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Abstract

The convex hull of n+1 affinely independent vertices of the unit n-cube In is called a
0/1-simplex. It is nonobtuse if none its dihedral angles is obtuse, and acute if additionally
none of them is right. In terms of linear algebra, acute 0/1-simplices in In can be described
by nonsingular 0/1-matrices P of size n × n whose Gramians G = P⊤P have an inverse
that is strictly diagonally dominant, with negative off-diagonal entries [6, 7].

The first part of this paper deals with giving a detailed description of how to efficiently
compute, by means of a computer program, a representative from each orbit of an acute
0/1-simplex under the action of the hyperoctahedral group Bn [17] of symmetries of In. A
side product of the investigations is a simple code that computes the cycle index of Bn,
which can in explicit form only be found in the literature [11] for n ≤ 6. Using the
computed cycle indices for B3, . . . ,B11 in combination with Pólya’s theory of enumeration
shows that acute 0/1-simplices are extremely rare among all 0/1-simplices.

In the second part of the paper, we study the 0/1-matrices that represent the acute
0/1-simplices that were generated by our code from a mathematical perspective. One
of the patterns observed in the data involves unreduced upper Hessenberg 0/1-matrices of
size n×n, block-partitioned according to certain integer compositions of n. These patterns
will be fully explained using a so-called One Neighbor Theorem [3]. Additionally, we are
able to prove that the volumes of the corresponding acute simplices are in one-to-one
correspondence with the part of Kepler’s Tree of Fractions [1, 25] that enumerates Q ∩
(0, 1). Another key ingredient in the proofs is the fact that the Gramians of the unreduced
upper Hessenberg matrices involved are strictly ultrametric [14, 27] matrices.

Keywords: Acute simplex; 0/1-matrix; Hadamard conjecture; hyperoctahedral group; cycle
index; Polya enumeration theorem; Kepler’s tree of fractions; strictly ultrametric matrix.

1 Introduction

A 0/1-simplex is an n-dimensional 0/1-polytope [24] with n + 1 vertices. Equivalently, it is
the convex hull of n + 1 of the 2n elements of the set Bn of vertices of the unit n-cube In

whenever this hull has dimension n. To support the mathematical studies of 0/1-simplices,
and in particular of those whose dihedral angles are all nonobtuse or even acute [7], we
investigate how to enumerate such 0/1-simplices modulo the action of the hyperoctahedral
group Bn of symmetries of In by means of a computer program. The motivation to generate
such computational data was quite appropriately phrased by Günther Ziegler in Chapter 1 of
Lectures on 0/1-Polytopes [24], as “Low-dimensional intuition does not work! ”.
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Figure 1: 0/1-matrices with maximal determinant that represent acute 0/1-simplices.

This statement expresses the fact that although it is tempting to formulate conjectures
on n-dimensional 0/1-polytopes and related 0/1-matrices based on computational data ob-
tained for a few small values of n, these conjectures often fail to be true. Finding out that
a conjecture is false using general mathematical arguments may be much harder than gen-
erating the necessary computational data for large enough n to disprove it, not in the least
because the tendency towards a conjecture is rather to believe its validity and aim to prove
it. This is why we concentrate on the enumeration problem for acute 0/1-simplices. Using
the date produced by the enumeration, we will also formulate and prove some mathematical
results on certain classes of 0/1-matrices. We will summarize the most important of these
results in Section 1.2. First, in Section 1.1, we give two examples that illustrate Ziegler’s
claim above, also based on the computational data.

Remark 1.1 Especially the larger 0/1-matrices in this paper we will often display as a picture
of an array with black and white squares representing its ones and zeros, respectively.

1.1 Two examples that illustrate Ziegler’s claim above

A first example of a statement that is valid in In for n ≤ 8 but that does not hold in I9 is
the following. In Figure 1 we display 0/1-matrices P having maximal absolute value of the
determinant, when ranging over all those n× n matrices whose n columns together with the
origin are the vertices of a so-called acute 0/1-simplex. See Definition 5.1 for a linear algebraic
characterization acute 0/1-simplices and the 0/1-matrices associated with them.

For n ≤ 8, these values turn out to be even maximal when ranging over all 0/1-matrices of
size n×n. However, the maximal determinant over all 9× 9 0/1-matrices is 144 and not 96.

This, of course, disproves the conjecture that maximal determinants of 0/1-matrices are
attained by 0/1-matrices that represent acute 0/1-simplices. Notwithstanding, the Hadamard
maximal determinant conjecture [19] is equivalent [18] with the existence of a regular simplex
in In for dimensions n whose remainder after devision by 4 equals 3. Regular simplices
have acute dihedral angles, and indeed, the 3 × 3 and the 7 × 7 matrix in Figure 1 are so-
called Hadamard matrices. This motivates a further study of acute 0/1-simplices and their
determinants, as the set of acute 0/1-simplices is a small and highly structured set in which the
Hadamard matrices figure as the most structured ones. It thus puts the Hadamard matrices
in a wider context in which, as far as we know, they have not yet been studied.

As a second example in which low dimensional intuition does not work, here is a statement
that holds in In for all n ≤ 7: the Gramian G = P⊤P of any 0/1-matrix P whose columns
together with the origin are the vertices of an acute simplex is a strictly ultrametric matrix
[14, 27]. A strictly ultrametric matrix is a highly structured positive matrix in the sense that
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all its 3×3 principal submatrices are, modulo simultaneous permutation of rows and columns,
of the form





d b a
b c a
a a f



 , with a ≤ b < c ≤ d and a < f. (1)

Even though the columns of the two 8 × 8 matrices displayed in Figure 2 together with the
origin are indeed vertices of acute 0/1-simplices in I8, their Gramians are however not strictly
ultrametric. In both matrices, the inner products between columns 3, 7, and 8 do not satisfy
the relations in (1), not even after simultaneous row- and column permutations.
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Figure 2: Examples of 0/1-matrices representing acute 0/1-simplices whose Gramians are not ultra-
metric. Columns 3,6,7 do not satisfy the inequalities in (1).

We will return to strictly ultrametric and related matrices in Section 6, because they will
turn out to be a powerful tool to prove our main results. See also [2] for a detailed account
on the geometric properties of the special type of simplices whose Gramians are ultrametric.

1.2 Main results obtained from analyzing the generated data

A positive result in this context is as follows. Let n ≥ 3, and let the ordered tupel λ =
〈λ1, . . . , λk〉 be a composition of the integer n − 1 whose first and last part are at least 2.
Associate with λ the n× n matrix Hλ as is done for the example λ = 〈3, 1, 2, 2〉 in Figure 3.
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λ = 〈3, 1, 2, 2〉

3 + 1 + 2 + 2 = 9− 1

= Hλ, |det(Hλ)| = 26 ↔ 26

7
= 3 +

1

1 +
1

2 +
1

2

3

1

2

2

3 1 2 2

Figure 3: The matrix Hλ for a composition λ = 〈λ1, . . . , λk〉 of n− 1 with first and last parts larger
than one, and its determinant as numerator of the continued fraction [λ1;λ2, . . . , λk].

The matrix Hλ is constructed as an unreduced upper Hessenberg matrix with identity
matrices Ij of size λj × λj covering the lower co-diagonal from top left to bottom right. The
matrices I1, . . . , Ik define a checkerboard pattern inHλ above I1, . . . , Ik, with blocks containing
either only ones, or only zero entries, where the blocks directly bordering Ij and Ij+1 contain
only ones. This uniquely defines Hλ in terms of the composition λ.

In Section 6.2 we will prove the following results in this context.
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Theorem 1.2 Let H be an n × n unreduced upper Hessenberg 0/1-matrix whose columns
and the origin are the n + 1 vertices of a simplex S ⊂ In with acute dihedral angles only.
Then, possibly after exchanging its first two rows and/or last two columns, H is equal to the
matrix Hλ for some composition λ = 〈λ1, . . . , λk〉 of n−1 with first and last parts larger than
one. Moreover,

|det(Hλ)| = fk, where
fk
gk

= λ1 +
1

λ2 +
1

. . . +
1

λk

, gcd(fk, gk) = 1. (2)

Conversely, each such matrix Hλ has the property that its Gramian is strictly ultrametric,
which implies that its columns together with the origin are the vertices of an acute 0/1-simplex.

As a corollary of this theorem, all attainable absolute values of the determinant function on
the set of all unreduced n × n upper Hessenberg 0/1-matrices H for which (H⊤H)−1 is a
diagonally dominant Stieltjes matrix with negative off-diagonal entries, can be explicitly read
from a part of Kepler’s Tree of Fractions [25]. This part is depicted in Figure 4. It has the
fraction 1

2 as root. The children of a vertex p
q are p

p+q and q
p+q . Transversing the tree level

by level corresponds to an enumeration of all the rationals Q ∩ (0, 1).

1
2

1
3

2
3

1
4

3
4

2
5

3
5

1
5

4
5

3
7

4
7

2
7

5
7

3
8

5
8

1
6

5
6

4
9

5
9

3
10

7
10

4
11

7
11

2
9

7
9

5
12

7
12

3
11

8
11

5
13

8
13

3

4 5

5 7 7 8

6 9 10 11 9 12 11 13

7 11 13 14 13 17 15 18 11 16 17 19 14 19 18 21

Figure 4: Part of Kepler’s Tree of Fractions and absolute determinants of the matrices Hλ.

The circled integers displayed in Figure 4 below each vertex equal the sum of numerator and
denominator of the fraction belonging to that vertex. At level k these integers correspond to
the absolute values of the determinants of each of the 2k matrices Hλ of size (k+4)× (k+4).

Observe that the determinants in the rightmost branch in the tree equal the Fibonacci
numbers, which were proved in [12] to be the maximal value of the determinant function over
all n×n Hessenberg 0/1-matrices. We can now conclude that this maximum is (also) attained
by matrices representing acute simplices. More generally we see that any branch of the tree
that, starting at a given vertex p/q corresponding to the determinantal value p + q, extends
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only to the right, yields a Fibonacci-type sequence dr(j),

dr(j + 2) = dr(j) + dr(j + 1) with dr(−1) = p, dr(0) = q and dr(1) = p+ q, (3)

whereas any branch from a vertex p/q that extends only to the left, yields a family of acute
0/1-simplices with determinants increasing linearly as

dℓ(j) = jp+ q. (4)

The corresponding matrices Hλ in this latter case have integer compositions of which the
last part increases by one when the size of Hλ increases by one while all the other parts of λ
remain the same. The existence of such families with linearly increasing determinants was
first observed in [4]. In Section 6 we give a full explanation of their structure.

1.3 Outline

Our aim is to give a self-contained account of all necessary ingredients. For this, we first recall
in Section 2 the group structure of Bn and the permutation subgroup of S2n it induces on the
set Bn of 0/1-vectors of length n. These induced permutations were studied by Harrison and
High, who derived a formula in [21] for the corresponding cycle index polynomial Zn of Bn.
This formula was later claimed to be simplified by Chen in [10], who also studied the induced
permutations of the edges of In. Unfortunately, in view of the standard counting paradigm
of Pólya [28], neither formula allows a straightforward evaluation, modulo the induced action
of Bn on Bn, of the number εkn of 0/1-polytopes in In with k vertices. Therefore, here we
will aim for a more pragmatic approach, also motivated by the fact that for n > 6 we failed
to find explicit expressions for Zn in the literature. First, in Section 2, we give transparent
algorithmic descriptions of how to compute Zn by means of a simple computer code. This
code yields Zn as a table of coefficients and exponents of monomials in a minimal effort: the
table for n = 9 in Section 7 was, for instance, produced on a simple laptop within half a
second. As a next step, in Section 3 we explain how to compute, modulo the action of Bn,
the numbers εkn of 0/1-polytopes with k vertices by applying Pólya’s theory to the specific
situation at hand. Again, the emphasis is to show how to algorithmically obtain the concrete
values of εkn by means of a computer code, using the tables for the cycle indices of Bn. As
we will be interested in 0/1-simplices, we pay special attention to the values k ≤ n + 1. In
Section 7 we present a selection of the numbers produced by the algorithms.

In Section 4 we change our perspective from 0/1-polytopes and two-colorings to 0/1-
matrices. A 0/1-polytope c with k vertices can trivially be represented by a 0/1-matrix of
size n × k whose columns are the vertices of c. Although convenient, this unfortunately
introduces another non-trivial redundancy, as there are k! matrices having this property.
Consequently, we investigate how to establish whether two given 0/1-matrices represent 0/1-
polytopes in the same orbit under Bn. From all 0/1-matrices representing all the 0/1-polytopes
in the same orbit under Bn, we select one designated matrix, the minimal matrix representa-
tion P ∗, and study its properties. As a first application, this concept enables us to enumerate
all 0/1-triangles in In modulo the action of Bn: we give the minimal matrix representation
of each of the ε2n distinct orbits of 0/1-triangles under Bn using O(1) arithmetic operations
per triangle. We do the same for the subset of acute 0/1-triangles. Basically, we parametrize
both sets with the points with integer coordinates in a three-dimensional polyhedron, which
in both cases turns out to be a simple tetrahedron. We also derive an explicit formula for their
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cardinalities by counting the integer points in the respective tetrahedra. In theory, the same
can be done for k-simplices. This however results in enumerating and counting the points
with integer coordinates in a polytope of dimension 2k − 1 constrained by at most (k + 1)!
inequalities. Although the enumeration would still cost O(1) per k-simplex independent of n,
the dependence on k makes such enumeration impractical.

As a consequence of this intractability, in Section 5 we use the assistance of the computer
to extend the minimal matrix representations of the acute 0/1-triangles from Section 4 into
minimal matrix representations of acute 0/1-tetrahedra, and similarly further into minimal
matrix representations of all acute 0/1-simplices with n + 1 vertices. Since acute simplices
have acute facets [16], each minimal matrix representation of an acute 0/1-tetrahedron equals
a minimal matrix representation T of an acute 0/1-triangle with one additional column t
appended. Hence, in theory, one could append one by one all feasible columns t to T such
that [T |t] represents an acute tetrahedron, discard the ones that do not yield a minimal
matrix representation, and continue to add more columns. Unfortunately, the verification of
minimality is computationally much more expensive than verifying acuteness. It may thus be
much quicker to find out if [T |t] can be extended to the desired number of columns, then to
find out if it is minimal. This saves computational effort if it cannot be acutely extended.

n 1 2 3 4 5 6 7 8 9 10 11

a(n) 1 0 1 1 2 6 13 29 67 162 392

s(n) 1 1 6 27 472 19735 2773763 1245930065 1.8e12 8.7e15 1.3e20

Table 1: The number a(n) of acute 0/1 n-simplices in In related to their total number s(n). All
cardinalities are modulo the action of Bn.

