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A FAST MODULO PRIMES ALGORITHM FOR SEARCHING

PERFECT CUBOIDS AND ITS IMPLEMENTATION.

R.R.Gallyamov, I.R. Kadyrov, D.D.Kashelevskiy,

N.G.Kutlugallyamov, R.A. Sharipov

Abstract. A perfect cuboid is a rectangular parallelepiped whose all linear extents
are given by integer numbers, i. e. its edges, its face diagonals, and its space diagonal
are of integer lengths. None of perfect cuboids is known thus far. Their non-existence
is also not proved. This is an old unsolved mathematical problem.

Three mathematical propositions have been recently associated with the cuboid
problem. They are known as three cuboid conjectures. These three conjectures
specify three special subcases in the search for perfect cuboids. The case of the second
conjecture is associated with solutions of a tenth degree Diophantine equation. In the
present paper a fast algorithm for searching solutions of this Diophantine equation
using modulo primes seive is suggested and its implementation on 32-bit Windows
platform with Intel-compatible processors is presented.

1. Introduction.

Conjecture 1.1 (Second cuboid conjecture). For any two positive coprime integer

numbers p 6= q the tenth-degree polynomial

Qpq(t) = t10 + (2 q2 + p2) (3 q2 − 2 p2) t8 + (q8 + 10 p2 q6+

+4 p4 q4 − 14 p6 q2 + p8) t6 − p2 q2 (q8 − 14 p2 q6 + 4 p4 q4+

+10 p6 q2 + p8) t4 − p6 q6 (q2 + 2 p2) (3 p2 − 2 q2) t2 − q10 p10

(1.1)

is irreducible over the ring of integers Z.

Theorem 1.1. A perfect cuboid associated with the polynomial (1.1) does exist

if and only if for some positive coprime integer numbers p 6= q the Diophantine

equation Qpq(t) = 0 has a positive solution t obeying the inequalities

t > p2, t > p q, t > q2, (p2 + t) (p q + t) > 2 t2.

Theorem 1.1 can be found in [1]. It stems from the results of [2] and [3]. As for
the perfect cuboid problem itself, it has a long history reflected in [4–51]. There
are also two series of ArXiv publications. The first of them [52–54] continues the
research on cuboid conjectures. The second one [55–67] relates perfect cuboids with
multisymmetric polynomials.
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2 R.A. SHARIPOV AND STUDENTS

The scope of perfect cuboids in the case of the second cuboid conjecture is
restricted by the following theorem derived from [1].

Theorem 1.2. In the case of the second cuboid conjecture there are no perfect

cuboids outside the region given by the inequalities

min

(

3

√

p

9
,
p

59

)

6 q 6 59 p. (1.2)

In [1] the region given by the inequalities (1.2) was presented as a union of two
regions which were called the linear and the nonlinear regions respectively. In this
paper we present an algorithm for searching cuboids in the region (1.2).

2. A modulo primes seive.

Let p, q, and t be a triple of integer numbers satisfying the Diophantine equation
Qpq(t) = 0 with the polynomial (1.1) and let r be some prime number. Then we
can pass from Z to the quotient ring Zr = Z/rZ and denote

p̃ = p mod r, q̃ = q mod r, t̃ = t mod r. (2.1)

The numbers p̃, q̃, and t̃ are interpreted as division remainders after dividing p, q,
and t by the prime number r. They obey the quotient equation

Qp̃q̃(t̃) mod r = 0. (2.2)

Once r is given there are only a finite number of remainders (2.1):

p̃ = 0, . . . , r − 1, q̃ = 0, . . . , r − 1, t̃ = 0, . . . , r − 1.

The values in the left hand side of the equation (2.2) for them can be precomputed.
They can be either zero or nonzero modulo r. We can use them as a fast computed
test for sweeping away those values of p, q, and t, where Qpq(t) 6= 0.

