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Abstract

A pattern is said to be covincular if its inverse is vincular. In this paper
we count the number of permutations simultaneously avoiding a vincular
and a covincular pattern, both of length 3. We see familiar sequences, such
as the Catalan and Motzkin numbers, but also some previously unknown
sequences which have close links to other combinatorial objects such as
ascent sequences, lattice paths and integer partitions. Where possible
we include a generating function for the enumeration. We also give an
alternative proof of the classic result that permutations avoiding 123 are
counted by the Catalan numbers.

1 Introduction

A permutation π contains a classical pattern p, which is itself a permutation, if
π contains a subword which is order isomorphic to p. Babson and Steingríms-
son [5] introduced a generalisation of this that allow the requirement that two
adjacent letters in a pattern must be adjacent in the permutation. These are
called vincular patterns. A further extension, called bivincular patterns, was
provided by M. Bousquet-Mélou et al. [3]. Vincular patterns allow constraints
on positions. For symmetry reasons it seems natural to also allow constraints
on values and this is what bivincular patterns do. The special case when only
constraints on values are allowed we shall call covincular patterns. The set of
bivincular patterns is closed under the action of the symmetry group of the
square and an alternative way of describing the covincular patterns is that they
are inverses of vincular patterns.

Simultaneous avoidance of two vincular patterns was looked at by Claesson
and Mansour [7]. Allowing one of the patterns to be covincular is a natural
follow up question and leads to some interesting results. The overall goal of
this paper is to count the number of permutations simultaneously avoiding a
length 3 vincular and a length 3 covincular pattern. A summary of our results
can be found in Table 1; these results are detailed in Sections 2 through 11.

http://arxiv.org/abs/1512.03226v1


In Section 12 we present a new, perhaps one of the simplest, proof that the
permutations avoiding the classical pattern 123 are counted by the Catalan
numbers. The Appendix contains all the results from the paper collected by
their respective enumeration.

We shall now present the definitions and notation we use. An alphabet, X ,
is a non-empty set. An element of X is a letter. A finite sequence of letters
from X is called a word. The word with no letters is called the empty word and
is denoted ǫ. For a word w we say that the length of the word, denoted |w|, is
the number of letters in it, that is if w = x1x2 . . . xn then |w| = n. A subword
of w is a finite sequence xi1

xi2
. . . xik

where 1 ≤ i1 < i2 < · · · < ik ≤ n.
As we are interested in permutations the alphabet we use is [n] = {1, 2, . . . , n}

for some n ∈ N = {0, 1, 2, . . .}. Any length n permutation is also a length n
word x = x1x2 . . . xn of this alphabet where xi = π(i). When we refer to a
permutation we are referring to this word. Let Sn denote the set of all length
n permutations. Let w = w1w2 . . . wk and v = v1v2 . . . vk be words with dis-
tinct letters. We say that w is order isomorphic to v if, for all i and j, we
have wi < wj precisely when vi < vj . For example 53296 and 32154 are order
isomorphic.

Definition 1.1 (Bousquet-Mélou et al. [3, page 4]). A bivincular pattern is a
triple, p = (σ, X, Y ), where σ ∈ Sk is called the underlying permutation and X
and Y are subsets of {0, 1, . . . , k}. An occurrence of p in π ∈ Sn is a subsequence
w = π(i1) . . . π(ik) order isomorphic to σ such that

∀x ∈ X, ix+1 = ix + 1 and ∀y ∈ Y, jy+1 = jy + 1,

where {π(i1), . . . , π(ik)} = {j1, . . . , jk} and j1 < j2 < · · · < jk. By convention,
i0 = j0 = 0 and ik+1 = jk+1 = n + 1. If such an occurrence exists we say that
π contains σ.

We define the length of a bivincular pattern p = (σ, X, Y ), denoted |p|, to
be |σ|. Further, a permutation avoids p if it does not contain p. If Y = ∅ then
p is a vincular pattern. If X = ∅ then p is a covincular pattern. If X = Y = ∅
then p is a classical pattern. For example, the permutation 15423 contains an
occurrence of (123, {2}, ∅), namely the subword 123, but avoids (123, {1}, ∅).
It contains an occurrence of (312, ∅, {1}), namely the subword 523, but avoids
(312, ∅, {2}). The sets of all length n permutations avoiding the pattern p is
denoted

Avn(p) = {π ∈ Sn : π avoids p} ,

and, for P a set of patterns, Avn(P ) = ∩p∈P Avn(p) and Av(P ) = ∪n≥0Avn(P ).
Below we shall use a pictorial representation of vincular and bivincular pat-

terns that comes from viewing them as mesh patterns [4]: First draw the un-
derlying permutation in a Cartesian coordinate system. Then, for each i ∈ X ,
shade the ith column and, for each j ∈ Y , shade the jth row; see Figure 1. The
shading is used to denote the empty regions in the permutation if we were to
overlay the grid onto an occurrence of the pattern in a permutation.

Remark 1.2. If p = (σ, X, Y ) and p′ = (σ, X ′, Y ′), where X ′ ⊆ X and Y ′ ⊆ Y ,
then we immediately have that Avn(p′) ⊆ Avn(p).

We are interested in |Avn(p, q)| where p = (σ, X, ∅) is a length 3 vincular
pattern with X ∈ {∅, {1}, {2}}, and q = (τ, ∅, Y ) is a length 3 covincular pat-
tern with Y ∈ {∅, {1}, {2}}, in a sense completing the work by Claesson and
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Figure 1: (231, ∅, ∅), (123, {2}, ∅), (123, {1}, ∅), (312, ∅, {2}), and (312, ∅, {1})

Mansour [7]. We skip the case where X = Y = ∅ since this is classical avoidance
of two length 3 patterns, which was done by Simion and Schmidt [15].

An important property of the set of bivincular patterns, as noted by Bousquet-
Mélou et al. [3], is that it is closed under the symmetries of the square. The
set of patterns we are interested in, i.e. the union of the vincular and the covin-
cular patterns, is also closed under these symmetries. We recall the following
observation from Claesson and Mansour [7, pages 3-4].

Lemma 1.3. Let π be a permutation and p be a pattern, and let π∗ and p∗ be
the permutation and pattern with the same symmetry applied. Then π avoids p
if and only if π∗ avoids p∗.