According to the data from Table 1 (see also Section 7), acute n-simplices in In are extremely
rare. Thus it seems likely that simply extending a minimal matrix representation until no
acute extensions are available anymore is quicker than discarding the matrix representations
that are not minimal. However, it turns out that the amount of data in the intermediate
phases becomes unacceptably large. Thus, the challenge to make our algorithms as efficiently
as possible is therefore nontrivial, and involves the well-known struggle between time and
memory requirements. It requires a subtle balance between spending time in computing
minimal matrix representations, and allowing the data to take more and more memory space.
Along the way, and also for the purpose of mathematical analysis, we introduce the sets of
candidate acute extensions Cn(S) and of acute extensions An(S) of a given acute simplex S ⊂
In. Using the theory of symmetric inverse M-matrices (also called Stieltjes matrices) [22,
23], it is possible to derive relations between the members of these sets that make their
computation in many cases much less expensive than at first sight. In Section 7.3 we display
the minimal matrix representations of all the acute 0/1-simplices in In for n ∈ {3, 4, . . . , 9}.

In Section 6 we analyze these minimal matrix representations. Proofs of the results given
in Section 1.2 will be based on the so-called One Neighbor Theorem for acute 0/1-simplices
[3]. This theorem states that the set Cn(S) of candidate acute extentions of a simplex S ⊂ In

with n vertices consists of at most two antipodal points. As a consequence, only points in
higher dimensional cubes that project orthogonally on this antipodal pair can be added to
form acute 0/1-simplices with more vertices. If one demands their matrix representation to
be unreduced upper Hessenberg, this limits the possible options even further. What results is
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a complete description of the corresponding simplices in Section 6.2 together with the values
of the determinants of their matrix representations in terms of continued fractions. Apart
from the One Neighbor Theorem, we also use the properties of strictly ultrametric matrices
[27] to prove acuteness of the simplices involved.

2 The hyperoctahedral group Bn

Write In = [0, 1]n for the unit n-cube and Bn = {0, 1}n for the set of its vertices. Let Bn be
the set of all rigid transformations h : In → In. Endowing Bn with the usual composition of
map as multiplication rule, it becomes the hyperoctahedral group of n-cube symmetries, with
the dihedral group B2 and the octahedral group B3 as well-known instances. Each h ∈ Bn

bijectively maps k-facets of In to k-facets and thus induces a permutation of these k-facets;
in particular, it permutes Bn. To describe this latter permutation, we choose the following
bijection β as numbering of Bn. It interprets the 0/1-vector v ∈ Bn as a binary number.

β : Bn → {0, . . . , 2n − 1}

v 7→ (20, 21, . . . , 2n−1)v


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0
0
0






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
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2 3
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Figure 5: Binary-to-decimal numbering β of the vertex set Bn of In, depicted for n = 3.

Each h ∈ Bn induces a permutation πh ∈ S2n of the numbers 0, . . . , 2n − 1 via β by

πh : {0, . . . , 2n − 1} → {0, . . . , 2n − 1} : k 7→ (β ◦ h ◦ β−1)(k). (5)

In Section 3 we will count the number of 0/1-polytopes modulo n-cube symmetries using
Pólya’s Theorem [28]. For this we need to know how many permutations πh of which cycle
type are induced in S2n when h ranges over Bn. Recalling that any permutation π of ℓ objects
can be written as the product of disjoint cycles, we can define the cycle type of π.

Definition 2.1 (Cycle type) If π ∈ Sℓ has ti cycles of length i in its cycle factorization,
then the vector

t(π) = (t1, . . . , tℓ), with t1 · 1 + · · ·+ tℓ · ℓ = ℓ, (6)

is an integer partition of ℓ called the cycle type of π.

From basic algebra we know that the cycle types of two permutations in Sℓ coincide if and
only if they are conjugate.

Lemma 2.2 Let π, π̃ ∈ Sℓ, then t(π̃) = t(π) if and only if π̃ = σ−1 ◦ π ◦ σ for some σ ∈ Sℓ.

An important consequence is the following corollary, whose formulation uses (5).

Corollary 2.3 If two elements h, h̃ are conjugate in Bn then t(πh) = t(πh̃) in S2n .
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Proof. The mapping Bn → S2n : f 7→ πf is an injective homomorphism. Therefore, if
h̃ = g ◦ h ◦ g−1 then πh̃ = πg ◦ πh ◦ π

−1
g . Lemma 2.2 now proves the statement. �

Remark 2.4 The table in (19) constitutes an example of the fact that t(πg) = t(πh) while g
and h are not conjugate in Bn, hence the converse implication in Corollary 2.3 does not hold.

Corollary 2.3 shows that counting how many permutations of which type are induced by the
elements of Bn reduces to the following two tasks,

• find the cycle type of πh of a single element h from each conjugacy class of Bn,

• count the number of elements in each conjugacy class of Bn.

Before performing these tasks in Section 2.3, we recall some basic facts about Bn. We identify
two subgroups Bc

n and Bp
n of Bn and show that Bn = Bp

n × Bc
n. This enables us to associate

with each h ∈ Bn a so-called signed permutation. The corresponding signed cycle type of such
a signed permutation will then be used to describe and count the conjugacy classes of Bn,
and consequently, the number and cycle type of their induced permutations in S2n .

2.1 The subgroups Bc
n & Bp

n: complementations & permutations

Let the n-tupel 〈e1, . . . , en〉 be the standard basis for Rn. For j ∈ {1, . . . , n}, let cj : I
n → In :

x 7→ ej + x− 2eje
⊤
j x be the reflection in the affine hyperplane 2xj = 1. The set {c1, . . . , cn}

generates a subgroup Bc
n of Bn. Note that ci ◦ cj = cj ◦ ci and c2j = id. Thus, the mapping

Bn → Bc
n : w 7→ cw = cw1

1 ◦ cw2

2 ◦ · · · ◦ cwn
n (7)

is a bijection, showing that |Bc
n| = 2n. One can verify that cw(v) = xor(w, v) = (w+v)mod 2,

where xor is the logical exclusive or operation performed entry-wise on the pair w, v ∈ Bn.

Next, for each j ∈ {2, . . . , n}, consider the reflection sj : I
n → In : x 7→ x− (e1 − ej)(e1 −

ej)
⊤x in the hyperplane x1 = xj. The set {s2, . . . , sn} generates a subgroup Bp

n of Bn. The
action of sj on v ∈ Bn interchanges the first and jth entry of v. Since each permutation of n
objects is a product of transpositions with the first object [15], we conclude that |Bp

n| = n!.

For each permutation u = [u(1), . . . , u(n)] ∈ Sn, we write pu for the element from Bp
n

defined by its action on Bn as

(pu)(v) = v ◦ u = (vu(1), . . . , vu(n))
⊤. (8)

Definition 2.5 (Coordinate complementation and permutation) An element cw ∈ Bc
n

will be called a coordinate complementation and an element pu ∈ Bp
n a coordinate permutation.

Example 2.6 Consider the group B3 of unit cube symmetries. It contains a subgroup Bc
3 of

order 8 = 23 with generators c1, c2, c3, the reflections in the planes 2xj = 1, and a subgroup
Bp
3 of order 6 = 3! with generators s2 and s3, the reflectors in the planes x1 = x2 and x1 = x3.

To illustrate the actions of elements from Bc
3 and Bp

3, let for instance w = (0, 1, 1)⊤,
then cw ∈ Bc

n acts on I3 as depicted in the right part of Figure 7. Note that cw = c1 ◦ c2 =
c2 ◦ c1. Also given is its induced permutation πcw ∈ S8. Next, given the permutation u =
[3 1 2] ∈ S3, the action of pu ∈ Bp

n on I3 is depicted on the left, also together with its induced
permutation πpu ∈ S8. Observe that pu = s3 ◦ s2, but that the product s3 ◦ s2 does not
equal pu. ♦
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2.2 Bn and the group of signed permutations of n objects

An n-cube symmetry h ∈ Bn is a rigid transformation and thus an affine isometry. As such,
it is uniquely determined by the combination of both the items (1) and (2), being

(1) the vertex v ∈ Bn that is mapped to the origin by h,

(2) how the n vertices of In at distance one from v are mapped to e1, . . . , en.

Note that cv is the unique element from Bc
n with cv(v) = 0. Also note that pu(0) = 0

and p(e) = e for all pu ∈ Bp
n, where e = e1 + · · · + en is the all-ones vector. Thus, we have

that
{h ∈ Bn | h(v) = 0} = {h = pu ◦ cv | pu ∈ Bp

n} . (9)

Also observe that each pu ∈ Bp
n corresponds to a unique permutation of the basis vectors.

Corollary 2.7 For each h ∈ Bn there exist unique pair pu ∈ Bp
n and cv ∈ Bc

n such that

pu ◦ cv = h = cpu(v) ◦ pu. (10)

One of the consequences of the uniqueness is that the order |Bn| of Bn equals n!2n. Another
consequence is that we can now identify with each h ∈ Bn a so-called signed permutation.

Definition 2.8 (Signed permutation) We will index h ∈ Bn as hw, where the vector w,
called a signed permutation, has entries given by

wj = uj if vj = 0 and wj = uj if vj = 1, (11)

where u and v are the indexes of the unique pu ∈ Bp
n and cv ∈ Bc

n such that h = pu ◦ cv.

The set of all signed permutations of n objects is obviously isomorphic to Bn.

2.3 Conjugacy classes and signed cycle types in Bn

We now introduce the signed cycle type of a signed permutation. It will have the property
that two elements in Bn are conjugate if and only if they have the same signed cycle type.

Definition 2.9 (Signed cycle type) Let h = pu ◦ cv with pu ∈ Bp
n and cv ∈ Bc

n. For each
cycle γ in the decomposition of the permutation u into disjoint cycles, set

χ(γ) =
∑

j∈γ

vj . (12)

c1 c2 c3 s2 s3

Figure 6: Generators of B3: complementations c1, c2, c3 and the permutations s2 and s3.
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Figure 7: A complementation cw, a permutation pu, and their induced permutations in S8.

Let u+ be the product of the cycles γ of u for which χ(γ) is even, and u− such that u = u+◦u−.
Then the 2× n array

t±(h) =

{

t(u+)
t(u−)

, (13)

where t is the cycle type from Definition 2.1, is called the signed cycle type of h.

Note that the signed cycle types of the elements h ∈ Bn are in one-to-one correspondence with
the double partitions [17] of n, which are ordered pairs of partitions of k and ℓ with k+ ℓ = n.

Example 2.10 Let hw ∈ B10 be the ten-cube symmetry indexed by the signed permutation

w = [2 6 7 4 8 1 9 5 10 3]. (14)

Then hw = pu ◦ cv, with v = (0, 1, 0, 1, 0, 1, 0, 0, 1, 0)⊤ and u = [2 6 7 4 8 1 9 5 10 3]. The
latter can be written as a product of cycles as u = (1 2 6)(3 7 9 10)(4)(5 8). This results
in χ(1 2 6) = v1 + v2 + v6 = 2 and similarly, χ(5 8) = 0, and χ(3 7 9 10) = χ(4) = 1.
Therefore, u+ = (1 2 6)(5 8) and u− = (3 7 9 10)(4) and thus,

t±(h) =

{

(0, 1, 1, 0, 0, 0, 0, 0, 0, 0)
(1, 0, 0, 1, 0, 0, 0, 0, 0, 0)

, (15)

is the signed cycle type of h, corresponding to the partitions 2 + 3 and 1 + 4 of 5. ♦

In view of Corolary 2.3, we will now state one of the main results in this section.

Theorem 2.11 Two elements g, h ∈ Bn are conjugate in Bn if and only t±(g) = t±(h).

Thus, we have been successful in our aim to characterize the conjugacy classes of Bn. Now we
will consider the question of counting the number of elements of each of these classes. Firstly,
Definition 2.1 implies that Sℓ has p(ℓ) conjugacy classes, where p(ℓ) stands for the number of
integer partitions of ℓ. The sizes of these classes are well known.

Proposition 2.12 The size of each conjugacy class of Sℓ, being the number of σ ∈ Sℓ such
that t(σ) = (t1, . . . , tℓ) for a given cycle type (t1, . . . , tℓ) equals

[

ℓ
t

]

=
ℓ!

1t1 · . . . · ℓtℓ · t1! · . . . · tℓ!
. (16)
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Similarly, writing ∆(n) for the number of double partitions of n, we have that ∆(n) is the
number of conjugacy classes of Bn and that

∆(n) =

n
∑

k=0

p(k)p(n− k). (17)

For illustration, we list here the first few values of p and ∆ in Table 2.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

p(n) 1 1 2 3 5 7 11 15 22 30 42 56 77 101

∆(n) 1 2 5 10 20 36 65 110 185 300 481 752 1165 1770

Table 2: Sequences A000041 and A000712 in the Online Encyclopedia of Integer Sequences.

Proposition 2.13 The number of elements in Bn of the signed cycle type

t±(h) =

{

(t1, . . . , tn)
(s1, . . . , sn)

equals

(

n

k

)[

k
t

] [

ℓ
s

]

2n−
∑

(tj+sj), (18)

where k = t1 · 1 + · · ·+ tn · n and ℓ = s1 · 1 + · · ·+ sn · n are the sums of the respective parts.

Proof. The only factor that needs explanation is the power of two. A cycle of length m
can be given signs in 2m ways, 2m−1 of which resulting in an even number of signs and 2m−1

of which in an odd number of signs. �

2.4 An algorithm for the cycle index of Bn

We are now able to answer the question how many permutations in S2n of which cycle type
are induced by the 2nn! elements of Bn by implementing the following algorithm.

Algorithm 1: Counting and tabulating the induced permutations of Bn.

Let n ∈ N be given.

Step 1. Generate the ∆(n) double partitions (τ+, τ−) ⊢ (k, ℓ) of n.

Step 2. For each such double partition, construct a single h ∈ Bn with signed cycle type

t±(h) =

{

t+(h)
t−(h)

=

{

τ+
τ−

,

and evaluate the expression in (18) to count how many of them there are.

Step 3. Compute the type t(πh) of the permutation πh ∈ S2n induced by h.

Step 4. Accumulate the result of Steps 2 and 3 over all double partitions in a table.

Example 2.14 The conjugacy classes of B3 are indexed by the ten double partitions of 3.
Below we list these ten, and at their left we show how many elements of that type there are
in B3.

1 :

{

(3, 0, 0)
(0, 0, 0)

6 :

{

(1, 1, 0)
(0, 0, 0)

8 :

{

(0, 0, 1)
(0, 0, 0)

3 :

{

(2, 0, 0)
(1, 0, 0)

6 :

{

(0, 1, 0)
(1, 0, 0)

11



1 :

{

(0, 0, 0)
(3, 0, 0)

6 :

{

(0, 0, 0)
(1, 1, 0)

8 :

{

(0, 0, 0)
(0, 0, 1)

3 :

{

(1, 0, 0)
(2, 0, 0)

6 :

{

(1, 0, 0)
(0, 1, 0)

Table 3 lists for each conjugacy class its cardinality, together with one element h ∈ B3 from
that class, and the cycle type of its induced permutation πh in S8.

