
Primitive Lattice Polytopes

Antoine Dezaa, George Manoussakisb, and Shmuel Onnc

aMcMaster University, Hamilton, Ontario, Canada
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Abstract

We introduce and study a family of polytopes which can be seen as a generalization of the
permutahedron of type Bd. We highlight connections with the largest possible diameter
of the convex hull of a set of points in dimension d whose coordinates are integers between
0 and k, and with a parameter controlling the computational complexity of multicriteria
matroid optimization.
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1 Introduction

We introduce and study lattice polytopes generated by the primitive vectors of bounded norm.
These primitive lattice polytopes can be seen as a generalization of the permutahedron of type
Bd. We note that, besides a large symmetry group, primitive lattice polytopes have a large
diameter and many vertices relative to their grid size embedding. The article is structured as
follows. In Section 2, we introduce the primitive lattice polytopes and some of their proper-
ties. In Section 3, respectively Section 4, lower bounds for the diameter of lattice polytopes,
respectively lower and upper bounds for a parameter studied in convex matroid optimization,
are derived.

Finding a good bound on the maximal edge-diameter of a polytope in terms of its dimen-
sion and the number of its facets is not only a natural question of discrete geometry, but also
historically closely connected with the theory of the simplex method. Recent results deal-
ing with the combinatorial, geometric, and algorithmic aspects of linear optimization include
Santos’ counterexample to the Hirsch conjecture, and Allamigeon, Benchimol, Gaubert, and
Joswig’s counterexample to a continuous analogue of the polynomial Hirsch conjecture. Kalai
and Kleitman’s upper bound for the diameter of polytopes was strengthened by Todd, and
then by Sukegawa. Kleinschmidt and Onn’s upper bound for the diameter of lattice polytopes
was strengthened by Del Pia and Michini, and then by Deza and Pournin. For more details
and additional results such as the validation that transportation polytopes satisfy the Hirsch
bound, see [2, 5, 6, 7, 8, 15, 20, 23, 25] and references therein. For convex matroid optimization,
we refer to [17, 19] and references therein.
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2 Primitive lattice polytopes

2.1 Zonotopes generated by short primitive vectors

The convex hull of integer-valued points is called a lattice polytope and, if all the vertices are
drawn from {0, 1, . . . , k}d, is refereed to as a lattice (d, k)-polytope. For simplicity, we only
consider full dimensional lattice (d, k)-polytopes. Given a finite set G of vectors, also called the
generators, the zonotope generated by G is the convex hull of all signed sums of the elements of
G. Searching for lattice polytopes with a large diameter for a given k, natural candidates include
zonotopes generated by short integer vectors in order to keep the grid embedding size relatively
small. In addition, we restrict to integer vectors which are pairwise linearly independent in
order to maximize the diameter. Thus, for q = ∞ or a positive integer, and d, p positive
integers, we consider the primitive lattice polytope Zq(d, p) defined as the zonotope generated
by the primitive integer vectors of q-norm at most p:

Zq(d, p) =
∑

[−1, 1]{v ∈ Zd : ‖v‖q ≤ p , gcd(v) = 1 , v � 0}

where gcd(v) is the largest integer dividing all entries of v, and � the lexicographic order on
Rd, i.e. v � 0 if the first nonzero coordinate of v is positive. In Section 3, we consider Hq(d, p)
which is, up to translation, the image of Zq(d, p) by the homothety of factor 1/2:

Hq(d, p) =
∑

[0, 1]{v ∈ Zd : ‖v‖q ≤ p , gcd(v) = 1 , v � 0}.

In other words, Hq(d, p) is the Minkowski sum of the generators of Zq(d, p). In Section 4, we
consider the positive primitive lattice polytope Z+

q (d, p) defined as the zonotope generated by
the primitive integer vectors of q-norm at most p with nonnegative coordinates:

Z+
q (d, p) =

∑
[−1, 1]{v ∈ Zd+ : ‖v‖q ≤ p , gcd(v) = 1}

where Z+ = {0, 1, . . . }. Similarly, one can consider the Minkowski sum of the generators of
Z+
q (d, p):

H+
q (d, p) =

∑
[0, 1]{v ∈ Zd+ : ‖v‖q ≤ p , gcd(v) = 1}.

