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PATTERN AVOIDING PERMUTATIONS AND

INDEPENDENT SETS IN GRAPHS

CHRISTIAN BEAN⋆, MURRAY TANNOCK⋆, AND HENNING ULFARSSON⋆

Abstract. We encode certain pattern avoiding permutations as
weighted independent sets in a family of graphs we call cores. For
the classical case of 132-avoiding permutations we establish a bi-
jection between the vertices of the cores and edges in a fully con-
nected graph drawn on a convex polygon. We prove that indepen-
dent sets in the core correspond to non-crossing subgraphs on the
polygon, and then the well-known enumeration of these subgraphs
transfers to an enumeration of 132-avoiding permutations accord-
ing to left-to-right minima. We extend our results to the 123-,
(1324, 2143)-, (1234, 1324, 2143)-, (1234, 1324, 1432, 3214)-avoiding
permutations. We end by enumerating certain subsets of 1324-
avoiding permutations that satisfy particular conditions on their
left-to-right minima and right-to-left maxima.

Keywords: permutation patterns, non-crossing subgraphs, inde-
pendent sets

1. Introduction

Recall that the standardisation of a string s of distinct integers is the
unique permutation st(s) obtained by replacing the ith smallest entry
of s with i. A permutation π of length n contains another permutation
p of length k if there is a subsequence (not necessarily consisting of
consecutive entries) πi1πi2 . . . πik whose standardisation is p. In this
context p is called a (classical permutation) pattern, and we say that
π contains p. The subsequence in π is called an occurrence of p. If no
occurrence exists then π avoids p. Take for example π = 51324, which
contains p = 123 as the subsequences 134 and 124, but avoids p = 231.

Given a pattern p we define Avn(p) as the set of permutations of
length n that avoid p, and Av(p) = ∪n≥0Avn(p). For a set P of patterns
we also let Avn(P ) = ∩p∈P Avn(p), and Av(P ) = ∪n≥0Avn(P ). A
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permutation class is any set of permutations defined by the avoidance
of a set of classical patterns.

We illustrate a connection between independent sets arising from the
study of permutations avoiding the pattern 132 and the classical prob-
lem of enumerating non-crossing subgraphs in a complete graph drawn
on a regular polygon. The methods developed can be extended to enu-
merate subclasses of permutations avoiding the pattern 1324, the only
principal permutation class of length 4 that remains unenumerated.

2. Encoding permutations as weights on a grid

A letter π(i) in a permutation π is called a left-to-right minimum if
π(j) > π(i) for all j = 1, . . . , i − 1. Note that π(1) is always a left-
to-right minimum in a non-empty permutation. Left-to-right maxima,
right-to-left-minima and right-to-left-maxima are defined analogously.

The sequence of left-to-right minima of a permutation π will be
called the lrm-boundary of the permutation and denoted lrm(π), e.g. if
π = 845367912 then lrm(π) = 8431. Given any permutation we can
arrange the lrm-boundary on a NW-SE-diagonal and insert the remain-
ing points of the permutation in a staircase (grid), Ba, where a is the
number of lrms, above this diagonal. See Figure 1 for an example with
the permutation 845367912.

8

4

3

1

Figure 1. The permutation 845367912 drawn on the
staircase grid, B4. The left-to-right minima, 8, 4, 3 and
1, are drawn on a diagonal

We can give a coarser representation of this permutation by just
writing how many points are in each box of the grid, see Figure 2. From
now on we will call this the (staircase) encoding of the permutation.
Note that it is not necessary to label the left-to-right minima, their
values can be inferred from the number of points in each box.

It is important to notice that there are other permutations (of length
8) that have the encoding in Figure 2, e.g., 846379512. However, if
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1

1 2

1

Figure 2. The permutation 845367912 encoded as the
number of points in each box in the staircase grid

we restrict the permutations we encode to those avoiding the pattern
132 the encoding becomes unique. This is the subject of Section 3.
The same is true for permutations avoiding 123 and we cover this in
Section 4. In Section 5 we define a different encoding of permutations
and use it to enumerate subclasses of Av(1324).

3. Permutations avoiding 132

If π is a permutation that avoids the pattern 132, such as the one
in Figure 1, and we draw it on a staircase grid, notice that any row
of the grid must contain an increasing sequence of numbers, e.g. the
second row contains the increasing sequence 567. Moreover, notice that
every rectangular region of boxes is also increasing. This implies the
following remark.

Remark 3.1. The staircase encoding of a permutation avoiding 132 is
unique.

We note that every staircase encoding uniquely determines a permu-
tation in the set of permutations avoiding the bivincular patterns (see
Bousquet-Mélou et al. [3]) (132, {2}, {}), (132, {}, {2})). The permu-
tations avoiding 132 are a subset of this set.

Furthermore, for permutations avoiding 132, the presence of points
in a box may constrain other boxes to be empty. Consider for example
the encoding in Figure 2: The fact that the third box in row 1 is
occupied constrains the rightmost boxes in rows 2 and 3 to be empty.
These constraints are mutual. To capture these constraints we create
a graph by placing a vertex for every box and an edge between boxes
that exclude one another.

Definition 3.2. Let n ≥ 0 be an integer. The 132-core of size n is the
labelled, undirected graph Dn with vertex set {(ij) : i = 1, . . . , n, j =
i, . . . , n} and edges between (ij) and (kℓ) if
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• k ∈ {i+ 1, . . . , j} and ℓ ∈ {j + 1, . . . , n}, or symmetrically
• i ∈ {k + 1, . . . , ℓ} and j ∈ {ℓ+ 1, . . . , n}.

11 11 12

22

11 12 13

22 23

33

11 12 13 14

22 23 24

33 34

44

11 12 13 14 15

22 23 24 25

33 34 35

44 45

55

Figure 3. The 132-cores of sizes 1, . . . , 5

Remark 3.3. By construction, an independent set in Dn will corre-
spond to a set of boxes in the staircase grid, Bn, that do no exclude
one another.

Note that the 132-core is empty if n = 0. See Figure 3 for the 132-
cores of sizes n = 1, . . . , 5. We use the letter “D” in anticipation of
Definition 5.1. Until we define another type of core in Section 4 we will
refer to 132-cores as cores.