# h πh πh h #

1 (1)(2)(3) (8, 0, 0, 0, 0, 0, 0, 0) (0, 4, 0, 0, 0, 0, 0, 0) (1)(2)(3) 1
6 (1)(2 3) (4, 2, 0, 0, 0, 0, 0, 0) (0, 0, 0, 2, 0, 0, 0, 0) (1)(2 3) 6

8 (1 2 3) (2, 0, 2, 0, 0, 0, 0, 0) (0, 1, 0, 0, 0, 1, 0, 0) (1 2 3) 8
3 (1)(2)(3) (0, 4, 0, 0, 0, 0, 0, 0) (0, 4, 0, 0, 0, 0, 0, 0) (1)(2)(3) 3
6 (1 2)(3) (0, 4, 0, 0, 0, 0, 0, 0) (0, 0, 0, 2, 0, 0, 0, 0) (1)(2 3) 6

(19)

Table 3: Cycle types of induced permutations and their cardinality.

It also illustrates Remark 2.4: elements from distinct conjugacy classes of B3 may induce
permutations in S8 the same cycle type. Table 4 groups them together.

# πh

1 (8,0,0,0,0,0,0,0)

6 (4,2,0,0,0,0,0,0)

13 (0,4,0,0,0,0,0,0)

8 (2,0,2,0,0,0,0,0)

12 (0,0,0,2,0,0,0,0)

8 (0,1,0,0,0,1,0,0)

Table 4: Cycle index of B3 in tabulated form.

Note that instead of computing the cycle types of the induced permutations of all 2nn!
elements of Bn, we need to compute only ∆(n) of them. ♦

The usual way in which Table 4 is expressed, is as a cycle index polynomial [8, 28].

Definition 2.15 The cycle index of the induced permutations on Bn of the hyperoctahedral
group is the polynomial

Zn(x1, . . . , xℓ) =
1

|Bn|

∑

h∈Bn

2ℓ(n)
∏

i=1

xtii . (20)

Here, ti is the i-th entry of t(πh) and ℓ is the Landau function, which assigns to n the largest
order of an element from the symmetric group Sn. Its values

1, 1, 2, 3, 4, 6, 6, 12, 15, 20, 30, 30, 60, 60, 84, . . . (21)

can be found as sequence A000793 of the Online Encyclopedia of Integer Sequences.

Combining Table (4) and (20), the cycle index polynomial Z3 of B3 can be found as

Z3(x1, x2, x3, x4, x5, x6) =
1

48

(

x81 + 6x41x
2
2 + 13x42 + 8x21x

2
3 + 12x24 + 8x2x6

)

. (22)
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Further explicit expressions for the cycle index polynomials Zn of Bn can be found in the
literature [11] only for n ≤ 6. The above rather simple algorithm implemented on a personal
computer can produce the table corresponding to Zn of the form (36) for each n ≤ 10 within a
second. In the papers [10, 21], the cycle type t(πh) of the permutation πh ∈ S2n induced by h is
expressed in terms of the signed cycle type of the signed permutation corresponding to h ∈ Bn.
Although algebraically of interest, their expressions are unfortunately too abstract to generate
explicit numbers in a straightforward way. The above algorithm solves that problem.

3 The 0/1-polytopes in the unit n-cube

A 0/1-polytope [24] is the convex hull of a (possibly empty) subset V ⊂ Bn. Since distinct
subsets of Bn give rise to distinct 0/1-polytopes, we can and prefer to define a 0/1-polytope
alternatively but equivalently as a map c : Bn → {0, 1}, using the obvious correspondence

c : Bn → {0, 1} : v 7→ 1 ⇔ v ∈ V. (23)

Such a map can be seen as a two-coloring of the vertices of In with “colors” 0 and 1. We denote
the set of all maps Bn → {0, 1} by Pn, and write Pk

n ⊂ Pn for all c ∈ Pn with the property
that precisely k elements of Bn are mapped to 1: these correspond to the 0/1-polytopes with
exactly k vertices. Observe that

Pn =
2n
⋃

k=0

Pk
n and |Pn| =

2n
∑

k=0

∣

∣

∣
Pk
n

∣

∣

∣
=

2n
∑

k=0

(

2n

k

)

= 22
n

. (24)

The double-exponential growth of |Pn| in n is illustrated in the below table. Already for n = 6
it exceeds (by one) the number of grains of rice that the poor merchant claimed from the king
in the legend of the chess board, as displayed in Table 5.

n 0 1 2 3 4 5 6

|Pn| 2 4 16 256 65536 4294967296 18446744073709551616

Table 5: Doubly exponential growth of the number |Pn| of 0/1-polytopes in In.

We assign to each 0/1-polytope c the unique integer N (c) between 0 and 22
n

− 1 as

N (c) =
∑

v∈Bn

c(v)2β(v), (25)

where β is the binary-to-decimal numbering of v ∈ Bn introduced in Figure 5.

Example 3.1 Depicted below are the 0/1-polytopes c in the unit square. A circle is drawn
around v ∈ B2 if and only if c(v) = 1. The number in the center of each square is N (c).

Obviously, N (c) + N (c̃) = 22
n

− 1 for complementary 0/1-polytopes, by which we mean
polytopes c and c̃ such that (c+ c̃)(v) = 1 for all v ∈ Bn.
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0 1 2 3 4 5 6 7

15 14 13 12 11 10 9 8

Figure 8: The sixteen 0/1-polytopes in I2 and their numbering given in (25). ♦

3.1 Cube symmetries acting on 0/1-polytopes: 0/1-equivalence

Each element h of the hyperoctahedral group Bn induces a permutation Hh of Pn by Hh :
Pn → Pn : c 7→ c ◦ h. For each fixed k it restricts to a permutation of Pk

n ⊂ Pn. Via the
numbering N defined in (25) it moreover induces a permutation

Πh : {0, . . . , 22
n

− 1} → {0, . . . , 22
n

− 1} : k 7→
(

N ◦Hh ◦ N
−1

)

(k). (26)

It turns out to be of interest to know the cardinalities |S| and |Sk| of the sets

S = {(h, c) ∈ Bn × Pn | c = c ◦ h} and Sk = {(h, c) ∈ Bn × Pk
n | c = c ◦ h}. (27)

Before explaining why, we present an example.

Example 3.2 For each of the eight h ∈ B2, the permutations Πh of {0, . . . , 15} are given in
Table 6. The (bold) fixed points correspond to S, and are added up per row and per column.

B2 × P2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

id 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
c1 0 2 1 3 8 10 9 11 4 6 5 7 12 14 13 15 4
c2 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15 4

c1 ◦ c2 0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15 4
s1 0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15 8

s1 ◦ c1 0 4 1 5 8 12 9 13 2 6 3 7 10 14 11 15 2
s1 ◦ c2 0 2 8 10 1 3 9 11 4 6 12 14 5 7 13 15 2

s1 ◦ c1 ◦ c2 0 8 2 10 4 12 6 14 1 9 3 11 5 13 7 15 8

8 2 2 2 2 2 4 2 2 4 2 2 2 2 2 8 48

Table 6: The action of B3 on the 16 0/1-polytopes in I2.

We see directly that |S| = 48. After identifying the 0/1-polytopes with k vertices for given k ∈
{0, . . . , 4}, we moreover find that |S0| = 8, |S1| = 8, |S2| = 16, |S3| = 8, and |S4| = 8. ♦

It may decrease complexity and uncover structure when we consider all elements in the orbit
En(c) of a 0/1-polytope c (elements in the same column of the above table) as equivalent.

Definition 3.3 (0/1-equivalence) Two 0/1-polytopes c, c̃ ∈ Pn for which there exists an h ∈
Bn such that c̃ = c ◦ h are called 0/1-equivalent.
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It is clear that 0/1-equivalence of 0/1-polytopes implies their congruence; however, the con-
verse does not hold [24]. Thus, 0/1-equivalence is a finer type of equivalence than congruence.

We will now count the number εn of 0/1-equivalence classes of 0/1-polytopes. Since 0/1-
equivalent 0/1-polytopes have the same number of vertices, we will count the number εkn of
0/1-equivalence classes of 0/1-polytopes with k vertices, after which εn =

∑

k ε
k
n.

Lemma 3.4 The number εkn of 0/1-equivalence classes of 0/1-polytopes with k vertices equals

εkn =
∑

c∈Pk
n

1

|En(c)|
=

∑

c∈Pk
n

|Sc|

|Bn|
, where Sc = {h ∈ Bn | c = c ◦ h}. (28)

Proof. Trivially, given c ∈ Pk
n, all c̃ ∈ Pk

n that belong to En(c) contribute one to the sum.
This proves the first equality in (28). Next, if h ∈ Bn is such that c ◦ h = c̃ 6= c, then also
c ◦ hs ◦ h = c̃ if and only if hs ∈ Sc. Thus, for each c̃ ∈ En(c) there are exactly |Sc| elements
of Bn that map c onto c̃, proving the second equality. �

Corollary 3.5 We have that

εkn =
|Sk|

|Bn|
and εn =

|S|

|Bn|
due to

∑

c∈Pk
n

|Sc| = |Sk| and
2n
∑

k=0

|Sk| = |S|. (29)

Using this corollary we can continue to look at the example for n = 2.

Example 3.6 (continued) Since for n = 2 there are 48 elements in S, by Corollary 3.5 we
find 48/8 = 6 distinct 0/1-equivalence classes of 0/1-polytopes, being

{0}, {1, 2, 4, 8}, {3, 5, 10, 12}, {6, 9}, {7, 11, 13, 14} and {15}, (30)

consisting of 0/1-polytopes with zero, one, two, two, three, and four vertices, respectively. For
all the 0/1-polytopes with, for instance, two vertices, the fixed points add up to 16, confirming
the existence of two distinct 0/1-equivalence classes in P2

2 . ♦

3.2 Counting 0/1-polytopes invariant under a given symmetry

Counting the elements of S can be done by counting for each c ∈ Pn the number of elements
of the set Sc from (28). Alternatively, one can also count for each h ∈ Bn the number of
elements of the set

Sh = {c ∈ Pn | c = c ◦ h}. (31)

This is the Cauchy-Frobenius Lemma, also known as Burnside’s Lemma [8]. Note that count-
ing Sc corresponds to counting the fixed points per column of Table 6.

Proposition 3.7 For given h ∈ Bn, c = c◦h if and only if for each cycle of πh, c is constant
on the pre-image under β of all numbers in that cycle.

As a consequence, the number of 0/1-polytopes that are invariant under a given h ∈ Bn

with t(πh) = (t1, . . . , t2n) equals the number of subsets of the set of the t1 + · · · + t2n cycles
of πh.

15



Corollary 3.8 Let h ∈ Bn be given with t(πh) = (t1, . . . , t2n). Then the cardinality |Sh| of
the set Sh equals |Sh| = 2t1+···+t2n .

Proof. According to Proposition 3.7, the numbers within the same cycle of πh must either
all be mapped to 0 or all be mapped to 1 by c ◦ β−1. �

The number of 0/1-polytopes with k vertices that are invariant under a given cube sym-
metry h equals the number of subsets of the set of t1 + · · · + t2n cycles of πh whose lengths
sum to k.

Theorem 3.9 Let h ∈ Bn be given with τ = t(πh) = (t1, . . . , t2n), and let k ≤ 2n. The
cardinality |Sk

h | of the set Sk
h = {c ∈ Pk

n | c = c ◦ h} equals

|Sk
h | =

∑

κ⊢ k

a(τ, κ), where a(τ, κ) =
k
∏

j=1

(

tj
κj

)

, (32)

and where the sum ranges over all integer partitions κ of k.

Proof. Let (κ1, . . . , κk) be a partition of k. The number of ways that this partition can be
selected from the partition (t1, . . . , tn) of n equals the product over all j ∈ {1, . . . , k} of the
number of ways that κj cycles of length j can be selected from the tj cycles of length j. �

Corollary 3.10 The number of 0/1-equivalence classes of Pk
n equals

εkn =
1

|Bn|

∑

h∈Bn

∑

κ⊢ k

a(t(πh), κ). (33)

Example 3.11 Consider the induced permutation πh of the vertices of I3 with cycle type

t(πh) = (4, 2, 0, 0, 0, 0, 0, 0), (34)

which consists of 4 + 2 = 6 cycles. Hence, the number of 0/1-polytopes that are mapped upon
themselves by h equals 26 = 64, which illustrates Corollary 3.8. To illustrate Theorem 3.9,
consider the five partitions of k = 4, being 1 + 1 + 1 + 1 = 1 + 1 + 2 = 1 + 3 = 2 + 2 = 4 and
their corresponding cycle types,

(4, 0, 0, 0), (2, 1, 0, 0), (1, 0, 1, 0), (0, 2, 0, 0), (0, 0, 0, 1). (35)

Only the first, second, and fourth partition contribute to the sum in (32), which evaluates to

(

4

4

)(

2

0

)(

0

0

)(

0

0

)

+

(

4

2

)(

2

1

)(

0

0

)(

0

0

)

+

(

4

0

)(

2

2

)(

0

0

)(

0

0

)

= 14. (36)

Thus, each h ∈ Bn with induced cycle type t(πh) as in (34), leaves invariant fourteen 0/1-
polytopes in I3 with four vertices. See also Table 7 in the next example. ♦
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3.3 Counting the 0/1-equivalence classes of Pk
n

Corollary 3.10 in combination with the considerations in Section 2 give a way to compute the
number |Pk

n | of 0/1-equivalence classes of 0/1-polytopes with k vertices as follows.

Algorithm 2. Let integers n, k with 0 ≤ k ≤ 2n be given.

(1) Use Algorithm 1 from Section 2.4 to generate the cycle index Zn of Bn in tabulated form.

(2) Generate a second table with the p(k) partitions of k, see for instance [26].

(3) For each cycle type τ = (t1, . . . , t2n) ⊢ 2n from the first table:

(a) sum the numbers a(τ, κ) from (32) over all κ ⊢ k;

(b) multiply the result by the number of h ∈ Bn for which t(πh) = t.

(4) Sum over all τ = (t1, . . . , t2n) ⊢ 2n from the first table.

To illustrate this algorithm, we perform it in detail in the example below.

Example 3.12 We consider the case n = 3 and k = 4. The part of Table 7 to the left of the
6× 5 block in boldface is the table representing Z3 from Table (4).

0 1 0 2 4 κ1

0 0 2 1 0 κ2

0 1 0 0 0 κ3

1 0 0 0 0 κ4

12 0 0 0 2 2 0 0 0 0 24
8 0 1 0 0 0 0 0 0 0 0

13 0 4 0 0 0 0 6 0 0 78
8 2 0 2 0 0 4 0 0 0 32
6 4 2 0 0 0 0 1 12 1 84
1 8 0 0 0 0 0 0 0 70 70

48 t1 t2 t3 t4 24 32 84 72 76 288

Table 7: Computation of the numbers a(τ, κ).

