+ 5 and 2+ 1+ 4 of 7.
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944 245 24+1+4

Figure 16: Upper Hessenberg matrices corresponding to integer compositions 244,245, and 2+1-+4.
Next to them are depicted the corresponding minimal matrix representations.

Proposition 6.4 The matriz Hy corresponding to an integer partition (\1,...,\g) is not a
minimal matriz representation if A\; > A\ + 1 for some j € {2,...,k}.
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Proof. The first A\ columns of H) should, together with the origin, form the largest possible
subset of vertices with mutual distances equal to two. If A\; > A; 4 1, this is not the case. [J

Now, let n > 4 be given, and let A = (A1,..., A\x) be an integer composition of n—1 with
the property that Ay # 1 # \;. It can easily be verified that there are 2"~* such compositions.

We will write Hy for the upper Hessenberg matrix that corresponds to A according to the
above description and examples. See also the introduction to this paper. The rule defining
the tree in Figure [[5] is now depicted in Figure 7

A= <)‘17' .. 7)‘k717)‘k>

/\

)\:<)\1,...,)\k_1,)\k—|—1> )\:<)\1,...,)\k_1,)\k—1,2>

Figure 17: Splitting rule that defines the binary tree in Figure

In the next section we will prove that for given n, each of the 2"~* matrices H) corresponding

to a composition A of n—1 with first and last part at least 2, represents an acute 0/1-simplex.
Conversely, we will show that if H is an n X n unreduced upper Hessenberg matrix that
represents an acute 0/1-simplex, then H ~ H) for some composition A\ of n—1.

6.2 An application of the one neighbor theorem

We first recall the following theorem, which limits the number of candidate acute extensions
from Definition (5.7] of an acute simplex in I"™ with n vertices to two.

Theorem 6.5 ([3]) Let F be an acute 0/1-simplex in I™ with n vertices. Then C™(F) C B"
consists of at most two points. If it consists of two points, they add up to e = (1,...,1)T.

In the context of triangulations this result is called the one neighbor theorem, since it proves
that an acute simplex in I™ has at most one face-to-face neighbor in I"™. See [3| [13] for
applications of this result in nonobtuse triangulations of I™, and of 0/l-polytopes in I4,
respectively. Here, we will apply the result to prove the observed structures in Section

Lemma 6.6 Let H be an n x (n—1) unreduced upper Hessenberg 0/1-matriz, whose columns
together with the origin form an acute (n—1)-simplex in I". Then there exist at most two (n+
1) x n unreduced upper Hessenberg matrices whose columns together with the origin form an
acute n-simplex in I, that have H as top left n x (n—1) part.

Proof. Let H be an n x (n—1) unreduced upper Hessenberg 0/1-matrix, whose columns
together with the origin form an acute (n—1)-simplex. Then due to Theorem [6.5] there exists
at most two vertices g, h € B" with g + h = e such that the n x n matrices [H|g] and [H |h]
represent acute n-simplices in I". As a result, only

1] e [51]

may be (n+1) X n unreduced upper Hessenberg matrices whose columns together with the
origin form acute n-simplices in ™, O
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Corollary 6.7 There exist at most 2"~ 2 unreduced upper Hessenberg matrices of size n X
(n—1) whose columns together with the origin are the vertices of an acute (n—1)-simplex.

Proof. One can easily verify that in I3, the matrices

11 10
H=|10 and Ho= |1 1
01 01

are the only two 3 x 2 upper Hessenberg matrices whose columns together with the origin are
acute triangles in I3, the statement is now proved by induction based on Lemma [6.0l O

Since Hj is obtained from H; by swapping its first two rows, we see that any unreduced
upper Hessenberg matrix that is a minimal matrix representation, has H; as its top 3 x 2
block.

Corollary 6.8 The only two (n+l) x (n+l) unreduced upper Hessenberg matrices with nx (n—1)
top left part equal to H that may represent acute (n+1)-simplices are

o] = e ®

In case they do, these two matrices obviously represent the same 0/1-simplex, and thus at
most one of them can be a minimal matriz representation.