From the definition it is easy to see that Dn has 1 + 2 + · · · + n =
(
n+1
2

)
vertices. To compute the number of edges consider a vertex

(1j) in the first row of Dn. It will have edges going to the southeast
into the rectangular region [2, . . . , j] × [j + 1, . . . , n], giving a total of
(j − 1)(n− j) = (n+ 1)j − j2 − n edges. The first row therefore has

(n+ 1)

(
n + 1

2

)

− 2n+ 1

3

(
n+ 1

2

)

− n2 =
n+ 2

3

(
n+ 1

2

)

− n2 =

(
n

3

)

edges. This can also be seen directly: The edge from (1j) to (kℓ)
corresponds to the three element subset {k − 1, j, ℓ} of {1, . . . , n}. If
we just consider edges going to the southeast then row i in the core
of size n will look precisely like row 1 in a smaller instance of size
n − i + 1. The total number of edges in Dn is therefore

(
n+1
4

)
. The
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enumerations of vertices and edges in the cores are special cases of the
following result.

Proposition 3.4. The number of cliques of size k in Dn is
(
n+1
2k

)
.

Proof. The case of k = 1 (vertices) and k = 2 are given above. A clique
of size k > 2 in Dn either has:

• no vertex in the first row of the core, or
• has exactly one vertex in the first row.

In the first case we have
(
n

2k

)
cliques of size k, by induction. In the

second case, assume the vertex in the first row is (1j). The remaining
vertices in the clique must then form a clique of size k−1 in the rectan-
gular region [2, . . . , j]× [j +1, . . . , n]. But such a clique is obtained by
choosing k−1 rows and k−1 columns. This can be done in

(
j−1
k−1

)(
n−j

k−1

)

ways. Thus the number of cliques is
(
n

2k

)

+
n−k+1∑

j=k

(
j − 1

k − 1

)(
n− j

k − 1

)

.

The sum is easily seen to be
(

n

2k−1

)
which completes the proof. �

As we will see below the number of independent sets in the core is
more relevant for our purposes. In fact we will prove (in two different
ways) the following theorem:

Theorem 3.5. The number of independent sets of size k in the 132-
core of size n is given by the coefficient of xnyk in the generating func-
tion F = F (x, y) satisfying the functional equation

F = 1 + x · F +
xy · F 2

1− y · (F − 1)
.

This coefficient is

I(n, k) =
1

n

n−1∑

j=0

(
n

k − j

)(
n

j + 1

)(
n− 1 + j

n− 1

)

.

As noted in Remark 3.1 the encoding of a 132-avoiding permutation
is sufficient to uniquely identify the permutation. Furthermore, if the
permutation has n left-to-right minima, Remark 3.3 points out that
the encoding will be a weighted independent set in Dn.

For a concrete example, consider the permutation 845367912 from
Figure 1. We can encode it as the independent set {(13), (22), (23), (44)}
in D4 along with the sequence of positive integer weights (1, 1, 2, 1)
recording the number of points at each vertex in the independent set.
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Setting y = y/(1 − y), x = xy in the generating function in Theo-
rem 3.5, and collecting by powers of y gives a generating function

(2− xy)y + (1− y)(1− xy)

2y

−
√

((xy)2 − 4xy)y2 + ((xy)2 − 3xy)y(1− y) + (xy − 1)2(1− y)2

2y

(1)

for the well-known Narayana numbers [13, A001263] enumerating the
permutations avoiding 132 by their number of left-to-right minima.
These numbers are usually arranged in a triangle, whose n-th row
(starting from 0) contains the number of 132-avoiding permutations
of length n with k left-to-right minima. The triangle is often called a
Catalan-triangle since the row sums are Catalan numbers, see Table 1.

1

1

1 1

1 3 1

1 6 6 1

1 10 20 10 1

1 15 50 50 15 1

1 21 105 175 105 21 1

1 28 196 490 490 196 28 1

1 36 336 1176 1764 1176 336 36 1

1 45 540 2520 5292 5292 2520 540 45 1

1 55 825 4950 13860 19404 13860 4950 825 55 1

Table 1. The Catalan triangle of Narayana num-
bers [13, A001263]

Setting x = 1 in (1), and thus forgetting the information about the
left-to-right minima, gives the usual generating function of the Catalan
numbers.

Instead of enumerating Av(132) by the number of left-to-right min-
ima we can enumerate them by size of the independent set used to
create the permutation.

Proposition 3.6. The number of permutations avoiding 132 of length
ℓ using an independent set of size k is

ℓ∑

n=0

I(n, k)

(
ℓ− n− 1

k − 1

)

where I(n, k) is defined in Theorem 3.5.



PATTERN AVOIDING PERMUTATIONS AND INDEPENDENT SETS 7

Proof. The sum is taken over the number of left-to-right minima and
the binomial coefficient counts the number of partitions of the remain-
ing points n− ℓ into k parts, corresponding to the vertices of the inde-
pendent set. �

The proposition gives a new Catalan triangle, shown in Table 2,
which has been added to the Online Encyclopedia of Integer Sequences [13,
A262370].

1

1

1 1

1 4

1 10 3

1 20 20 1

1 35 77 19

1 56 224 139 9

1 84 546 656 141 2

1 120 1176 2375 1104 86

1 165 2310 7172 5937 1181 30

1 220 4224 18953 24959 9594 830 5

1 286 7293 45188 87893 56358 10613 380

1 364 12012 99242 270452 264012 88472 8240 105

1 455 19019 203775 747877 1044085 554395 100339 4480 14

Table 2. The Catalan triangle given by Proposition 3.6

In the triangle, the rightmost numbers in rows 2, 5, 8, 11, 14 form the
sequence

1, 1, 2, 5, 14.

Also, the rightmost numbers in rows 1, 4, 7, 10, 13 form the sequence

1, 3, 9, 30, 105.

This leads to the following conjecture, which has been verified up to
permutations of length 24.

Conjecture 3.7. (1) The rightmost numbers in rows numbered 2+
3i, i = 0, 1 . . . are the Catalan numbers.

(2) The rightmost numbers in rows numbered 1+3i, i = 0, 1 . . . are
the central elements of the (1, 2)-Pascal triangle [13, A029651].