From this we immediately see that if we can find the enumeration of Av(p, q),
for a single pair of patterns p and q, then we automatically have the enumeration
for up to 8 other symmetric cases. This reduces the amount of work to be done
considerably. In particular, we need only consider when Y 6= ∅ as otherwise we
could take a symmetry to a case where instead X = ∅. Let

P =
{

(σ, X, ∅) : σ ∈ S3, X ∈
{

∅, {1}, {2}
}

}

;

Q =
{

(σ, ∅, Y ) : σ ∈ S3, Y ∈ {{1}, {2}
}

}

In total we have |P ×Q| = (3! ·3) · (3! ·2) = 216 pairs of patterns to consider. In
Table 1 we summarize our results on permutations avoiding a pair of patterns
from P ×Q.

It is sometimes possible to show that avoiding a given pattern p is equivalent
to avoiding a simpler pattern p′. The following lemma states three instances of
this that are used here. This lemma is part of a more general result called The
Shading Lemma, due to Hilmarsson et al. [10, Lemma 3.11].

We first need to introduce the idea of a mesh pattern. In our previous
pictures we were shading full rows or columns. In a mesh pattern we can shade
zero or more individual squares in the diagram. As an example, below is a mesh
pattern with a single square shaded:

.

A subsequence π(i)π(j)π(k) of π ∈ Sn, that is order isomorphic to 132, is an
occurrence of this particular pattern if there does not exist an m such that
j < m < k and π(m) < π(i). Mesh patterns satisfy a property analogous to
Remark 1.2: Given a pattern p = (σ, B), where B is the set of squares shaded,
and p′ = (σ, B′), where B′ ⊆ B, then Avn(p′) ⊆ Avn(p). The original definition
of mesh patterns can be found in Brändén and Claesson [4].
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|Avn(p, q)| # pairs OEIS

Cn 24 A000108

(

n
2

)

+ 1 16 A000124

2n−1 104 A000079

n
∑

i=0

(
(

i+1
2

)

n− i

)

8 A121690

n
∑

k=0

(
(

k+1
2

)

+ n− k − 1

n− k

)

8 A098569

Mn 16 A001006

OGF: 1 +
∑

n≥0

xn+1Ln(1 + x) 8 A249560

OGF: 1 + x
1−x

∑

n≥0

n+1
∑

k=0

xi+kLn+1,k

(

1
1−x

)

8 A249561

a complicated recurrence relation 8 A249563

a complicated recurrence relation 4 A249562

finite 12 -

Table 1: Permutations avoiding a pair of patterns in P ×Q. Here, Cn and Mn

are the Catalan and Motzkin numbers, respectively. The sequences A249560–
A249563 were added to the OEIS [16] by the authors. In A249560 and A249561,

Ln(q) =
∑n

m=0

[

n

m

]

q
and Ln,k(q) = qn+(k

2)
[

n−1
k−1

]

q

Lemma 1.4. (i) Avn

( )

= Avn

( )

(ii) Avn

( )

= Avn

( )

.

(iii) Avn

( )

= Avn

( )

.

Proof. For (i) see [5, Lemma 2] and for (ii) and (iii) see [10, Lemma 3.11].

Remark 1.5. It is important to note that Avn(132, {2}, ∅) 6= Avn(132, ∅, ∅), for
example 2413 /∈ Av4(132, ∅, ∅) but 2413 ∈ Av4(132, {2}, ∅).
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2 Classical avoidance (A000108)

There are 24 pairs (p, q) ∈ P×Q such that |Avn(p, q)| = Cn. These break down
to just five cases once symmetries are considered; see Table 2 in the Appendix
for a full list. They can all be simplified to the avoidance of a single classical
pattern. We will look at a case for each argument. By Remark 1.2 we have:

Proposition 2.1. Avn

(

,

)

= Avn(123).

Similarly, by first using Lemma 1.4i on the first pattern and then using
Remark 1.2 on the resulting pair we have:

Proposition 2.2. Avn

(

,

)

= Avn(132).

It is well known that the enumeration for avoiding any classical pattern of
length 3 is given by the Catalan numbers; see Knuth [11, Section 2.2.1, Exercises
4 and 5]. Thus the sets in the propositions above all have cardinality Cn. In
Section 12 we present a new easy proof that |Avn(123)| = Cn.

The rest of the pairs that are counted by the Catalan numbers all follow a
very similar argument so we move on to the next case.

3 Central polygonal numbers (A000124)

After considering symmetries there are three pairs (p, q) ∈ P × Q such that
|Avn(p, q)| =

(

n
2

)

+ 1; see Table 2 in the Appendix. They all reduce to the

already known case |Avn(123, 231)| =
(

n
2

)

+ 1 done by Simion and Schmidt [15].

Proposition 3.1. Avn

(

,

)

= Avn(123, 231).

Proof. Use symmetry and Lemma 1.4i.

Proposition 3.2. Avn

(

,

)

= Avn(123, 231).

Proof. After applying Lemma 1.4 we see that the set we are interested in is

B = Av

(

,

)

.

We want to show that B is equal to A = Av(123, 231). It is clear than A ⊆ B.
We will show B ⊆ A by contraposition. Assume that π /∈ A. If π contains 231
then it immediately follows that π /∈ B. If π contains 123 then either π contains

in which case π /∈ B, or else it contains the pattern where there is a point in
the shaded square. This would create an occurrence of 1342 which contains an
occurrence of 231 and hence we would have π /∈ B. Therefore A = B.

Proposition 3.3. Avn

(

,

)

= Avn(123, 231).

Proof. Apply Lemma 1.4i and then Proposition 3.2.
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4 Powers of 2 (A000079)

After considering symmetries there are 19 different pairs (p, q) ∈ P × Q such
that Avn(p, q) = 2n−1. Unsurprisingly a lot of the cases are very similar so we
shall not show them all. For a complete list see Table 2 of the Appendix. Most
of the cases rely on

|Avn(123, 132)| = |Avn(132, 312)| = |Avn(231, 312)| = 2n−1,

as shown by Simion and Schmidt [15]. The cases that use similar proof meth-
ods to those already seen have not been included in this section. There were,
however, two interesting cases which should help the reader get an idea of some
of the methods used in the proofs in the sections coming up. In this section we
will use generating functions, and a good introduction to generating functions
can be found in Wilf [18].