Proof. Suppose that both (n+1) x n matrices in (80) indeed represent acute n-simplices
in I™. Suppose moreover that adding v € B"*! as a (n+1)-st column results in a matrix
representing an acute (n+1)-simplex. Then due to Theorem [6.5] the top n entries of v should
consist of g or h. For the left matrix in (80) this leads to four options,

Cote] et ] e [ e

We claim that only the rightmost matrix in (82) may represent an acute (n+ 1)-simplex.
Indeed, the difference between the last two columns of the first matrix is orthogonal to the
last. Thus, it has a right triangular facet, and thus due to Proposition it cannot represent
an acute simplex. The second matrix is obviously singular. The last two columns of the third
matrix are orthogonal because g + h = e and thus this simplex too has a right triangular
facet. Thus, the fourth matrix remains. For the right matrix in (80) a similar analysis can
be made. Finally, note that the matrices in (8I]) differ only by swapping the last columns. O

To be able to fully explain the tree in Figure [I5] we will need to go one step further, and
even describe which (n+2) x (n+2) unreduced upper Hessenberg matrices with n x (n—1) part
equal to H have the potential to be a minimal matrix representation of an acute (n+2)-simplex.

Corollary 6.9 Assume that the right matriz in (&1)) is not a minimal matriz representation.
Then

Hlglglh H|h|h|g
0101 and 01|01 (83)
0]0]1(1 0(0]1]1

are the only two (n+2) x (n+2) unreduced upper Hessenberg matrices with the n x (n—1) unre-
duced upper Hessenberg matriz H as top left part, that may be minimal matriz representations
of an acute (n+2)-simplex.
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Proof. We follow the lines of the proofs of Lemma and Corollary but then with H
consecutively replaced by each of the two matrices in (80)). Consider first the left matrix in
(B0). It gives rise to the following four candidates,

H|lg|lv
0|1|a with v € {g,h} and a € {0,1}. (84)
001

The option (v,a) = (g,1) and (v,a) = (h,0) both lead to a right triangular facet and are thus
infeasible. The remaining options are (v,a) = (g,0) and (v,a) = (h,1), which, in line with
the proof of Lemma [6.6] add up to the all-ones vector. Moreover, in line with Corollary B.8],
they account for the left matrix in (83]). For the right matrix in (80)), conversely, only the
options (v,a) = (h,0) and (v,a) = (g,1) are feasible, and lead to the right matrix in (83). O

Corollary explicitly proves that an unreduced upper Hessenberg matrix H) of size (n+
1) x (n+1) that represents an acute simplex, can have at most two unreduced upper Hessenberg
descendants of size (n+2) x (n+2) that represent an acute simplex, and who share their
n X (n — 1) top left parts. This is depicted in Figure [I8

e N

Figure 18: Splitting rule that defines the binary tree in Figure [[5 in matrix form.

This also proves that for each unreduced upper Hessenberg matrix that represents an acute
0/1-simplex, there exists a matrix H) in the tree in Figure [[5 with which it is 0/1-equivalent.

We will now proceed to prove that each of the 2"~4 unreduced upper Hessenberg matrices
in the tree indeed represents an acute simplex. For this, we will use the concept of strictly
ultrametric matrix, as defined in Section [I.11

Theorem 6.10 Let H) be the unreduced upper Hessenberg matriz corresponding to the integer
decomposition A = (A\1,...,\g) of n—1. Then Gy = H/\THA is strictly ultrametric.

Proof. We use the splitting rule proved in Corollaries and and depicted in Figure 1§
as starting point for an inductive proof. Consider the n 4+ 1 columns of the parent matrix in
Figure [I8, and write them as

Blope] e B e

By definition of strict ultrametricity, there is no triple u, v, w of distinct columns taken from
(B7) such that one of the three numbers v v, v w,w v is smaller than the other two. We
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will prove this property also for the n + 2 columns of the left descendant in Figure I8, which
are

hy hn—1 9 h 9
0 |,..., 0 , 11, 1 and the new column 0. (86)
0 0 0 1 1

Obviously, each triple taken from (8@ that does not contain the new column has the same
mutual inner products as a triple from (85]). The same clearly holds for each of the triples

hi h; 9 hi h 9
0 |, 0 |, 0 and 0 |, 1], 0
0 0 1 0 1 1

Two possible triples remain to be discussed, being

i 9 9 9 N 9
0 1, 11, 0 and 11, 11, 0
0 0 1 0 1 1

For the left triple, we use the generally valid fact that ="y < x "z for all z,y € B" to conclude
that thg < g"g, which proves the required property. For the right triple it suffices to note
that g"h =0and g' g > 1. Next, we consider the right descendant in Figure I8 with columns

hy hn—1 i 9 L
0 {,..., 0 , 11, 1 and the new column 0 |. (87)
0 0 0 1 1

Compared to (8l), only the roles of g and h have been exchanged. This does not affect
the validity of the above arguments. Thus, both descendents are strictly ultrametric. Since
the 3x 3 matrix Hy with A = (2) has a strictly ultrametric Gramian, this proves the statement
for all members H) of the tree in Figure [I5] by induction. O