We prove Theorem 3.5 in two ways: by connecting the indepen-
dent sets in a core with non-crossing subgraphs of a complete graph
drawn on a regular polygon; and by a direct analysis of the core.
The second method will generalise to the sets Av(1324, 2143), and
Av(1234, 1324, 2143).
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3.1. Proof of Theorem 3.5 using non-crossing subgraphs. The
idea is to establish a bijection φn from the vertex set Dn to the edge
set of a complete graph drawn on a regular (n+ 1)-gon, satisfying the
property:

⋆ The vertices u, v in the core share an edge if and only if the
edges φn(u), φn(v) cross in the complete graph.

Thus an independent set in the core will correspond to a non-crossing
subgraph in the polygon.

Definition 3.8. Let n ≥ 1 be an integer. The polygon of size n, Kn is
the complete graph on n vertices drawn equally spaced on a circle. We
label the vertices clockwise 1, . . . , n. The edge from i to j is denoted
ei,j.

Note that the polygon of size n = 1 is a single vertex. See Figure 4
for the polygons of sizes n = 2, . . . , 6.

12 1

2

3

1

2

3

4

1

2

3

4

5

1

23

4

5 6

Figure 4. The polygons of sizes 2, . . . , 6

From the definition it is clear that Kn has
(
n

2

)
edges. Note that edges

ei,j and ek,ℓ (assuming i < k) in the polygon cross if and only if j ≥ k.
The following theorem shows that the bijection φn : (ij) 7→ ei,j+1 has

property (⋆) above.

Theorem 3.9. There is an edge in the core Dn between vertices (ij)
and (kℓ) (i < k) if and only if in the polygon Kn+1 the edges ei,j+1 and
ek,ℓ+1 cross.
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Proof. The base cases are clear. Assume this is true for some n ≥ 1 and
consider Dn+1, the core of size n + 1. This core can be obtained from
Dn by appending a new column on the right, containing the vertices
1(n+ 1), 2(n+ 1), . . . , (n+ 1)(n+ 1), and the appropriate edges. This
corresponds to adding a new vertex labelled n+2 to the polygon of size
n+1, to obtain the polygon of size n+2. By the inductive hypothesis
we have that all edges in the core Dn+1, not incident to a vertex in the
last column, correspond in the claimed manner with crossings in the
polygon. To complete the proof we need to show that the same is true
for the remaining edges.

1 2 · · · n− 1 n n+ 1

2 · · · n− 1 n n+ 1

. . .
n− 1 n n+ 1

. . .

· · · j

. . .

· · · n+ 1

. . .

n n+ 1

n+ 1

1

2

3

...

i

...

k

...

n

n+ 1

Figure 5. Visualising the proof of Theorem 3.9: Adding
a column to the grid

Therefore take a vertex (ij), with j < n + 1 in Dn+1 and a vertex
(k(n+ 1)) in the last column of Dn+1. From the definition of the core
we see that there is an edge between these two vertices if and only if
i < k and k ≤ j(≤ n + 1). This is equivalent to the edges ei,(j+1) and
ek,(n+2) crossing in the polygon. �

Enumerating non-crossing subgraphs is a classical problem, see e.g. Comtet [5].
For our purposes it is easy to apply the method in Section 2.1 of
Flajolet and Noy [6] to arrive at the generating function equation for
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1

2

3

i

k

j + 1

n n+ 1

n+ 2

Figure 6. Visualising the proof of Theorem 3.9: Adding
a vertex to the polygon

F = F (x, y)

F = 1 + xF +
xyF 2

1− y(F − 1)
.

where the coefficient of xnyk counts the number of non-crossing sub-
graphs with k edges in the polygon of size n+ 1. By Theorem 3.9 this
is the same as the number of independent sets of size k in the core of
size n. This proves the first part of Theorem 3.5. For the second part
see Theorem 2 (ii) in Flajolet and Noy [6].

3.2. Proof of Theorem 3.5: Finding F (x, y) directly. We now
show how one can find the generating function F (x, y) directly. This
method will later be applied to other sets of permutations.

Consider an arbitrary core. Notice that any independent set can
contain any number vertices of the form 1j. This is equivalent to
choosing boxes in the top row of the staircase grid and we call the
number of vertices chosen the degree.

Let F = F (x, y) be the generating function in which the coefficient
of xnyk counts the number of independent sets of size k in Dn. If the
degree of a core is zero then the induced subgraph of the remaining ver-
tices is isomorphic to some smaller core. If the degree, d, is greater than
zero then the independent set contains the vertices {1x1, 1x2, . . . , 1xd}
(with xi < xj if i < j). The independent set must therefore not have
any of vertices ℓm such that ℓ ∈ {2, . . . , xi} and m ∈ {xi + 1, . . . , n}
for any xi. This can be visualised on the staircase grid, see Fig-
ure 7. We can then partition the remaining vertices into d + 1 sets,
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{ℓm : 1 < ℓ ≤ x1, ℓ ≤ m ≤ x1}, {ℓm : xi < ℓ ≤ xi+1, ℓ ≤ m ≤ xi+1}
for i = 1, . . . d − 1, and {ℓm : xd < ℓ ≤ n, ℓ ≤ m ≤ n}. Notice that
the induced subgraphs on these sets of vertices are isomorphic to some
core. Moreover, notice that the first two sets may be empty, but the
rest contain at least one vertex. Therefore we obtain the following

F = 1 + xF + xyF 2 + · · ·+ xynF 2(F − 1)n−1 + . . .

= 1 + xF +
xyF 2

1− y(F − 1)
,

where 1 is added for the core of size 0 as it has no top row, and so no
degree.

Figure 7. A staircase grid with induced shadings

4. Permutations avoiding 123

Consider drawing a permutation that avoids 123 on a staircase grid.
Take for example the permutation 639871542 shown in Figure 8. Notice

6

3

1

Figure 8. The permutation 639871542 drawn on a
staircase grid. The left-to-right minima, 6, 3 and 1, are
drawn on a diagonal
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that now every rectangular region of boxes is decreasing, instead of in-
creasing in the case of the 132-avoiding permutations, and the existence
of points in a box produces constraints on boxes southwest and north-
east of it. We are naturally lead to the following definition:

Definition 4.1. Let n ≥ 0 be an integer. The 123-core of size n is the
labelled, undirected graph Un with vertex set {(ij) : i = 1, . . . , n, j =
i, . . . , n} and edges between (ij) and (kℓ) if

• i ∈ {k + 1, . . . , n} and j ∈ {ℓ+ 1, . . . , n}.