We illustrate the primitive lattice polytopes with a few examples:

(i) Z1(2, 2) is generated by {(0, 1), (1, 0), (1, 1), (1,−1)} and forms the octagon whose vertices
are {(−3,−1), (−3, 1), (−1, 3), (1, 3), (3, 1), (3,−1), (1,−3), (−1,−3)}. H1(2, 2) is, up to
translation, a lattice (2, 3)-polygon.

(ii) Z1(3, 2) is congruent to the truncated cuboctahedron – which is also called great rhom-
bicuboctahedron – and is the Minkowski sum of an octahedron and a cuboctahedron,
see for instance Eppstein [9]. H1(3, 2) is, up to translation, a lattice (3, 5)-polytope with
diameter 9 and 48 vertices.

(iii) Z∞(3, 1) is congruent to the truncated small rhombicuboctahedron which is the Minkowski
sum of a cube, a truncated octahedron, and a rhombic dodecahedron, see for instance
Eppstein [9]. H∞(3, 1) is, up to translation, a lattice (3, 9)-polytope with diameter 13
and 96 vertices.
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(iv) For finite q, Zq(d, 1) is generated by the d unit vectors and forms the {−1, 1}d-cube, and
Hq(d, 1) is the {0, 1}d-cube.

(v) Z+
∞(2, 2) is generated by {(0, 1), (1, 0), (1, 1), (1, 2), (2, 1)} and forms the decagon whose

vertices are {(−5,−5), (−5,−3), (−3,−5), (−3, 1), (−1, 3), (1,−3), (3, 1), (3, 5), (5, 3), (5, 5)}.
H+
∞(2, 2) is a lattice (2, 5)-polygon.

(vi) Z1(d, 2) is the permutahedron of type Bd and thus, H1(d, 2) is, up to translation, a lattice
(d, 2d− 1)-polytope with 2dd! vertices and diameter d2.

(vii) H+
1 (d, 2) is the Minkowski sum of the permutahedron with the {0, 1}d-cube. Thus,

H+
1 (d, 2) is a lattice (d, d)-polytope with diameter

(
d+1
2

)
.

2.2 Combinatorial properties of the primitive lattice polytopes

We provide properties concerning Zq(d, p) and Z+
q (d, p), and in particular their symmetry group,

diameter, and vertices. Z1(d, 2) is the permutahedron of type Bd as its generators form the
root system of type Bd, see [14]. Thus, Z1(d, 2) has 2dd! vertices and its symmetry group is Bd.
The properties listed in this section are extensions to Zq(d, p) of known properties of Z1(d, 2),
and thus given without proof. We refer to Fukuda [10], Grünbaum [12], and Ziegler [26] for
polytopes and, in particular, zonotopes.

Property 2.1.

(i) Zq(d, p) is invariant under the symmetries induced by coordinate permutations and the
reflections induced by sign flips.

(ii) The sum σq(d, p) of all the generators of Zq(d, p) is a vertex of both Zq(d, p) and Hq(d, p).
The origin is a vertex of Hq(d, p) and −σq(d, p) is a vertex of Zq(d, p).

(iii) The coordinates of the vertices of Zq(d, p) are odd, and thus the number of vertices of
Zq(d, p) is a multiple of 2d.

(iv) Hq(d, p) is, up to translation, a lattice (d, k)-polytope where k is the sum of the first
coordinates of all generators of Zq(d, p).

(v) The diameter of Zq(d, p), respectively Z+
q (d, p), is equal to the number of its generators.

Property 2.2.

(i) Z+
q (d, p) is centrally symmetric and invariant under the symmetries induced by coordinate

permutations.

(ii) The sum σ+
q (d, p) of all the generators of Z+

q (d, p) is a vertex of both Z+
q (d, p) and

H+
q (d, p). The origin is a vertex of H+

q (d, p) and −σ+
q (d, p) is a vertex of Z+

q (d, p).