Definition 1.1. A pair of integer numbers 0 6 p̃ 6 r − 1 and 0 6 q̃ 6 r − 1 is
called solvable modulo r if there is at least one integer number 0 6 t̃ 6 r − 1 such
that Qp̃q̃(t̃)mod r = 0. Otherwise it is called unsolvable.

We can represent solvable and unsolvable pairs in the form of bit-arrays ur:

ur(p̃, q̃) =

{

0 if (p̃, q̃) is solvable;

1 if (p̃, q̃) is unsolvable.
(2.3)

The value ur(p̃, q̃) of the function (2.3) is called the unsolvability bit. Bit-arrays of
the form (2.3) can be stored as tables. For r = 2 this table looks like

u2(p̃, q̃) q̃ = 0 q̃ = 1

p=0 0 0

p=1 0 0

(2.4)
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As we see in (2.4), the values of the function u2(p̃, q̃) are identically zero. The same
is true for the functions u3(p̃, q̃) u5(p̃, q̃), and u7(p̃, q̃) associated with the prime
numbers r = 3, r = 5, and r = 7. The case of r = 11 is different:

u11 0 1 2 3 4 5 6 7 8 9 10

p=0 0 0 0 0 0 0 0 0 0 0 0

p=1 0 0 1 1 1 1 1 1 1 1 0

p=2 0 1 0 1 1 1 1 1 1 0 1

p=3 0 1 1 0 1 1 1 1 0 1 1

p=4 0 1 1 1 0 1 1 0 1 1 1

p=5 0 1 1 1 1 0 0 1 1 1 1

p=6 0 1 1 1 1 0 0 1 1 1 1

p=7 0 1 1 1 0 1 1 0 1 1 1

p=8 0 1 1 0 1 1 1 1 0 1 1

p=9 0 1 0 1 1 1 1 1 1 0 1

p=10 0 0 1 1 1 1 1 1 1 1 0

(2.5)

In the memory of a computer bit-arrays like (2.5) are packed into byte-arrays with
8 bits per 1 byte, e. g. the array u11 looks like

00000000 11100000 10011111 . . . 11111111 00000000 (2.6)

Note that bits in a byte are written in the reverse order — the highest bit is the
leftmost. This is because bytes are designed to represent binary numbers. Note
also that the last byte of the table (2.5) in (2.6) is incomplete. It is appended with
zero bits which are shown in blue.

Bytes associated with the prime number r = 11 can be written into some linear
locus of memory. Similarly, bytes associated with several other prime numbers can
be written into adjacent loci. Altogether they constitute a bit seive. Accessing a
proper bit of this seive, we can easily decide whether for a certain pair of integer
numbers p and q the equation Qpq(t) = 0 is unsolvable modulo some prime number
r enclosed in the seive. Then it is unsolvable in the ring of integers Z as well.
Quickening the search algorithm is reached through sweeping away those (p, q)
pairs that do not go through the bit seive for several prime numbers. Indeed, it is
clear that calculating the remainders

p̃ = p mod r, q̃ = q mod r.

and then addressing bits in a memory locus are much faster operations than fac-
toring a polynomial with numeric coefficients.

In our particular case we use the bit seive for 96 consecutive prime numbers from
11 to 541. This bit seive is stored in the binary file Cuboid pq bit tables.bin.
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In order to access effectively bit-tables for each particular prime number from 11
to 541 one should know their offsets within this file. These offsets are written to
the separate binary file Cuboid primes.bin. They are enclosed in the structures
described as follows in C++ language:
struct primes item

{
short prime; // prime number

unsigned int p offset; // prime bit-table offset

};
In our implementation the values of prime numbers are restricted not only by

short=2bytes data format used for them. Each prime number r is associated
with the r × r bit-table that occupies r2/8 bytes in memory. Using unsigned

int=4 bytes format for offsets, we have the following restriction:

N
∑

i=5

r2i
8

< 232, where r5 = 11, r6 = 13, . . . . (2.7)

From (2.7) we derive N < 1198 and rN < 9697. These inequalities fit the 4Gb
RAM (random access memory) limit. Actually we have chosen N = 100 in which
case 1.5Mb RAM is sufficient.