11 11 12

22

11 12 13

22 23

33

11 12 13 14

22 23 24

33 34

44

11 12 13 14 15

22 23 24 25

33 34 35

44 45

55

Figure 9. The 123-cores of sizes 1, . . . , 5

We use the letter “U ” in anticipation of Definition 5.1. Note that
Un is isomorphic to Dn (the 132-core of size n) when n = 0, 1, 2, 3.
However, D4 is a 5-cycle, whereas U4 is not. In general:

Proposition 4.2. For n ≥ 4, Dn is not isomorphic to Un.

Proof. In Dn the vertex (1n) has degree n(n−1)
2

whereas in Un the largest

possible degree is ⌊n−1
2
⌋ · ⌈n−1

2
⌉. This can be seen by noting that the

degree of the vertex (ij) in Dn is (j − i)(i − 1) + (n − j)(j − i) =
(j−i)(n−1−(j−i)). When n is odd this is maximised when j−i = n−1

2
,

while in the case where n is even when j− i = ⌊n−1
2
⌋ or j− i⌈n−1

2
⌉. �
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This result implies in particular that we can not hope to establish a
bijection from the vertices in the 123-core to the edges of the polygon
like above.1 See Figure 9 for the 123-cores of sizes n = 1, . . . , 5.

Even though the 123-cores are not isomorphic to the 132-cores (for
size greater than 3) they have the same number of cliques of each size:

Proposition 4.3. The number of cliques of size k in Un is
(
n+1
2k

)
.

This can be proved with the same method as Proposition 3.4 or the
following lemma, which shows that the two types of cores are glued
together from isomorphic subgraphs:

Lemma 4.4. (1) Let n ≥ 0 be an integer. For any 1 ≤ i ≤ n let Di
n

be the subgraph of Dn consisting of the vertices, and edges, in
the rectangular region [i, . . . , n]× [1, . . . , i]. Define the subgraph
U i
n of Un analogously. Then reflecting in a vertical axes, or

more precisely

ρi : D
i
n → U i

n, (kℓ) 7→ ((n+ i− k)ℓ)

is an isomorphism of graphs.
(2) Given a non-empty subset S ⊆ {1, . . . , n} the restriction of the

isomorphism ρmaxS, gives an isomorphism
⋂

i∈S

Di
n →

⋂

i∈S

U i
n.

This is clear from the definition of the cores Dn and Un. See Figure 10
and Figure 11

Proof of Proposition 4.3. Let fk(G) count the number of k-cliques for
a given graph G. Every k-clique in the core Un appears in some U i

n,
but potentially multiple. Similarly k-cliques appear in some Di

n. Let
I = {1, . . . , n}, then the number of k-cliques in Un is given by

fk(Un) = fk

(
⋃

i∈I

U i
n

)

and similarly for Dn

fk(Dn) = fk

(
⋃

i∈I

Di
n

)

.

For any S ⊆ I, define

US
n =

⋂

i∈S

U i
n and DS

n =
⋂

i∈S

Di
n

1See Section 6 for a common framework for 132- and 123-cores in terms of non-
crossing and non-nesting partitions.
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Then by the principle of inclusion and exclusion and Lemma 4.4(2) we
get that

fk(Un) =
∑

S⊆I

(−1)|I|fk(U
S
n ) =

∑

S⊆I

(−1)|I|fk(D
S
n) = fk(Dn). �

11 12 13 14 15

22 23 24 25

33 34 35

44 45

55

12 13 14 15

22 23 24 25

13 14 15

23 24 25

33 34 35

14 15

24 25

34 35

44 45

Figure 10. The 132-core of size 5 with the subgraphs
D2

5, D
3
5 and D4

5

It turns out that the number of independent sets of each size is also
the same:

Theorem 4.5. The number of independent sets of size k in the 123-
core of size n is given by the coefficient of xnyk in the generating func-
tion F = F (x, y) satisfying the functional equation

F = 1 + xF +
xyF 2

1− y(F − 1)
.

This coefficient is

1

n

n−1∑

j=0

(
n

k − j

)(
n

j + 1

)(
n− 1 + j

n− 1

)

.

We leave it to the reader to prove this with the method used to prove
Theorem 3.5 in Subsection 3.2, with the modification that we consider
the number of non-empty boxes on the diagonal instead of the top row,
see Figure 12.
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11 12 13 14 15

22 23 24 25

33 34 35

44 45

55

12 13 14 15

22 23 24 25

13 14 15

23 24 25

33 34 35

14 15

24 25

34 35

44 45

Figure 11. The 123-core of size 5 with the subgraphs
U2
5 , U3

5 and U4
5

Figure 12. Illustration of how to prove Theorem 4.5
using a modification of the method in the proof of The-
orem 3.5 in Subsection 3.2

Theorem 4.5 implies that the generating function in Equation (1), the
enumeration in Proposition 3.6, and the Catalan triangles in Tables 1
and 2 also apply to permutations avoiding 123.
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5. Permutations avoiding 1234 or 1324, or both

We next turn our attention to the permutation classes Av(1234),
Av(1324) and their intersection Av(1234, 1324). For these classes of
permutations the staircase encoding we defined above is no longer
unique, the simplest example being the permutations 123 and 132
which belong to all three classes and have the same staircase encod-
ing. To remedy this we also consider the right-to-left maxima (rlm) of
a permutation, e.g. if π = 213679845 the lrm-sequence is 21 and the
rlm-sequence is 985 and we can draw the boundary grid shown on the
left in Figure 13. We define the (boundary) encoding of a permutation
by writing the number of points in each box of its boundary grid; see
the right part of Figure 13.