A vertex v of Zq(d, p) is called canonical if v1 ≥ · · · ≥ vd > 0. Property 2.1 item (i) implies
that the vertices of Zq(d, p) are all the coordinate permutations and sign flips of its canonical
vertices.
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Property 2.3.

(i) A canonical vertex v of Zq(d, p) is the unique maximizer of {max cTx : x ∈ Zq(d, p)} for
some vector c satisfying c1 > c2 > · · · > cd > 0.

(ii) Z1(d, 2) has 2dd! vertices corresponding to all coordinate permutations and sign flips of
the unique canonical vertex σ1(d, 2) = (2d− 1, 2d− 3, . . . , 1).

(iii) Z+
∞(d, 1) has at least 2 + 2d! vertices with are the 2d! permutations of ±σ(d) where σ(d)

is a vertex with pairwise distinct coordinates, and the 2 vertices ±σ+
∞(d, 1).

3 Primitive lattice polytopes with large diameter

Let δ(d, k) be the maximum possible edge-diameter over all lattice (d, k)-polytopes. Naddef [18]
showed in 1989 that δ(d, 1) = d, Kleinschmidt and Onn [16] generalized this result in 1992
showing that δ(d, k) ≤ kd. In 2016, Del Pia and Michini [7] strengthened the upper bound
to δ(d, k) ≤ kd − dd/2e for k ≥ 2, and showed that δ(d, 2) = b3d/2c. Pursuing Del Pia and
Michini’s approach, Deza and Pournin [8] showed that δ(d, k) ≤ kd − d2d/3e for k ≥ 3, and
that δ(4, 3) = 8. Del Pia and Michini conclude their paper noting that the current lower bound
for δ(d, k) is of order k2/3d and ask whether the gap between the lower and upper bounds could
be closed, or at least reduced. The order k2/3d lower bound for δ(d, k) is a direct consequence
of the determination of δ(2, k) which was investigated independently in the early nineties by
Thiele [24], Balog and Bárány [3], and Acketa and Žunić [1]. In this section, we highlight that
H1(2, p) is the unique polygon achieving δ(2, k) for a proper k, and that a Minkowski sum of a
proper subset of the generators of H1(d, 2) achieves a diameter of b(k+1)d/2c for all k ≤ 2d−1.

3.1 H1(2, p) as a lattice polygon with large diameter

Finding lattice polygons with the largest diameter; that is, to determine δ(2, k), was investigated
independently in the early nineties by Thiele [24], Balog and Bárány [3], and Acketa and
Žunić [1]. This question can be found in Ziegler’s book [26] as Exercise 4.15. The answer
is summarized in Proposition 3.1 where φ(j) is the Euler totient function counting positive
integers less or equal to j and relatively prime with j. Note that φ(1) is set to 1.

Proposition 3.1. H1(2, p) is, up to translation, a lattice (2, k)-polygon with k =
∑

1≤j≤p
jφ(j)

where φ(j) denotes the Euler totient function. The diameter of H1(2, p) is 2
∑

1≤j≤p
φ(j) and

satisfies δ(H1(2, p)) = δ(2, k). Thus, δ(2, k) = 6( k
2π

)2/3 +O(k1/3 log k).

Note that lattice polygons can be associated to set of integer-valued vectors adding to zero and
such that no pair of vectors are positive multiples of each other. Such set of vectors forms a
(2, k)-polygon with 2k being the maximum between the sum of the norms of the first coordinates
of the vectors and the sum of the norms of the second coordinates of the vectors. Then, for
k =

∑
1≤j≤p

jφ(j) for some p, one can show that δ(2, k) is achieved uniquely by a translation of

H1(2, p). For k 6=
∑

1≤j≤p
jφ(j) for any p, δ(2, k) is achieved by a translation of a Minkowski sum
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of an appropriate subset of the generators of H1(2, p) including all generators of H1(2, p − 1)

for an appropriate p. For the order of
∑

1≤j≤p
φ(j), respectively

∑
1≤j≤p

jφ(j), being 3p2

π2 +O(p ln p),

respectively 2p3

π2 +O(p2 ln p), we refer to [13]. The first values of δ(2, k) are given in Table 1.

