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COHOMOLOGY OF N-GRADED LIE ALGEBRAS OF MAXIMAL

CLASS OVER Z2

YURI NIKOLAYEVSKY AND IOANNIS TSARTSAFLIS

Abstract. We compute the cohomology with trivial coefficients of Lie algebras m0

and m2 of maximal class over the field Z2. In the infinite-dimensional case, we show
that the cohomology rings H

∗(m0) and H
∗(m2) are isomorphic, in contrast with the

case of the ground field of characteristic zero, and we obtain a complete description of
them. In the finite-dimensional case, we find the first three Betti numbers of m0(n) and
m2(n) over Z2.

1. Introduction

A Lie algebra g is said to be N-graded, if it is the direct sum of subspaces gi, i ∈ N

(the homogeneous components), such that [gi, gj ] ⊂ gi+j. Obviously, finite-dimensional
N-graded Lie algebras are necessarily nilpotent. A great deal of attention in the literature
has been focused on N-graded Lie algebras for which the homogeneous components gi
are “the smallest possible”, that is, all of dimension one or, in the finite-dimensional
case, dim gi = 1, for i ≤ n := dim g, and gi = 0, for i > n. With the additional condition
that g is generated as an algebra by elements e1 and e2, spanning g1 and g2 respectively,
one obtains that the subspaces C0 = g, Ck = ⊕∞

i=k+2gi, k > 0, are the terms of the
central descending series. This defines the N-graded filiform Lie algebras in the finite-
dimensional case [15] and the N-graded Lie algebras of maximal class [12] (also called
narrow algebras). In characteristic zero, these algebras have been completely classified.
In the infinite-dimensional case, one gets just three algebras [7], and independently [12,
Theorem 7.1]. We list them here with their presentations:

m0 = Span(e1, e2, . . . ), [e1, ei] = ei+1, i > 1, (1)

m2 = Span(e1, e2, . . . ), [e1, ei] = ei+1, i > 1, [e2, ej ] = ej+2, j > 2, (2)

V = Span(e1, e2, . . . ), [ei, ej ] = (j − i)ei+j , i, j ≥ 1. (3)

In the finite-dimensional case in characteristic zero, the classification of finite-dimensional
N-graded filiform Lie algebras was established in [11]: one obtains the “truncations” of
the above three algebras, in particular,

m0(n) = Span(e1, . . . , en), [e1, ei] = ei+1, 1 < i < n, (4)

m2(n) = Span(e1, . . . , en), [e1, ei] = ei+1, 1 < i < n, [e2, ej ] = ej+2, 2 < j < n− 1, (5)

and V(n), plus another three infinite series, and five one-parameter families of low-
dimensional algebras. The picture is more complicated in positive characteristic: by [5],
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there are uncountably many isomorphism classes of Lie algebras of maximal class; the
construction of all such algebras in odd characteristic is given in [6], and in characteristic
two, in [10], with m0 and m2 being the simplest possible cases.

The cohomology of N-graded Lie algebras of maximal class has been studied exten-
sively over a field of characteristic zero [7, 8, 15], and at present is well-understood. In
[8], Fialowski and Millionschikov gave a full description of the cohomology with trivial
coefficients of the algebras m0 and m2; the Betti numbers of V are found in [9]. In the
finite-dimensional case, the cohomology of m0(n) were found in [3] (see also [2] and [8]).
However, already for m2(n) over a field of characteristic zero, our present knowledge is
limited to the first two Betti numbers [11, 15].

The study of the cohomology of Lie algebras of maximal class over fields of positive
characteristic is much less developed. The cohomology of the Heisenberg algebra is found
in [4, 13]. A recent result by Tsartsarflis [14] states that over a field of characteristic
two, the algebras m0(n) and m2(n) have the same Betti numbers (in contrast with the
case of characteristic zero), and furthermore, every algebra of the so called Vergne class

admits a dual, non-isomorphic algebra, with the same Betti numbers.
In this paper we study the cohomology with trivial coefficients of the Lie algebras m0

and m2, and their finite dimensional truncations, m0(n) and m2(n), over the field Z2. Let
V = Span(e1, e2, . . . ) and let {ei} be the dual basis for V ∗. Define the operator D1 on
V ∗ by D1e

1 = D1e
2 = 0, D1e

i = ei−1, for i > 2, and extend it to Λ(V ) as a derivation.
For ω ∈ Λ(V ) and ei ∈ V ∗, define F (ω, ei) =

∑∞
l=0(D

l
1ω) ∧ ei+l+1 (note that the sum on

the right-hand side is finite).
Our main result in the infinite-dimensional case is as follows.

Theorem 1. The cohomology rings H∗(m0) and H∗(m2) over the field Z2 are isomorphic.

The respective cohomology classes of the cocycles

e1, e2, F (ei1 ∧ ei2 ∧ · · · ∧ eiq , eiq), (6)

where q ≥ 1, 2 ≤ i1<i2<. . .<iq, form a basis for H∗(m0) and for H∗(m2), respectively.

Note that H∗(m0) over Z2 is “the same” as over a field of characteristic zero (compare
with [8, Theorem 3.4]). In contrast, the fact that H∗(m0) and H∗(m2) over Z2 are
isomorphic (note that m0 and m2 are not isomorphic over any ground field) is specific to
the Z2 case: over a field of characteristic zero, H∗(m2) is very different [8, Theorem 5.5].

In the finite-dimensional case, which appears to be substantially harder that the
infinite-dimensional one, we compute the first three Betti numbers of m0(n) and the
corresponding bases for H i(m0(n)), i = 1, 2, 3.

Theorem 2. The first three Betti numbers of the Lie algebra m0(n) over Z2 are given

by

(a) b1(m0(n)) = 2,
(b) b2(m0(n)) = ⌊1

2
(n+ 1)⌋, where ⌊.⌋ denotes the integer part,

(c) b3(m0(n)) =
1
3
(2p − 1)(2p−1 − 1) + 1

2
m(m − 1) + ⌊1

2
(n − 1)⌋, where n = 2p +m and

0 < m ≤ 2p.