6.3 Determinant of H, as continued fraction numerator

We are now able to derive an explicit expression for the determinant of Hy for any given integer
composition \. For this, we associate with the parent matrix in Figure [I8] two integers:

w0 e

By developing the last row of H), we have that det(H)) = p — ¢, whereas for the descen-
dants H f\ and H} of H), also by development of their last rows, we find that

Hlglg|h _ H|h|h|g _
0[1]o0]1 %[_p}and 0 [T][0]1 —>[_q]. (89)
00[1][1 b= 0011 1r

Since p = 1 and ¢ = —2 for the matrix Hy with A = (3) at the root of the tree in Figure [IH],
we see that this explains the correspondence between the absolute determinants of the ma-
trices H) and Kepler’s Tree of Fractions, as claimed in Section [[.2l To additionally prove the
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statement in Theorem that det(H)) equals the numerator fj of the continued fraction

1
A A, M =M+ —m—— = Ji with f, gr coprime, (90)

1 gk
Ao+ ———
1

.._’_)\_k

we use the well-known result from continued fraction theory that fi can be computed from
the two-term recursion

fj = )\jfj_l + fj_g, with fo=1 and f_;=0. (91)

We inductively assume that the statement holds for both the parent and the grandparent of
a vertex in the tree, and prove the statement for the descendants, as depicted in Figure

Ao Aem, A = p+g

p
4 q q
p+q p+q

[)\1§)\2~~>)\k—1»)\k+1} —2p+q [)‘1§)‘2~“>)\k717)\k_172] —p+2q

P p+q q p+q
2p+gq 2p+q p+2q p+2q

A A2 A, e +2] 0 A de o, Ak, A, 2 A A2 A — 1,3 AAz... A —1,1,2]
3p+q 3p+2q p+3q 2p + 3q

Figure 19: If parent and grandparent satisfy the statement, so do the four descendants.

First observe that all seven continued fractions in Figure [[9] start with the same k£ — 1 num-
bers Ai,..., \g—1. Denote the numerator of [A1;Ae2,..., A\x—2] by fr_2 and the numerator
of [A1; A2, ..., A\k—1] by fr—1. Then the induction hypothesis on the grand parent in Figure [
together with (OI]) imply that

P+q=MeSr—1+ fr—o2,

whereas the induction hypothesis on its left descendant translates to
2p+q= Mg+ 1) fe—1+ fr—2
From thes two relations we can solve fi_1 and fr_o as
fe-1=p and  fr2=(1-A)p+gq.

It remains to verify whether these values for fr_; and fi_o are consistent with the remaining
five continued fractions in Figure and the expressions of their numerators in terms of p
and ¢. First, for the continued fraction [A1; Ag, ..., Ax — 1, 2] we find, taking two steps of (O1I)
that its numerator indeed equals

2- [ = D1+ foo + far=2-[(M—Lp+ (1 - X)p+ql+p=p+2q
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Thus, if a vertex and its left descendant satisfy the statement, then so does its right descen-
dant. Consequently, the only two continued fractions to verify are the two left descendants
at the lowest level in Figure For the continued fraction [A1;Ag,..., A\ + 2] we find

M +2)fre1 + frmo= O +2)p+ (1 = X\)p+q=3p+q,

and for [A1; A, ..., A\ — 1, 3]

3 [Me—Dfe—r+ fro + frie1=3-[(M—p+ (1 —-M)p+q +p=p+3q

Since both are consistent, this finishes the induction step. As the induction basis for the first
two levels of the tree in Figure [[3is easily verified, this completes the induction proof.

7 Computational results

In this final section of this paper we present a selection of the computational data obtained by
implementations of the algorithms presented. For simplicity, we chose Matlab as programming
environment, as Matlab contains useful built-in functionalities in the area of linear algebra.
Faster imlementations can of course be obtained using a lower level programming language.

7.1 The cycle index Z, of B, for the values n € {3,...,9}

In Algorithm 1 in Section 2] we described how to compute the cycle index Z,, for the induced
permutations of B™ by the hyperoctahedral group B,,. The implementation of this algorithm
yields each cycle index Z,, as a table, see Figure [I0] [IT] These tables are a condensed form
Table [, in the sense that zero columns have been removed, and zero entries disregarded, see

Table 10| 11

To generate partitions needed in Algorithm 1, we used Algorithm P in [26]. We also used
the most efficient way to determine the cycle type of a given permutation, which is O(p) for
a permutation of p objects. If n > 10 then all cycle type computations take more than ninety
percent of the total computational time in computing Z,, and this percentage increases for
increasing n. Thus, no additional improvements of the algorithm can be expected.

