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Hartree-Fock Many-Body Perturbation Theory for Nuclear Ground-States
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We investigate the order-by-order convergence behavior of many-body perturbation theory (MBPT) as a sim-
ple and efficient tool to approximate the ground-state energy of closed-shell nuclei. To address the convergence
properties directly, we explore perturbative corrections up to 30" order and highlight the role of the partitioning
for convergence. The use of a simple Hartree-Fock solution to construct the unperturbed basis leads to a conver-
gent MBPT series for soft interactions, in contrast to, e.g., a harmonic oscillator basis. For larger model spaces
and heavier nuclei, where a direct high-order MBPT calculation in not feasible, we perform third-order calcula-
tion and compare to advanced ab initio coupled-cluster calculations for the same interactions and model spaces.
We demonstrate that third-order MBPT provides ground-state energies for nuclei up into tin isotopic chain that
are in excellent agreement with the best available coupled-cluster results at a fraction of the computational cost.

Introduction. The solution of the Schrodinger equation
for atomic nuclei using realistic nuclear interactions is at the
heart of ab initio nuclear structure theory. In practice this
problem is solved by constructing approximate methods for a
truncated, i.e., finite-dimensional Hilbert space. However, for
the calculation of ground-state energies of heavy nuclei signif-
icant algorithmic and computational efforts are needed. There
exist a plethora of different ab initio methods, e.g., coupled
cluster (CC) theory [1-6], in-medium similarity renormaliza-
tion group (IM-SRG) [7-11], or self-consistent Green’s func-
tion methods [12-14]. However, it is desirable to have an al-
ternative, light-weight framework available. A conceptually
simple method to solve for the eigenenergies of a physical
system is many-body perturbation theory (MBPT) [15-17].
A perturbative treatment is the standard approach for many
problems from different fields of theoretical physics. The ad-
vantage of MBPT compared to other ab initio approaches is
its simplicity, which also allows for straightforward gener-
alizations to excited states and open-shell nuclei [18] with-
out the need of sophisticated equation-of-motion techniques.
The reason why MBPT usually is not considered as ab ini-
tio technique are convergence issues of the underlying per-
turbation series. Several studies of high-order MBPT based
on Slater determinants constructed from harmonic oscillator
(HO) single-particle states (HO-MBPT) have shown that the
perturbation series is divergent in almost every case [18, 19].
In such cases one heavily relies on the use of resummation
techniques, e.g., Padé approximants, that enable a robust ex-
traction of observables although the perturbative expansion di-
verges [19-21].

In this Letter, we formulate MBPT based on Hartree-Fock
(HF) single-particle states (HF-MBPT), and, for the first time,
investigate the convergence behavior of the perturbation se-
ries up to 30" order. We compare the ground-state energies
of “He and '°0 to results from exact diagonalizations in the
configuration interaction (CI) approach using the same model
space [22-24]. Based on the rapidly converging perturba-
tion series resulting from the use of HF basis states, we study
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ground-state energies of selected closed-shell medium-mass
and heavy nuclei at third-order MBPT, and compare to recent
coupled cluster (CC) calculations [6].

The Nuclear Hamiltonian. For all following investiga-
tions we start from the chiral nucleon-nucleon (NN) interac-
tion at next-to-next-to-next-to leading order (N*LO) by En-
tem and Machleidt [25] combined with the three-nucleon (3N)
interaction at next-to-next-to leading order N>LO in its local
form [26] with three-body cutoff Az = 400 MeV/c. Addi-
tionally, we use the similarity renormalization group (SRG)
to soften the Hamiltonian through a continuous unitary trans-
formation controlled by a flow parameter [27-31]. In prin-
ciple this transformation induces beyond-3N operators up the
mass number of the considered nucleus, which, however, we
have to neglect. To avoid the complication of dealing with
explicit 3N interactions, we make use of the normal-ordered
two-body approximation (NO2B) of the 3N interaction that
has been found to be very accurate for medium-mass nuclei,
see Refs. [32, 33]. For the matrix-element preparation we
adopt the procedure we introduced in Ref. [6], i.e., in par-
ticular, we use the large SRG model-space and exploit the it-
erative scheme where necessary. Thus, the matrix elements
and the treatment of the chiral NN+3N interaction are identi-
cal to Ref. [6] and we can compared directly to the CC results
presented there.