The part of Table 7 above the boldface part contains the five partitions of 4. Note that only
the values of t1, . . . , t4 are needed to be able to compute each of the numbers a(τ, κ). The
numbers 1, 12, 1 in the fifth row in boldface are the ones computed in (36) of the previous
example. The sum 288 of the numbers in the 6×5 block divided by the order 48 of B3 equals 6,
indeed the number of nonequivalent 0/1-tetrahedra in the cube, including two degenerate ones,
as depicted in Figure 9. ♦

Remark 3.13 The combinatorial road [8, 28] to arrive at the same result is to substitute in
the cycle index polynomial Zn of Bn in (20) the expressions xi = bi+wi. Then the coefficient
of the monomial wkb2

n−k in the expansion equals |Pk
n|. Although theoretically elegant and

valuable, and widely applicable, it is not very suited for computing concrete numerical values.

The methodology described in Sections 2 and 3 leads to a way to compute the number of
0/1-polytopes in In modulo the symmetries of In. See also Section 7 for some explicitly
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Figure 9: Representatives of each of the six 0/1-equivalence classes of all 0/1-tetrahedra.

computed values. It does not yield a specific element from each 0/1-equivalence class. In the
next section we will investigate this enumeration problem.

4 Minimal matrix representations of 0/1-polytopes

We will now designate in each 0/1-equivalence class En(c) of a 0/1-polytope c some special
representatives. One of them we denote as the minimal representative from that equivalence
class. Obvious candidates for such minimal representatives are the 0/1-polytopes c for which

N (c) ≤ N (c ◦ h) for all h ∈ Bn, (37)

where N is the numbering defined in (25). However, with this definition it may happen
that c ∈ Pk

n is a minimal representative, whereas none of its facets in Pk−1
n is minimal. For

computational purposes, we prefer a minimal representative to have that property.

4.1 Matrix representations of 0/1-polytopes

A natural way to represent a 0/1-polytope c, alternative to a mapping c : Bn → {0, 1}, is by
means of 0/1-matrices whose colums are the vertices of c.

Definition 4.1 (Matrix representation) If the columns of a matrix P of size n × k are
precisely the k distinct vertices of a 0/1-polytope c ⊂ Pk

n, we will call P amatrix representation
of c. With each matrix representation P we associate the integer vectors

ν(P ) = v⊤n PΠ1 and µ(P ) = Π2Pwk, (38)

where
v⊤n =

(

20, 21, . . . , 2n−1
)

and w⊤
k =

(

2k−1, . . . , 21, 20
)

, (39)

and where Π1 is the unique k× k column permutation matrix sorting the k entries of v⊤n PΠ1

from left to right in increasing order, and Π2 any n×n row permutation matrix sorting the n
possibly non-distinct entries of Π2Pwk from top to bottom in non-increasing order.

The permutations Π1,Π2 depend on P , but this dependence is suppressed from the notation.
As P has distinct columns, each c ∈ Pk

n has exactly k! distinct matrix representations.
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Proposition 4.2 The following statements are equivalent:

(1) P1 and P2 are matrix representations of the same 0/1-polytope c ∈ Pk
n;

(2) there exists a k × k permutation matrix Π such that P1 = P2Π;

(3) ν(P1) = ν(P2).

Proof. This is because that no vertex of In is a convex combination of other vertices of In,
hence 0/1-polytopes are uniquely determined by their vertex set. �

Due to the equivalence (1) ⇔ (3) in Proposition 4.2, and with a slight abuse of notation,
we will use ν(c) also for a 0/1-polytope c ∈ Pn, and assign to it the vector ν(c) taken by any
matrix representation P of c. Note that ν : Pn → {0, . . . , 2n}k is injective.

For given c ∈ Pk
n, we will write M(c) for the set of all matrix representations of all c̃ ∈

En(c). This induces an equivalence relation on the set Z of all matrix representations of
0/1-polytopes, that we will denote by P1 ∼ P2. Before studying this equivalence on Z, we
introduce two simpler relations.

Definition 4.3 (Row complementation/permutation) A 0/1-matrix P2 is a row com-
plementation of P1, denoted by P2

c
∼ P1, if it results from P1 after exchanging the zeros and

ones in a subset of its rows; it is a row permutation of P1, denoted by P2
p
∼ P1 if there exists

a permutation matrix Π such that P2 = ΠP1. �

Both
c
∼ and

p
∼ are equivalence relations on Z. The 2n row complementations applied to

a given P ∈ Z result in matrix representations of each of the 0/1-polytopes in an orbit
under the action of the subgroup Bc

n ⊂ Bn, whereas the n! row permutations of P are matrix
representations of those in an orbit under the action of the subgroup Bp

n ⊂ Bn. Thus, following
Section 2, a matrix representation of each 0/1-polytope that is in the same 0/1-equivalence
class of a given c ∈ Pk

n can be obtained by performing each of the 2nn! combined row
complementations and permutations to a given matrix representation P of c.

4.2 Verification of 0/1-equivalence of matrix representations

For given P1, P2 ∈ Bn×k let r1 = P1wk and r2 = P2wk, where wk is the vector from (39).
If P1

c
∼ P2, then the j-th entries of r1 and r2 are equal in case the j-th rows of P1 and P2

are equal, and add up to 2k − 1 in case these rows are complementary. Hence, verification
whether P1

c
∼ P2 can be done in at most O(nk) operations, which is dominated by the costs

of computing r1 and r2. Verifying whether P1
p
∼ P2 asks to inspect if the n-vector r1 is a

permutation of r2, requiring O(nk + n log n) operations.

The combination of these two observations yields the following, which can be seen as a
variant of stating that r1 is a signed permutation of r2, see Section 2.2.

Proposition 4.4 Let P1, P2 ∈ Z. There exists an R ∈ Bn×k such that

P1
p
∼ R

c
∼ P2 (40)

if and only if the 2n entries of the two n-vectors r1 and (2k − 1)e − r1 are a permutation of
the 2n entries of the two n-vectors r2 and (2k − 1)e− r2.

The verification if P1
p
∼ R

c
∼ P2 requires O(nk+2n log(2n)) = O(nk+n log n) operations.
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Example 4.5 Consider matrices P1 and P2, with r1 = P1w4 and r2 = P2w4 computed as

P1w4 =





0 1 1 0
0 0 1 0
0 0 0 1













8
4
2
1









=





6
2
1



 and P2w4 =





0 1 1 0
1 1 1 0
1 1 0 1













8
4
2
1









=





6
14
13



 .

Then P1
c
∼ R

p
∼ P2 for some R ∈ B3×4, because the entries (6, 2, 1, 9, 13, 14) of the two 3-

vectors r1 and 15e− r1 can be permuted into the entries (6, 14, 13, 9, 1, 2) of r2 and 15e− r2.
Indeed, P2 is obtained by exchanging and complementing the second and third row of P1. ♦

Proposition 4.2 showed that if P1 and P2 are matrix representations of the same 0/1-polytope,
then P1 = P2Π for a permutation matrix Π that can be found by inspecting if s1 = v⊤n P1 is a
permutation of s2 = v⊤n P2, with vn from (39). To verify if P1 ∼ P2, or in other words, if P2 is a
column permutation of a row complementation and row permutation of P1, is computationally
much more complex.

Proposition 4.6 Let P1, P2 ∈ Z. Then P1 ∼ P2 if and only if there exists an R ∈ Z and a
permutation matrix Π such that

P1
p
∼ R

c
∼ P2Π, (41)

the verification of which can be done in O(k!(nk + n log n)) operations.

Proof. The verification can be done by looping over all k! permutation matrices Π and
performing the verification in Proposition 4.4 for each of them. �

Remark 4.7 Relation (41) holds if there exist permutation matrices Π1 and Π2 such that

Π1P1
c
∼ P2Π2. (42)

This more symmetric formulation suggests that in order to verify if P1 ∼ P2, one can establish
the existence of permutation matrices Π1 and Π2 such that Π1P1

c
∼ P2Π2 in two ways:

• for each Π2, verify if there exists Π1 such that Π1P1
c
∼ P2Π2;

• for each Π1, verify if there exists Π2 such that Π1P1
c
∼ P2Π2.

The second strategy would require an efficient way to verify the existence of a column per-
mutation of P2 such that it equals a row complementation of the given matrix Π1P1. This
verification is far less trivial than the one in Proposition 4.4. Nevertheless, if k > n+1, there
are ways to repair this and make the second strategy more economic than the first. Because
our main interest is 0/1-simplices for which k ≤ n+ 1, we will not go into detail.

4.3 Minimal matrix representations and their properties

The lexicographical order ≺ on the integer vectors ν(P ) associated with the matrix represen-
tations P of 0/1-polytopes c ∈ Pn induces a total order on Pn as well as on Z.

Definition 4.8 (Minimal representative) Theminimal representative of a c ∈ Pk
n in En(c)

is the unique 0/1-polytope c∗ ∈ En(c) for which ν(c∗) ≺ ν(d) for all d ∈ En(c
∗), d 6= c∗.

The minimal representative c∗ of c ∈ Pk
n has k! distinct matrix representations, of which we

designate one as the minimal matrix representation.
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Definition 4.9 (Minimal matrix representation) The minimal matrix representation of
c ∈ Pn in M(c) is the unique matrix representation P ∗ of c∗ for which v⊤n P

∗ = ν(P ∗), in
other words, whose column numbers v⊤n P

∗ are strictly increasing.

We will now study further properties of minimal matrix representations of 0/1-equivalence
classes of 0/1-polytopes. The following result proves a desirable property, mentioned already
at the beginning of this section.

Lemma 4.10 Let P ∗ be a minimal matrix representation of a 0/1-polytope c ∈ Pk
n. Then

for each j ∈ {1, . . . , k − 1}, the submatrix P ∗
j of P ∗ consisting of its j leftmost columns is a

minimal matrix representation of a 0/1-polytope cj ∈ Pj
n.

Proof. Let P ∗ ∈ Bn×k be a minimal matrix representation. Then by Definition 4.9, v⊤n P
∗

is increasing, and hence, so is v⊤n P
∗
k−1. To arrive at a contradiction, assume that P ∗

k−1 is not

a minimal matrix representation. Then there exists a row permutation Π such that ΠP ∗
k−1

c
∼

Pk−1 and ν(Pk−1) ≺ ν(P ∗
k−1). But this means that ΠP ∗ c

∼ P , where P is a matrix whose k−
1 leftmost columns equal Pk−1. Irrespective of the rightmost column of P , this implies
that ν(P ) ≺ ν(P ∗), contradicting the minimality of P ∗. This proves that P ∗

k−1 is a minimal
matrix representation, and hence inductively, the minimality of all P ∗

j . �

Corollary 4.11 Any minimal representative of a 0/1-polytope with k vertices contains a
minimal representative of a 0/1-polytope with k − 1 vertices.

Corollary 4.12 The first column of a minimal matrix representation P ∗ of a 0/1-polytope c ∈
Pk
n equals 0 ∈ Rn.

Proof. According to Lemma 4.10, the first column of P ∗ is a minimal matrix representation
of a 0/1-polytope with one vertex. Clearly, this is the zero vector. �

By Definition 4.8, ν(P ∗) = v⊤n P
∗, which means that the integer vector v⊤n P

∗ is increasing.
The next lemma proves that additionally, P ∗wp is non-increasing from top to bottom.

Lemma 4.13 Let P ∗ be a minimal matrix representation of a 0/1-polytope c ∈ Pk
n. Then

P ∗wk = µ(P ∗) (43)

or equivalently, P ∗wk is non-increasing from top to bottom.

Proof. Write p∗i for row i of P ∗ and p∗j for row j of P ∗. Assume that 1 ≤ i < j ≤ n
and p∗iwk < p∗jwk, contradicting the statement to prove. Then

p = min
ℓ∈{1,...,k}

{

p∗i eℓ 6= p∗jeℓ
}

(44)

exists and equals the index of the leftmost column in which p∗i and p∗j differ. The assump-
tion p∗iwk < p∗jwk implies that p∗i ek = 0 and p∗jek = 1. Write P for the matrix that results
after the transposition of rows i and j of P ∗. Then the first p − 1 columns of P ∗ and P
coincide. However, in column p, the one in row j is exchanged with the zero in row i above
it. As a result, v⊤n P ≺ v⊤n P

∗, contradicting that P ∗ is a minimal matrix representation. �

In Figure 10 we display four elements c1, . . . , c4 from E3(c1) of a tetrahedron c1. The
stabilizer Sc1 of c1 in B3 contains two elements, hence |E3(c1)| = 24. We also display matrix
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



0 1 1 0
0 0 1 0
0 0 0 1









6
2
1





[

0 1 3 4
]

c2





0 1 0 0
0 0 1 1
0 0 0 1









4
3
1





[

0 1 2 6
]

c1





0 1 0 1
0 0 1 0
0 0 0 1









5
2
1





[

0 1 2 5
]

c3





0 0 1 1
0 0 0 1
0 1 1 1









3
1
7





[

0 4 5 7
]

c4

Figure 10: Four 0/1-equivalent 0/1-tetrahedra with corresponding matrix representations.

representations for c1, . . . , c4, all with increasing column numbers.

Without proof, we mention the following facts for illustration.

• N (c2) ≤ N (c) for all c ∈ E3(c1), but none of its triangular facets is N -minimal;

• c3 is the unique minimal representative of E3(c1);

• µ(c4) is not nonincreasing, hence c4 is not the minimal representative of E3(c1);

• no 0/1-polytope formed by two or three vertices of c4 is a minimal representative;

• c1 has all properties proved above of the minimal representative, but is not it.

Now, let P be any matrix representation of a 0/1-simplex c with k ≤ n + 1 vertices. For
each j ∈ {1, . . . , k}, write Pj for the matrix obtained from P by first complementing those
rows in P that have an entry 1 in column j, and then swapping columns 1 and j of the result.
Each matrix Pj corresponds to c with one of its vertices placed at the origin. Hence, due to
Corollary 4.12, there exists a j ∈ {1, . . . , k} such that

P ∗ = Π1PjΠ2

for some permutation matrices Π1 and Π2, and where Π2 leaves the first column of Pj invari-
ant. Instead of applying all the n!(k − 1)! permutations and verifying which of them result
in P ∗, we can use that by Lemma 4.13, the row numbers P ∗wk are non-increasing. Therefore,
for each of the (k − 1)! choices for Π2, it suffices to simply sort the rows of PjΠ2. Then P ∗

must be among the resulting k(k− 1)! = k! matrices, (k− 1)! for each value of j ∈ {1, . . . , k}.

Summarized in algorithmic form, this reads as follows.