Proposition 4.1. For n ≥ 1, the number of permutations in

Avn(p, q) = Avn

(

,

)

is 2n−1.

Proof. Let A be the set of avoiders in question. Let π ∈ A. As we are avoiding
p, the points after the minimum of π form a decreasing sequence. Moreover, if
the minimum point is not at the end, in order to ensure that the permutation
avoids q, every point to the right of the minimum must be greater than every
point on the left of the minimum. Therefore, all non-empty permutations of A
have the form

A

where A symbolizes a possibly empty smaller permutation which avoids the
patterns, and symbolizes a decreasing permutation. As the structure is so
rigid we can find the ordinary generating function of the avoiders by multiplying
together the ordinary generating functions of the component parts. There is one
decreasing permutation of length n and so the ordinary generating function is
1/(1− x). The ordinary generating function of a single point will of course be
x. Let A be the ordinary generating function for A, then it follows that

A = A · x ·
1

1− x
+ 1

where we add 1 for the empty permutation which trivially avoids both patterns.
Rearranging we get

A =
1− x

1− 2x
= 1 +

∑

n≥1

2n−1xn.

Proposition 4.2. For n ≥ 1, the number of permutations in

Avn(p, q) = Avn

(

,

)

is 2n−1.
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Proof. Let A be the set of avoiders in question. Consider the leftmost point
ℓ of a permutation in A. To avoid p the points greater than ℓ must form a
decreasing sequence and similarly to avoid q the points less than ℓ must form
decreasing sequence:

.

A permutation matching this picture cannot contain an occurrence of p = 123,
and every occurrence of 312 will have the point ℓ preventing it from being an
occurrence of q. Hence if we let A be the exponential generating function for A
then

A = 1 +

∫

e2xdx = 1 +
e2x

2
= 1 +

∑

n≥1

2n−1xn

n!
.

5 Left-to-right minima boundaries (A121690)

After symmetries there is exactly one pair (p, q) ∈ P × Q enumerated by the
formula in the following proposition.

Proposition 5.1. The number of permutations in

Avn(p, q) = Avn

(

,

)

is

n
∑

k=0

(
(

k+1
2

)

n− k

)

.

(a) (b) (c)

Figure 2: The structure of Avn(p, q)

Proof. Consider the minimum point, 1, of a permutation in Avn(p, q). From
the pattern p we see that the points to the right of 1 form a decreasing se-
quence. Moreover, the points between any two adjacent left-to-right minima
must also form a decreasing sequence giving the structure in Figure 2a, where
the permutation we have drawn has five left-to-right minima.

Now, consider the leftmost point, say ℓ, of a permutation in Avn(p, q). From
the pattern q we see that the points greater than ℓ must form an increasing
sequence. Moreover, considering the points above and below any two adjacent
left-to-right minima we get the structure in Figure 2b, where, again, our per-
mutation has five left-to-right minima. When we overlay the given conditions
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above we get the structure in Figure 2c, where each of the squares in the dia-
gram must be both increasing and decreasing. Therefore each square must be
empty or contain a single point. Also, the structure of the rows and columns
will be determined as increasing and decreasing, respectively, no matter which
squares have points. Therefore, placing any number of points into the squares
(at most one in each) will create a unique permutation (see Figure 3).

Figure 3: The permutation 673841952 ∈ Av9(p, q)

Consider creating a permutation π ∈ Avn(p, q) with k left-to-right minima.
We need to know how to place the remaining n − k points. There will be
(

k+1
2

)

squares available to choose from (see the diagram) and placing the n− k
points into any subset of those squares will create a unique permutation. Thus,
summing over the number of left-to-right minima, we get

|Avn(p, q)| =
n

∑

k=0

(
(

k+1
2

)

n− k

)

.

It is interesting to note from the above proof and the formula that a permu-
tation with k left-to-right minima will be of length at most k +

(

k+1
2

)

. Also, a

length n avoider will have at least
⌈

−3+
√

9+8n
2

⌉

left-to-right minima.

6 Barred patterns (A098569)

After considering symmetries there are two pairs (p, q) ∈ P ×Q enumerated by
the formula in the following proposition.

Proposition 6.1. The number of permutations in

Avn(p, q) = Avn

(

,

)

is

n
∑

k=0

(
(

k+1
2

)

+ n− k − 1

n− k

)

.

Proof. Consider the left-to-right minima of a permutation π ∈ Avn(p, q) as
we did in Proposition 5.1. The points between any two adjacent left-to-right
minima must form a decreasing sequence and the points above and below any
two adjacent left-to-right minima must also form a decreasing sequence. If we
overlay these two conditions we get a structure like that in Figure 2c, where,
in this case, each of the squares in the diagram must be decreasing. Also,
the structure of the rows and columns will be determined as decreasing no
matter which squares have points. Therefore, placing any number of points into
the squares will create a unique permutation, and so the ordinary generating
function for |Avn(p, q)| is

∑

k≥0

xk

(

1

1− x

)(k+1

2 )
.
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The coefficient of xk in 1/(1− x)n is
(

n+k−1
k

)

which concludes the proof.

It is possible to show that avoiding the two patterns p and q, above, is
equivalent to avoiding a single barred pattern. For a more detailed account of
barred patterns see Pudwell [13]. The following is the definition which can be
found in that reference.

Definition 6.2. (Pudwell [13, p. 1]) Let p be a barred pattern. Let q be the
pattern with the bars removed and let p′ be the reduced version of the pattern
in which the barred numbers are removed. We say that a permutation contains
p if every occurrence of p′ can be extended to an occurrence of q.

For example, a permutation contains 4̄251̄3 if every occurrence of 132 is
contained as 253 in a 42513 pattern. Barred patterns can often be thought of
as mesh patterns (see Ulfarsson [17, p. 5]). For instance,

Avn(4̄231̄5) = Avn

(

,

)

= Avn

(

,

)

and

Avn(4̄251̄3) = Avn

(

,

)

= Avn

(

,

)

,

where the second equalities in both equations come from Lemma 1.4

Corollary 6.3. The number of permutations in Avn

(

4̄231̄5
)

is

n
∑

k=0

(
(

k+1
2

)

+ n− k − 1

n− k

)

.