Many-Body Perturbation Theory. The essence of
Rayleigh-Schroédinger perturbation theory is the definition
of an additive splitting, referred to as partitioning, of a
given Hamiltonian H into an unperturbed part Hy and a
perturbation W. Introducing an auxiliary parameter A yields a
one-parameter family of operators,

H) = Hy+ AW, (1)

where the perturbation is defined by W = H — H. As ansatz
for the solution of the eigenvalue problem of H we take a
power series expansion in terms of an auxiliary parameter A,
where the expansion coefficients are given by the energy cor-
rections and state corrections, respectively. We choose Hj to
be the HF Hamiltonian arising from an initial NN+3N interac-
tion. We have shown in Refs. [18, 19] that high-order MBPT
corrections are accessible by means of a recursive scheme,



allowing for detailed investigations of the convergence char-
acteristics of the perturbation series. In general we cannot
expect that a perturbation series is convergent [34-36], but
one can exploit resummation-theory techniques to extract in-
formation on the observables of interest. There are different
schemes and transformations that can be used to extract, e.g.,
the ground-state energy from a divergent expansion [37-39].
Padé approximants have proven to be particularly useful in
the treatment of high-order HO-MBPT [18, 19]. Additionally,
they are well-known to mathematicians especially in the field
of convergence acceleration [21, 36, 37]. However, the cal-
culation of energy corrections up to sufficiently high orders
is only feasible for light nuclei due to increasing computa-
tional requirements. When proceeding to the medium-mass
region one must choose a different strategy. Depending on the
rate of convergence, one might expect low-order partial sums
of the perturbation series to be a reasonable approximation
to the exact ground-state energy. Having only low-order in-
formation available, resummation methods are less effective,
because one can only construct a small number of approxi-
mants that yield valid approximations only if the transformed
sequence converges sufficiently fast [18]. However, one al-
ternative is to exploit the freedom in the partitioning, i.e., the
choice of the unperturbed basis, to improve the convergence
of the perturbation series. For low-order calculations the cor-
rections can be expressed in terms of the particle-hole formal-
ism. Note that the Hartree-Fock energy corresponds to the the
first-order partial sum,

Euyr = EQ + ED )

Therefore, the first contribution to the correlation energy ap-
pears in second-order HF-MBPT. The second- and third-order
partial sum for the ground-state energy with respect to HF ba-
sis for a two-body operator are given by [40]
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In the third-order energy correction the first, second and
third term are called particle-particle (pp), hole-hole (hh) and
particle-hole (ph) correction, respectively. The ¢ correspond
to the HF single-particle energies and all matrix elements are
taken to be antisymmetrized. Summation indices a,b,c, ..
correspond to particle indices, i.e., above the Fermi level e,
whereas i, j, k, ... correspond to hole indices ranging from low-
est occupied single-particle states up to the Fermi level. The
zero- and one-body parts of the normal-ordered Hamiltonian
only enter in the first-order energy correction. Brillouin’s the-
orem states that there is no mixing of the Hartree-Fock ground

state with singly-excited determinants [17] and by orthogo-
nality the zero-body part is only present in the expectation
value of the perturbation. In principle, the derivation of energy
corrections beyond third order is straight forward. However,
considering a diagrammatic approach in terms of Hugenholtz
diagrams, the number of contributing diagrams at a given per-
turbation order p increases rapidly [41] such that it becomes
challenging to go beyond third-order in practice. Additionally,
terms from higher-order corrections involve expressions that
are notoriously hard to compute, because their effective im-
plementation, e.g., by means of BLAS-enabled matrix opera-
tions, is not obvious. The computational power needed to per-
form third-order MBPT calculations up to the heavy-mass re-
gion can in principle be provided by a single computing node
within 1 — 3% of the computing time needed for state-of-the-
art CC calculations.