3. Code for generating binary files.

The code for preparing Cuboid pq bit tables.bin and Cuboid primes.bin bi-
nary files is implemented as a DLL library interacting with a Maple code. The DLL
file Cuboid search v01.dll is generated within the 32-bit x86 makefile project for
Microsoft Visual C++ 2005 Express Edition package. The project files

1) make.bat

2) makefile

3) Cuboid search v01.h

4) Cuboid search v01.cpp

are suppled as ancillary files to this paper. The C++ file Cuboid search v01.cpp

is the main source file of the project. It comprises a C++ and inline assembly
language code for running on 32-bit Windows machines with Intel compatible pro-
cessors. The DLL library file Cuboid search v01.dll is produced from this code
by running the batch file make.bat in a command prompt window:

> make.bat

Along with Cuboid search v01.dll several other files are generated, including two
LOG files compiler.log and linker.log. They can be removed by running the
same batch file with the clean option:

> make.bat clean

Note that the Visual C++ 2005 Express Edition package should be installed for
successfully running the above files. In our implementation it was installed on
Windows XP machine with Intel Pentium 4 Prescott CPU 2.80 GHz.

The generated DLL library Cuboid search v01.dll exports several functions.
Their declarations are in the C++ header file Cuboid search v01.h. Three of
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these functions are declared as follows:

extern "C" declspec(dllexport)

void stdcall Open pq file stream();

extern "C" declspec(dllexport)

unsigned int stdcall Write pq file stream(unsigned int rrr);

extern "C" declspec(dllexport)

void stdcall Close pq file stream();

These declarations correspond to the following Maple worksheet declarations:

> DLL file:="./Cuboid search v01.dll":

> Open pq file stream:=define external(’Open pq file stream’,

LIB=DLL file):

> Write pq file stream:=define external(’Write pq file stream’,

’rrr’::(integer[4]), RETURN::(integer[4]), LIB=DLL file):

> Close pq file stream:=define external(’Close pq file stream’,

LIB=DLL file):

Maple worksheets are supplied in XML format as ancillary files to this paper. They
can be imported to Maple. Here is the list of these files:

5) Create binary seive files.xml

6) Test external DLL procedures 01.xml

7) Test external DLL procedures 02.xml

8) Search for cuboids.xml

The external function Write pq file stream(r) imported to the Maple work-
sheet creates the bit-seive table for a given prime number r in its argument and
writes it to the binary file Cuboid pq bit tables.bin. It returns the integer value
equal to the number of bytes written to the file Cuboid pq bit tables.bin. The
other binary file Cuboid primes.bin is written simultaneously using the Maple
worksheet code in Create binary seive files.xml.

The external function Write pq file stream(r) exploits another external func-
tion Calculate Q pq mod prime(p,q,t,r). This function returns the value of the
polynomial (1.1) modulo prime number r taken as its fourth argument. Though its
arguments are declared as 32-bit integers, its code is designed to deal with 16-bit
unsigned integers only. Due to the restriction r < 9697 derived from (2.7) its usage
in Write pq file stream(r) does not require 32-bit integers in its arguments:

0 6 p 6 r − 1 < 9797, 0 6 q 6 r − 1 < 9797.

The function Calculate Q pq mod prime(p,q,t,r) is a delicate part of the pro-
ject. It is written in assembly language. Therefore it is carefully tested in the Maple
worksheet code file Test external DLL procedures 01.xml.

4. Code for loading and unloading binary files.

Once the binary files Cuboid pq bit tables.bin and Cuboid primes.bin are
generated, they should be used in searching for perfect cuboids. For this purpose
they should be loaded into the memory easily accessible from the DLL library func-
tions. This task is performed by the function Load Cuboid Binaries() residing
within the same DLL library. The opposite task is to unload the binary files, i. e.
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to release the memory occupied by them. This task is performed by the function
Release Cuboid Binaries() also residing within the DLL library.