An explicit form of the basis for H3(m0(n)) is given in Theorem 4 of Section 3. The-
orem 2 also gives us the first three Betti numbers of m2(n) (Corollary 1 of Section 4),
which in characteristic two are simply the same as those for m0(n), by [14, Theorem 1].
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The paper is organised as follows. We begin with some short preliminaries in Section 2.
We treat the algebras m0 and m0(n) in Section 3. Parts (a) and (b) of Theorem 2 follow
from Proposition 1. After some technical preparation similar to the arguments of [8], we
prove Theorem 3, which is “the m0-part” of Theorem 1. We then proceed to the proof
of Theorem 2(c). This is the longest and most technically involved part of the paper.
Finally, in Section 4 we use a construction similar to [14] to establish the isomorphism
between H∗(m0) and H∗(m2), hence completing the proof of Theorem 1.

2. Preliminaries

Given a Lie algebra g over Z2 with a basis elements ei, we denote the dual basis
elements ei. For convenience, we set e0 = 0. For simplicity we write a monomial q-form
ei1 ∧ ei2 ∧ · · · ∧ eiq ∈ Λq(g) as ei1i2...iq . For a monomial ei1i2...iq , its degree is defined to be
∑q

j=1 ij . The homogeneous component Λq

k(g) of degree k and of rank q is the span of all

the monomials of degree k and of rank q. We set Λk(g) := ⊕qΛ
q

k(g).
As usual, the differential d is defined by dξ(X, Y ) = ξ[X, Y ] for one-forms ξ, where

X, Y ∈ g, and then is extended to the exterior algebra Λ(g) as a derivation (so that
d(ω1∧ω2) = d(ω1)∧ω2+ω1∧d(ω2)). Then d2 = 0 and one define the q-th cohomology group

Hq(g) (with trivial coefficients) by Hq(g) = ker(d : Λq → Λq+1)/Im (d : Λq−1 → Λq).
Then Hq(g) is a linear space over Z2; if its dimension is finite, it is called the q-th Betti

number bq(g). It is immediate from the definition that if dim g = n, then

bq(g) = dimker(d : Λq → Λq+1) + dimker(d : Λq−1 → Λq)−

(

n

q − 1

)

, (7)

so to compute the Betti numbers it suffices to know the dimensions of the kernels of d
on the Λq’s. Also note that in the graded case (in particular, for the bases {ei} from (1
– 5)), the operator d maps Λq

k(g) to Λq+1
k (g), and so Hq(g) is spanned by the classes of

homogeneous elements; we get a decomposition (a bi-gradation) Hq(g) = ⊕kH
q

k(g). The
multiplicative structure in H(g) := ⊕qH

q(g) is inherited from the wedge product.

3. Cohomology of m0

In this section, we compute the cohomology of the infinite-dimensional Lie algebra
m0 and also the first three Betti numbers of the finite-dimensional Lie algebras m0(n)
defined as follows (1, 4):

m0 = Span(e1, e2, e3, . . . ), [e1, ei] = ei+1, for i ≥ 2,

m0(n) = Span(e1, e2, e3, . . . , en), [e1, ei] = ei+1, for 2 ≤ i ≤ n− 1.

In the first few paragraphs, we closely follow the approach and the results of [8,
Section 3], adapting them to the case of the ground field Z2. In effect, the outcome
is that in the infinite-dimensional case, for g = m0, the cohomology is “the same” as
that for a field of characteristic zero, while in the finite-dimensional case, for g = m0(n),
the situation is more delicate – not only the Betti numbers are different, but also the
methods of [8, 2] and the very elegant approach of [3, Appendix B] do not work directly.
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For a monomial ei1i2...iq ∈ Λq(g), q ≥ 1, i1, i2, . . . , iq ≥ 1, (for both g = m0 and
g = m0(n)) we have

d(ei1i2...iq) = e1(i1−1)i2...iq + e1i1(i2−1)...iq + · · ·+ e1i1i2...(iq−1)

= e1 ∧
(

e(i1−1)i2...iq + ei1(i2−1)...iq + · · ·+ ei1i2...(iq−1)
)

.
(8)

It follows from (8) that the subspaces Λk(g) are d-invariant.
Moreover, for any ω ∈ Λ(g) we have d(e1 ∧ ω) = 0 and d(ω) ∈ e1 ∧ Λ(g). Set

h := Span(e2, e3, . . . ) for m0, and h := Span(e2, e3, . . . , en) for m0(n). Then h is abelian
and from (8) it follows that there is a well-defined linear operator D on Λ(h) such that
for ω ∈ Λ(h), we have

dω = e1 ∧ (Dω). (9)

It is easy to see that

De2 = 0, Dei = ei−1 for i > 2, D(ξ∧η) = D(ξ)∧η+ ξ∧D(η) for ξ, η ∈ Λ(h), (10)

so D is a derivation of Λ(h). Recall that the Lie derivative with respect to e1 is defined
by taking the operator (ade1)

∗ on g∗ to be the dual to ade1 on g, and then extending it as
a derivation to Λ(g). Note that D is just the restriction of (ade1)

∗ to Λ(h). Furthermore,
D(Λq

k(h)) ⊂ Λq

k−1(h), so that D is “nilpotent”: for any ω ∈ Λ(h) there exists N =
N(ω) ≥ 0 such that DNω = 0. For convenience, we define D0 to be the identity map.

Since from (8), ker d = e1 ∧ Λ(h)⊕ kerD, to find the kernel of d we need to find the
kernel of D. This is given by the following lemma.

Lemma 1. (a) Let g = m0. For any ω ∈ Λ(h) and ei ∈ h define

F (ω, ei) =
∑∞

l=0
Dlω ∧ ei+1+l =

∑N(ω)−1

l=0
Dlω ∧ ei+1+l. (11)

Then F (ω, ei) ∈ kerD for ω ∧ ei = 0 and moreover, the elements

F (ei1i2...iq , eiq) = ei1i2...iqiq+1 +Dei1i2...iq ∧ eiq+2 + · · · ∈ Λq+1
k (h),

where q ≥ 1, 2 ≤ i1 < i2 < · · · < iq, k = iq + 1 +
∑q

j=1
ij,

(12)

form a basis for the kernel of the restriction of D to Λq+1
k (h); the kernel of the

restriction of D to h∗ is spanned by e2.
(b) Let g = m0(n), viewed as the subspace of m0 spanned by the first n vectors. Then

kerD is the intersection of kerD constructed in (a) for the case g = m0 with m0(n).