7.2 The number of 0/1-polytopes with k vertices

Using Algorithm 2 from Section [l we computed the number of 0/1-polytopes with k vertices
for 0 < k < 2", for the values n < 5. They are displayed in Table I3l For n =5, only half of
the results are displayed, as the results for k£ = £ and k = 2™ — £ are the same.

In Table [[4l we zoom in on the 0/1-simplices in I"™ with k& < n 4 1 vertices. In Table
we present the number of ways to choose k£ points from B™. Comparing these numbers with
the corresponding numbers in Table [I4] shows the large gain of working modulo the action
of B,,.

Remark 7.1 Note that for k£ > 4 these numbers include degenerate k-simplices, which lie in
a hyperplane of dimension less than k. For k € {2,3} such degenerate cases do not exist:
three distinct point in I™ are never colinear.

Finally, in Table [[6] we compare the number a(n) of acute 0/1-simplices in I"™ with their total
number s(n), both modulo the action of B,,.
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7.3 Minimal matrix representations of acute 0/1-simplices

Here we present the computed minimal matrix representations (without their zero first col-
umn) of all acute 0/1-simplices with n + 1 vertices in I" for 3 < n < 9 together with
the absolute values of their determinants. There are 1,1,2 acute 0/1-simplices in I3, I*, I®
respectively modulo the action of the hyperoctahedral group. The absolute values of the
determinants of their minimal matrix representatives given below are in the set

dgt = {2}, dgt = {3}, d5et = {4,5}. (92)

There are 6 acute 0/1-simplices in I® modulo the action of Bg. The absolute determinants of
their minimal matrix representatives given below are in the set

det = {5,7,8,9}. (93)

In I7 there are 13 acute 0/1-simplices modulo the action of B7. The determinants of their
minimal matrix representatives given below are in the set

det = {6,9,10,11,12,13, 14,24, 32}. (94)

There are 29 acute 0/1-8-simplices in I® modulo the action of Bg. The determinants of
their minimal matrix representatives given below are in the set

det = {7,11,13,14,15,16,17, 18,19, 20, 21,22, 23,40, 44, 56}.. (95)

There are 67 acute 0/1-9-simplices in I modulo the action of By. Their absolute deter-
minants are

det = {8,13,16,17,19,20, 21,22, 23,24, 25, 26,27, 28,29, 30, 31,32, 34,35, 45}

U{56, 64, 68, 72, 80, 88,96}

In Figure 20, 211 2] 23] 24], we depicte the minimal matrix representations of all acute
0/1-n-simplices for 3 < n < 9.
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[Bs[[1[2[3]4]6] [Bo| 1]2[3[4]6]8] [ Bs] 1] 2[3]4]5[6[8]10]12]
12 2 48 2 480 4
8 1 1 84 4 320 2 2
13 4 96 2 520 8
812 2 51 8 384 1
6142 48] 2|1 3 720 4 4
18 32| 4 240 4 6
12 416 231 16
12 84 384 || 2 6
1116 240 || 4| 2 6
160 4] 24 2
B 1[ 2] 3] 4] 5] 6] 7] 8]10]12][14[20]24] 80 || 8 8
26880 4 4 60| 8|12
53760 16 20 16| 8
32256 2 1 32
53760 2 10
47040 8 8
43344 32
46080 1 9
72576 4 12 | Bs] 1] 2] 3] 4] 5] 6]8[10]12]
58240 4 20 5760 8
13440 4 6 4 6 3840 1 5
35560 16 16 3840 4
21840 16 24 4920 16
5209 64 6912 2
46080 || 2 18 1920 2 10
16128 | 4] 2 12 6 5280 8 8
26880 || 4] 2] 4 18 2160 8 12
13440 | 4] 2] 4| 6 2 6 1053 32
8064 | 8 24 3840 [ 2] 1] 2 9
4480 | 8 40 2304 || 4 12
10080 | 812 24 640 || 4 20
3360 | 8]12] 8 12 1440 4] 6 12
1680 | 16| 8 24 720 8] 4 12
3360 | 16| 8116 8 90| 8] 4] 8 4
840 || 1656 120 ] 828
280 || 32 32 160 || 16 16
420 || 32148 180 || 16 | 24
42{ 64732 30132116
1128 164