2

1

9

8

5

1 1

2

Figure 13. On the left the permutation 213679845 is
drawn on a boundary grid highlighting its lrm’s and
rlm’s. On the right we have the boundary encoding of
the same permutation

More generally, given a permutation π we define its boundary, ∂(π),
as the standardisation of the subsequence of π containing the left-
to-right minima and the right-to-left maxima. For example if π =
213679845, as in Figure 13, then ∂(π) = 21543. By construction ∂(π)
avoids 123, and every permutation that avoids 123 is its own boundary.

Given a permutation π that avoids 123 we define its boundary grid,
bg(π), as the set of 1-by-1 boxes whose corners have integer coordinates,
with the requirement that the lower left corner of each box is north-
west of a left-to-right minimum, and the upper right corner of each box
is south-east of a right-to-left maximum. For example, the boundary
grid of 21543 is the boundary grid in Figure 13.

We now generalise the construction of the 132- and 123-cores above:



PATTERN AVOIDING PERMUTATIONS AND INDEPENDENT SETS 17

Definition 5.1. A boundary grid is a collection of 1-by-1 boxes whose
corners have integer coordinates. Given such a boundary grid B we
define the

(1) up-core as the graph U(B) whose vertices are the boxes in the
grid and with edges between boxes (ij), (kℓ) if i < k, j < ℓ and
the rectangle {i, i+1, . . . , k}×{j, j+1, . . . , ℓ} is a subset of B.

(2) down-core D(B) whose vertices are the boxes in the grid B and
with edges between boxes (ij), (kℓ), if i < k, ℓ < j and the
rectangle {i, i+ 1, . . . , k} × {ℓ, ℓ+ 1, . . . , j} is a subset of B.

(3) updown-core UD(B) whose vertices are the boxes in the grid
B and with edges between boxes (ij), (kℓ), if i ≤ k, ℓ ≤ j
(with at least one of the inequalities strict) and the rectangle
{i, i+ 1, . . . , k} × {ℓ, ℓ+ 1, . . . , j} is a subset of B.

We note that the 132-core is the down-core for the staircase grid while
the 123-core is the up-core for the same boundary grid. A permutation
is skew-decomposable if it can be written as a non-trivial skew-sum. If
a permutation π avoids 123 and has length greater than 1 then it is
skew-indecomposable if and only if UD(bg(π)) is connected and every
left-to-right minimum is attached to some 1-by-1 box in bg(π). By
convention the empty permutation and 1 are skew-decomposable.

Remark 5.2. Every permutation avoiding 123 can be represented by
a unique skew-sum of skew-indecomposable permutations.

Given a boundary grid B we let uperms(B) be the set of permu-
tations that can be obtained by choosing a weighted independent set
in the up-core U(B) and inflating the vertices of the independent set
into a decreasing sequence of points, whose length is determined by the
weight of the vertex. Likewise, we define dperms(B) using the down-
core, by inflating weights into increasing sequences; udperms(B) using
the updown-core, by inflating an (unweighted) independent set into a
single point for each vertex. Given these definitions it is clear that

Av(1324) =
⊔

π∈Av(123)

dperms(bg(π)),

Av(1234) =
⊔

π∈Av(123)

uperms(bg(π)),

and

Av(1234, 1324) =
⊔

π∈Av(123)

udperms(bg(π)).
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Our main focus will be on subclasses of the first and third permuta-
tion classes in the equations above, as their enumerations are unknown.
We start by considering the subclass Av(1324, 2143) of Av(1324).

5.1. Down-cores and smooth permutations. The smooth permu-
tations are those that correspond to smooth Schubert varieties. Sand-
hya and Lakshmibai [9] showed that these permutations are the class
Av(1324, 2143). The enumeration was first done in the unpublished
preprint Haiman [8] and is given by the generating function

(2)
1− 5x+ 3x2 + x2

√
1− 4x

1− 6x+ 8x2 − 4x3
.

Bousqet-Mélou and Butler [2] provided an independent proof of this
generating function, and Slofstra and Richmond [10] have found the
enumeration of smooth Schubert varieties of all classical finite types,
the case of permutations being type A. Below we will rederive the gen-
erating function (2) while also keeping track of the number of boundary
points and size of the independent set.

Our approach uses the equation

(3) Av(1324, 2143) =
⊔

π∈Av(123,2143)

dperms(bg(π)).

It is well-known that the enumeration of the boundaries Av(123, 2143)
is given by the alternate Fibonacci numbers [13, A001519]. The follow-
ing lemma gives a structural description of the boundaries.

Lemma 5.3. A boundary grid of a skew-indecomposable permutation
in Av(123, 2143) (of length at least two) is a sequence of staircase grids,
whose every other member has been reflected in a diagonal, sharing their
north-westernmost box with the south-easternmost box of the next grid;
see Figures 14 and 15.

Proof. Consider the staircase grid of a permutation π ∈ Av(123, 2143).
Any rectangular region in the grid must be decreasing as π avoids 123.
Moreover any rectangular region not including a box from the leading
diagonal can contain at most one point in order for π to avoid 2143. If
the grid is skew-indecomposable then we must have a point not in the
leading diagonal appearing north-east of each left-to-right minimum.
This forces the structure described. �

Let EBa be the boundary grid obtained by doubling the right-most
column in the staircase grid Ba, and let EDa be the down-core of this
grid.2

2“E” is for extended.
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Figure 14. Two skew-indecomposable boundaries in
Av(123, 2143) drawn on the staircase diagram

To prove Equation (2) for the enumeration of smooth permutations
we need the following two lemmas:

Lemma 5.4. Let G = G(x, y) be the generating function where the
coefficient of xayk is the number of independent sets of size k in EDa.
Then

G =
F − 1

(1 + y)x
,

where F = F (x, y) is the generating function in Theorem 3.5.

Proof. Notice that if we add a box to the bottom of the last column
of EBa we obtain Ba+1. Therefore F = (1 + y)xG + 1. Solving for G
gives the claimed equation. �

Remark 5.5. Let B be a boundary grid, then if B′ is the grid obtained
by reflecting along the line y = x then D(B), D(B′) are isomorphic
graphs and so are U(B), U(B′).