Note that in the Introduction we used D1 = (ade1)
∗ rather than D to define F .

This yields the same object, since in (6), D only acts on elements of Λ(h) and D is
the restriction on D1 to Λ(h). Notice however that Lemma 1 concerns kerD, which is
different to kerD1.
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Proof. (a) The fact that F (ω, ei) ∈ kerD follows immediately, as from (10), for any
ω ∈ Λ(h) and ei ∈ h we have

DF (ω, ei) = D
(

∑∞

l=0
Dlω ∧ ei+1+l

)

=
∑∞

l=0
Dl+1ω ∧ ei+1+l +

∑∞

l=0
Dlω ∧ ei+l

=
∑∞

l=1
Dlω ∧ ei+l +

∑∞

l=0
Dlω ∧ ei+l

= ω ∧ ei,

as we are working over Z2. Notice in passing that this also shows that D is surjective.
The fact that the elements given by (12) are linearly independent is also easy, as

from among the monomials ej1j2...jqjq+1, 2 ≤ j1 < j2 < · · · < jq < jq+1 which appear
on the right-hand side of the expansion of F (ei1i2...iq , eiq), there is exactly one with the
property that jq+1 = jq +1, namely the monomial ei1i2...iqiq+1. The fact that they indeed

span the kernel of the restriction of D to Λq+1
k (h) follows from the same observation

and from the dimension count. The elements F (ei1i2...iq , eiq) ∈ Λq+1
k (h) with q ≥ 1, 2 ≤

i1 < i2 < · · · < iq, iq + 1 +
∑q

j=1 ij = k, are in one-to-one correspondence with the

elements ej1j2...jqjq+1 ∈ Λq+1
k (h) with 2 ≤ j1 < j2 < · · · < jq. On the other hand,

consider the linear operator A : Λq+1
k (h) → Λq+1

k−1(h) defined on the monomials as follows:
Aej1j2...jqjq+1 = ej1j2...jqjq+1−1. Then A is surjective and its kernel is spanned by the
monomials ej1j2...jqjq+1, so every surjective linear operator from Λq+1

k (h) to Λq+1
k−1(h) (in

particular, D) has a kernel of the same dimension.
(b) easily follows from the fact that for the operatorD defined for g = m0, the subspace

Λ(h) defined for m0(n) is D-invariant, and the restriction of D to it is the operator D
defined for m0(n). �

With Lemma 1 we can easily finish the computation of the cohomology for g = m0;
we obtain the same answer as in [8, Theorem 3.4]:

Theorem 3. The cohomology classes of the cocycles

e1, e2, F (ei1i2...iq , eiq), (13)

where q ≥ 1, 2 ≤ i1<i2<. . .<iq, form a basis for H∗(m0) over the field Z2.

Furthermore, the dimensions of the homogeneous components of H∗(m0) over Z2 are
the same as those over a field of characteristic zero, so in particular,

dimHq

k+
q(q+1)

2

(m0) = Pq(k)− Pq(k − 1),

where Pq(k) is the number of partitions of a positive integer k into q parts. The products
of the basis elements also have “the same” decomposition as in [8, Equation (8)], after
reducing the coefficients modulo 2.

Proof of Theorem 3. From Lemma 1(a) we know kerD, and so we know ker d = e1 ∧
Λ(h) ⊕ kerD. The image of d is just e1 ∧ Λ(h), by (9) and from the surjectivity of
D (which has been established in the proof of Lemma 1(a)). Putting these two facts
together we get the claim. �
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We now turn our attention to the case g = m0(n). We view m0(n) as a subspace of m0

spanned by the first n basis elements and for convenience, denote the operator D defined
for m0 by D. The following Proposition easily follows from Lemma 1.

Proposition 1. The space H1(m0(n)) is spanned by the classes of the elements e1, e2

and so b1(m0(n)) = 2. The space H2(m0(n)) is spanned by the classes of the elements

e1n, F (ei, ei) = ei,i+1 + ei−1,i+3 + · · · + e2,2i−1, 2 ≤ i ≤ 1
2
(n + 1), and so b2(m0(n)) =

⌊1
2
(n + 1)⌋.

Proof. The claim for H1(m0(n)) is clear. For the second cohomology, by Lemma 1(a),
the kernel of D is spanned by the elements F (ei, ei) = ei,i+1+ei−1,i+3+ · · ·+e2,2i−1. Since
a sum of some number of the F (ei, ei) belongs to m0(n) if and only if each of them does
(no two monomials of the different F (ei, ei) may possibly cancel), we get by Lemma 1(b):

kerD = Span(F (ei, ei) : 2 ≤ i ≤ 1
2
(n+ 1)). (14)

Then ker d = e1 ∧ Λ1(h) ⊕ kerD and so the second coboundary space is spanned by
e1i, F (ei, ei), i = 2, . . . , n − 1. Then, as the image of d on the space of one-forms is
spanned by e1 ∧ ei, for 1 ≤ i ≤ n− 1, the claim follows. �

Proposition 1 establishes parts (a) and (b) of Theorem 2. The first two Betti numbers
of m0(n) over Z2 are the same as those over a field of characteristic zero [2], but b3 is
different, as Theorem 2(c) shows.

Remark 1. Explicitly, for small values of n, Theorem 2(c) gives:

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
b3(m0(n)) 1 2 3 4 7 10 11 12 15 18 23 28 35 42 43 44 47 50

The sequence b3(m0(n)) is the sequence A266540 in [1]1. To see that, we note that by
the formula given in Theorem 2(c), b3(m0(n)) =

1
2
(b3(m0(n−1))+b3(m0(n+1))), for odd

n ≥ 3, and so it suffices to show that the even terms of the two sequences coincide, which
is equivalent to the fact that the sequence Al :=

1
2
b3(m0(2l)) =

1
3
(22p−2 − 1) + s2, where

l = 2p−1 + s, 0 < s ≤ 2p−1, coincides with A256249. This is equivalent to the fact that
Al is the (l− 1)-st partial sum of the sequence A006257 given by aj = 2(j− 2⌊log2 j⌋) + 1.