The loading and unloading functions are imported and tested within the Maple
worksheet code file Test external DLL procedures 02.xml.

As an auxiliary test for two generated binary files Cuboid pq bit tables.bin

and Cuboid primes.bin we visualize the bit-tables from Cuboid pq bitmaps.bin

in the form of the text file Cuboid bit tables.txt. This text file is written by the
code from the Maple worksheet file Test external DLL procedures 02.xml.

5. Code for searching cuboids.

According to Theorem 1.2 the search for cuboids in the case of the second cuboid
conjecture consists in scanning the region given by the inequalities (1.2). For each
positive p these inequalities specify a finite segment of the real axis, which comprises
a finite number of integer points. For p 6 151 this segment is given by

p

59
6 q 6 59 p. (5.1)

For p > 152 the inequalities are different:

3

√

p

9
6 q 6 59 p. (5.2)

The inequalities 0 < p 6 151 and the inequalities (5.1) outline a finite set of
integer points on the coordinate pq-plane. One can easily verify that these points
do not produce perfect cuboids. For this reason the software in the DLL library
Cuboid search v01.dll is designed to search cuboids for p > 152 within each
segment specified by the inequalities (5.2). Roughly speaking, it is an infinite loop
on p > 152 and an enclosed loop on q obeying the inequalities (5.2) for each p.

Both loops on p and on q are started from within the Maple worksheet file
Search for cuboids.txt by executing the commands

> Load Cuboid Binaries();

> Start searching(152,3);

Here 152 and 3 are initial values for p and q respectively. They should obey the
inequalities (5.2). The function Start searching is an external function imported
from the DLL library Cuboid search v01.dll. It starts the looping process and
returns just immediately with the value 0 indicating that the search is successfully
started. The multithreading mechanism is used in the code of this function:

beginthread(Look for cuboids thread,0,(void*)12);

return(0);

Here Look for cuboids thread is an internal function which is not exported from
the DLL library. It is executed within a new thread, while the initial function
Start searching returns control to the Maple worksheet.

You can do anything in the Maple worksheet while the search function Look for

cuboids thread is running its infinite loops on p and q, provided you do not stop
the Maple session by closing the worksheet. In particular, you can control the
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process of searching by executing the following function in the Maple worksheet:

> Get current p();

This function returns the current value of the loop variable p with the discreteness
equal to 100. There is another control function:

> Get current r max();

This function returns the maximal prime number is used to seive cuboids within
current hundred values of p. The number rmax is flushed to 1 for each next hundred
values of p and then is recalculated again.

The infinite loop on p cannot ever terminate by itself. Therefore it is terminated
manually. This can be done at any time by executing the following function in the
Maple worksheet that initiated the thread with this loop:

> Stop searching();

Upon doing it you can read the time stamp and the exit values of p, q, and rmax

at the end of the file Cuboid search report.txt, e. g. it could be

2016-2-20 21:36

Stop with p=112618, q=5691455, r max=131

Then you can restart the search from this point on by executing the command

> Start searching(112618,5691455);

Or you can terminate the session by executing the command

> Release Cuboid Binaries();

and then closing the Maple worksheet.
Normally the function Start searching(p,q) returns 0 indicating that the

search is successfully started. It returns 1 if the search is already running. So
you cannot initiate several search threads running simultaneously with this soft-
ware. This limitation is planned to be removed in further versions of the DLL
library Cuboid search v01.dll.

The function Start searching(p,q) returns 2 if p < 152 (see (5.1) and (5.2)
above for explanation). This function returns 3 if p > 72796055, which breaks the
32-bit limit for q = 59 p in (5.2).