Table 10: The cycle indices Z3, Z4, Zs5, Zg and Z7 in condensed tabulated form.
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Bs| 1] 2] 3[ 4] 5] 6] 7] 8]10[12]14]15[16][2024[30]|

645120 16

430080 8 8

779520 32

516096 4 12

1218560 4 20

465920 16 16

445424 64

1105920 18

516096

709632 24

698880 40

Q0| OO 0o N| DN

322560 12 8 12

243264 32 32

171360 32 48

26463 128

645120

368640 36

172032

80640 60

215040

129024 24 12

107520 36

107520

R R E=2)
oo

35840 40 20

Q0| OO CO| CO| CO| W[ | x| > DN

40320 28 48

21504

—_
(=)

48

17920

—_
(=)

80

40320

—_
(=2}

24 48

26880

—_
(=)

24|16 24

1680

—_
(=)

120

3360

w
[N

16 48

8960

w
[N

16 | 32 16

3360

w
[\

112

448

(2]
=

64

840 96

D
=~

56 || 128 | 64

1| 256

Table 11: The cycle index Zg in condensed tabulated form.
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| By 1] 2] 3] 4[ 5] 6] 7[ 8] 9]10[12]14][15[16[18]20[24[28[30]40 ]|

11612160 32
4644864 4 12
7741440 16 16
9386496 64
6635520 2 18
5160960 2 42
8128512 8 24
16773120 8 40
6612480 32 32
4317408 128
10321920 1 1 28
14929920 4 36
10838016 4 4 12 12
3584000 4 84
2322432 4 6 12 18
5806080 4 6 60
6144768 16 48
8117760 16 80
4354560 16 24 16 24
725760 16 120
1637664 64 64
1397088 64 96
142207 256
10321920 2 2 56
3317760 4 2 36 18
5806080 4 2 6 60
2322432 4 2 6112 6 18
2580480 4 2] 20 74
1658880 8 72
1548288 8 8 24 24
143360 8 168
580608 8| 12 24 36
725760 8| 12 120
1935360 8| 12 8 76
967680 8| 12 8| 24 12 24
580608 || 16 8 48 24
322560 || 16 8| 16 72
483840 || 16 8| 16| 24 8 24
322560 || 16 8| 80 40
362880 || 16 | 56 96
80640 || 16 | 56 | 16 56
48384 || 32 96
53760 | 32 160
120960 || 32| 48 96
120960 || 32| 48| 32 48
15120 | 32| 240
6048 || 64| 32 96
20160 || 64 | 32| 64 32
10080 | 64 | 224
672 || 128 128
1512 || 128 | 192
72 (| 256 | 128
1| 512

Table 12: The cycle index Zy in condensed tabulated form.
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n\k||0[1]2]| 3| 4 5 6 7 8 9 10 11 12 13 14 15 16
11111
2112 1| 1
3|1|1|3| 3| 6 3 3 1 1
40 1|1]4] 6]19] 27| 50 56 74 56 50 27 19 6 4 1 1
5| 1]1|5]10|47|131|472| 1326 | 3779 | 9013 | 19963 | 38073 | 65664 | 98804 | 133576 | 158658 | 169112

Table 13: Number of 0/1-polytopes in I"™ with 0 < k < 2™ vertices for n < 5.

T2 8] 1] 5] 6] 7] 8] 9]
1111
21112 1
31113 3 6
41114 6 19 27
5111]5]10 47 131 472
6(1]|6]| 16| 103 497 3253 19735
7117123203 | 1606 | 18435 221778 2773763
811|832 373 | 4647 | 91028 | 2074059 | 51107344 | 1245930065

Table 14: Number of 0/1-simplices in I with 1 < k < n + 1 vertices for n < 8.

[m\e [ 1] 2] 3] 4] 5 | 6 | 7]
] 2
7 1 1
31 8] 28] 56 70
1016 120 560 | 1820 4368
5|32 | 496 | 4960 | 35960 | 201376 | 906192
G | 64 | 2016 | 41664 | 635376 | 7624512 | 74974368 | 621216192

Table 15: Binomial coefficients (2]:) for comparison with Table [T4]

n[1]2]3] 4] 5] 6 | 7| 8 | 9] 10] 11
am) J1JOJ1] 1] 2 6 13 29 67 ] 162 [ 392
stn) [ 1[1]6[27 47219735 [ 2773763 | 1245930065 | 1.8¢12 | 8.7¢15 | 1.3¢20

Omm
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Om>Om
mOOm
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Figure 20: Minimal matrix representations of all acute 0/1-simplices in I3, I* and I°.
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