But the latter partial sum equals l2 − 1− 2(2p−1s+
∑p−2

i=0 2
2i), and the claim follows.

The proof of Theorem 2(c) is based on the following Proposition. For brevity, let us
denote the vector space Λ3(e2, . . . , en−1) by W . Denote h = Span(e2, . . . , en).

Proposition 2. For m as defined in Theorem 2, there exists ωk ∈ W for 2 ≤ k ≤ m
such that

kerD|Λ3(h) = kerD|W ⊕ Span(en ∧ F (ek, ek) + ωk : 2 ≤ k ≤ m).

We first prove the theorem assuming the Proposition.

1The authors are thankful to Omar E. Pol for pointing this out.
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Proof of Theorem 2(c). For n = 3 the statement is easily verified: H3(m0(3)) is spanned
by the class of the single element e123, so b1(m0(3)) = 1, as claimed.

Assume n ≥ 4. Denote dn the dimension of the kernel of the operator D constructed
for the algebra m0(n). Then from Proposition 2 we have dn = dn−1 +m − 1. It follows
that for n = 2p +m, 0 < m ≤ 2p, we have dn = d2p +

1
2
m(m− 1) and in particular,

d2p+1 = d2p + 2p−1(2p − 1). (15)

We also have d4 = 1, as for m0(4) the space kerD is spanned by e234. It follows from
(15) that d2p =

1
3
(2p − 1)(2p−1 − 1), and so dn = 1

3
(2p − 1)(2p−1 − 1) + 1

2
m(m− 1).

We have

dim ker(d : Λ3(m0(n)) → Λ4(m0(n))) = dn +dim(e1 ∧Λ2(m0(n)) = dn +
1

2
(n− 1)(n− 2).

On the other hand, from Proposition 1,

dim ker(d : Λ2(m0(n) → Λ3(m0(n)) = (n− 2) + ⌊1
2
(n+ 1)⌋,

and so the claim follows from (7). �

Proof of Proposition 2. Any ω ∈ Λ3(h) can be uniquely represented as ω = en ∧ ξ + ω′,
with ξ ∈ Λ2(e2, . . . , en−1), ω

′ ∈ Λ3(e2, . . . , en−1) = W . For ω to belong to kerD it is nec-
essary that Dξ = 0 (so that Dω does not contain en). From the proof of Proposition 1 it
follows that ξ must be a linear combination of F (ek, ek), k = 2, . . . , ⌊n/2⌋. Extracting the
homogeneous components we obtain that the proposition is equivalent to the following
statement: for 2 ≤ k ≤ ⌊n/2⌋, there exists ωk ∈ W such that en∧F (ek, ek)+ωk ∈ kerD,
if and only if k ≤ m.

The next step in the proof is the following lemma.

Lemma 2. For n ≥ 4 and 2 ≤ k ≤ ⌊n/2⌋, define a = ⌈(n+2k+1)/3⌉, b = ⌊n/2⌋+k−1.
There exists ωk ∈ W such that en∧F (ek, ek)+ωk ∈ kerD if and only if the linear system

Ax = (1, 0, . . . , 0)t ∈ Z
k−1
2 has a solution x ∈ Z

b−a+1
2 , where A is the (k−1)× (b−a+1)-

matrix given by

Aij =

(

n− (a + j − 1) + 2(i− 1)

(a+ j − 1) + (i− 1)− k

)

mod 2, 1 ≤ i ≤ k − 1, 1 ≤ j ≤ b− a + 1, (16)

and as usual we set
(

N

t

)

= 0 if t < 0 or t > N .

Proof. Suppose for some ωk ∈ W , the three-form ω = en ∧ F (ek, ek) + ωk belongs to
kerD (where 2 ≤ k ≤ ⌊n/2⌋). Without loss of generality we can assume that ωk is
homogeneous, of the same degree as en ∧ F (ek, ek), so that ω is homogeneous of degree
n+ 2k + 1.

By Lemma 1, the form ω viewed as a three-form on m0, lies in the kernel of D and so
is a linear combination of the forms F (es,r, er), 2 ≤ s < r, where by homogeneity we can
assume that s+ 2r + 1 = n + 2k + 1, from which it follows that s = n+ 2k − 2r. Then
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2 ≤ s ≤ r − 1 gives a ≤ r ≤ b. Therefore for some µr ∈ Z2, r = a, . . . , b we have

ω = F (ek, ek) ∧ en + ωk =
∑b

r=a
µrF (en+2k−2r,r, er)

=
∑b

r=a
µr

∑∞

l=0
Dl(en+2k−2r,r) ∧ el+r+1

=
∑∞

l=0

∑b

r=a
µrD

l(en+2k−2r,r) ∧ el+r+1. (17)

As n + 2k − 2r = s < r ≤ b and b = ⌊n/2⌋ + k − 1 ≤ 2⌊n/2⌋ − 1 < n, no
terms Dl(en+2k−2r,r) in the latter expression may possibly contain eN , N ≥ n. It
follows that the only terms containing eN with N ≥ n in (17) are ξN ∧ eN , where

ξN :=
∑min{b,N−1}

r=a µrD
N−r−1(en+2k−2r,r). In fact, since ω ∈ Λ3(m0(n)), we have ξN = 0

for all N > n and equating the terms containing en we get ξn = F (ek, ek). Conversely,
if ξn = F (ek, ek), then ξN = 0 for all N > n, as ξn+1 = Dξn = DF (ek, ek) = 0, ξn+2 =
D2ξn = D2F (ek, ek) = 0, and so on. Thus a necessary and sufficient condition for the
existence of ωk ∈ W such that the three-form ω = en ∧ F (ek, ek) + ωk belongs to kerD
is the existence of µr ∈ Z2, r = a, . . . , b such that

F (ek, ek) = ξn =
∑b

r=a
µrD

n−r−1(en+2k−2r,r). (18)

(the summation on the right-hand side is up to b as b ≤ n − 1). Note that both sides
are homogeneous two-forms of degree 2k+ 1. Recall that F (ek, ek) = ek,k+1 + ek−1,k+2 +
· · ·+ e2,2k−1, and observe that

Dn−r−1(en+2k−2r,r) =
∑n−r−1

i=0

(

n−r−1
i

)

e2k−r+i+1,r−i.