Algorithm 3: Computing the minimal matrix representation P ∗ of a 0/1-simplex c.

Let P be any matrix representation of c. Define P1, . . . , Pk as described above.

For j = 1, . . . , k;

(1) apply all (k − 1)! column permutations Π2 to Pj that leave its first column invariant;

(2) for each of those, apply any row permutation Π1 for which Π1PjΠ2wp is non-increasing;

(3) store the matrix P ∗
j = Π1PjΠ2 for which Π1PjΠ2wp is lexicographically minimal.
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Each P ∗
j can be seen as a local minimizer over all matrices that can be obtained from Pj by

permuting its rows and columns. The minimal among all k local minima is then P ∗.

Corollary 4.14 A 0/1-polytope with k vertices has at most k! distinct matrix representa-
tions P with Pe1 = 0 and with Pwk nonincreasing.

We will now use Algorithm 3 to enumerate the minimal representatives and their minimal
matrix representations of all 0/1-triangles in In, and in particular of the subset of all acute
0/1-triangles. These minimal matrix representations of 0/1-triangles will be extended by a
computer code to minimal matrix representations of nonobtuse and acute 0/1-simplices.

4.4 All minimal matrix representations of 0/1-triangles

Let T ∈ P3
n be a 0/1-triangle. We will characterize its minimal matrix representation T ∗ . By

Definition 4.9, we know that v⊤n T
∗ is increasing; by Corollary 4.12, the first column of T ∗

equals zero; and by Lemma 4.13, T ∗w3 is non-increasing. Therefore, we know that

T ∗ =









a 0 1 1
b 0 1 0
c 0 0 1
d 0 0 0









for certain a+ b+ c+ d = n, (45)

and where the right-hand side stands for the n×3 matrix whose top a rows equal [0 1 1], whose
next b rows equal [ 0 1 0 ] and so on. Of course, T ∗ is not minimal for all values of a, b, c, d.
For instance, if b > c it is not. In that case, swapping the second and third column of T ∗ and
sorting the rows, leads to a matrix with a smaller second column number: 2a+c < 2a+b.

To further specify a, b, c, d, we compute the k! = 6 matrices that are generated by Algo-
rithm 3, with start matrix T ∗

1 = T ∗ for some choice of a, b, c, d. Each of those six matrices
is of the same form as in (45), but with the numbers a, b, c, d of repeated rows permuted.
Instead of writing down the matrices, we only present in Table 8 their corresponding permu-
tations of a, b, c, d, in three sets of two, each pair belonging to one of the matrices T ∗

1 , T
∗
2 , T

∗
3 ,

where T ∗
1 = T ∗,

a a b b c c
b c a c a b
c b c a b a
d d d d d d

Table 8: Induced (block-)permutations.

Observe that Table 8 basically consists, in fact, of all six permutations of a, b, c.

Theorem 4.15 The matrix T ∗ is the minimal matrix representation of a 0/1-triangle T
in In if and only if it is of the form (45) with

1 ≤ a+ b and a+ b+ c ≤ n and a ≤ b ≤ c. (46)

Proof. Consider the column numbers of T ∗,

v⊤n T11 =
(

0, 2a+b − 1, 2a+b+c − 2a+b + 2a − 1
)

. (47)
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Necessary and sufficient conditions for this vector to be lexicographically minimal over all
permutations of a, b, c are as follows. The second entry is minimal if and only if a+ b ≤ a+ c
and a + b ≤ b + c, hence if and only if b ≤ c and a ≤ c. If this is the case, additionally the
third entry is minimal if and only if a ≤ b. The fact that a + b + c must be bounded above
by n is trivial. The additional bound 1 ≤ a+ b is a necessary and sufficient condition for the
three vertices of T to be distinct. �

Corollary 4.16 Let T ∗ be a minimal matrix representation of a 0/1-triangle T in In. Then:

• if a = 0 then T is a right triangle;

• if a > 0 then T has acute angles only.

Proof. Suppose that a = 0. Then due to 1 ≤ a+b and a ≤ b ≤ c in (46), we have that 1 ≤ b
and 1 ≤ c and thus, T ∗ in (45) obviously represents a nondegenerate right triangle. If 0 < a,
then again due to (46), also 0 < b ≤ c. This shows that the difference between the second
and third column is not orthogonal to either one of them, and thus is T ∗ not right. Finally,
since no triangle in In can have obtuse angles, also the second bullet is proved. �

Theorem 4.15 establishes a bijection between the minimal matrix representations of all
0/1-triangles in In and the set all points (except the origin due to 1 ≤ a + b) with integer
coordinates in the polyhedron K in the nonnegative octant of R3 defined by the inequalities

0 ≤ a, 0 ≤ b, 0 ≤ c and a+ b+ c ≤ n and a ≤ b ≤ c. (48)

A closer inspection shows that K is a tetrahedron, the intersection of the so-called path-
tetrahedron P defined by the inequalities 0 ≤ a ≤ b ≤ c ≤ n, and the cube-corner C defined
by 0 ≤ a, 0 ≤ b, 0 ≤ c and a+ b+ c ≤ n. This is depicted in Figure 11.

Remark 4.17 The right triangles correspond to the integer points in the bottom facet of K.

Because the cube [0, n]3 can be subdivided into six congruent path tetrahedra all sharing the
same long diagonal, K is one of six congruent parts of the cube corner. In fact, each of those
six parts corresponds to exactly one of the matrices in Table 8.

o

a ↑

→ b
→

c

P

o

↑ a

→ b
→

c

P : 0 ≤ a ≤ b ≤ c ≤ n and

C

o

a ↑

→ b
→

c

C : a+ b+ c ≤ n

K

K = P ∩C

Figure 11: The tetrahedron K as intersection a path tetrahedron P and a cube corner C.

Obviously, with the above characterizations, the enumeration of all minimal matrix represen-
tations of all 0/1-triangles, or of those of all acute 0/1-triangles is now a trivial matter.
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4.5 Simple explicit expressions for ε2n

The number of equivalence classes ε2n of 0/1-triangles in In was in principle counted in Sec-
tion 3, using Pólya’s theory of counting. However, it did not provide a simple expression for
this number, nor did it count the number of acute triangles. To do this here, we use the
following change of variables,

p = a+ b, q = a+ c, and r = a. (49)

The conditions on a, b and c in Theorem 4.15 are equivalent to the conditions

1 ≤ p ≤ q ≤ p+ q − 2r ≤ n− r ≤ n. (50)

We will count the triples (p, q, r) satisfying (50) by fixing a value for r and counting the
tupels (p, q) that satisfy the resulting equation, and summing over the feasible values of r.

Lemma 4.18 Let m ≥ 1 be an integer. The number of integer tupels (x, y) satisfying

1 ≤ x ≤ y ≤ m− x (51)

equals
⌊m

2

⌋ ⌈m

2

⌉

, (52)

where ⌊·⌋ is the floor-operator and ⌈·⌉ the ceil-operator.

Proof. Only for values of x with 1 ≤ x ≤ ⌊m/2⌋, we have that x ≤ m− x. The number of
integers between such an x and m− x equals m+ 1− 2x. This leads to a total of

⌊m/2⌋
∑

x=1

(m+ 1− 2x) =
⌊m

2

⌋

(m+ 1)− 2 ·
1

2

⌊m

2

⌋(⌊m

2

⌋

+ 1
)

(53)

tupels (x, y) that satisfy (51). Splitting m = ⌈m2 ⌉+ ⌊m2 ⌋ leads to the statement. �

Corollary 4.19 The number of 0/1-equivalence classes of right triangles in In equals
⌊n

2

⌋ ⌈n

2

⌉

. (54)

Proof. Combining Corollary 4.16 with the change of variables in (49) shows that we may
set r = 0 in (50) and continue to count to number of tupels (p, q) satisfying

1 ≤ p ≤ q ≤ p+ q ≤ n. (55)

Since the inequality q ≤ p+ q is always valid, it can be removed. Thus, we only need to count
the number of tupels (p, q) such that 1 ≤ p ≤ q ≤ n− p, which was done in Lemma 4.18. �

In the next lemma we will count equivalence classes of triangles for fixed values of r ≥ 1.
It will turn out that if 3r > n, there are no solutions. Moreover, substituting r = 0 in (56)
below does not yield the result of Corollary 4.19. After its proof it is explained why not.

Lemma 4.20 For given r ≥ 1 with 3r ≤ n, the number of tupels (p, q) satisfying (50) equals
⌊

n− 3r + 2

2

⌋⌈

n− 3r + 2

2

⌉

. (56)
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Proof. Let r ≥ 1 be fixed. If p < 2r, there are no integers q that satisfy the third
inequality q ≤ p + q − 2r in (50). If p ≥ 2r, this inequality holds for all q and can thus be
removed. Thus, we only need to count the tupels (p, q) for which

2r ≤ p ≤ q ≤ n+ r − p. (57)

For such tupels to exist, we need that 2r ≤ n+r−p, but since p ≥ 2r this translates into 2r ≤
n + r − 2r. This explains the requirement 3r ≤ n in the statement of this lemma. To count
the tupels, subtract 2r−1 from each term in (57), and define x = p−(2r−1), y = q−(2r−1),
and z = n− 3r + 2, then

1 ≤ x ≤ y ≤ n+ r − x− 2(2r − 1) = n− 3r + 2− x = z − x. (58)

Applying Lemma 4.18 gives the number of tupels (x, y) satisfying these inequalities in terms
of z, and substituting back z = n− 3r + 2 proves the statement. �

Remark 4.21 Choosing r = 0 in (56) does not give (54). This is because setting r = 0 in
(57) does not imply 1 ≤ p, as is required, whereas for r ≥ 1, it does.

We will now count the number of equivalence classes of acute triangles. First another lemma.

Lemma 4.22 For nonnegative integers k we have that (kmod 2)2 = kmod2, and hence

⌊

k

2

⌋⌈

k

2

⌉

=

(

k − kmod 2

2

)(

k + kmod2

2

)

=
1

4
(k2 − kmod2). (59)

Moreover,
n
∑

k=1

kmod2 =

⌊

n+ 1

2

⌋

, and

⌊

n− ⌊n3 ⌋

2

⌋

=

⌊

n+ 1

3

⌋

. (60)

Proof. Elementary, and thus left to the reader. �

Theorem 4.23 The number of 0/1-equivalence classes of acute triangles in In equals

⌊

2n3 + 3n2 − 6n+ 9

72

⌋

. (61)

Proof. We need to sum the expression in (56) over all r ≥ 1 satisfying 3r ≤ n. Now,
since (n− 3r + 2)mod 2 = (n− r)mod 2, we find using Lemma 4.22 that

⌊n
3
⌋

∑

r=1

⌊

n− 3r + 2

2

⌋ ⌈

n− 3r + 2

2

⌉

=
1

4

⌊n
3
⌋

∑

r=1

(n− 3r + 2)2 −
1

4

⌊n
3
⌋

∑

r=1

(n− r)mod 2. (62)

The first sum in the right-hand side of (62) can be evaluated using standard expressions for
sums of squares as

⌊n
3
⌋

∑

r=1

(n− 3r + 2)2 =
⌊n

3

⌋

(n+ 2)
(

n− 1− 3
⌊n

3

⌋)

+
3

2

⌊n

3

⌋(⌊n

3

⌋

+ 1
)(

2
⌊n

3

⌋

+ 1
)

. (63)
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Using Lemma 4.22 again, the second sum in the right-hand side of (62) evaluates to

⌊n
3
⌋

∑

r=1

(n− r)mod 2 =
n−1
∑

r=1

rmod2−

n−⌊n
3
⌋−1

∑

r=1

rmod 2 =
⌊n

2

⌋

−

⌊

n+ 1

3

⌋

. (64)

Combining (62), (63) and (64), the number of equivalence classes of acute 0/1-triangles equals

(⌊

n
3

⌋

(n+ 2)
(

n− 1− 3
⌊

n
3

⌋)

+ 3
2

⌊

n
3

⌋ (⌊

n
3

⌋

+ 1
) (

2
⌊

n
3

⌋

+ 1
)

−
⌊

n
2

⌋

+
⌊

n+1
3

⌋)

4
. (65)

To verify that this expression equals (61) is a tedious task, but can be done as follows. First,
we substitute n = 6k + ℓ with ℓ ∈ {0, . . . , 5} into (61), which after simplifications results in

6k3 +
3

2
(2ℓ+ 1) k2 +

1

2

(

ℓ2 + ℓ− 1
)

k +

⌊

1

36
ℓ3 +

1

24
ℓ2 −

1

12
ℓ+

1

8

⌋

, (66)

where we have used that 2ℓ+1 and ℓ2+ ℓ− 1 = ℓ(ℓ+1)− 1 are both odd, which implies that
the sum of the first three terms in (66) is indeed an integer for all k and ℓ.

Next, substitute n = 6k + ℓ with ℓ ∈ {0, 1, 2} in (65), and note that it simplifies to

6k3 +
3

2
(2ℓ+ 1) k2 +

1

2

(

ℓ2 + ℓ− 1
)

k, (67)

which equals the expression in (66) because for ℓ ∈ {0, 1, 2} the floor results in zero. Finally,
set n = 6k + ℓ with ℓ ∈ {3, 4, 5} in (65). After simplification there remains

6k3 +
3

2
(2ℓ+ 1) k2 +

1

2

(

ℓ2 + ℓ− 1
)

k +
1

4

(

ℓ2 − 2ℓ+ 1−

⌊

ℓ

2

⌋

+

⌊

ℓ+ 1

3

⌋)

. (68)

Comparing (66) with (68), it can be easily verified that for ℓ ∈ {3, 4, 5},

1

4

(

ℓ2 − 2ℓ+ 1−

⌊

ℓ

2

⌋

+

⌊

ℓ+ 1

3

⌋)

=

⌊

1

36
ℓ3 +

1

24
ℓ2 −

1

12
ℓ+

1

8

⌋

. (69)

And this proves the theorem. �

In Table 9 are listed the numbers rn and an of 0/1-equivalence classes of right and acute
0/1-triangles and their sum dn for small values of n.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

rn 1 2 4 6 9 12 16 20 25 30 36 42 49 56 64 72
an 0 1 2 4 7 11 16 23 31 41 53 67 83 102 123 147
dn 1 3 6 10 16 23 32 43 56 71 89 109 132 158 187 219

Table 9: Right, acute, and all 0/1-triangles in In modulo the action of Bn.

In the OEIS, the sequence rn has label A002620, sequence an has label A181120, and dn has
label A034198. Only the latter has as description “number of distinct triangles on vertices
of n-dimensional cube”, the other two are not associated with counting triangles in In.
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5 Minimal representatives of acute 0/1-simplices

We will now describe how to generate by means of a computer program minimal matrix
representations of each 0/1-equivalence class of so-called acute 0/1-simplices, which are 0/1-
simplices having only acute dihedral angles. They form the higher dimensional generalizations
of the acute 0/1-triangles from the previous section.