This confirms the conjecture from Pudwell [13, page 8] that 4̄251̄3 and 4̄231̄5
are Wilf-equivalent. If we were to apply the same method as in the proof of
Proposition 6.1 to

Avn

(

,

)

= Avn(4̄251̄3)

then we would have a similar structure with the left-to-right minima, where,
however, we get increasing sequences in the squares and along the rows and
columns.

7 Motzkin numbers (A001006)

The Motzkin numbers, Mn, form a well known sequence which can be defined
by a functional equation their ordinary generating function satisfies:

M = 1 + xM + x2M2 where M =
∑

n≥0

Mnxn.

For more information on Motzkin numbers see e.g. [16, A001006]. After consid-
ering symmetries and Lemma 1.4 we have two cases such that |Avn(p, q)| = Mn

and (p, q) ∈ P ×Q. For a full list see Table 2 of the Appendix.
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Proposition 7.1. The number of permations in

Avn(p, q) = Avn

(

,

)

is Mn.

Proof. Consider a permutation π in A = Av(p, q). Further, consider the right-
most point of π. For π to avoid p the structure of π must be like Figure 4a.
With regard to σ, let us consider two cases. Either σ is empty or it has at least

A

σ

(a)

A

(b)

A

A

(c)

Figure 4: The structure of Av(p, q)

one point. If σ is empty the structure looks like Figure 4b. If σ is non-empty
then consider the maximum point, m, of σ. If there was a point to the left of
m in σ then this point together with m and the rightmost point would create
an occurrence of q. Therefore there must be no points to the left of m in σ.
Thus we can place any possibly empty smaller permutation in A to the right
of the maximum without creating an occurrence of p or q, and so we have the
structure in Figure 4c.

In conclusion, any non-empty permutation in A either has a structure de-
scribed by Figure 4b or a structure described by Figure 4c. Letting A denote
the ordinary generating function for A we thus have A = 1 + xA + x2A2, from
which the claim follows.

We now go on to the second case. We will consider the structure of the
avoiders in terms of the left-to-right minima, as in Proposition 5.1.

Proposition 7.2. The number of permutations in

Avn(p, q) = Avn

(

,

)

is Mn.

Proof. Let π ∈ Avn(p, q) and consider the boundary of (the diagram of) π given
by the left-to-right minima. As in Proposition 5.1, any cell in the diagram must
be both increasing and decreasing and so the cell is empty or contains exactly
one point. Because the rows are increasing and π avoids 123 there can be at
most one point in each row. Moreover, if there is a point in a cell then we cannot
place a point in a cell further to the right and above.

Pick the leftmost point in the leading diagonal of this grid. The points above
this cell will then form a subword of π which is of shorter length and also avoids
both patterns. The points below this cell will similarly form a subword which
avoids both patterns; see Figure 5. Notice that this process is reversible: we
can take a pair of avoiders of lengths k and n − k − 2, respectively, and glue
them together by adding two points in this way.

10



A B C

D E

F

·
G H

I

7→

A B C

D E

F

+

G H

I

Figure 5: Decomposing a permutation in Avn(p, q)

There is also the case when there are no points directly to the right of a
left-to-right minima. In this case we remove the minimum point and tuck the
points in the same way we did for the top half of the previous case, producing
an avoider which is shorter in length; see Figure 6. Again this is reversible, so

A B C D

E F G

H I

J

7→

A B C D

E F G

H I

J

Figure 6: “Shortening” a permutation in Avn(p, q)

we can take any length n−1 avoider and append a new minimum in this way to
create a length n avoider. Thus, letting A be the ordinary generating function
for A we get that A = 1 + xA + x2A2.

We will use a similar method to give a new proof of the enumeration of
Avn(123) in Section 12.

8 Lattice paths and their area (A249560)

Up to symmetries there is a single pair (p, q) in P × Q with the enumeration
given in Proposition 8.2, namely

Avn

(

,

)

.

To find the enumeration of this set we shall consider a different boundary than
those seen in previous sections. Our boundary here will be left-to-right minima

11



and right-to-left minima. We will first find a bijection between lattice paths
and the boundaries of these permutations. Then we extend this bijection by
considering the area under these paths.

For our purposes a lattice path of length n is a path that starts at (0, 0) and
has n steps each of which is

N : (x, y) 7→ (x, y + 1) or

E : (x, y) 7→ (x + 1, y).

Clearly there are 2n paths of length n. The following result is due to Simion
and Schmidt [15], but we give a proof that is different from theirs.

Proposition 8.1 (Simion and Schmidt [15]). There is a bijection between the
length n− 1 lattice paths and the permutations in Avn(231, 132).

Proof. For π ∈ Avn(231, 132) define the path w = xnxn−1 . . . x2 by

xk =

{

N if π−1(k) < π−1(1),

E if π−1(k) > π−1(1).

To see that π 7→ w is invertible note that the points to the left of the minimum of
π form a decreasing sequence, and, similarly, the points to the right of the min-
imum form an increasing sequence. Thus, any permutation π ∈ Avn(231, 132)
is uniquely specified by the set {i : π−1(i) < π−1(1)} which coincides with the
set {i : xi = N}.

For example

π = 975431268 = 7→

y

x

Every lattice path has a certain area enclosed by the path and the x-axis.
We use q-binomials to capture this, see for example Azose [2] for a detailed look
into this. In terms of the q-binomial coefficients the number of length n paths,
with m steps that are E, is given by

[

n

m

]

q
where the coefficient of qk is the

number of paths with area k. Let

Ln(q) =

n
∑

m=0

[

n

m

]

q

,

which is the distribution of area over all length n paths. We will now link this
to pattern avoidance. We use r for our second pattern to avoid confusion with
q-binomials.
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Proposition 8.2. The ordinary generating function for

Avn(p, r) = Avn

(

,

)

is 1 +
∑

n≥0

xn+1Ln(1 + x).

Proof. Every permutation has a left-to-right minima and right-to-left minima
boundary that is in the set Avn(231, 132). Consider a particular boundary of
right-to-left minima and left-to-right minima of a permutation avoiding p and r.
To avoid p the points to the left of the minimum form a decreasing sequence and
hence there are no other points in this region; also, the columns in between the
right-to-left minima are forced to be increasing. To avoid r, the rows in between
the right-to-left minima must be decreasing, and the rows directly above a left-
to-right minimum must be empty. As an example, for the boundary given by
π = 975431268 we get the following restrictions.