So expanding and equating coefficients of the corresponding monomials we see that (18)
is equivalent to the following system:

∑b

r=a
µr

((

n−r−1
r−k

)

+
(

n−r−1
r−(k+1)

))

= 1 mod 2,

∑b

r=a
µr

((

n−r−1
r−(k−1)

)

+
(

n−r−1
r−(k+2)

))

= 1 mod 2,

...
∑b

r=a
µr

((

n−r−1
r−2

)

+
(

n−r−1
r−(2k−1)

))

= 1 mod 2.

Now the linear combination of the first s ≤ k − 1 of the above equations with the
coefficients

(

2s−1
s−1

)

,
(

2s−1
s−2

)

, . . . ,
(

2s−1
1

)

,
(

2s−1
0

)

respectively gives

∑b

r=a
µr

(

∑2s−1

i=0

(

2s− 1

i

)(

n− r − 1

r − k − s+ i

))

=
∑b

r=a
µr

(

n− r + 2s− 2

r − k + s− 1

)

on the left-hand side (as
∑l

i=0

(

l

i

)(

N

t+i

)

=
∑l

i=0

(

l

l−i

)(

N

t+i

)

=
(

N+l

t+l

)

by Vandermonde’s

identity). On the right-hand side we obtain
(

2s−1
s−1

)

+
(

2s−1
s−2

)

+ · · · +
(

2s−1
1

)

+
(

2s−1
0

)

=
1
2
× 22s−1 = 22s−2, which is odd when s = 1 and even otherwise. Thus the above system

of equations is equivalent to the following one:
∑b

r=a
µr

(

n−r

r−k

)

= 1 mod 2,
∑b

r=a
µr

(

n−r+2s−2
r−k+s−1

)

= 0 mod 2, for 2 ≤ s ≤ k − 1.
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This is equivalent to the claim of the lemma if we define x = (µa, µa+1, . . . , µb)
t. �

In order to use Lemma 2 to conclude the proof of the proposition, we need to show
that the system Ax = (1, 0, . . . , 0)t has a solution if and only if k ≤ m. Even though we
are working over Z2, let us say that vectors x, y are orthogonal if xty = 0.

To prove the necessity we show that, assuming k > m, the first row of A belongs to
the span of the next m− 1 rows, namely that

((

k−m−1
0

)

,
(

k−m−1
1

)

, . . . ,
(

k−m−1
k−m−1

)

, 0, . . . , 0
)

A = 0 mod 2. (19)

Then any x orthogonal to all the rows of A starting from the second one, must also be
orthogonal to the first row, and so the system Ax = (1, 0, . . . , 0)t has no solutions. To
establish (19) we need to show that for every j = 1, . . . , b− a+ 1, we have

∑k−m

i=1

(

k −m− 1

i− 1

)(

n− (a + j − 1) + 2(i− 1)

(a+ j − 1) + (i− 1)− k

)

= 0 mod 2.

which is equivalent (by substitution r = a+ j−1, l = i−1, N = k−m−1, n = 2p+m)
to showing that for all r = a, . . . , b,

∑N

l=0

(

N

l

)(

2p − 1− (r − k +N − 2l)

r − k + l

)

= 0 mod 2. (20)

We require the following Lemma.

Lemma 3. Suppose p ≥ 2 and let x, y ∈ Z.

(a) If 0 ≤ x < y < 2p, then
(

2p+x

y

)

= 0 mod 2.

(b) If x, y ≤ 2p − 2 and y, x+ y > 0, then
(

2p−1−x

y

)

=
(

y+x

y

)

mod 2.

Proof. By Kummer’s Theorem, a binomial coefficient
(

q

t

)

with 0 ≤ t is odd if and only
if there is a place in the binary representation where q has 0 and t has 1 and, when
0 ≤ t ≤ q, if and only if there is a place in the binary representation where both q − t
and t have 1.

(a) For
(

2p+x

y

)

= 1 mod 2, the binary representation of 2p+x must have a 1 at all the

places where the binary representation of y does. But as y < 2p, this implies that the
binary representation of x has a 1 at all the places where the binary representation of y
does, which contradicts the fact that y > x.

(b) First suppose x ≥ 0. Then
(

2p−1−x

y

)

is even if and only if there is a place in the

binary representation where 2p − 1 − x has 0 and y has 1 if and only if there is a place
in the binary representation where x has 1 and y has 1 if and only if

(

y+x

y

)

is even.

Now let x < 0. So
(

y+x

y

)

= 0. Denote z = −x − 1 ≥ 0. Then
(

2p−1−x

y

)

=
(

2p+z

y

)

and

0 ≤ z < y ≤ 2p − 2 by our assumption. By part (a),
(

2p+z

y

)

=
(

z

y

)

mod 2, and
(

z

y

)

= 0

as z < y. So
(

y+x

y

)

=
(

2p+z

y

)

mod 2. �

To apply Lemma 3(b) to the binomial coefficients
(

2p−1−(r−k+N−2l)
r−k+l

)

from (20) we need

to check few inequalities. We have r−k ≥ a−k =
⌈

1
3
(n− k + 1)

⌉

≥
⌈

1
3
(n−

⌊

1
2
n
⌋

+ 1)
⌉

=
⌈

1
3
(
⌈

1
2
n
⌉

+ 1)
⌉

≥ 1 and so r − k + l ≥ 1 and (r − k + l) + (r − k + N − 2l) ≥ 1.

Furthermore, r − k + l, r − k +N − 2l ≤ r − k +N ≤ b− k +N = ⌊1
2
n⌋ +N − 1, and

⌊1
2
n⌋ +N − 1 = ⌊1

2
n⌋ + k −m− 2 ≤ 2⌊1

2
n⌋ −m− 2 = 2⌊2p−1 + 1

2
m⌋ −m− 2 ≤ 2p − 2.
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So the hypotheses of Lemma 3(b) are satisfied with x = r − k +N − 2l, y = r − k + l.