Definition 5.1 (Acute k-simplex) Let c ∈ Pk
n with 1 ≤ k ≤ n be a nondegenerate k-

simplex in In. Let R∗ ∈ Bn×(k+1) be the minimal matrix representation of c. Let P be
the n× k matrix with the nonzero columns of R∗. If the k × k Gramian G = P⊤P satisfies:

(1) each off-diagonal entry of G−1 is negative (G−1 is strictly Stieltjes),

(2) each row sum of G−1 is positive (G−1 is diagonally dominant),

then c is called an acute 0/1-k-simplex.

The properties (1) and (2) are purely geometric, and concern the dihedral angles of the simplex,
for which we refer to [6, 7] for details. These angles are invariant under the action of Bn.
This guarantees that the concept of acute 0/1-simplex is well-defined using only the minimal
matrix representation. Note that G is invertible as c is assumed nondegenerate.

As examples of acute simplices, in Figure 12 we display on the left the only acute 0/1-
tetrahedron in I3, and on the right the only acute 0/1-4-simplex in I4. Both are members
of the family of so-called antipodal simplices in In. An antipodal n-simplex in In is 0/1-
equivalent with the simplex whose vertices are the origin and all v ∈ Bn with exactly one
entry equal to zero. For this family, the matrices P and G from Definition 5.1 are, indexed
by n,

Pn =

[

e⊤ 0

In−1 e

]

, and Gn = In + ee⊤ + (n − 3)ene
⊤
n . (70)

As before, e is the all-ones vector of appropriate length and Iℓ is the ℓ× ℓ identity matrix. It
is easy to verify that G−1 satisfies the criteria (1) and (2) in Definition 5.1 for the family of
antipodal simplices to be acute.

R∗
3 = [0 |P3]

=





0 1 1 0
0 1 0 1
0 0 1 1





R∗
4 = [0 |P4]

=









0 1 1 1 0
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1









Figure 12: An acute antipodal n-simplex for n = 3 (left) and n = 4 (right) together with their
minimal matrix representations R∗

3
and R∗

4
and their nonsingular parts P3 and P4 that satisfy the

conditions in Definition 5.1.
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Remark 5.2 The tetrahedral facet T of the antipodal 4-simplex represented by the first
four columns K of the matrix R∗

4 is congruent to the regular tetrahedron in the left picture.
They are, however, not 0/1-equivalent. Indeed, T does not lie in a three-dimensional cubic
facet of I4, and this property is invariant under the action of B4. A congruence Q mapping
one onto the other is, for instance,

QK =
1

2









1 1 1 −1
1 1 −1 1
1 −1 1 1

−1 1 1 1

















0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1









=









0 1 1 0
0 1 0 1
0 0 1 1
0 0 0 0









, (71)

but this congruence Q is not a member of B4.

5.1 Acute 0/1-simplices and their candidate acute extensions

Here we will list a number of properties of acute simplices that are relevant in the context of
their computational enumeration. Some of them are new, others are simply valid for acute
simplices in general [6, 7, 16].

Proposition 5.3 ([16]) Each ℓ-facet of an acute 0/1-k-simplex is an acute 0/1-ℓ-simplex.

This corresponds to the well-known linear algebraic statement that the inverse of each prin-
cipal k × k submatrix of G is also a diagonally dominant strictly Stieltjes matrix. Together
with Lemma 4.10, this proves the following.

Corollary 5.4 Let P ∗ be the minimal matrix representation of an acute simplex c ∈ Pk
n.

Then for each j ∈ {1, . . . , k− 1}, the submatrix P ∗
j of P ∗ consisting of its j leftmost columns

is a minimal matrix representation of an acute simplex cj ∈ Pj
n.

Corollary 5.4 shows in particular that the first three columns of any minimal matrix represen-
tation of an acute 0/1-simplex form a minimal matrix representation of an acute 0/1-triangle.

Definition 5.5 (Acute extensions of S) Let S ⊂ In be an acute 0/1-simplex with k ≤ n
vertices. The set An(S) of acute extensions of S consists of all v ∈ Bn such that conv(S, v) is
an acute 0/1-simplex with k + 1 vertices.

The following classical result formulates a necessary condition for a vertex v ∈ Bn of In to be
an element of the set An(S) just defined.

Proposition 5.6 ([16]) Let S be an acute n-simplex. Then each vertex of S projects orthog-
onally into the interior of its opposite (n−1)-dimensional facet.

Definition 5.7 (Candidate acute extensions of S) Let S ⊂ In be an acute 0/1-simplex
with k ≤ n vertices. The set Cn(S) of candidate acute extensions of S consists of all v ∈ Bn

such that v projects orthogonally into the interior of S.

Remark 5.8 Due to Proposition 5.6, we have that An(S) ⊂ Cn(S). The sets are in general
not equal. This can be seen in Figure 12. For each of the acute triangular facets T of the
antipodal 0/1-tetrahedron in I3, there exist two vertices of I3 that project in the interior
of T , but only the convex hull of T with one of them yields an acute tetrahedron.
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We will now investigate on a linear algebraic level when v ∈ Cn(S) or even v ∈ An(S). For
this, let P ∈ Bn×k with 1 ≤ k < n be such that G = P⊤P satisfies the conditions (1) and
(2) in Definition 5.1, and let v ∈ Bn. Consider the matrix [P |v]. Its Gramian Ĝ is a simple
update of G. Also its inverse Ĝ−1 is an update of the inverse H of G, as depicted in Figure 13.

G = P⊤P

g = P⊤v

γ = v⊤v

update

Ĝ =

G

g⊤

g

γ

H = G−1

h = Hg

s−1 = γ − g⊤h

and invert

Ĝ−1 =

H + hsh⊤

−sh⊤

−sh

s

Figure 13: Updating the inverse of an updated Gramian.

Note that Ĝ is positive semi-definite. It is invertible if and only if s > 0. This condition will
turn out to be automatically fulfilled if v projects in the interior of its opposite facet.

Lemma 5.9 The vertex v is an element of ∈ Cn(S) if and only if h > 0 and e⊤h < 1.

Proof. Observe that the orthogonal projection of v on the column span of P equals Ph,
because

Ph = P (P⊤P )−1P⊤v. (72)

To lie in the interior of the corresponding facet of S, Ph must be a convex combination in
which all vertices of that facet, including the origin, participate nontrivially. Thus, the entries
of h must be positive and up to less than one. �

Corollary 5.10 If h > 0 and e⊤h < 1 then s > 0.

Proof. If v projects in the interior of its opposite facet, then in particular, v is not equal to
a vertex of that facet. Also, no vertex of In is a convex combination of any of the others.
Thus, the convex hull of the facet and v has nonzero volume. �

The diagram in Figure 13 and Lemma 5.9 again show that even if v ∈ Cn(S), it does
not need to be in An(S). Indeed, because hsh⊤ > 0, the updated matrix H + hsh⊤ may
have nonnegative off-diagonal entries and violate condition (1) in Definition 5.1. Moreover,
condition (2) may also be violated, as the row sums of Ĝ−1 equal

[

r
ρ

]

= Ĝ−1

[

e
1

]

=

[

He+ sh(h⊤e− 1)
s(1− h⊤e)

]

, (73)

and if v ∈ Cn(S) then according to Lemma 5.9, h⊤e−1 < 0. Although this implies that ρ > 0,
some of the remaining entries of r may be negative, in spite of He > 0.

Suppose now that [P |v] is indeed such, that v ∈ Cn(S) but that v 6∈ An(S). For some w ∈
Bm, consider the matrix

[

P v

0 w

]

with Gramian G̃ =

[

P⊤P P⊤v

v⊤P v⊤v + w⊤w

]

.
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In comparison with the Gramian Ĝ in Figure 13, only the bottom right entry has changed.
Obviously, it w⊤w is large enough, the corresponding value of s will decrease so much, that
the off-diagonal entries of H + hsh⊤ are negative, and the row sums in (73) positive.

In other words, if a vertex v projects in the interior of an acute facet F , then by moving v
orthogonally away from F , the simplex conv(F, v) will ultimately always become acute.

The above discussion proves the following theorem.

Theorem 5.11 Let S be an acute 0/1-simplex in In. Consider In as a facet of In+m. Let
the first n entries of v ∈ Bn+m correspond to the vertices of In. Then:

Cn+m(S) =

{[

v
w

]

| v ∈ Cn(S), w ∈ Bm

}

. (74)

and

An+m(S) ⊃

{[

v
w

]

| v ∈ An(S), w ∈ Bm

}

. (75)

Moreover, for each v ∈ Cn(S) there exists an ℓ such that

w⊤w ≥ ℓ ⇔

[

v
w

]

∈ An+m(S), (76)

provided that m is large enough.

Proof. Statement (74) follows because the right-hand side consists precisely of those vertices
of In+m whose orthogonal projection on In land in Cn(S). The claims in (75) and (76) follow
from the above discussion. �

Note that the optimal value of ℓ in (76) can, in principle, be computed as soon as the
data H,h, g and γ are available, as is visible from Figure 13.

Figure 14 serves to illustrate the claims of Theorem 5.11. Consider the acute 0/1-
triangle T with vertices 0, 3, 5, in the numbering of Figure 14. The set C3(T ) consists of
vertices 1 and 6, as both project in the interior of T . Only vertex 6 is an element of A3(T ).
Indeed, the tetrahedron formed by 1 and T is not acute: it has right dihedral angles. How-
ever, each of the vertices 9, 17, 25 orthogonally above vertex 1 forms an acute 0/1-tetrahedron
with T and thus belong to A5(T ), as do the ones 14, 22, 30 orthogonally above vertex 6.

The value of Theorem 5.11 is that in order to determine the set An(S) of a given minimal
representative of an acute 0/1-simplex S, the computational work can be reduced to:

• find the smallest k ≤ n for which S ∈ Ik and determine Ck(S);

• determine which v ∈ Ck(S) are in Ak(S);

• for each v ∈ Ck(S) \ Ak(S), determine the value of ℓ in (76).

After doing so, all remaining vertices of v ∈ Bn that are in An(S) can now be easily listed
without having to verify acuteness of the simplex conv(S, v).

The next theorem is not difficult, but will play a central role in the enumeration problem.

Theorem 5.12 Let S ⊂ In be an acute 0/1-simplex with k vertices. If Ŝ is an acute 0/1-
simplex in In having S as a facet, then each vertex of Ŝ belongs to S or to An(S).
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T

0 1

3

5

6

∈ Aℓ(T ) ∈ Cℓ(T ) \ Aℓ(T )

T

1

9

6

14

T

1

9

17

25

6

14

22

30

Figure 14: Impression of the structure of the sets Aℓ(T ) and Cℓ(T ) for increasing values of ℓ. The
white vertex is not in Aℓ(T ) but the ones “orthogonally above” it, are in Aℓ(T ).

Proof. Let v be a vertex of Ŝ that does not belong to S. Then conv(S, v) is a facet of Ŝ.
Since Ŝ is acute, Proposition 5.3 shows that conv(S, v) is acute, and thus v ∈ An(S). �

In the language of Figure 14, Theorem 5.12 expresses that each acute 0/1-simplex having T
as a triangular facet, has all its vertices amongst the black bullets. Note that for each of these
black bullets, its projection on the triangle T is the orthocenter of T .

Corollary 5.13 Let T be a facet of an acute 0/1-simplex S. Then An(S) ⊂ An(T ).

Theorem 5.12 shows the importance of administrating the set of acute extensions in the
process of building acute 0/1-simplices from the starting point of a minimal representative
an acute 0/1-triangle T . Adding vertices to T , the set of acute extensions of the resulting
simplices becomes smaller and smaller as the dimension of the simplex become larger, hence
reducing the amount of work to be done to build all minimal representatives of 0/1-simplices
having T as minimal triangular facet.

It remains necessary to work with the concept of minimal matrix representations, to reduce
the amount of data to be computed. Not only after the construction process but also during.

5.2 Minimal acute extensions of acute 0/1-simplices

Let T ∗ be a minimal representative of an acute 0/1-triangle in In with minimal matrix
representation T ∗. Thus, the vertices of T ∗ are the column vectors of T ∗. Now, consider
the p matrices of size n× 4 defined by

[T ∗|t1], . . . , [T ∗|tp], (77)

where An(T ∗) = {t1, . . . , tp} is the set of acute extensions of T ∗.

Proposition 5.14 Each minimal matrix representation of each acute 0/1-tetrahedron having
T ∗ as minimal triangular facet, is among the matrices in (77).

Proof. This follows immediately from Corollary 5.4 and the fact that there are no other t ∈
In such that [T ∗|t] is an acute 0/1-tetrahedron. �

Consequently, we can subdivide the set of acute extensions of a minimal representative of
an acute 0/1-simplex into a minimal and a non-minimal part.
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Definition 5.15 (Minimal acute extensions) The set An(T ∗) of acute extensions of a
minimal representative T ∗ of an acute 0/1-simplex with k ≤ n vertices, with minimal matrix
representation T ∗, is subdivided as

An
∗ (T

∗) = {t ∈ An(T ∗) | [T ∗|t] is a minimal matrix representation},

and its complement An
◦ (T

∗) in An(T ∗).

The results of Section 4 immediately show that the following matrices in (77) are in An
◦ (T

∗):

(1) the ones for which the column number v⊤n tj of tj is smaller than v⊤n T
∗e3;

(2) the ones for which the row numbers [T ∗|tj ]w4 are not non-increasing.

To make the subdivision of An(T ∗) in (77) into An
∗ (T

∗) and An
◦ (T

∗) complete, one may use
an adapted version of Algorithm 3; adapted in the sense that it should be aborted as soon as
a matrix representation is encountered that proves that [T ∗|tj] is not minimal.

Remark 5.16 Note that if

[T ∗|tj] =

[

T ∗ t1j
0 t2j

]

with t2j ∈ Bm,

then [T ∗|tj ]w4 is not non-increasing if t2j itself is not non-increasing. Thus, for a number
of t ∈ An(T ∗) it may be directly indicated that they do not belong to t ∈ An

∗ (T
∗).

Suppose that it has been established that the matrix [T ∗|tℓ] is a minimal matrix representation
of a 0/1-tetrahedron with minimal representative T̂ ∗. In order to continue the construction
process of acute 0/1-simplices efficiently, either in a depth-first or a breadth-first fashion, the
data structures of acute candidates and acute extensions of T̂ ∗ need to be updated.

Remark 5.17 It may happen that while t is not a minimal acute extension of some acute
0/1-simplex T ∗, it is indeed a minimal acute extension of an acute simplex having T ∗ as
minimal facet. Indeed, let

T ∗ =













0 1 1
0 1 0
0 0 1
0 0 0
0 0 0













, t1 =













1
0
0
1
0













and t2 =













1
0
0
0
1













. (78)

Then both t1 and t2 are acute extensions of T ∗. Only t1 is a minimal acute extension of T ∗,
whereas t2 is not due to criterion (2) above. But t2 is a minimal acute extension of the
minimal matrix representation [T ∗|t1].