In each of the unshaded squares we can place either a single point or leave it
empty, and each such choice will create a unique permutation. The number of
unshaded squares is given by the area under the lattice path corresponding to
the boundary as in Proposition 8.1. Hence, to count permutations in Av(p, q)
we first fix the size of boundary, say n + 1, giving the factor xn+1. Then we
substitute q = 1 + x into Ln(q), since this is the generating function for all
length n + 1 boundaries with q marking the squares that we can place a point
in or leave empty.

9 Partitions into distinct parts (A249561)

Up to symmetries there is only a single pair (p, q) in P×Q with the enumeration
given in Proposition 9.5, namely

A = Av(p, r) = Av

(

,

)

.

To find the enumeration of this set we consider the boundary of a permutation
π ∈ A given by its right-to-left maxima and right-to-left minima. Taking this
boundary of any permutation will result in some permutation that avoids 231
and 213. Since avoiding 231 implies avoiding r by Remark 1.2 it is clear that
any such boundary for a permutation in A is in the set

Av

(

, ,

)

.

If we take one of these boundaries and consider shading the restrictions
of p and r we see that the number of right-to-left maxima between the two

13



Figure 7: The boundaries given by 15423 and 1762543

rightmost right-to-left minima does not change the number of unshaded squares
(see Figure 7).

We therefore start by considering π, where π(n − 1) = π(n) − 1, i.e. with
a single right-to-left maximum after the rightmost left-to-right maximum. In
terms of pattern avoidance these boundaries are given by the set

Bn = Avn

(

, , ,

)

.

Here the last pattern ensures that our condition of π(n − 1) = π(n) − 1 is
enforced.

We will now show that the permutations in Bn are in bijection with a subset
of lattice paths.

Definition 9.1. Let w = x1x2 . . . xn be a lattice path. We say w is a restricted
lattice path if

(i) x0 = N ,

(ii) xn = E and

(iii) for all i ∈ {1, . . . , n− 1} we have xixi+1 6= EE.

We define Rn to be the set of all restricted lattice paths of length n.

Remark 9.2. A restricted lattice path, w, represents a unique integer partition
since w starts with an N step and ends with an E step. Furthermore, if an
integer partition can be represented by some restricted lattice path then it must
be an integer partition with distinct parts since we can never have two columns
of the same height as there are no two consecutive E steps.

Proposition 9.3. There is a bijection between the restricted lattice paths in Rn

and the permutations in Bn.

Proof. Let π ∈ Bn. Define the path w = Nx1x2 . . . xn−1 by

xk =

{

N if π−1(k) > π−1(n),

E if π−1(k) < π−1(n).

By definition the path w starts with an N step. Also, π ends with an ascent,
and so xn−1 = E. That w doesn’t contain EE can be seen by contraposition:
Assume that xixi+1 = EE, then π−1(i) < π−1(n) and π−1(i + 1) < π−1(n)
which means that π either contains the subsequence (i, i + 1, n) or it contains
the subsequence (i + 1, i, n). In the latter case we have an occurrence of 213

14



and we are done, so assume the former. If i and i + 1 are adjacent in π then we
have an occurrence of p. If not, then there must be a point in one of the lower
three squares of the shading of p. But either of these three options leads to an
occurrence of p or 213. This shows that the range of the mapping π 7→ w is
contained in Rn. To see that π 7→ w is invertible we can reason in a way that
is similar to the proof of Proposition 8.1.

Remark 9.4. Let λ be the integer partition obtained from applying the above
bijection to the permutation π. By Remark 9.2 it is clear that λ has distinct
parts. The number of points greater than π(n) is one less than the maximum
part of λ and the number of points less than π(n) is the number of parts of λ.
See Figure 8 for an example.

↔

y

x

↔ 2 + 3 + 6

Figure 8: The boundary given by the permutation 918276534 with the corre-
sponding lattice path and integer partition with distinct parts

Partitions are well studied objects (see for example Andrews [1]) and it can
be shown that if q keeps track of the sum of the parts of our partition then the
number of partitions with maximum part n into k distinct parts is given by

Ln,k(q) = qn+(k

2)
[

n− 1

k − 1

]

q

.

Proposition 9.5. The ordinary generating function for A is given by

1 +
x

1− x

∑

n≥0

n+1
∑

k=0

xi+kLn+1,k

(

1

1− x

)

.

Proof. Let π ∈ A. Consider the boundary given by right-to-left maxima and
right-to-left minima. As before we shall assume that π(n−1) = π(n)−1 and thus
the boundary is in Bn. To avoid r the points above π(n) must form a decreasing
sequence. There must also be no points between a right-to-left minimum and
right-to-left minimum in order to avoid p. In the remaining unshaded regions,
columns are decreasing (to avoid p) and rows are decreasing (to avoid r). Thus,
an unshaded square can contain a decreasing sequence of any length. The
bijection in Proposition 9.3 gives a bijection that defines the available squares,
and, considering Remark 9.4, it follows that the ordinary generating function
for A is as claimed.
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10 Recurrence relations (A249562 & A249563)

The two remaining pairs, (p, q) ∈ P × Q, which are unique up to symmetries,
we enumerate with recurrence relations.

10.1 A recurrence for A249563

The set we are enumerating is

Avn(p, q) = Avn

(

,

)

.

Let π ∈ Avn(p, q). Write π = m1Π1m2Π2 . . . mkΠk where m1, m2, . . . , mk are
the left-to-right minima of π, and Π1, Π2, . . . , Πk are the remaining points in
between the minima. To avoid p each Πi must be increasing. We shall call miΠi

the ith block of π.

Assume that π has an occurrence of the pattern . Because π avoids
q there cannot be any points above and to the right of this occurrence. This
motivates the following definition.

Definition 10.1. For a permutation π ∈ Avn(q), if there exists i and j such
that j > i and π(i) = π(j) − 1 then we call π(j) a ceiling point.