So Lemma 3(b) gives
(

2p−1−(r−k+N−2l)
r−k+l

)

=
(

2(r−k)+N−l

r−k+l

)

mod 2, for every l = 0, . . . , N .

Vandermonde’s identity gives
(

2(r−k)+N−l

r−k+l

)

=
∑N−l

i=0

(

N−l

i

)(

2(r−k)
r−k+l−i

)

, and hence the left-
hand side of (20) is congruent modulo 2 to

N
∑

l=0

(

N

l

) N−l
∑

i=0

(

N − l

i

)(

2(r − k)

r − k + l − i

)

=
∑

i,l≥0;i+l≤N

(

N

i, l, N − l − i

)(

2(r − k)

r − k + l − i

)

=
∑

i>l≥0;i+l≤N

(

N

i, l, N − l − i

)((

2(r − k)

r − k + l − i

)

+

(

2(r − k)

r − k + i− l

))

+
∑

i≥0;2i≤N

(

N

i, i, N − 2i

)(

2(r − k)

r − k

)

= 0 mod 2,

as
(

2(r−k)
r−k+l−i

)

=
(

2(r−k)
r−k+i−l

)

and
(

2(r−k)
r−k

)

= 2
(

2(r−k)−1
r−k

)

. This completes the proof of necessity.

To prove the sufficiency we explicitly produce, for any 2 ≤ k ≤ m, a vector x ∈ Z
b−a+1
2

such that Ax = (1, 0, . . . , 0)t ∈ Z
k−1
2 :

xj =
∑p−1

s=0

(

m− k

n− (a+ j − 1)− 2s

)

, j = 1, . . . , b− a + 1. (21)

By Lemma 2 we need to show that for all i = 1, . . . , k − 1,

b−a+1
∑

j=1

((

n− (a+ j − 1) + 2(i− 1)

(a + j − 1) + (i− 1)− k

) p−1
∑

s=0

(

m− k

n− (a+ j − 1)− 2s

))

mod 2 = δ1i. (22)

We first show that the expression on the left-hand side of (22) can be rewritten as

p−1
∑

s=0

∑

j∈Z

(

n− (a+ j − 1) + 2(i− 1)

(a+ j − 1) + (i− 1)− k

)(

m− k

n− (a+ j − 1)− 2s

)

mod 2,

so that there is no contribution from the values j ≤ 0 and j ≥ b−a+1. The latter is easy:
for the first binomial coefficient to be nonzero we need to have n− (a+ j−1)+2(i−1) ≥
(a + j − 1) + (i − 1) − k which gives 2j ≤ n + k + i + 1 − 2a ≤ n + 2k − 2a, as
i ≤ k − 1, so j ≤ ⌊n/2⌋ + k − a = b − a + 1. To prove the former, we first look
at the second binomial coefficient, from which we get m − k ≥ n − (a + j − 1)− 2s, so
j ≥ n−a+1+k−m−2s ≥ n− 1

3
(n+2k+1)− 2

3
+1+k−m−2s = 1

3
(2p+1+k−m−3 ·2s).

Now if s < p− 1 the expression on the right-hand side is positive, as m ≤ 2p, and we are
done. Suppose s = p− 1. Then we have j ≥ 1

3
(2p−1 + k −m), which still implies j > 0

unless m = 2p−1 + k + l, l ≥ 0, in which case we have j ≥ −1
3
l. Then

a =

⌈

2p +m+ 2k + 1

3

⌉

=

⌈

2p + 2p−1 + 3k + l + 1

3

⌉

= 2p−1 + k +

⌈

l + 1

3

⌉
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and the first binomial coefficient has the form
(

2p+x

y

)

, where

x = n− (a + j − 1) + 2(i− 1)− 2p = m− (a + j − 1) + 2(i− 1)

= 2p−1 + k + l − (a + j − 1) + 2(i− 1) = l + 1− ⌈(l + 1)/3⌉+ 2(i− 1)− j,

y = (a + j − 1) + (i− 1)− k = 2p−1 + ⌈(l + 1)/3⌉+ j + i− 2.

Note that as i ≥ 1, we have x ≥ 0 if j ≤ 0. Also if j ≤ 0, then as i ≤ k − 1, we have
y ≤ 2p−1+⌈(l + 1)/3⌉+k−3 ≤ 2p−1+ l+k−2 = m−2 < 2p. Moreover, if j ≤ 0, then as
i ≤ k−1, we have y−x = (2p−1+⌈(l + 1)/3⌉+j+i−2)−(l+1−⌈(l + 1)/3⌉+2(i−1)−j) =
2p−1 + 2 ⌈(l + 1)/3⌉ − (l + 1) + 2j − i ≥ 2p−1 + 2 − (l + 1) − k = 2p − m + 1 > 0. So
the hypotheses of Lemma 3(a) are satisfied, and hence the binomial coefficient

(

2p+x

y

)

is

even. So it remains to establish that

p−1
∑

s=0

∑

j∈Z

(

n− (a + j − 1) + 2(i− 1)

(a+ j − 1) + (i− 1)− k

)(

m− k

n− (a + j − 1)− 2s

)

mod 2 = δ1i, (23)

for all i = 1, . . . , k − 1.
A clear advantage of (23) is that it “takes care of itself” – we do not have to worry

about the limits. Changing the summation variable in (23) to h = n − (a + j − 1)− 2s

we obtain that (23) is equivalent to

p−1
∑

s=0

∑

h∈Z

(

2s + 2(i− 1) + h

n− 2s + (i− 1)− k − h

)(

m− k

h

)

mod 2 = δ1i. (24)

Now for a polynomial P ∈ Z2[t] and l ∈ Z we denote {P}l the coefficient of tl in P .
Consider the polynomial Px,y(t) = (t2 + t)x(t2 + t + 1)y. We have

Px,y(t) =
∑

h∈Z

(

y

h

)