Convergence Characteristics of Hartree-Fock Many-Body
Perturbation Theory. We start with comparing perturbation
series from HO- and HF-MBPT, and focus on their conver-
gence characteristics and sensitivity to the SRG flow param-
eter. In Fig. 1 we present a direct comparison of the order-
by-order behavior for the two partitionings up to 30th order
for 0. For these high-order calculations we use an Nyx-
truncation of the many-body model space similar the no-core
shell model (NCSM) [23]. The left column of Fig. 1 shows
the high-order partial sums and the right column the individ-
ual energy corrections for each order. Panel (a) shows the
partial sums from HO-MBPT for a sequence of model spaces
with fixed SRG flow parameter @ = 0.08 fm*. The partial
sums are divergent for every model space. The divergence is
also apparent from panel (c) which reveals the exponentially
increasing energy corrections. In contrast, panel (b) shows the
partial sums arising from HF-MBPT that are convergent for all
model spaces. Furthermore, the converged values agree with
direct CI results. As seen in panel (d), the energy corrections
are exponentially suppressed for higher orders, giving rise to
a robust convergence.

In Fig. 2 we show the high-order partial sums and energy
corrections in HF-MBPT for different SRG flow parameters.
Panels (a), (b) and (c) show the convergent perturbation series
for “*He,'°0 and 2*0, respectively. The calculations are per-
formed for fixed Ny = 6 for “He, 190 and Ny, = 4 for 20O
and the flow-parameter dependence of the absolute energies
results from the varying degree of convergence with respect
to the many-body model space.

A more interesting flow-parameter dependence can be ob-
served for the individual energy corrections in panels (d), (e),
and (f). There is a clear dependence of the convergence rate
on the flow parameter for the oxygen isotopes. For '°O the
series converges exponentially in all three cases and the larger
the flow parameter, i.e. the softer the Hamiltonian, the more
rapid the convergence—as might be naively expected. For
240 the behavior is slightly more complicated. For the soft-
est interaction with @ = 0.08fm* there is still a clear expo-
nential convergence. However, for the harder interactions,
ie., @ = 0.02,0.04fm* we observe no systematic decrease
of the high-order perturbative contributions anymore, they re-
main approximately constant and cause a small-amplitude os-
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FIG. 1. Partial sums of '°O in HO basis (a) and HF basis (b) for the
NN+3N-full interaction with @ = 0.08fm* and truncation parameters
Nmax = 2 (@), 4 (A) and 6 (x). The corresponding energy correc-
tions for each order are displayed in (c) and (d), respectively. All
calculations are performed at oscillator frequency hQ = 24 MeV.

cillatory behavior of the partial sums. However, even in these
cases we can easily extract a robust estimate for the asymp-
totic value. In the case of “He the suppression is independent
of @ and we observe the same rapid convergence for all inter-
actions.

The numerical values of the partial sums for selected or-
ders of HF-MPBT for the three nuclei and the different flow
parameters are summarized in Tab. I together with the results
of direct CI calculations for the same Hamiltonians and model
spaces. The higher-order partial sums are in good agreement
with the CI results—in most cases the deviation of the ground-
state energy is much smaller than 0.1%.

Based on our detailed analysis of high-order HF-MBPT and
due to the exponential suppression of the energy corrections,
we can take low-order partial sums as a reasonable approxi-
mation to the converged results. This motivates the investiga-
tion of third-order partial sums for selected medium-mass and
heavy closed-shell nuclei in the following.

Explicit Summation for Heavy Nuclei. For heavier nuclei
and larger model spaces we cannot compute the high-order
perturbation series explicitly and, thus, we cannot investigate
the convergence characteristics explicitly. We can, however,
evaluate the perturbative contributions up to third order very
efficiently. To demonstrate the validity of a low-order per-
turbative approximation, we need to compare our results to
established ab initio techniques, in our case, coupled-cluster
calculations with sophisticated triples corrections.