p of H1(2, p) 1 2 3 4
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

δ(2, k) 2 3 4 4 5 6 6 7 8 8 8 9 10 10 10 11 12

Table 1: Relation between H1(2, p) and δ(2, k)

3.2 H1(d, 2) as a lattice polytope with large diameter

As pointed out by Vincent Pilaud, a lower bound of kd/2 for δ(d, k) for appropriate k < d
can be achieved by considering a graphical zonotope HG; that is, the Minkowski sum of the
line segments [ei, ej] for all edges ij of a given graph G. Consider the graphical zonotope
HC(d,k) associated to the circulant graph C(d, k) of degree k on d nodes. One can check that
HC(d,k) is a lattice (d, k)-polytope with diameter kd/2. In this section, we slightly generalize
this approach and show that a Minkowski sum of a proper subset of the generators of H1(d, 2)
yields δ(d, k) ≥ b(k + 1)d/2c for all k ≤ 2d− 1.

Proposition 3.2. For k ≤ 2d − 1, there exists a subset of the generators of H1(d, 2) whose
Minkowski sum is, up to translation, a lattice (d, k)-polytope with diameter b(k+ 1)d/2c. Thus,
δ(d, k) ≥ b(k + 1)d/2c for k ≤ 2d − 1. For instance, H1(d, 2) is, up to translation, a lattice
(d, 2d − 1)-polytope with diameter d2, and H+

1 (d, 2) is a lattice (d, d)-polytope with diameter(
d+1
2

)
.

Proof. We first note that the number of generators of H1(d, 2) is d2. The generators of
H1(d, 2) are {−1, 0, 1}-valued d-tuples: d permutations of (1, 0, . . . , 0),

(
d
2

)
permutations of

(1, 1, 0, . . . , 0), and
(
d
2

)
permutations of (1,−1, 0, . . . , 0). Thus, δ(H1(d, 2)) = d2 by Prop-

erty 2.1 item (v). As the sum of the first coordinates of the generators of H1(d, 2) is 2d − 1,
H1(d, 2) is, up to translation, a lattice (d, 2d− 1)-polytope by Property 2.1 item (iv). Consider
first the case when d is even. The first d−1 subsets are obtained by removing from the current
subset of generators of H1(d, 2) a set of d/2 generators taken among the

(
d
2

)
permutations of

(1,−1, 0, . . . , 0). The removed d−1 subsets correspond to d−1 disjoint perfect matchings of the
complete graph Kd where the nonzero ith and jth coordinates of a generator (. . . , 1, . . . ,−1, . . . )
correspond to the edge [i, j]. The first perfect matching is [1, 2], [3, d], [4, d−1], . . . , [d/2, d/2+1].
The next perfect matching is obtained by changing d to 2, and i to i + 1 for all other entries
except 1, which remains unchanged. This procedure yields d − 1 disjoint perfect matchings
as, placing the vertices 2 to d on a cercle around 1 where the edge [1, 2] is vertical and the
edges [3, d], [4, d− 1], . . . , [d/2, d/2 + 1] are horizontal, the procedure corresponds to the d− 1
rotations of the initial perfect matching, see [4, Chapter 12]. As these d − 1 perfect match-
ings correspond to all the generators of H1(d, 2) which are permutations of (1,−1, 0, . . . , 0),
the procedure ends with a subset of the generators of H1(d, 2) forming the