(t2 + t)x+h =
∑

h,s∈Z

(

y

h

)(

x+ h

s

)

tx+h+s =
∑

l∈Z

∑

h∈Z

(

x+ h

l − x− h

)(

y

h

)

tl,

so the left-hand side of (24) equals

p−1
∑

s=0

{P2s+2(i−1),m−k}n+3(i−1)−k =

{ p−1
∑

s=0

(t2 + t)2
s+2(i−1)(t2 + t + 1)m−k

}

n+3(i−1)−k

=

{ p−1
∑

s=0

(t2 + t)2
s

(t2 + t)2(i−1)(t2 + t+ 1)m−k

}

n+3(i−1)−k

= {(t2
p

+ t)(t2 + t)2(i−1)(t2 + t+ 1)m−k}n+3(i−1)−k

modulo 2 (since as (t2+t)2
s

= t2
s+1

+t2
s

in Z2[t] and so
∑p−1

s=0(t
2+t)2

s

= t2
p+1

+t mod 2).
Now, if in the expansion of the latter polynomial we take t from the first parentheses,
then the maximal degree of t in the resulting terms will be 1 + 4(i − 1) + 2(m − k) ≤
2m− 1+3(i− 1)− k < n+3(i− 1)− k, as i ≤ k− 1 and n = 2p+m, m ≤ 2p. It follows
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that
p−1
∑

s=0

{P2s+2(i−1),m−k}n+3(i−1)−k = {t2
p

(t2 + t)2(i−1)(t2 + t+ 1)m−k}n+3(i−1)−k

= {(t+ 1)2(i−1)(t2 + t+ 1)m−k}m+(i−1)−k

=
∑

l∈Z

{(t+ 1)2(i−1)}i−1+l{(t
2 + t+ 1)m−k}m−k−l

= {(t+ 1)2(i−1)}i−1{(t
2 + t+ 1)m−k}m−k mod 2,

where the last equality follows from the symmetry: for the polynomial f(t) = (t+1)2(i−1)

we have f(t) = t2(i−1)f(t−1), so {(t + 1)2(i−1)}i−1+l = {(t + 1)2(i−1)}i−1−l, and similarly
{(t2 + t+ 1)m−k}m−k−l = {(t2 + t+ 1)m−k}m−k+l.

Now if i > 1 we obtain {(t + 1)2(i−1)}i−1 =
(

2(i−1)
i−1

)

= 0 mod 2, as required. If i = 1

we get {(t2 + t + 1)m−k}m−k = {
∑

l

(

m−k

l

)

(t2 + t)l}m−k = {
∑

l,h

(

m−k

l

)(

l

h

)

th+l}m−k =
∑

l

(

m−k

l

)(

l

m−k−l

)

=
∑

s

(

m−k

s

)(

m−k−s

s

)

, where s = m − k − l. The terms with s < 0
vanish, and the term with s = 0 is 1. For s > 0, consider the first place, counting from
the right, where the binary expansion of s has a 1. Then by Kummer’s Theorem, for
(

m−k

s

)

to be nonzero, the binary expansion of m− k must have a 1 at the same place, so

the binary expansion of m− k− s will have zero at that place, thus
(

m−k−s

s

)

= 0. Hence

{(t2+ t+1)m−k}m−k = 1 mod 2, as required. This concludes the proof of Proposition 2
and hence of Theorem 2(c). �

Note that one can extract from the above proof an explicit basis for the space of
three-cocycles of m0(n) (and hence for H3(m0(n))). We have the following theorem.

Theorem 4. For n ≥ 4, n = 2p + m, 0 < m ≤ 2p and for 2 ≤ k ≤ m, define the

numbers a = ⌈(n+2k+1)/3⌉, b = ⌊n/2⌋+k−1. Let Bn be the set of elements of m0(n)
of the form

b
∑

r=a

p−1
∑

s=0

(

m− k

n− r − 2s

)

F (en+2k−2r,r, er)=

b
∑

r=a

p−1
∑

s=0

(

m− k

n− r − 2s

)

∑

l≥0

Dl(en+2k−2r∧er)∧er+l+1,

for 2 ≤ k ≤ m, where D is the linear operator defined by (9) and the binomial coefficients

are taken modulo 2. Then classes of the elements of the set

{e1,i−1,i, 2 + ⌊n/2⌋ ≤ i ≤ n} ∪
⋃

4≤t≤n

Bt.

is a basis for the cohomology space H3(m0(n)), n ≥ 4, over the field Z2.

Proof. We start with the elements e1,i−1,i, 2 + ⌊n/2⌋ ≤ i ≤ n. They are linearly inde-
pendent cocycles and the space spanned by them has the correct dimension, which is the
codimension of the space of coboundaries in the space spanned by e1ij , 1 < i < j ≤ n,
by Proposition 1. It suffices to show that neither of them is a coboundary. But if
it were so, then by homogeneity we would have had that e1,i−1,i is the coboundary
of a linear combination of the elements ekl, 2 ≤ k < l ≤ n, k + l = 2i, that
is, of the elements ei−k,i+k, k = 1, . . . , n − i (note that as i ≥ 2 + ⌊n/2⌋, we have
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2i − n − 1 ≥ 2). But the coboundary of any such element is the sum of exactly two
monomials, e1,i−k−1,i+k + e1,i−k,i+k−1, so the coboundary of any linear combination of
them is a sum of an even number of monomials, hence cannot be equal to e1,i−1,i.

As to the element from the sets Bt, no linear combination of them is a coboundary (as
any coboundary is a multiple of e1). Moreover, from Proposition 2 (both the statement
and the proof) it follows that they form a basis for the kernel of D, where the form of
the elements given in the statement follows from Lemma 2 and Equation (21). �

Example 1. For n = 4, . . . , 12, the space of 3-cocycles of m0(n) is spanned by the three-
forms e1ij , 1 < i < j ≤ n, and the three-forms from the following table in the rows
labelled by the numbers less than or equal to n.