The function Start searching(p,q) returns 4 if q is below the lower limit set
by the inequalities (5.2). Similarly, it returns 5 if q is above the upper limit set by
the inequalities (5.2).

The function Start searching(p,q) returns 6 if it is invoked before the bi-
nary files Cuboid pq bit tables.bin and Cuboid primes.bin are loaded into the
memory by the function Load Cuboid Binaries().

The function Load Cuboid Binaries() normally returns the number of bytes
loaded from the file Cuboid primes.bin, i. e. the size of this file. However, if it is
invoked when the binary files Cuboid pq bit tables.bin and Cuboid primes.bin

are already loaded, it does not load them again and returns 0.
The function Release Cuboid Binaries() normally returns 0. However it re-

turns 6 if the binary files Cuboid pq bit tables.bin and Cuboid primes.bin are
not loaded. This function cannot release the memory occupied by the bit-tables if
the search is running. In this case it returns 1.
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The function Stop serching() normally returns 0. However, if this function is
invoked when the search is not on, it returns 1. Thus the functions

> Load Cuboid Binaries();

> Start searching(p,q);

> Stop serching();

> Release Cuboid Binaries();

should be invoked in the above order. Otherwise they signal misuse, but do not
lead to a crash. These four functions constitute a toolkit we used in the present
numerical research of perfect cuboids.

6. Results.

At present date 01.04.2016 the values of p from 1 to 154000 are scanned. For
each such p all values of q limited by the inequalities (1.2) are scanned. This stands
for about 700 billions (p, q) pairs that have been tested. Indeed, we have

N ≈

154000
∑

p=1

59 p = 699626543000≈ 0.7 · 1012.

None of these (p, q) pairs produces a perfect cuboid. Moreover, none of them
goes through our primes seive composed by 96 consecutive primes from 11 to 541.
Actually this seive is so dense that the maximal depth reached thus far is 29th
prime in our sequence, which is equal to 137. This result is negative in the sense of
finding a perfect cuboid. However it shows that the Second cuboid conjecture 1.1
is rather firm for to believe that it might be valid.

The total time spent for the above computations is 4130 minutes, i. e. about 69
hours. Then we can calculate the time per one (p, q) pair:

∆ t =
4130

699626543000
min ≈ 3.54 · 10−7 sec.

The upper limit for p with our 32-bit code is given by the formula

pmax =
2 32

59
≈ 72796055.

Here is the estimate for the time needed to reach this limit:

t = ∆ t

72796055
∑

p=1

59 p = 5.53 · 1010 sec ≈ 1755 years.

This estimate means that our code should be improved not only at the expense of
multithreading and multiprocessing. Some fresh theoretical ideas are required.

7. Acknowledgement.

The authors are grateful to A.A.Gubarev for helpful advices on linking C++
code with a Maple worksheet session.



A FAST MODULO PRIMES ALGORITHM . . . 9

References

1. Sharipov R. A., Asymptotic approach to the perfect cuboid problem, 7, (2015), no. 1, 100–112;
see also e-prints arXiv:1504.07161, arXiv:1505.00724, arXiv:1505.02745, and arXiv:1506.04705
in Electronic Archive http://arXiv.org.

2. Sharipov R. A., A note on a perfect Euler cuboid., e-print arXiv:1104.1716 in Electronic
Archive http://arXiv.org.

3. Sharipov R. A., Perfect cuboids and irreducible polynomials, Ufa Mathematical Journal 4,
(2012), no. 1, 153–160; see also e-print arXiv:1108.5348 in Electronic Archive http://arXiv.org.

4. Euler brick, Wikipedia, Wikimedia Foundation Inc., San Francisco, USA.

5. Halcke P., Deliciae mathematicae oder mathematisches Sinnen-Confect, N. Sauer, Hamburg,
Germany, 1719.

6. Saunderson N., Elements of algebra, Vol. 2, Cambridge Univ. Press, Cambridge, 1740.
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