(
d+1
2

)
generators of

H+
1 (d, 2). We can then repeat the same procedure where the nonzero ith and jth coordinates
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of a generator (. . . , 1, . . . , 1, . . . ) correspond to the edge [i, j] of Kd, and similarly obtain d− 1
disjoint perfect matchings. The procedure now ends with a subset of the generators of H1(d, 2)
forming H1(d, 1); that is the unit cube. One can check that if the Minkowski sum H of the
current subset of generators of H1(d, 2) is a lattice (d, k)-polytope of diameter δ(H), removing
the d/2 generators corresponding to a perfect matching yields a lattice (d, k − 1)-polytope of
diameter δ(H)−d/2. Thus, starting from H1(d, 2) which is a (d, 2d−1)-polytope with diameter
d2, we obtain a (d, k)-polytope with diameter (k+ 1)d/2 for all k ≤ 2d− 1. The case when d is
odd is similar. The removed subsets are of alternating sizes dd/2e and bd/2c. Adding a dummy
vertex d+1 to Kd, we consider the d disjoint perfect matching of Kd+1 described for even d. The
first subset consists of the dd/2e edges where [3, d + 1] is replaced by [3, 5], the second subset
consists of the bd/2c edges where [5, d + 1] is removed, the third subset consists of the dd/2e
edges where [7, d + 1] is replaced by [7, 9], and so forth. As for even d, one can check that if
the Minkowski sum H of the current subset of generators of H1(d, 2) is a lattice (d, k)-polytope
of diameter δ(H), removing the described dd/2e, respectively bd/2c, generators yields a lattice
(d, k − 1)-polytope of diameter δ(H) − dd/2e, respectively δ(H) − bd/2c. Thus, starting from
H1(d, 2) which is a (d, 2d − 1)-polytope with diameter d2, we obtain a (d, k)-polytope with
diameter b(k + 1)d/2c for all k ≤ 2d− 1.

Conjecture 3.3. δ(d, k) ≤ b(k + 1)d/2c, and δ(d, k) is achieved, up to translation, by a
Minkowski sum of lattice vectors.

Note that Conjecture 3.3 holds for all known values of δ(d, k) given in Table 2, and hypothesizes,
in particular, that δ(d, 3) = 2d.

k
δ(d, k) 1 2 3 4 5 6 7 8 9 10

d

1 1 1 1 1 1 1 1 1 1 1
2 2 3 4 4 5 6 6 7 8 8
3 3 4 6
4 4 6 8
...

...
...

d d b3d/2c

Table 2: Largest diameter δ(d, k) over all lattice (d, k)-polytopes

Soprunov and Soprunova [22] considered the Minkowski length L(P ) of a lattice polytope
P ; that is, the largest number of lattice segments whose Minkowski sum is contained in P .
Considering the special case when P is the {0, k}d-cube, let L(d, k) denote the Minkowski length
of {0, k}d-cube. For example, the Minkowski length of the {0, 1}d-cube satisfies L(d, 1) = d.
One can check that the generators of H1(d, 2) form the largest, and unique, set of primitive
lattice vectors which Minkowski sum fits within the {0, k}d-cube for k = 2d− 1; that is, for k
being the sum of the first coordinates of the d2 generators of H1(d, 2). Thus, L(d, 2d − 1) =
δ(H1(d, 2)) = d2. Similarly, the constructions used in Proposition 3.1 and 3.2 implies that
L(2, k) = δ(2, k) and L(d, k) = b(k + 1)d/2c for k ≤ 2d− 1.
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4 Primitive lattice polytopes with many vertices

In this section, we recall the setting of convex matroid optimization and show that Hq(d, p),
respectively H+

q (d, p), yields upper, respectively lower, bounds for a parameter studied by
Melamed, Onn, and Rothblum [17, 19] and controlling the computational complexity of multi-
criteria matroid optimization.