4 e234

5

6 e245 + e236

7 e345 + e246 + e237, e356 + e257 + e347

8 e256 + e247 + e238, e456 + e357 + e258 + e348, e467 + e278 + e368 + e458

9

10 e267 + e258 + e249 + e23(10)

11 e367 + e268 + e358 + e349 + e24(10) + e23(11),
e378 + e279 + e369 + e35(10) + e25(11) + e34(11)

12
e467 + e368 + e458 + e269 + e25(10) + e24(11) + e23(12),
e478 + e289 + e379 + e469 + e45(10) + e35(11) + e25(12) + e34(12),
e489+ e38(10)+ e47(10)+ e28(11)+ e46(11)+ e27(12)+ e36(12)+ e45(12)

4. Cohomology of m2

In this section, we compute the cohomology of the infinite-dimensional Lie algebra m2

given by (2):

m2 = Span(e1, e2, . . . ), [e1, ei] = ei+1, i > 1, [e2, ej] = ej+2, j > 2,

hence completing the proof of Theorem 1. First we state the following result for the
truncation m2(n).

Corollary 1. The first three Betti numbers of the Lie algebra m2(n), n ≥ 5, over Z2 are

given by b1(m2(n)) = 2, b2(m2(n)) = [1
2
(n + 1)], and

b3(m2(n)) =
1
3
(2p − 1)(2p−1 − 1) + 1

2
m(m− 1) + [1

2
(n− 1)],

where n = 2p +m, 0 < m ≤ 2p.

Proof. By [14, Theorem 1], the Betti numbers of m2(n) and of m0(n) over Z2 are the
same. The claim then follows from Theorem 2. �

Remark 2. It is easy to see that H1(m2(n)) is spanned by the cohomology classes of
e1 and e2 and that H2(m2(n)) is spanned by the cohomology classes of the elements
e1n+e2,n−1, ei,i+1+ei−1,i+3+ · · ·+e2,2i−1, where 2 ≤ i ≤ 1

2
(n+1). A basis for H3(m2(n))
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can be found by applying the map f from [14, Definition 3] (see below) to the elements
of the basis for H3(m0(n)) constructed in Theorem 4; the resulting basis is the same.

In the infinite-dimensional case, we follow the construction of [14]. As in the Introduc-
tion, let V = Span(e1, e2, . . . ), and define the operator D1 on V ∗ by D1e

1 = D1e
2 = 0,

D1e
i = ei−1, for i > 2, and then extend it to Λ(V ) as a derivation. Note that any

ω ∈ Λq(V ), q ≥ 2, has a unique presentation in the form ω = e1 ∧ ξ + e2 ∧ η + ζ , where
ξ ∈ Λq−1(e2, e3, . . . ), η ∈ Λq−1(e3, e4, . . . ) and ζ ∈ Λq(e3, e4, . . . ). Note that ξ, η and ζ
linearly depend on ω.

Define the linear map f on Λ(V ) by setting f(e1∧ξ+e2∧η+ζ) = e1∧ξ+e2∧(η+D1ξ)+ζ
on the forms of rank at least two, and taking it to be the identity on V ∗. The following
properties of f are easy to check:

• f is an involution, hence a bijection, and f−1 = f ,
• the restriction of f to Λ(e2, e3, . . . ) is the identity,
• f preserves the homogeneous components: f(Λq

k(V )) = Λq

k(V ).

The main feature of f is the fact that it interweaves the differentials of m0 and m2.
More precisely, consider m0 and m2 to have the same underlying linear space V , but to
be defined by the brackets (1) and (2) respectively relative to the same basis {e1, e2, . . . }
for V . Then for all ω ∈ Λ(V ), we have

fd0ω = d2fω, fd2ω = d0fω, (25)

where d0 and d2 are the differentials on m0 and m2 respectively. The first equation is
easily verified for ω = ei, and the proof for ω ∈ Λq(V ), q ≥ 2, is identical to the proof of
[14, Proposition 1]. The second one follows, as f is an involution.

Proof of Theorem 1. By (25), f bijectively maps cocycles and coboundaries of m0 to
cocycles and coboundaries of m2 respectively. It follows that H∗(m2) is spanned by the
classes of the images under f of the elements (13). As f acts on all those elements as
the identity, we obtain that the basis for H∗(m2) is the set of the classes of the same
cocycles.

The fact that the multiplicative structure is preserved follows from the fact that the
restriction of f to Λ(e2, e3, . . . ) is the identity and that multiplication by e1 is trivial in
both H∗(m0) and H∗(m2). Multiplication by e1 is trivial in H∗(m0) because e1 ∧ ω is a
d0-coboundary, for any ω (see the proof of Theorem 3). To see that multiplication by
e1 is trivial in H∗(m2), notice that for any ω in the list (13), one has Dω = 0 (which
is essentially assertion (a) of Lemma 1), and so f(e1 ∧ ω) = e1 ∧ ω, which is then a
d2-coboundary, as f maps coboundaries to coboundaries. �

Acknowledgements. We are very grateful to Grant Cairns for drawing our attention to
the question, for many useful discussions and for his help which improved the presentation
of this paper.

References

1. The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org/,
2015.

http://oeis.org/


COHOMOLOGY OF N-GRADED LIE ALGEBRAS OF MAXIMAL CLASS OVER Z2 15

2. Grant F. Armstrong and Stefan Sigg, On the cohomology of a class of nilpotent Lie algebras, Bull.
Austral. Math. Soc. 54 (1996), no. 3, 517–527.

3. M. Bordemann, Nondegenerate invariant bilinear forms on nonassociative algebras, Acta Math.
Univ. Comenian. (N.S.) 66 (1997), no. 2, 151–201.

4. Grant Cairns and Sebastian Jambor, The cohomology of the Heisenberg Lie algebras over fields of

finite characteristic, Proc. Amer. Math. Soc. 136 (2008), no. 11, 3803–3807.
5. A. Caranti, S. Mattarei, and M. F. Newman, Graded Lie algebras of maximal class, Trans. Amer.

Math. Soc. 349 (1997), no. 10, 4021–4051.
6. A. Caranti and M. F. Newman, Graded Lie algebras of maximal class. II, J. Algebra 229 (2000),

no. 2, 750–784.
7. Alice Fialowski, On the classification of graded Lie algebras with two generators, Moscow Univ.

Math. Bull. 38 (1983), no. 2, 76–79.
8. Alice Fialowski and Dmitri Millionschikov, Cohomology of graded Lie algebras of maximal class, J.

Algebra 296 (2006), no. 1, 157–176.
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