Lemma 5.6. Let Pind = Pind(x, y) be the generating function where
the coefficient of xayk is the number of independent sets of size k in
down-cores on boundaries of skew-indecomposable permutations from
Ava(123, 2143). Then

Pind =
x(F − 1)

2−G
+ x,

where F = F (x, y) is the generating function in Theorem 3.5, and G =
G(x, y) is the generating function in Lemma 5.4. Setting y = x/(1−x)
gives the generating function for skew indecomposable permutations in
Av(1324, 2143).
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Figure 15. A skew-indecomposable boundary in Av(123, 2143)

Proof. Consider the structure given in Lemma 5.3. We first show how
to build the grids with at least one box. The rightmost grid can be
seen as some non-empty Ba or as some non-empty Ba reflected along
the line y = x. We then build the rest by alternating between a non-
empty EBa and a non-empty EBa reflected along the line y = x, see
Figure 15. This can be seen as a skew-sum of non-empty EBa’s and so
by Remark 5.5 we can use the generating function G as in Lemma 5.4.
We always first place a Ba since if we first place a box, this together
with the first reflected EDa will form a reflected Ba. This leads to the
generating function

Pind =
x(F − 1)

1− (G− 1)
+ x

where we add x for the empty grid representing the permutation 1. �

Proposition 5.7. Let P = P (x, y) be the generating function where
the coefficient of xayk is the number of independent sets of size k in
down-cores on boundaries given by a permutation in Ava(123, 2143).
Then

P =
1

1− Pind

By setting y = x/(1−x) we recover the generating function (2) for the
number of (1324, 2143)-avoiding permutations.

Proof. Taking the skew sum of skew-indecomposable permutations in
the set Av(1324, 2143) gives us the entire set Av(1324, 2143). �
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5.2. Replacing 2143 with an arbitrary 123-avoiding pattern. We
can replace the pattern 2143 in Equation (3) with any pattern (or set
of patterns), p, avoiding 123 and ask whether our methods extend to
enumerate the set

⊔

π∈Av(123,p)

dperms(bg(π)).

First of all one would hope that this set equals Av(1324, p) as in the
case of p = 2143 but this is not true in general, e.g., if p = 3412, then

Av



1324,



 =
⊔

π∈Av(123,3412)

dperms(bg(π)).

In general, given a pattern p that avoids 123 we define bdms(p) as the
set of mesh patterns, defined by Brändén and Claesson [4], all of whose
underlying classical patterns are p and shaded in such a way that it
forces every point to be either a left-to-right minimum or a right-to-left
maximum.

There is one other case, with p a pattern of length 4, where the re-
sulting set of permutations is a permutation class, besides p = 2143,
and that is p = 1432, giving Av(1324, 1432), conjectured to be enu-
merated by a non-D-finite generating function, see [13, A165542] and
Albert et. al [1, Section 6.2].

5.3. Updown-cores and the class Av(1234, 1324, 2143). The per-
mutation class Av(1234, 1324) is conjectured to have a non-D-finite
generating function by Albert et. al [1, Section 6.4]. In this section we
show that the subclass that also avoids 2143 has the rational generating
function

(4)
1− 3x− 2x3

1− 4x+ 2x2 − 2x3 + x4
.

As before we have the equation

Av(1234, 1324, 2143) =
⊔

π∈Av(123,2143)

udperms(bg(π)).

so Lemma 5.3 still describes the boundaries of these permutations.

Lemma 5.8. Let R = R(x, y) be be the generating function where
the coefficient of xayk is the number of independent sets of size k in
updown-cores of Ba. Then

R = 1 + xR +
xyR

1− x
.
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Proof. Consider an independent set in UD(Ba). It can contain at most
one vertex from the top row. If it contains no vertex then the remaining
vertices form a graph isomorphic to UD(Ba−1). Otherwise, we have
one vertex in the top row. If the vertex is in the ith box from the
left then there will be i left-to-right minima to the left of it. The
remaining vertices will form a graph isomorphic to some UD(Bb) such
that b < a. �

Lemma 5.9. Let Qind = Qind(x, y) be the generating function where
the coefficient of xayk is the number of independent sets of size k in
updown-cores on boundaries of a skew-indecomposable permutations in
Ava(123, 2143). Then

Qind = Qup +Qdown + x+ x2 + x2y,

where Qup = Qup(x, y), Qdown = Qdown(x, y) satisfy the equations

Qup = xR−x−x2−x2y+
(xR− x)Qdown

x
+
x2yR(Qup +Qdown + x2 + x2y)

1− x
,

Qdown = xR−x−x2−x2y+
(xR− x)Qup

x
+
x2yR(Qup +Qdown + x2 + x2y)

1− x
,

and R = R(x, y) is given in Lemma 5.8. Setting y = x gives the gener-
ating function for skew indecomposable permutations in Av(1234, 1324, 2143).

Proof. Recall Lemma 5.3. We define Qup to be the generating function
with coefficient xayk whose rightmost part in its skew-sum is some Bb

with b > 1 and Qdown to be the generating with coefficient xayk whose
rightmost part in its skew-sum is some Bb reflected along the line y = x
with b > 1. Therefore if a grid has only one part in their skew-sum in
either of these (recall Remark 5.2) it will be counted by xR−x−x2−x2y
where we subtract B0 and B1.

We will first count Qup by choosing vertices for the independent set
in the top row determined by the rightmost part of its skew-sum. This
row has at most one vertex in the independent set. If it contains none
then the rightmost boxes will be of the shape of some Bc such that
c > 0 and the the lefthand boxes must be some grid defined by a
skew-indecomposable permutation in Av(123, 2143) with a skew-sum
starting with a Bb reflected along the line y = x with b > 1. If it con-
tains a vertex then the leftmost boxes will be equivalent to a Bc such
that c ≥ 0. The rightmost summand can be of the form of any grid
defined by some skew-indecomposable permutation in Av(123, 2143).
This leads to the generating function as above. Qdown is derived anal-
ogously. Therefore Qind is as claimed. �
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Proposition 5.10. Let Q = Q(x, y) be the generating function where
the coefficient of xayk is the number of independent sets of size k in
updown-cores on boundaries from Ava(123, 2143). Then

Q =
1

1−Qind

By setting y = x we get the generating function (4) for the number of
(1234, 1324, 2143)-avoiding permutations.