Call S ⊂ {0, 1}n a matroid if it is the set of the indicators of bases of a matroid over {1, . . . , n}.
For a d×n matrix W , let WS = {Wx : x ∈ S}, and let conv(WS) = W conv(S) be the projec-
tion to Rd of conv(S) by W . Given a convex function f : Rd → R, convex matroid optimization
deals with maximizing the composite function f(Wx) over S; that is, max {f(Wx) : x ∈ S},
and is concerned with conv(WS); that is, the projection of the set of the feasible points. The
maximization problem can be interpreted as a problem of multicriteria optimization, where
each row of W gives a linear criterion Wix and f compromises these criteria. Thus, W is called
the criteria matrix or weight matrix. The projection polytope conv(WS) and its vertices play a
key role in solving the maximization problem as, for any convex function f , there is an optimal
solution x whose projection y = Wx is a vertex of conv(WS). In particular, the enumeration
of all vertices of conv(WS) enables to compute the optimal objective value by picking a vertex
attaining the optimal value f(y) = f(Wx). Thus, it suffices that f is presented by a comparison
oracle that, queried on vectors y, z ∈ Rd, asserts whether or not f(y) < f(z). Coarse criteria
matrices; that is, W whose entries are small or in {0, 1, . . . , p}, are of particular interest. In
multicriteria combinatorial optimization, this case corresponds to the weight Wi,j attributed to
element j of the ground set {1, . . . , n} under criterion i being small or in {0, 1, . . . , p} for all i, j.
In the reminder of Section 4, we only consider {0, 1, . . . , p}-valued W . We refer to Melamed
and Onn [17], and references therein, for convex integer optimization and for convex matroid
optimization in particular.

Recall that the normal cone of a polytope P ⊂ Rn at its vertex v is the relatively open cone of
of vectors c ∈ Rn such that v is the unique maximizer of {max cTx : x ∈ P}. A polytope P is
a refinement of a polytope Q if the normal cone of P at every vertex of P is contained in the
normal cone of Q at some vertex of Q.

Proposition 4.1. For positive integers d, p, n, a matroid S ⊂ {0, 1}n, and a d × n criteria
matrix W with entries in {0, 1, . . . , p}, H∞(d, p) is a refinement of conv(WS). Thus, the
maximum number m(d, p) of vertices of conv(WS) is independent of n, S, and W . In addition,
m(d, p) is at most the number of vertices of H∞(d, p).

Proof. For a matroid S ⊂ {0, 1}n, any edge of conv(S) is parallel to the difference 1i−1j between
a pair of unit vectors in Rn, see [17, 19]. Therefore, any edge of the projection conv(WS) by W is
parallel to the difference W i−W j between a pair of columns of W belonging to {0,±1, · · ·±p}d.
Hence,

∑
[0, 1]G whereG = {v ∈ Zd : ‖v‖∞ ≤ p} is a refinement of conv(WS), see [11, 19]. Note

that the generators of H∞(d, p) form a maximal subset of G without pair of linearly dependent
elements. Thus, H∞(d, p) is equivalent to

∑
[0, 1]G and hence a refinement of conv(WS).

Thus, the maximum number m(d, p) of vertices of conv(WS) is independent of n, S, and W ,
and satisfies m(d, p) ≤ f0(H∞(d, p)).
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Proposition 4.2. For positive integers d and p, there exist a positive integer n, a matroid
S ⊂ {0, 1}n, and a d×n criteria matrix W with entries in {0, 1, . . . , p} such that conv(WS) =
H+
∞(d, p). Thus, the maximum number m(d, p) of vertices of conv(WS) is at least the number

of vertices of H+
∞(d, p).

Proof. Let m denotes the number of generators of H+
∞(d, p), and let W be the d× 2m matrix

whose first m columns are the generators of H+
∞(d, p), say, ordered lexicographically, and last

m columns consist of zeros. Let S be the (set of indicators of bases of the) uniform matroid
Um
2m – that is, S consists of all vectors in {0, 1}2m with exactly m zeros and m ones. One can

check that conv(WS) =
∑

[0, 1]{v ∈ Zd+ : ‖v‖∞ ≤ p, gcd(v) = 1} = H+
∞(d, p).

Theorem 4.3. The following inequalities hold for d ≥ 3:

2 + 2d! ≤ f0(H
+
∞(d, 1)) ≤ m(d, 1) ≤ f0(H∞(d, 1)) ≤ 2

d−1∑
i=0

(
(3d − 3)/2

i

)
− 2

(
(3d−1 − 3)/2

d− 1

)
.