Due to Corollary 5.13 we have that An(T̂ ∗) ⊂ An(T ∗). To determine An(T̂ ∗) exactly, it
may not be necessary to verify for each t ∈ An(T ∗) whether the convex hull conv(T̂ ∗, t)
of T̂ ∗ and t is an acute 0/1-simplex. Indeed, if T̂ ∗ ⊂ Ik for some k < n, it suffices to find out
which t ∈ Ak(T ∗) are in Ck(T̂ ∗) and which of these are in Ak(T̂ ∗) and then use Theorem 5.11.

Example 5.18 The matrix T ∗ ∈ B6×3 in (79) with vertex numbers 0, 3 and 13, is a minimal
matrix representation of a minimal representative T ∗ of an acute 0/1-triangle. Clearly T ∗ ⊂
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I4. The vertices from I4 that are in C4(T ∗) are listed by their vertex numbers 1, 5, 6, 9, 10
and 14 as well as their 0/1-vectors. The numbers in the row indicated by A4(T ∗) correspond
to the smallest value m of entries equal to one need to be appended to the vector above it such
that it becomes an element of An+m(T ∗).

T ∗ =

0 1 1
0 1 0
0 0 1
0 0 1
0 0 0
0 0 0

0 3 13

C4(T ∗) 1 5 6 9 10 14

1 1 0 1 0 0
0 0 1 0 1 1
0 1 1 0 0 1
0 0 0 1 1 1

A4(T ∗) 1 1 0 1 0 0

A5(T ∗) 17 21 22 25 26 30

A6(T ∗) 33 37 38 41 42 46
49 53 54 57 58 62

(79)

Thus, the vertices 6, 10 and 14 are in A4(T ∗), and the vertices 1, 5 and 9 are candidates
that need only one additional 1 to become acute extensions. This is visible in the next
row, where the vertex numbers of additional vertices in A5(T ∗) are displayed, which are
the ones from C4(T ∗) plus 24 = 16. Finally, the elements from A6(T ∗) additional to the
ones from A4(T ∗) and A5(T ∗) are precisely those with 25 = 32 added. It can easily be
verified that only 14, 17, 21, 22, 30, 49, 53, 54, 62 remain after removing the ones that fall un-
der the items (1) or (2) below Definition 5.15. It is also not hard to see that the ma-
trix T̂ ∗ with column numbers 0, 3, 13, 21 is indeed a minimal matrix representation of a
0/1-tetrahedron T̂ ∗ ⊂ I5. To determine A6(T̂ ∗), we re-investigate the each of the ver-
tices 1, 5, 6, 9, 10, 14, 17, 21, 22, 25, 26, 30 and indicate whether it belongs to C5(T̂ ∗) or A5(T̂ ∗)
or neither. This determines which of the vertices in 33, 37, 38, 41, 42, 46, 49, 53, 54, 57, 58, 62
are additionally in A6(T̂ ∗). ♦

6 A special class of acute 0/1-simplices

Here we analyze the computational results of the codes presented in Section 7. Looking at
the structure of the 0/1-matrices presented there, we observe some patterns. Although not all
patters can be mathematically accounted for, there is one pattern that can be fully explained.

Remark 6.1 Since each first column of a minimal matrix representation is zero according
to Corollary 4.12, we will omit this redundant column from the notation. What remains is a
square matrix, whose Gramian has an inverse that is a diagonally dominant strictly Stieltjes
matrix, and which we will also call a minimal matrix representation. See Definition 5.1.

6.1 Acute simplices (upper Hessenberg matrix representations)

The computational results in Section 7 show that all acute 0/1-simplices in I3, I4 and I5 have
a minimal matrix representation that is an unreduced upper Hessenberg matrix. For n ≥ 6,
many, but not all of them are unreduced upper Hessenberg. A closer inspection of these
matrices shows that each of them corresponds to a unique composition of the integer n−1.

Definition 6.2 (Integer composition) A composition of an integer n in k parts is an or-
dered k-tupel λ = 〈λ1, . . . , λk〉 with λj ∈ N with the property that n = λ1 + λ2 + · · · + λk.
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In Figure 15 we depict the observed correspondence, restricted to n ≤ 7, as a binary tree.
The first n−1 entries in the first row of each matrix form an integer composition 〈λ1, . . . , λk〉
of n−1, by considering consecutive entries with the same value as belonging to the same part.
The last n−1 entries of the last column show the same composition.
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Figure 15: Upper Hessenberg matrix representations and integer compositions.

The horizontal and vertical lines separating the parts of both compositions, subdivide
the matrix in blocks. There are k identity matrices of consecutive sizes λ1 × λ1, . . . , λk × λk

containing the first sub-diagonal. The blocks above those identity matrices alternatingly
contain only zeros or only ones, starting with ones directly above the identity matrices.

Remark 6.3 In Figure 15, the matrix corresponding to the composition 2+4 of 6 is missing.
This is because it is not a minimal matrix representation. The matrix that is a minimal
matrix representation of the corresponding simplex is not upper Hessenberg. In Figure 16, it
is depicted to its right. The same is done for the compositions 2 + 5 and 2 + 1 + 4 of 7.
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Figure 16: Upper Hessenberg matrices corresponding to integer compositions 2+4, 2+5, and 2+1+4.
Next to them are depicted the corresponding minimal matrix representations.

Proposition 6.4 The matrix Hλ corresponding to an integer partition 〈λ1, . . . , λk〉 is not a
minimal matrix representation if λj > λ1 + 1 for some j ∈ {2, . . . , k}.
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Proof. The first λ1 columns of Hλ should, together with the origin, form the largest possible
subset of vertices with mutual distances equal to two. If λj > λ1 + 1, this is not the case. �

Now, let n ≥ 4 be given, and let λ = 〈λ1, . . . , λk〉 be an integer composition of n−1 with
the property that λ1 6= 1 6= λk. It can easily be verified that there are 2n−4 such compositions.

We will write Hλ for the upper Hessenberg matrix that corresponds to λ according to the
above description and examples. See also the introduction to this paper. The rule defining
the tree in Figure 15 is now depicted in Figure 17.

λ = 〈λ1, . . . , λk−1, λk〉

λ = 〈λ1, . . . , λk−1, λk + 1〉 λ = 〈λ1, . . . , λk−1, λk − 1, 2〉

Figure 17: Splitting rule that defines the binary tree in Figure 15.

In the next section we will prove that for given n, each of the 2n−4 matrices Hλ corresponding
to a composition λ of n−1 with first and last part at least 2, represents an acute 0/1-simplex.
Conversely, we will show that if H is an n × n unreduced upper Hessenberg matrix that
represents an acute 0/1-simplex, then H ∼ Hλ for some composition λ of n−1.

6.2 An application of the one neighbor theorem

We first recall the following theorem, which limits the number of candidate acute extensions
from Definition 5.7 of an acute simplex in In with n vertices to two.

Theorem 6.5 ([3]) Let F be an acute 0/1-simplex in In with n vertices. Then Cn(F ) ⊂ Bn

consists of at most two points. If it consists of two points, they add up to e = (1, . . . , 1)⊤.

In the context of triangulations this result is called the one neighbor theorem, since it proves
that an acute simplex in In has at most one face-to-face neighbor in In. See [3, 13] for
applications of this result in nonobtuse triangulations of In, and of 0/1-polytopes in I4,
respectively. Here, we will apply the result to prove the observed structures in Section 6.1.

Lemma 6.6 Let H be an n× (n−1) unreduced upper Hessenberg 0/1-matrix, whose columns
together with the origin form an acute (n−1)-simplex in In. Then there exist at most two (n+
1)× n unreduced upper Hessenberg matrices whose columns together with the origin form an
acute n-simplex in In+1, that have H as top left n× (n−1) part.

Proof. Let H be an n × (n−1) unreduced upper Hessenberg 0/1-matrix, whose columns
together with the origin form an acute (n−1)-simplex. Then due to Theorem 6.5, there exists
at most two vertices g, h ∈ Bn with g + h = e such that the n × n matrices [H|g] and [H|h]
represent acute n-simplices in In. As a result, only

[

H g

0 1

]

and

[

H h

0 1

]

(80)

may be (n+1) × n unreduced upper Hessenberg matrices whose columns together with the
origin form acute n-simplices in In+1. �
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Corollary 6.7 There exist at most 2n−2 unreduced upper Hessenberg matrices of size n ×
(n−1) whose columns together with the origin are the vertices of an acute (n−1)-simplex.

Proof. One can easily verify that in I3, the matrices

H1 =





1 1
1 0
0 1



 and H2 =





1 0
1 1
0 1





are the only two 3× 2 upper Hessenberg matrices whose columns together with the origin are
acute triangles in I3, the statement is now proved by induction based on Lemma 6.6. �

Since H2 is obtained from H1 by swapping its first two rows, we see that any unreduced
upper Hessenberg matrix that is a minimal matrix representation, has H1 as its top 3 × 2
block.

Corollary 6.8 The only two (n+1)×(n+1) unreduced upper Hessenberg matrices with n×(n−1)
top left part equal to H that may represent acute (n+1)-simplices are

[

H g h

0 1 1

]

and

[

H h g

0 1 1

]

. (81)

In case they do, these two matrices obviously represent the same 0/1-simplex, and thus at
most one of them can be a minimal matrix representation.

Proof. Suppose that both (n+1) × n matrices in (80) indeed represent acute n-simplices
in In+1. Suppose moreover that adding v ∈ Bn+1 as a (n+1)-st column results in a matrix
representing an acute (n+1)-simplex. Then due to Theorem 6.5, the top n entries of v should
consist of g or h. For the left matrix in (80) this leads to four options,

[

H g g

0 1 0

]

,

[

H g g

0 1 1

]

,

[

H g h

0 1 0

]

and

[

H g h

0 1 1

]

. (82)

We claim that only the rightmost matrix in (82) may represent an acute (n+1)-simplex.
Indeed, the difference between the last two columns of the first matrix is orthogonal to the
last. Thus, it has a right triangular facet, and thus due to Proposition 5.3 it cannot represent
an acute simplex. The second matrix is obviously singular. The last two columns of the third
matrix are orthogonal because g + h = e and thus this simplex too has a right triangular
facet. Thus, the fourth matrix remains. For the right matrix in (80) a similar analysis can
be made. Finally, note that the matrices in (81) differ only by swapping the last columns. �

To be able to fully explain the tree in Figure 15, we will need to go one step further, and
even describe which (n+2)×(n+2) unreduced upper Hessenberg matrices with n×(n−1) part
equal toH have the potential to be a minimal matrix representation of an acute (n+2)-simplex.

Corollary 6.9 Assume that the right matrix in (81) is not a minimal matrix representation.
Then





H g g h

0 1 0 1

0 0 1 1



 and





H h h g

0 1 0 1

0 0 1 1



 (83)

are the only two (n+2)× (n+2) unreduced upper Hessenberg matrices with the n× (n−1) unre-
duced upper Hessenberg matrix H as top left part, that may be minimal matrix representations
of an acute (n+2)-simplex.
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Proof. We follow the lines of the proofs of Lemma 6.6 and Corollary 6.8 but then with H
consecutively replaced by each of the two matrices in (80). Consider first the left matrix in
(80). It gives rise to the following four candidates,





H g v

0 1 a

0 0 1



 with v ∈ {g, h} and a ∈ {0, 1}. (84)

The option (v, a) = (g, 1) and (v, a) = (h, 0) both lead to a right triangular facet and are thus
infeasible. The remaining options are (v, a) = (g, 0) and (v, a) = (h, 1), which, in line with
the proof of Lemma 6.6, add up to the all-ones vector. Moreover, in line with Corollary 6.8,
they account for the left matrix in (83). For the right matrix in (80), conversely, only the
options (v, a) = (h, 0) and (v, a) = (g, 1) are feasible, and lead to the right matrix in (83). �

Corollary 6.9 explicitly proves that an unreduced upper Hessenberg matrix Hλ of size (n+
1)×(n+1) that represents an acute simplex, can have at most two unreduced upper Hessenberg
descendants of size (n+2) × (n+2) that represent an acute simplex, and who share their
n× (n− 1) top left parts. This is depicted in Figure 18.

H g h

1 1

H g g h

1 0 1

1 1

H h h g

1 0 1

1 1

Figure 18: Splitting rule that defines the binary tree in Figure 15, in matrix form.

This also proves that for each unreduced upper Hessenberg matrix that represents an acute
0/1-simplex, there exists a matrix Hλ in the tree in Figure 15 with which it is 0/1-equivalent.

We will now proceed to prove that each of the 2n−4 unreduced upper Hessenberg matrices
in the tree indeed represents an acute simplex. For this, we will use the concept of strictly
ultrametric matrix, as defined in Section 1.1.

Theorem 6.10 Let Hλ be the unreduced upper Hessenberg matrix corresponding to the integer
decomposition λ = 〈λ1, . . . , λk〉 of n− 1. Then Gλ = H⊤

λ Hλ is strictly ultrametric.

Proof. We use the splitting rule proved in Corollaries 6.8 and 6.9 and depicted in Figure 18
as starting point for an inductive proof. Consider the n+ 1 columns of the parent matrix in
Figure 18, and write them as

[

h1
0

]

, . . . ,

[

hn−1

0

]

,

[

g

1

]

and

[

h

1

]

. (85)

By definition of strict ultrametricity, there is no triple u, v, w of distinct columns taken from
(85) such that one of the three numbers u⊤v, v⊤w,w⊤u is smaller than the other two. We
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will prove this property also for the n+ 2 columns of the left descendant in Figure 18, which
are





h1
0
0



 , . . . ,





hn−1

0
0



 ,





g

1
0



 ,





h

1
1



 and the new column





g

0
1



 . (86)

Obviously, each triple taken from (86) that does not contain the new column has the same
mutual inner products as a triple from (85). The same clearly holds for each of the triples











hi
0
0



 ,





hj
0
0



 ,





g

0
1











and











hi
0
0



 ,





h

1
1



 ,





g

0
1











.

Two possible triples remain to be discussed, being











hi
0
0



 ,





g

1
0



 ,





g

0
1











and











g

1
0



 ,





h

1
1



 ,





g

0
1











.