Going back to analyzing the structure of π ∈ Avn(p, q), notice that if we
remove the maximum, n, from π then the resulting permutation will be in
Avn−1(p, q). This gives us ground for a recursion. Consider inserting n into a
permutation in Avn−1(p, q). Where we can place n depends on several factors.
Let an,k,i,ℓ be the number of avoiders where n is the length of the permutation;
k is the number of blocks; i is the block that the maximum is in and ℓ is the
block containing the leftmost ceiling point; if there is no ceiling point then we
let ℓ = 0.

It is clear that we can have at most n blocks and that n cannot occur after
the leftmost ceiling point. Therefore if n < k or i > ℓ (while ℓ > 0) then
an,k,i,ℓ = 0. There is a unique length n permutation with n blocks namely the
decreasing one. The maximum is in the first block (except when k = 0, in which
case there is no maximum so we say i = 0), hence we have

an,n,1,0 = 1 = a0,0,0,0.

We have three cases to consider. The new maximum, n, is inserted to become
a ceiling point (this is when i = ℓ); n is inserted to create a new block (when
i = 1) or n is inserted into an existing block but is not a ceiling point.

We first consider inserting n into a length n− 1 permutation so as to ensure
it is a ceiling point. It must be placed after the current maximum but before
the leftmost ceiling point. If the smaller permutation has no ceiling point then
we can freely insert n. Hence

an,k,ℓ,ℓ = an−1,k,1,0 +
i

∑

j=1

k
∑

m=i+1

an−1,k,j,m.

Now we consider inserting n so as it is not a ceiling point. We may either
create a new block (when i = 1) or place it into an already existing block.
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Consider inserting it into an existing block, then it cannot be placed after the
current maximum or else it will become a ceiling point. The leftmost ceiling
point will carry over to the larger permutation. Therefore, if i < ℓ,

an,k,i,ℓ =

k
∑

j=i+1

an−1,k,i,ℓ.

To create a new block we can add n to any length n − 1 avoider but there
will of course be a shift of indices. If i = 1 we get

an,k,i,ℓ =
k

∑

j=i+1

an−1,k,j,ℓ +
k−1
∑

j=0

an−1,k−1,j,ℓ−1.

This, with the initial conditions, gives a recursion for an,k,i,ℓ.

Proposition 10.2. The number of permutations in Avn(p, q) is given by

{

n
∑

k=0

k
∑

i=0

k
∑

ℓ=0

an,k,i,ℓ

}

n≥0

= {1, 1, 2, 4, 9, 22, 57, 156, 447, 1335, 4140, . . .}.

This sequence was added to the OEIS by the authors [16, A249563].

10.2 A recurrence for A249562

Here we enumerate the set

Avn(p, q) = Avn

(

,

)

.

Let π ∈ Avn(p, q). Write π = m1Π1m2Π2 . . . mkΠk where m1, m2, . . . , mk are
the left-to-right minima of π, and Π1, Π2, . . . , Πk are the remaining points in
between the minima. To avoid p each Πi must be decreasing. We shall call miΠi

the ith block of π. Notice that removing n from π will result in a permutation
in Avn−1(p, q). Therefore we will build these recursively by adding in a new
maximum.

We set up as follows: let n be the length of the permutation; let k be the
number of blocks; let i be the position of the maximum; and let ℓ be the position
of the leftmost ceiling point (if no ceiling points we set ℓ = 0). Let ân,k,i,ℓ be
the number of avoiders where the maximum is a ceiling point; let ān,k,i,ℓ be
the number of avoiders where the maximum is a left-to-right minimum; and let
ǎn,k,i,ℓ be the number of avoiders where the maximum is neither a ceiling point
nor a left-to-right minimum. Then we are interested in

an,k,i,ℓ = ân,k,i,ℓ + ān,k,i,ℓ + ǎn,k,i,ℓ.

First consider adding the maximum as a ceiling point. If we want to add n to
the first block then we must have m1 = n− 1 and the leftmost ceiling point can
be anywhere. Therefore,

ân,k,1,ℓ =
k

∑

m=0

ān−1,k,1,m.
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Otherwise we want to add n to any of the other blocks. We can do this to a
permutation starting with a maximum as long as it is before the leftmost ceiling
point. If the previous maximum is not a ceiling point then we must add it after
the maximum but before the leftmost ceiling point. We cannot create a new
maximum ceiling point if the previous one is already a ceiling point. Hence, if
i > 1,

ân,k,i,ℓ =
k

∑

m=ℓ

ān−1,k,1,m +
i−1
∑

j=1

k
∑

m=i

ǎn−1,k,j,m.

We can add a maximum to the far left to any length n− 1 avoider to create a
length n avoider, so we get

ān,k,i,ℓ =

k−1
∑

j=1

an−1,k−1,j,ℓ−1.

We can add a new maximum to an existing block so that it is not a ceiling point
as long as it comes before the current maximum, so

ǎn,k,i,ℓ =

k
∑

j=i

ân−1,k,j,ℓ + ǎn−1,k,j,ℓ.

This together with ān,n,1,0 = 1, ân,n−1,i,ℓ = 1, and the conditions that n > k > i
and i < ℓ is enough to enumerate these permutations recursively.

Proposition 10.3. The number of permutations in Avn(p, q) is given by






n
∑

k=0

k
∑

j=0

k
∑

ℓ=0

an,k,i,ℓ







n≥0

= {1, 1, 2, 5, 14, 43, 143, 509, 1921, 7631, 31725, . . .}.

This sequence was added to the OEIS by the authors [16, A249562].

11 A closer look at A249562

In this section we consider the set

Av(p, q) = Av

(

,

)

which is the reverse symmetry of the set enumerated in Section 10.2. We estab-
lish a bijection between this set and certain ascent sequences.

11.1 Modified ascent sequences

For the sake of brevity, the proofs in this section are omitted but instead included
in the Appendix. All of our definitions and notation are from Bousquet-Mélou
et al. [3]; they give a bijection φ from length n modified ascent sequences to
length n permutations that avoid the bivincular pattern

.
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Given a modified ascent sequence x̂ their bijection is as follows: First take x̂
and write the numbers 1 through to n below it. Sort the pairs

(

x̂i

i

)

in ascending
order with respect to the top entry and break ties in descending order with
respect to the bottom entry. The resulting bottom row is φ(x̂). For example, if
x = (0, 1, 0, 2, 1, 3, 0, 1) then x̂ = (0, 2, 0, 3, 2, 4, 0, 1) and if we sort 0

1
2
2

0
3

3
4

2
5

4
6

0
7

1
8 as

described we get 0
7

0
3

0
1

1
8

2
5

2
2

3
4

4
6 and hence φ(x̂) = 73185246.