Proof. The inequalities 2 + 2d! ≤ f0(H
+
∞(d, 1)) ≤ m(d, 1) ≤ f0(H∞(d, 1)) restate Property 2.3

item (iii) and Propositions 4.1 and 4.2 for p = 1. The last inequality is obtained by exploiting
the structure of the generators of H∞(d, 1). One can check that H∞(d, 1) has (3d − 1)/2
generators and that removing the first zero of the generators ofH∞(d, 1) starting with zero yields
exactly the (3d−1−1)/2 generators ofH∞(d−1, 1). We recall that the number of vertices f0(Z) of
a d-dimensional zonotope Z generated by m generators is bounded by f̄(d,m) = 2

∑
0≤i≤d−1

(
m−1
i

)
.

By duality, the number f0(Z) of vertices of a zonotope Z is equal to the number fd−1(A) of
cells of the associate hyperplane arrangement A where each generator mj of Z corresponds
to an hyperplane hj of A, see [10, 26]. The inequality f0(Z) ≤ f̄(d,m) is based on the
inequality fd−1(A) ≤ fd−1(A \ hj) + fd−1(A ∩ hj) for any hyperplane hj of A where A \ hj
denotes the arrangement obtained by removing hj from A, and A∩hj denotes the arrangement
obtained by intersecting A with hj. Recursively applying this inequality to the arrangement
A∞(d, 1) associated to H∞(d, 1) till the remaining (3d−1 − 1)/2 hyperplanes form a (d − 1)-
dimensional arrangement equivalent to A∞(d−1, 1) yields: fd−1(A∞(d, 1)) ≤ f̄(d, (3d−1)/2)−(
f̄(d, (3d−1 − 1)/2)− f̄(d− 1, (3d−1 − 1)/2)

)
which completes the proof since fd−1(A∞(d, 1)) =

f0(H∞(d, 1)) and f̄(d,m) − f̄(d − 1,m) = 2
(
m−1
d

)
. In other words, the inequality is based

on the inductive build-up of H∞(d, 1) starting with the (3d−1 − 3)/2 generators with zero as
first coordinate, and noticing that these (3d−1 − 3)/2 generators belong to a lower dimensional
space.

In order to tighten the lower bound for m(d, 1), we consider a family of lattice polytopes
introduced in [17] and defined as M(d, r, s) = conv(W s

dS
s2d

r ) where W is the {0, 1}-valued
d × s2d matrix whose s2d columns consist of s copies of the 2d elements of {0, 1}d, and S is
the (set of indicators of bases of the) uniform matroid U r

s2d
of rank r and order s2d; that is, S

consists of all vectors in {0, 1}s2d with exactly r ones. We illustrate the M(d, r, s) family with
a few examples:

(i) M(d, r, s ≥ r) is the {0, s}d-cube,

(ii) M(d, 2, 1) is the truncated {0, 2}d-cube,
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(iii) M(d, s+ 1, s ≥ 2) is the truncated {0, s}d-cube,

(vi) M(3, 5, 2) is congruent to H1(3, 2).

Observation 4.4.

(i) m(2, 1) = 8 as f0(M(2, 3, 2)) = f0(H∞(2, 1)) = 8,

(ii) 48 ≤ m(3, 1) ≤ 96 as f0(M(3, 5, 2)) = 48 and f0(H∞(3, 1)) = 96,

(iii) 672 ≤ m(4, 1) ≤ 5 376 as f0(M(4, 11, 2)) = 672 and f0(H∞(4, 1)) = 5 376,

(iv) 11 292 ≤ m(5, 1) ≤ 1 981 440 as f0(H
+
∞(5, 1)) = 11 292 and f0(H∞(5, 1)) = 1 981 440.

Enumerative questions concerning Hq(d, p) and H+
q (d, p) have been studied in various settings.

For example, f0(H
+
∞(d, 1)) corresponds to the OEI sequence A034997 giving the number of gen-

eralized retarded functions in quantum field theory, and f0(H∞(d, 1)), which is the number of
regions of hyperplane arrangements with {−1, 0.1}-valued normals in dimension d, corresponds
to the OEI sequence A009997 giving f0(H

+
∞(d, 1))/(2dd!), see [21] and references therein.
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