Proof. Taking the skew sum of skew-indecomposable permutations in
the set Av(1234, 1324, 2143) gives us the entire set Av(1234, 1324, 2143).

�

The generating function gives the enumeration

1, 1, 2, 6, 21, 75, 268, 958, 3425, 12245, 43778, 156514, 559565, . . .

and has been added to the Online Encyclopedia of Integer Sequences [13,
A263790].

5.4. The class Av(1234, 1324, 1432, 3214). Notice that when we re-
quire permutations in Av(1234, 1324) to avoid 2143 we are forcing the
skew-indecompable permutations to have a boundary grid made out of
Ba’s joined by single boxes, see Figure 15. Here we replace avoidance
of 2143 with avoidance of 1432 and 3214 which allows slightly larger
joints. We show that this subclass has the rational generating function

(5)
1− x− x2 − x3

1− 2x− x2 − 2x3 − 4x4 − 8x5 + 15x7 + 14x8 + 7x9
.

We have that

Av(1234, 1324, 1432, 3214) =
⊔

π∈Av(123,1432,3214)

udperms(bg(π))

since in the updown cores there is at most one vertex in each row and
column and if we have an occurrence of 1432 using this inside vertex
we would also have an occurrence on the boundary by choosing the
corresponding maxima. Similarly for 3214 we could choose a minima.

Lemma 5.11. A boundary grid of a skew-indecomposable permutation
in Av(123, 1432, 3214)\{1, 12, 2143} is an alternating sequence of grids
of the form bg(132) and bg(213) sharing their north-westernmost box
with the south-easternmost box of the next grid.

Proof. To the right and above any left-to-right minima there can be
at most two right-to-left maxima as we are avoiding 1432. Similarly
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below and to left of any right-to-left maxima there can be at most two
left-to-right minima. This forces the structure described. �

Lemma 5.12. Let Sind = Sind(x, y) be the generating function where
the coefficient of xayk is the number of independent sets of size k in
updown-cores on boundaries of a skew-indecomposable permutations in
Ava(123, 1432, 3214). Then

Sind = Sup + Sdown + x+ x2(1 + y) + x4(1 + 7y + 7y2),

where Sup = Sup(x, y), Sdown = Sdown(x, y) satisfy the equations

Sup = x3(1 + 3y + y2) + xSdown + xySdown + x2y(Sup + (1 + y)x2),

Sdown = x3(1 + 3y + y2) + xSup + xySup + x2y(Sdown + (1 + y)x2).

Setting y = x gives the generating function for skew indecomposable
permutations in Av(1234, 1324, 1432, 3214).

Proof. Recall Lemma 5.11. We define Sup to be the generating function
for the skew-indecomposable grids whose rightmost grid is of the form
bg(213) and Sdown for the skew-indecomposable grids whose rightmost
grid is of the form bg(132). Therefore if either have only one part it
will be counted by x3(1 + 3y + y2).

We first count Sup by choosing a vertex in the bottom row of the
rightmost part of its skew sum. We can contain at most one of these
two vertices in an independent set. If we choose neither or the right
vertex, the rightmost boxes are defined by some skew-indecomposable
permutation in Av(123, 1432, 3214) with a skew sum starting with a
bg(132). If we choose the left vertex then the rightmost boxes are de-
fined by some skew-indecomposable permutation in Av(123, 1432, 3214)
with a skew sum starting with a bg(213) or is a single box. This leads
the generating function above. Sdown is derived analogously. Therefore
Sind is as claimed where we add in x for the single point, x2(1 + y) for
bg(12) and x4(1 + 7y + 7y2) for bg(2143). �

Proposition 5.13. Let S = S(x, y) be the generating function where
the coefficient of xayk is the number of independent sets of size k in
updown-cores on boundaries from Ava(123, 1432, 3214). Then

S =
1

1− Sind

By setting y = x we get the generating function (5) for the number of
(1234, 1324, 1432, 3214)-avoiding permutations.

Proof. Taking the skew sum of skew-indecomposable permutations in
the set Av(1234, 1324, 1432, 3214) gives us the entire set Av(1234, 1324, 1432, 3214).

�
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The generating function gives the enumeration

1, 1, 2, 6, 20, 62, 172, 471, 1337, 3846, 11030, 31442, 89470, 254934 . . .

and has been added to the Online Encyclopedia of Integer Sequences [13,
A260696].

5.5. Non-intersecting boundaries. Having looked at the 2143-avoiding
permutations inside the class Av(1324) we next turn our attention to
permutations that are forced to contain 2143.

Definition 5.14. We say that a permutation has a non-intersecting
boundary of type (a, b) if it has a left-to-right minima, b right-to-left
maxima and these two sequences do not intersect, in the sense that the
smallest lrm is to the left of the largest rlm, and the first lrm is smaller
than the last rlm.

Note that our example in Figure 13 has a non-intersecting boundary
of type (2, 3).

These boundary points determine a non-intersecting boundary grid
of type (a, b), denoted Ba,b. The down-core of this grid is

Da,b = D(Ba,b)

and will be called the non-intersecting core of type (a, b).
We use techniques analogous to those in earlier sections to find the

generating function for 1324-avoiders with a non-intersecting boundary
of type (a, b) where either a or b is at most 3. Note that the non-
intersecting core of type (a, 1) is precisely the same as the 132-core
of size a. First we consider those permutations with non-intersecting
boundary of type (a, 2).

Definition 5.15. Let EBa,b be Ba,b with the final column doubled.
Let EDa,b = D(EBa,b).

Note that EBa,1 = EBa, defined above Lemma 5.4.

Lemma 5.16. Let H = H(x, y) be the generating function where the
coefficient of xayk is the number of independent sets of size k in Da,2.
Then

H =
G

1− y(G− 1)
,

where G = G(x, y) is the generating function in Lemma 5.4, for the
down-core EBa.
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↔

Figure 16. An illustration of the proof of Lemma 5.16
by selecting vertices in the top row of D5,2

Proof. Consider the graph Da,2. Every vertex in the top row can be
chosen to be a member of an independent set with other vertices in
the top row. Similar to before, selection of these vertices imposes re-
strictions. If we choose n vertices in the top row we see n + 1 graphs
equivalent to EDc,1 (for some non-negative integer c). One of these
graphs is empty if the rightmost vertex in the top row is chosen. Hence
the generating function is given by

H = G+ yG(G− 1) + y2G(G− 1)2 + · · ·+ ynG(G− 1)n + · · ·

=
G

1− y(G− 1)
. �

Proposition 5.17. The number of 1324-avoiding permutations of length
n with a non-intersecting boundary of type (a, 2), for some integer
a ≥ 1, is given by the coefficient of xn of the generating function

x2H

(

x,
x

1− x

)

.