As pointed out in Parviainen [12, Section 5], if we restrict this bijection
to modified ascent sequences of length n which have no two adjacent elements
equal, then φ becomes a bijection into the set of length n permutations avoiding

and .

Parviainen further gives a bijection, that we shall call θ, from these modified
ascent sequences into the set of permutations of length n− 1 avoiding

.

This bijection is defined as follows: Let x̂ be a modified ascent sequence with
no two adjacent elements equal. Write the numbers 1 through n − 1 below it,
skipping x1. Sort the pairs

(

xi

i−1

)

with respect to ascending order in the top and
break ties by sorting in ascending order with respect to the bottom entry; the
bottom row in θ(x̂). Let us use the example sequence x̂ = (0, 2, 0, 3, 2, 4, 0, 1)
(same as above). Sorting 2

1
0
2

3
3

2
4

4
5

0
6

1
7 we get 0

2
0
6

1
7

2
1

2
4

3
3

4
5 and thus θ(x̂) = 2671435. In

summary we have the bijections shown in Figure 9.

Avn

(

,

)

φ
←→



















Length n modified ascent

sequences with no two

adjacent elements equal



















θ
←→ Avn−1

( )

Figure 9: A summary of the bijections

We now return to the problem at hand. It is easy to see that

Av(p, q) ⊆ Avn(r) = Avn

( )

= B

Pattern avoidance on modified ascent sequences can be defined in a natural way,
see Duncan and Steingrimsson [8]. Let θ be the bijection defined above. Then
we have the following result.

Lemma 11.1. Let x̂ be a modified ascent sequence with no two adjacent ele-
ments equal. Then

(i) θ(x̂) avoids 321 if and only if x̂ avoids 321,

(ii) θ(x̂) avoids q if and only if x̂ avoids p and
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(iii) θ(x̂) avoids p if and only if x̂ avoids q and the letter playing the role of the
2 is the leftmost of that value in x̂.

We now consider the bijection φ described above. If we let

s =

then we have the following lemma.

Lemma 11.2. Let x̂ be a modified ascent sequence with no two adjacent ele-
ments equal. Then x̂ avoids p if and only if φ(x̂) avoids s.

Let Avn(p) denote the set of length n modified ascent sequences with no two
adjacent elements equal such that they avoid the pattern p. Combining the two
previous lemmas we get the following correspondence:

Avn

(

, , s

)

φ injective
←−−−−−−− Avn(p, q̄)

θ
←→ Avn(p, q)

where q̄ is the same as q except the 2 in q̄ is the leftmost 2. This leads to the
question: does avoidance of q̄ correspond to something transparently describable
(perhaps in terms of pattern avoidance) in

Avn

(

,

)

under the bijection φ?

11.2 A249562 in terms of 321-avoiding permutations

For each permutation avoiding

p = and q =

we consider the boundary given by the left-to-right maxima and the right-to-left
minima. Since any avoider of 321 avoids p and q each boundary is in Av(p, q).
Given such a boundary, the columns to the right of a left-to-right maximum must
be empty to avoid p and the rows immediately above a left-to-right minimum
must be empty to avoid q. There are however some unshaded squares. Within
any such square the points must form a, possibly empty, increasing sequence. In
fact, the positions of the points are determined as the rows must be increasing
to avoid q, and the columns must be increasing to avoid p.

Let m1 < m2 < · · · < mk be the right-to-left minima of π, and let

sq(π) =
k−1
∑

i=1

max(ci − 1, 0), where ci = |
{

j ∈ {1, 2, . . . , mi} : π(j) > mi+1

}

|.

Then the number of unshaded squares in the boundary diagram of π is sq(π)
and the ordinary generating function for Av(p, q) is

∑

n≥0

∑

π∈Avn(321)

xn

(

1

1− x

)sq(π)

.
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12 Avoiding 123

It is well known that |Avn(123)| = Cn =
(

2n

n

)

/(n + 1), the nth Catalan number.
Inspired by Sections 6 and 7 we shall derive this fact in a alternative way.

Proposition (Hammersley [9], Rogers [14]). |Avn(123)| = Cn.

Proof. Given a permutation avoiding 123 we can use its left-to-right minima to
partition the remaining points into cells. Each cell must be decreasing and the
same is true for each row and each column, as noted by Claesson [6]. Therefore
the permutation is uniquely determined by the number of points in each cell.
If a cell is non-empty then all the cells strictly above and strictly to the right
of it will be empty. See for example Figure 10 where we have five left-to-right
minima and are assuming that A 6= ǫ. This property allows us to construct

A

Figure 10: An avoider of 123 with five left-to-right minima where A 6= ǫ

a larger avoider from two smaller ones. See Figure 11 where F ′ has one more

A B C

D E

F

+

G H I

J K

L

7→

A B C

D E

F ′ G H I

J K

L

Figure 11: The sum of two 123-avoiding permutations

point than F . If we are adding the empty permutation, on the left, we instead
add a left-to-right minimum. See Figure 12. This construction is reversible.
Therefore, if we let A be the generating function then it is clear that it will satisfy
A = 1+x(A−1)A+xA = 1+xA2, which can be seen as the defining functional
equation for the ordinary generating function of the Catalan numbers.
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ǫ +

G H I

J K

L

7→

G H I

J K

L

Figure 12: The sum of the empty permutation and a 123-avoiding permutation

Appendix

In the tables below the column titled “Method” will point the reader in the
direction of an argument to confirm the enumeration. In some cases these links
will be to the proposition or lemma with the patterns, but often just to a similar
case where the same or a similar argument is used.