For the left triple, we use the generally valid fact that x⊤y ≤ x⊤x for all x, y ∈ Bn to conclude
that h⊤j g ≤ g⊤g, which proves the required property. For the right triple it suffices to note

that g⊤h = 0 and g⊤g ≥ 1. Next, we consider the right descendant in Figure 18, with columns





h1
0
0



 , . . . ,





hn−1

0
0



 ,





h

1
0



 ,





g

1
1



 and the new column





h

0
1



 . (87)

Compared to (86), only the roles of g and h have been exchanged. This does not affect
the validity of the above arguments. Thus, both descendents are strictly ultrametric. Since
the 3×3 matrix Hλ with λ = 〈2〉 has a strictly ultrametric Gramian, this proves the statement
for all members Hλ of the tree in Figure 15 by induction. �

6.3 Determinant of Hλ as continued fraction numerator

We are now able to derive an explicit expression for the determinant ofHλ for any given integer
composition λ. For this, we associate with the parent matrix in Figure 18 two integers:

Hλ =

[

H g h

0 1 1

]

→

[

p
q

]

=

[

det(H|g)
det(H|h)

]

. (88)

By developing the last row of Hλ, we have that det(Hλ) = p − q, whereas for the descen-
dants Hℓ

λ and Hr
λ of Hλ, also by development of their last rows, we find that





H g g h

0 1 0 1

0 0 1 1



 →

[

−p
p− q

]

and





H h h g

0 1 0 1

0 0 1 1



 →

[

−q
q − p

]

. (89)

Since p = 1 and q = −2 for the matrix Hλ with λ = 〈3〉 at the root of the tree in Figure 15,
we see that this explains the correspondence between the absolute determinants of the ma-
trices Hλ and Kepler’s Tree of Fractions, as claimed in Section 1.2. To additionally prove the

39



statement in Theorem 1.2 that det(Hλ) equals the numerator fk of the continued fraction

[λ1;λ2, . . . , λk] = λ1 +
1

λ2 +
1

.. . +
1

λk

=
fk
gk

with fk, gk coprime, (90)

we use the well-known result from continued fraction theory that fk can be computed from
the two-term recursion

fj = λjfj−1 + fj−2, with f0 = 1 and f−1 = 0. (91)

We inductively assume that the statement holds for both the parent and the grandparent of
a vertex in the tree, and prove the statement for the descendants, as depicted in Figure 19.

[λ1;λ2 . . . , λk−1, λk] → p+ q

p

q

[λ1;λ2 . . . , λk−1, λk + 1] → 2p+ q [λ1;λ2 . . . , λk−1, λk − 1, 2] → p+ 2q

p

p+ q

q

p+ q

p

2p + q

p+ q

2p + q

q

p+ 2q

p+ q

p+ 2q

[λ1;λ2 . . . , λk−1, λk + 2] [λ1;λ2 . . . , λk−1, λk, 2] [λ1;λ2 . . . , λk − 1, 3] [λ1;λ2 . . . , λk − 1, 1, 2]

3p + q 3p + 2q p+ 3q 2p + 3q

Figure 19: If parent and grandparent satisfy the statement, so do the four descendants.

First observe that all seven continued fractions in Figure 19 start with the same k − 1 num-
bers λ1, . . . , λk−1. Denote the numerator of [λ1;λ2, . . . , λk−2] by fk−2 and the numerator
of [λ1;λ2, . . . , λk−1] by fk−1. Then the induction hypothesis on the grand parent in Figure 19
together with (91) imply that

p+ q = λkfk−1 + fk−2,

whereas the induction hypothesis on its left descendant translates to

2p+ q = (λk + 1)fk−1 + fk−2.

From thes two relations we can solve fk−1 and fk−2 as

fk−1 = p and fk−2 = (1− λk)p + q.

It remains to verify whether these values for fk−1 and fk−2 are consistent with the remaining
five continued fractions in Figure 19 and the expressions of their numerators in terms of p
and q. First, for the continued fraction [λ1;λ2, . . . , λk − 1, 2] we find, taking two steps of (91)
that its numerator indeed equals

2 · [(λk − 1)fk−1 + fk−2] + fk−1 = 2 · [(λk − 1)p + (1− λk)p+ q] + p = p+ 2q.
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Thus, if a vertex and its left descendant satisfy the statement, then so does its right descen-
dant. Consequently, the only two continued fractions to verify are the two left descendants
at the lowest level in Figure 19. For the continued fraction [λ1;λ2, . . . , λk + 2] we find

(λk + 2)fk−1 + fk−2 = (λk + 2)p+ (1− λk)p+ q = 3p + q,

and for [λ1;λ2, . . . , λk − 1, 3]

3 · [(λk − 1)fk−1 + fk−2] + fk−1 = 3 · [(λk − 1)p + (1− λk)p+ q] + p = p+ 3q.

Since both are consistent, this finishes the induction step. As the induction basis for the first
two levels of the tree in Figure 15 is easily verified, this completes the induction proof.

7 Computational results

In this final section of this paper we present a selection of the computational data obtained by
implementations of the algorithms presented. For simplicity, we chose Matlab as programming
environment, as Matlab contains useful built-in functionalities in the area of linear algebra.
Faster imlementations can of course be obtained using a lower level programming language.

7.1 The cycle index Zn of Bn for the values n ∈ {3, . . . , 9}

In Algorithm 1 in Section 2, we described how to compute the cycle index Zn for the induced
permutations of Bn by the hyperoctahedral group Bn. The implementation of this algorithm
yields each cycle index Zn as a table, see Figure 10, 11, 12. These tables are a condensed form
Table 4, in the sense that zero columns have been removed, and zero entries disregarded, see
Table 10, 11, 12.

To generate partitions needed in Algorithm 1, we used Algorithm P in [26]. We also used
the most efficient way to determine the cycle type of a given permutation, which is O(p) for
a permutation of p objects. If n ≥ 10 then all cycle type computations take more than ninety
percent of the total computational time in computing Zn, and this percentage increases for
increasing n. Thus, no additional improvements of the algorithm can be expected.

7.2 The number of 0/1-polytopes with k vertices

Using Algorithm 2 from Section 3, we computed the number of 0/1-polytopes with k vertices
for 0 ≤ k ≤ 2n, for the values n ≤ 5. They are displayed in Table 13. For n = 5, only half of
the results are displayed, as the results for k = ℓ and k = 2n − ℓ are the same.

In Table 14, we zoom in on the 0/1-simplices in In with k ≤ n + 1 vertices. In Table 15
we present the number of ways to choose k points from Bn. Comparing these numbers with
the corresponding numbers in Table 14 shows the large gain of working modulo the action
of Bn.

Remark 7.1 Note that for k ≥ 4 these numbers include degenerate k-simplices, which lie in
a hyperplane of dimension less than k. For k ∈ {2, 3} such degenerate cases do not exist:
three distinct point in In are never colinear.

Finally, in Table 16 we compare the number a(n) of acute 0/1-simplices in In with their total
number s(n), both modulo the action of Bn.
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7.3 Minimal matrix representations of acute 0/1-simplices

Here we present the computed minimal matrix representations (without their zero first col-
umn) of all acute 0/1-simplices with n + 1 vertices in In for 3 ≤ n ≤ 9 together with
the absolute values of their determinants. There are 1, 1, 2 acute 0/1-simplices in I3, I4, I5

respectively modulo the action of the hyperoctahedral group. The absolute values of the
determinants of their minimal matrix representatives given below are in the set

det
3

= {2}, det
4

= {3}, det
5

= {4, 5}. (92)

There are 6 acute 0/1-simplices in I6 modulo the action of B6. The absolute determinants of
their minimal matrix representatives given below are in the set

det
6

= {5, 7, 8, 9}. (93)

In I7 there are 13 acute 0/1-simplices modulo the action of B7. The determinants of their
minimal matrix representatives given below are in the set

det
7

= {6, 9, 10, 11, 12, 13, 14, 24, 32}. (94)

There are 29 acute 0/1-8-simplices in I8 modulo the action of B8. The determinants of
their minimal matrix representatives given below are in the set

det
8

= {7, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 40, 44, 56}. (95)

There are 67 acute 0/1-9-simplices in I9 modulo the action of B9. Their absolute deter-
minants are

det
9

= {8, 13, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 45}

∪{56, 64, 68, 72, 80, 88, 96}.

In Figure 20, 21, 22, 23, 24, 25 we depicte the minimal matrix representations of all acute
0/1-n-simplices for 3 ≤ n ≤ 9.
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B3 1 2 3 4 6

12 2

8 1 1

13 4

8 2 2

6 4 2

1 8

B4 1 2 3 4 6 8

48 2

84 4

96 2 2

51 8

48 2 1 3

32 4 4

12 4 6

12 8 4

1 16

B5 1 2 3 4 5 6 8 10 12

480 4

320 2 2

520 8

384 1 3

720 4 4

240 4 6

231 16

384 2 6

240 4 2 6

160 4 2 4 2

80 8 8

60 8 12

20 16 8

1 32

B6 1 2 3 4 5 6 8 10 12

5760 8

3840 1 5

3840 4 4

4920 16

6912 2 6

1920 2 10

5280 8 8

2160 8 12

1053 32

3840 2 1 2 9

2304 4 12

640 4 20

1440 4 6 12

720 8 4 12

960 8 4 8 4

120 8 28

160 16 16

180 16 24

30 32 16

1 64

B7 1 2 3 4 5 6 7 8 10 12 14 20 24

26880 4 4

53760 16

32256 2 6

53760 2 10

47040 8 8

43344 32

46080 1 9

72576 4 12

58240 4 20

13440 4 6 4 6

35560 16 16

21840 16 24

5209 64

46080 2 18

16128 4 2 12 6

26880 4 2 4 18

13440 4 2 4 6 2 6

8064 8 24

4480 8 40

10080 8 12 24

3360 8 12 8 12

1680 16 8 24

3360 16 8 16 8

840 16 56

280 32 32

420 32 48

42 64 32

1 128

Table 10: The cycle indices Z3, Z4, Z5, Z6 and Z7 in condensed tabulated form.
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B8 1 2 3 4 5 6 7 8 10 12 14 15 16 20 24 30

645120 16

430080 8 8

779520 32

516096 4 12

1218560 4 20

465920 16 16

445424 64

1105920 2 18

516096 2 2 6 6

709632 8 24

698880 8 40

322560 8 12 8 12

243264 32 32

171360 32 48

26463 128

645120 2 1 3 30

368640 4 36

172032 4 4 12 12

80640 4 6 60

215040 4 6 4 38

129024 8 4 24 12

107520 8 4 8 36

107520 8 4 8 12 4 12

35840 8 4 40 20

40320 8 28 48

21504 16 48

17920 16 80

40320 16 24 48

26880 16 24 16 24

1680 16 120

3360 32 16 48

8960 32 16 32 16

3360 32 112

448 64 64

840 64 96

56 128 64

1 256

Table 11: The cycle index Z8 in condensed tabulated form.
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B9 1 2 3 4 5 6 7 8 9 10 12 14 15 16 18 20 24 28 30 40

11612160 32

4644864 4 12

7741440 16 16

9386496 64

6635520 2 18

5160960 2 42

8128512 8 24

16773120 8 40

6612480 32 32

4317408 128

10321920 1 1 28

14929920 4 36

10838016 4 4 12 12

3584000 4 84

2322432 4 6 12 18

5806080 4 6 60

6144768 16 48

8117760 16 80

4354560 16 24 16 24

725760 16 120

1637664 64 64

1397088 64 96

142207 256

10321920 2 2 56

3317760 4 2 36 18

5806080 4 2 6 60

2322432 4 2 6 12 6 18

2580480 4 2 20 74

1658880 8 72

1548288 8 8 24 24

143360 8 168

580608 8 12 24 36

725760 8 12 120

1935360 8 12 8 76

967680 8 12 8 24 12 24

580608 16 8 48 24

322560 16 8 16 72

483840 16 8 16 24 8 24

322560 16 8 80 40

362880 16 56 96

80640 16 56 16 56

48384 32 96

53760 32 160

120960 32 48 96

120960 32 48 32 48

15120 32 240

6048 64 32 96

20160 64 32 64 32

10080 64 224

672 128 128

1512 128 192

72 256 128

1 512

Table 12: The cycle index Z9 in condensed tabulated form.
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n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 1 1

2 1 1 2 1 1

3 1 1 3 3 6 3 3 1 1

4 1 1 4 6 19 27 50 56 74 56 50 27 19 6 4 1 1

5 1 1 5 10 47 131 472 1326 3779 9013 19963 38073 65664 98804 133576 158658 169112

Table 13: Number of 0/1-polytopes in In with 0 ≤ k ≤ 2n vertices for n ≤ 5.

n\k 1 2 3 4 5 6 7 8 9

1 1 1
2 1 2 1
3 1 3 3 6
4 1 4 6 19 27
5 1 5 10 47 131 472
6 1 6 16 103 497 3253 19735
7 1 7 23 203 1606 18435 221778 2773763
8 1 8 32 373 4647 91028 2074059 51107344 1245930065

Table 14: Number of 0/1-simplices in In with 1 ≤ k ≤ n+ 1 vertices for n ≤ 8.

n\k 1 2 3 4 5 6 7

1 2 1
2 4 6 4
3 8 28 56 70
4 16 120 560 1820 4368
5 32 496 4960 35960 201376 906192
6 64 2016 41664 635376 7624512 74974368 621216192

Table 15: Binomial coefficients
(

2
n

k

)

for comparison with Table 14.

n 1 2 3 4 5 6 7 8 9 10 11

a(n) 1 0 1 1 2 6 13 29 67 162 392
s(n) 1 1 6 27 472 19735 2773763 1245930065 1.8e12 8.7e15 1.3e20

Table 16: The number a(n) of acute 0/1 n-simplices related to their total number s(n).
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Figure 20: Minimal matrix representations of all acute 0/1-simplices in I3, I4 and I5.
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Figure 21: Minimal matrix representations of all six acute 0/1-simplices in I6.
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Figure 22: Minimal matrix representations of all thirteen acute 0/1-simplices in I7.
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Figure 23: Minimal matrix representations of all twenty-nine acute 0/1-8-simplices.
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Figure 24: Minimal matrix representations of the first 35 acute 0/1-9-simplices.
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Figure 25: Minimal matrix representations of the remaining acute 0/1-9-simplices.
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[5] J.H. Brandts, S. Korotov, and M. Kř́ıžek (2004). The strengthened Cauchy-Bunyakow-
ski-Schwarz inequality for n-simplicial linear finite elements. Numerical analysis and its
applications, Springer, Berlin, 203–210.
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Verlag, Berlin-Göttingen-Heidelberg.

[21] M. A. Harrison and R.G. High (1968). On the cycle index of a product of permutation
groups. Journal of Combinatorial Theory, 4:277–299.

[22] C.R. Johnson (1982). Inverse M-matrices. Linear Algebra and its Applications, 47:195–
216.

[23] C.R. Johnson and R.L. Smith (2011). Inverse M-matrices, II. Linear Algebra and its
Applications, 435:953–983.

[24] G. Kalai and G.M. Ziegler (Eds) (1997). Lectures on 0/1-polytopes. Polytopescombina-
torics and computation . DMV Seminar, Band 29, Birkhäuser Verlag, Basel, Boston,
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