Proof. In order to generate the permutations with this boundary it is
necessary to multiply by x2 since we need to add in the two right-to-left
maxima. �

This gives the enumeration

0, 0, 1, 1, 4, 14, 49, 174, 626, 2276, 8346, 30821, 114495, 427481, . . .

of these permutations (starting from the empty permutation of length
0).

We next consider the case of three right-to-left maxima.
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Lemma 5.18. Let I = I(x, y) be the generating function where the
coefficient of xayk is the number of independent sets of size k in EDa,2.
Then

I = H +
yG(H − 1)

1− y(G− 1)

where G = G(x, y) and H = H(x, y) are the generating functions in
Lemmas 5.4 and 5.16, respectively.

Proof. Consider the graph EDa,2. Every vertex in the final column
can be chosen to be a member of an independent set with any other
vertices in the final column. Selecting the vertices in the final column
places restrictions on the remainder of the grid. If the independent set
contains no vertices from the final column, then we see a graph of the
form Da,2. If we chose in the final column then the graph breaks down
into smaller graphs. The rightmost graph is equivalent to some Dc,2,
all other graphs seen are equivalent to some EDd,1 by Remark 5.5. If
we chose n vertices in the final column, we see n such smaller graphs,
with the exception that if we chose the uppermost vertex in the column,
n−1 graphs are seen, this is equivalent to seeing an empty graph above
this point. Therefore the generating function is given by

I = H + y(H − 1)G+ y2(H − 1)G(G− 1) + · · ·
· · ·+ yn(H − 1)G(G− 1)n−1 + · · ·

= H +
yG(H − 1)

1− y(G− 1)
. �

Lemma 5.19. Let J = J(x, y) be the generating function where the
coefficient of xayk is the number of independent sets of size k in Da,3.
Then

J = (1 + y)I − y
y(1 + y)2(G− 1)I

1− y(G− 1)
,

where G = G(x, y) and I = I(x, y) are the generating functions in

Proof. Consider the graph Da,3. Every vertex in the second from top
row can be chosen to be a member of an independent set with other
vertices in the same row. We note that the rightmost box, br, (marked
with ◦ in Figure 18) is independent of any other boxes in the grid and
thus can be chosen, or not, independently of everything else. Similar
to before selection of every other vertex imposes restrictions on the
remainder of the grid. If we select no vertex to the left of br we get a
graph of the form EDa,2. Now we consider choosing at least one vertex
from the second from top row excluding the rightmost box. In doing
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↔

Figure 17. An illustration of the proof of Lemma 5.18
by selecting vertices in the final column of ED6,2

×
◦

↔

× ◦

Figure 18. An illustration of the proof of Lemma 5.19
by selecting vertices in the second row of D5,3

this we see a smaller EDe,2 to the right of the rightmost vertex selected,
a single independent box directly above the rightmost vertex (marked
with ×), and smaller graphs of form EDf,1 directly below each point.
The EDe,2 by the rightmost point can be empty when we choose the
vertex second from right, but none of the EDf,1 graphs can be empty.
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Therefore the generating function is given by

J = (1 + y)I − y
︸ ︷︷ ︸

Empty row

+y(1 + y)2I(G− 1) + y2(1 + y)2I(G− 1)2 + · · ·

· · ·+ yn(1 + y)2I(G− 1)n + · · ·

= (1 + y)I − y +
y(1 + y)2I(G− 1)

1− y(G− 1)
. �

Proposition 5.20. The number of 1324-avoiding permutations of length
n with a non-intersecting boundary of type (a, 3), for some integer
a ≥ 1, is given by the coefficient of xn of the generating function

x3J

(

x,
x

1− x

)

.

Proof. In order to generate the permutations with this boundary it is
necessary to multiply by x3 since we need to add in the three right-to-
left maxima. �

This gives the enumeration

0, 0, 0, 1, 1, 7, 33, 139, 566, 2279, 9132, 36488, 145500, 579318, . . .

of these permutations (starting from the empty permutation of length
0).

One would hope that the method applied above would extend to
arbitrary many right-to-left maxima, but we have not succeeded in
generalising our methods.

6. Future work

6.1. Non-crossing and non-nesting partitions. As pointed out to
us by Galashin [7], bump-diagrams, see e.g.Rubey and Stump [11], for
non-crossing and non-nesting partitions provide an alternative frame-
work for the independent sets in 132- and 123-cores: An independent
set in a 132-core (123-core) corresponds to a non-crossing (non-nesting)
partition; see Figure 19.

We note that the independent sets in the 132-core are the vertices
of the non-crossing complex and the independent sets in the 123-core
are the vertices of the non-nesting complex, see e.g. Santos et al. [12].
Both of these complexes are pure. From empirical testing it seems that
the down-cores on boundaries avoiding 123 are pure if and only if the
boundary avoids 2143. We record this as a conjecture:

Conjecture 6.1. Let π be a 123-avoiding permutation. The indepen-
dent set complex of the down-core D(bg(π)) is pure if and only if π
avoids 2143.
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Figure 19. The first (last) line shows the 132-cores
(123-cores) of sizes 1, . . . , 5. In between is the amal-
gamation of the bump-diagrams of all set partitions of
{1, . . . , n + 1}, where n is the size of the corresponding
core

6.2. Vincular patterns. If we consider the sets Av(1234) and Av(1324)
with our methods, we see first of all that they have exactly the same
boundary permutations and there is an obvious bijection, preserving
the boundary (as well as the encoding), that reverses each column.

|Av(1234) | = |Av(1324) |.
A similar bijection can be obtained for the bivincular patterns where
the 2 and the 3 in the patterns are also required to be consecutive
values.
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