We consider a sequence of closed-shell nuclei ranging from
“He to '*2Sn and perform calculations in second and third-
order HF-MBPT in a large model space truncated with respect
to the single-particle principal quantum number ep,x = 12.
We restrict ourselves to SRG-evolved Hamiltonians with flow
parameter = 0.08 fm*, which was used extensively in previ-
ous calculations and showed favorable order-by-order conver-
gence in our high-order studies. We cannot perform CI cal-
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FIG. 2. Partial sums for varying flow parameters in HF-MBPT for
“He (a), '°0 (b) and 2*O (c). The corresponding energy corrections
are given in (d), (e) and (f), respectively. The model space for the first
and second panel are truncated at N,,x = 6. The truncation for the
third panel is given by Np.x = 4. The flow parameters for the differ-
ent data sets are @ = 0.02 fm* (@), 0.04 fm* (a) and 0.08 fm*(*). All
calculations use a NN+3N-full interaction with oscillator frequency
hQ =24 MeV.

culations for these large spaces, however, the coupled-cluster
framework has proven to provide accurate results for ground-
state energies of closed-shell nuclei [1-4]. We compare the
HF-MBPT results to recent CC calculations at the CCSD and
the CR-CC(2, 3) level [5, 6, 42]. Starting from a HF reference
state this approach provides a complete inclusion of singly and
doubly excited clusters on top of the reference state and, in the
case of CR-CC(2, 3) an approximate non-iterative inclusion of
triply excited clusters [43—46].

In Figs. 3 and 4 the ground-state energies per nucleon (a) as
well as the correlation energy E o = E — Eyp per nucleon (b)
from HF-MBPT and CR-CC(2, 3) are depicted for an initial
chiral NN+3N and an initial chiral NN interaction. The SRG-
induced three-nucleon contribution are taken into account in
both cases, leading to the NN+3N-full and NN+3N-induced
interactions, respectively.

These figures show a remarkable result: The binding ener-
gies in third-order HF-MBPT and CR-CC(2,3) are in excel-
lent agreement with each other. The relative differences are
in most cases much smaller than 1%. The same observation
holds for the correlation energy, i.e., the corrections to the HF
energy. The third-order energy corrections contribute approx-
imately 0.2 MeV to the overall binding energy per nucleon
and are, therefore, non negligible even though the third-order
energy corrections in HF-MBPT are one order of magnitude
smaller than the second-order correction.
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FIG. 3. Panel (a) shows the ground-state energies per nucleon from third-order HF-MBPT (@) in comparison to CR-CC(2, 3) (4) results for
selected closed-shell nuclei. Panel (b) shows the correlation energy per nucleon, Egz) (O) as well as Egz) + Eé3) (o) for HF-MBPT. Additionally,
the correlation energy per nuclei for CCSD (a) and CR-CC(2,3) (a) are shown. All calculations were performed with the NN+3N-full
interaction with o = 0.08 fm*, iQ = 24 MeV in an ey, = 12 truncated model space. Experimental values are indicated by black bars.
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FIG. 4. Binding energy and correlation energy for the NN+3N-induced interaction. All other parameters as in Fig 3.

The third-order energy contribution (3) consists of three
terms corresponding to three Hugenholtz diagrams. Figure 5
disentangles their individual contributions to the overall third-
order energy correction. The contribution of the pp and hh
corrections are almost constant over the entire mass range,
whereas the energy correction arising from the ph term scales
with increasing mass number in the case of a NN+3N-full
interaction. For the tin isotopes the third-order energy cor-
rection contributes 3% of the overall binding energy in third-
order HF-MBPT and is not negligible. In particular we see
that most of the third-order energy correction arises from the
ph diagram. In the case of a NN+3N-induced interaction
we see that all three terms are suppressed with increasing
mass number. These systematic dependencies of the individ-

ual third-order contributions on the input Hamiltonian show
that a partial inclusion of selected third-order terms may lead
to wrong estimates.

Conclusions. We have discussed Rayleigh-Schrodinger
MBPT as an efficient approach to compute ground-state en-
ergies for closed-shell nuclei up to the heavy-mass region.
The use of a HF basis has enabled us to overcome conver-
gence problems that generally arise in HO-MBPT. Investigat-
ing '°0 in different model spaces showed convergent partial
sums when using HF-MBPT and the limit of the perturba-
tion series coincides with the results from explicit CI calcu-
lations. Additionally, we found systematic dependencies of
the convergence rate on the SRG parameter in the case of
160 and *0. Thus, in HF-MBPT we can improve the conver-



TABLE 1. Ground-state energies for *He, '°0 and 2*O in units of
[MeV] obtained in HF-MBPT for different orders up to p = 30 and
in CI calculations with NN+3N-full interactions for different flow
paramters . The model spaces are truncated by Ny, = 6 for *He
and '°0 and Ny, = 4 in the case of 2*O. The HO frequency is

hQ =24 MeV.