Method p q Enumeration

Prop. 2.1 (123, ∅, ∅) (123, ∅, {1}) Cn

(132, ∅, ∅) (132, ∅, {1})

(132, ∅, ∅) (132, ∅, {2})

Prop. 2.2 (132, {1}, ∅) (132, ∅, {1}) Cn

(132, {1}, ∅) (132, ∅, {2})

Prop. 2.1 (123, ∅, ∅) (231, ∅, {1})
(

n

2

)

+ 1

Prop. 3.2 (132, ∅, ∅) (321, ∅, {1})
(

n

2

)

+ 1

Lemma 1.4 and Prop. 3.2 (123, {2}, ∅) (231, ∅, {1})
(

n
2

)

+ 1

Prop. 2.1 (123, ∅, ∅) (132, ∅, {1}) 2n−1

(132, ∅, ∅) (213, ∅, {2})

(132, ∅, ∅) (231, ∅, {1})

(132, ∅, ∅) (312, ∅, {2})

Prop. 2.2 (132, {1}, ∅) (213, ∅, {2}) 2n−1

(132, {1}, ∅) (231, ∅, {1})

Prop. 3.2 (132, ∅, ∅) (123, ∅, {1}) 2n−1

(132, ∅, ∅) (213, ∅, {1})

(132, ∅, ∅) (231, ∅, {2})

(132, ∅, ∅) (312, ∅, {1})

Lemma 1.4 and Prop. 3.2 (123, {1}, ∅) (132, ∅, {1}) 2n−1

(132, {1}, ∅) (213, ∅, {1})

(132, {1}, ∅) (231, ∅, {2})
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(132, {1}, ∅) (312, ∅, {1})

Prop. 4.1 (123, {2}, ∅) (312, ∅, {2}) 2n−1

(132, ∅, ∅) (321, ∅, {2})

(132, {2}, ∅) (213, ∅, {1})

Prop. 4.2 (123, ∅, ∅) (231, ∅, {2}) 2n−1

(123, {1}, ∅) (312, ∅, {1})

Prop. 5.1 (123, {2}, ∅) (132, ∅, {2}) A121690

§ 6 (123, {1}, ∅) (123, ∅, {1}) A098569

(132, {2}, ∅) (132, ∅, {2})

Prop. 7.1 (132, ∅, ∅) (123, ∅, {2}) Mn

Lemma 1.4 and Prop. 7.1 (123, {1}, ∅) (213, ∅, {2}) Mn

Prop. 7.2 (123, ∅, ∅) (132, ∅, {2}) Mn

Prop. 8.2 (132, {2}, ∅) (231, ∅, {2}) A249563

Prop. 9.5 (123, {1}, ∅) (231, ∅, {2}) A249561

§ 10 (123, {1}, ∅) (132, ∅, {2}) A249560

§ 11 (123, {1}, ∅) (123, ∅, {2}) A249562

(123, ∅, ∅) (321, ∅, {1}) finite

(123, {1}, ∅) (321, ∅, {1})

(123, {1}, ∅) (321, ∅, {2})

Table 2: Enumeration of Avn(p, q)

Ascent Sequences

In this part of the appendix we give proofs for the mappings discussed in Sec-
tion 11.

Lemma 12.1. Let x̂ be a modified ascent sequence with no two adjacent ele-
ments equal. Then

(i) θ(x̂) avoids 321 if and only if x̂ avoids 321,

(ii) θ(x̂) avoids q if and only if x̂ avoids p and

(iii) θ(x̂) avoids p if and only if x̂ avoids q and the letter playing the role of the
2 is the leftmost of that value in x̂.

Proof. Let x̂ be a modified ascent sequence with no two adjacent elements equal.

(i) Let abc be an occurrence of 321 in x̂ so c < b < a. When we write x̂ in
two line notation we get

. . . a
i . . . b

j . . . c
k . . .
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with i < j < k. If we order the top then a will become the rightmost of a,
b and c, followed by b, and finally c. Hence kji will form an occurrence of
321.

Conversely, assume that θ(x̂) contains 321 but x̂ avoids 321. The 321
occurrence then corresponds to a set of letters a, b and c such that either
a = b or b = c. But notice since we break ties by ordering in ascending
order this will not lead to a 321.

(ii) Let abc be an occurrence of p in x̂, so c < b < a. When we write x̂ in two
line notation we have

. . . a
i

b
(i+1) . . . c

j . . .

with j > i + 1. Clearly from part (i) this is an occurrence of 321 in θ(x̂).
It corresponds to j(i + 1)i, an occurrence of q. Moreover, it is clear that
every occurrence of q in θ(x̂) corresponds to an occurrence of p in x̂.

(iii) Let a(b + 1)b be an occurrence of p in x̂, so a > b + 1 and the b + 1 is the
leftmost b + 1. Then in two line notation we have

. . . a
i . . . b+1

j . . . b
k . . .

and so when we apply the bijection to x̂, we get a 321 occurrence by
part (i). We first sort the top row, since b + 1 is the leftmost letter with
value b it will appear immediately after the largest index of a b. Hence we
have an occurrence of p.

Conversely assume that θ(x̂) contains an occurrence of p but x̂ does not
contain an occurrence of q with the 2 the as far left as possible. The first
thing to consider, is if there was no (b + 1)b but instead some cb where
c > b + 1. If the b + 1 occurred either before the a or after the c then this
would prevent the adjacency required. Therefore there must be no b + 1, a
contradiction since every modified ascent sequence contains every number
between 0 and the maximum in x̂.

Lemma 12.2. Let x̂ be a modified ascent sequence with no two adjacent ele-
ments equal. Then x̂ avoids p if and only if φ(x̂) avoids s.

Proof. Let x̂ be a modified ascent sequence with no two adjacent elements equal
and let abc be an occurrence of p, so c < b < a. Then x̂ has the form

. . . a
i

b
(i+1) . . . c

j . . .

where j > i + 1. On sorting the top row in ascending order (breaking ties
with the bottom also in ascending order), we see that this will correspond to
an occurrence of q. Consider an occurrence of r in φ(x̂). Notice that this will
correspond to an occurrence of

. . . a
i

b
(i+1) . . . b+1

j . . .

where b < a, j > i + 1 and the b must be the leftmost b in x̂. But then if we
consider the bijection θ we will find that we have an occurrence of r in θ(x̂), a
contradiction since θ is a bijection into Avn(r).
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By the shading lemma [10, Lemma 3.11], avoiding r is equivalent to avoiding

. We have already shown that an occurrence of p corresponds to an

occurrence of q, and since we avoid we must have an occurrence of s.

Conversely, if φ(x̄) has an occurrence of s then it also has an occurrence of
q which will correspond to an occurrence of p in x̄.
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