« [fm*]
0.02 0.04 0.08

E® -19.204 -20.269 -23.588

E® -20.334 -23.224 -26.589

“He EUO -20.507 -24.444 -26.947
EZ0 -20.526 -24.462 -26.964

ECY -20.537 -24.469 -26.971

CI -20.539 -24.483 -26.994
E® -85.620 -107.241 -120.699
E®. -89.315 -110.861 -123.863
160 ESm) -83.780 -107.199 -122.561
EZY -84.180 -107.341 -122.577
ESY -84.018 -107.331 -122.577
CI -84.043 -107.330 -122.577
ES, -125.460 -124.459 -149.053
EY -122.880 -126.670 -151.059
%0 EU0 -119.705 -121.233 -147.446
ECY -119.335 -121.314 -147.508
EGO -119.483 -120.948 -147.489
Cl -119.131 -120.947 -147.488
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FIG. 5. Individual contributions of the diagrams appearing at third-
order perturbation theory. Show are the contributions per nucleon
from the pp-diagram(®) , the hh-diagram (%) and the ph-diagram
(»). The overall contribution of the third-order correction is depicted
in (@). The first panel corresponds to the NN+3N-full interaction and
the second panel to a NN+3N-induced interaction with & = 0.08 fm*,
hQ =24 MeV, and e, = 12.

gence behavior of the perturbation series by further evolving
the Hamiltonian, whereas the divergent HO-MBPT series are
unaffected.

We can identify a hierarchy of elements influencing the
convergence properties of perturbation series. Defining a par-

titioning, or equivalently, defining a starting point of the re-
cursive calculation is the most important part. We have seen
from the radically different behavior of the perturbation series
in HF-MBPT and HO-MBPT that the partial sums are very
sensitive to the partitioning. When using HF-MBPT we can
improve the order-by-order convergence by using softer inter-
actions corresponding, e.g., to larger SRG flow parameters.
Even for HF basis sets harder interactions can spoil conver-
gence. The ‘softness’ of the interaction has been character-
ized in terms of Weinberg eigenvalues, which are connected
to the spectrum of two-body Green’s functions [47-49]. Sim-
ilar expressions also appear in the formulas for the first-order
state correction. Though the general connection seems obvi-
ous, one should be careful with conclusions about the conver-
gence of MBPT for a finite nucleus based on the softness of
the interaction. Our work has shown that the partitioning is
key for convergence. Our observation that the convergence
of HF-MBPT deteriorates for harder interactions could sim-
ply be explained by the fact that the unperturbed HF solution
becomes a much worse approximation for the ground state in
these cases.

The superior convergence properties of HF-MBPT has mo-
tivated the use of low-order approximations to investigate nu-
clei in the medium-mass region. We have validated these low-
order approximations to the most sophisticated CC calcula-
tions and found excellent agreement of third-order HF-MBPT
and CR-CC(2,3) at the level of better than 1%. The consis-
tency of high-order partial summations with exact CI diago-
nalizations as well as the agreement of low-order summations
with coupled-cluster results may qualify HF-MBPT as an ab
initio approach. However, the strong dependence of conver-
gence on the partitioning should be a reason for caution. The
HF partitioning seems to be robust for sufficiently soft inter-
actions, but there is no formal guarantee for convergence.

The great advantage of low-order HF-MBPT is its simplic-
ity: Computationally, the third-order calculations are much
cheaper than CC or IM-SRG calculations. It is, therefore,
ideal for survey calculations over a large range of medium-
mass nuclei, e.g., to explore the ground-state systematics for
new interactions. Formally, the underlying equations and al-
gorithms are trivial compared to CC or IM-SRG. As a result
of this formal simplicity, extensions to the description exited
states and open-shell nuclei are straight-forward. We have
demonstrated this already for light nuclei using high-order de-
generate HO-MBPT [18]. Alternative multi-configurational
formulations for open-shell nuclei are under investigation.
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