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Abstract

This article discusses some difficulties in the implementation of combinatorial algorithms associated

with the choice of all elements with certain properties among the elements of a set with great

cardinality.The problem has been resolved by using multidimensional arrays. Illustration of the

method is a solution of the problem of obtaining one representative from each equivalence class

with respect to the described in the article equivalence relation in the set of all m ∼ n binary

matrices. This equivalence relation has an application in the mathematical modeling in the textile

industry.
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1 Introduction and task formulation

The following problem often occurs in computer science:

Problem 1.1. Let M be a finite set and let ∼ be an equivalence relation in M . Describe and imple-
ment an algorithm that receives exactly one representative from each equivalence class with respect
to ∼.

As a consequence of this problem follows the combinatorial problem of finding the cardinality of
the factor set M̃ = M/∼ consisting of all equivalence classes of M with respect of ∼.

We assume that for every x ∈ M , there is a procedure K(x) which receives all elements of M ,
which are equivalent to x.

Since M is a finite set, then there exists bijective mapping

b : ↔ {1, 2, . . . , |M |} ,

which will call numbering function. Thus, each element of M uniquely corresponds to an element of
Boolean array H [ ] with size equal to the cardinality |M | of the set M . Moreover, the element x ∈ M
is selected if H [b(x)] = 1 and x is not selected if H [b(x)] = 0.

The next algorithm is a modification of the well-known method, known as ”Sieve of Eratosthenes”
[Reingold, Nievergeld and Deo (1977); Yordzhev and Markovska (2007)] solves Problem 1.1.

Algorithm 1.2. Receives exactly one representative of each equivalence class of the factor-set M̃ =
M/∼.

Input: Finite set M
Output: Set N ⊆ M

1. N := ∅;
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2. Declare a Boolean array H [ ] with size equal to the cardinality |M | of the set M and put
H [b(x)] := 0 for all x ∈ M ;

3. For every x ∈ M such that H [b(x)] = 0 do
{ Begin of loop 1

4. N := N ∪ {x};

5. H [b(x)] := 1;

6. Using the procedure K(x) obtain the set Px = {y ∈ M | y ∼ x};

7. For every y ∈ Px obtained in step 6 do
{ Begin of loop 2

8. H [b(y)] := 1;

End of loop 2 }

End of loop 1 }

9. End of the algorithm.

Algorithm 1.2 has a number of disadvantages, the main of which is that it is practically inap-
plicable for programs when a sufficiently great number of elements is present in the base set M .
This limitation comes from the maximum integer, which can be used in the corresponding program-
ming environment. For example, by standard in the C++ language the biggest number of the type
unsigned long int is equal to 232 − 1, which in a number of cases is insufficient for the previously
defined array H [ ] to be completely addressed. The purpose of this article is to avoid this problem by
using a multidimensional Boolean array, the elements of which have a one-to-one correspondence to
the elements of the base set, with a much smaller range of the indices. There are many publications
related to multidimensional arrays, for example [Mishra (2014)], but they are not used for our specific
goals and objectives. Another solution to the problem is the use of dynamic data structures or other
special programming techniques [Collins (2002); Sutter (2002); Tan, Steeb and Hardy (2001)] but it
is not the subject of consideration in this article.

Binary (or Boolean, or (0,1)-matrix) is a matrix whose elements are equal to 0 or 1.
Let Bm×n be the set of all m× n binary matrices. It is well known that

|Bm×n| = 2mn (1.1)

In this work, we will consider and solve the following special case of Problem 1.1:

Problem 1.3. Let Bm×n be the set of all m× n binary matrices and let X,Y ∈ Bm×n. We define an
equivalence relation ρ as follows: XρY if and only if we can obtain X from Y by a sequential moving
of the last row or column to the first place. Find the cardinality |Bm×n/ρ| of the factor-set M̃ = Bm×n/ρ

and receive a single representative of each equivalence class.

The proof that ρ is an equivalence relation is trivial and we will omit it here.
The equivalence classes of Bm×n by the equivalence relation ρ are a particular kind of double

coset [Bogopolski (2008); Curtis and Rainer (1962); De Vos (2010)]. They make use of substitu-
tions group theory and linear representation of finite group theory [Curtis and Rainer (1962); De Vos
(2010)].

When m = n, the elements of the factor-set M̃ = Bn×n/ρ put carry into practice in the textile
technology [Borzunov (1983); Yordzhev and Kostadinova (2012)].

In [Yordzhev (2005)] an algorithm is shown, which utilizes theoretical graphical methods for find-
ing the factor set S̃ = Sn/ρ, where Sn ⊂ Bn×n is a set of all permutation matrices, i.e. binary matrices
having exactly one 1 on each row and each column. In [Yordzhev (2014)] we extended this problem
in the case when ρ is an arbitrary permutation.
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The author of this paper is not familiar with an existing a general formula expressed as a function
of m and n for finding |Bm×n/ρ|. The goal of this paper is to describe an effective algorithm for finding
the number of elements of the factor set M̃ = Bm×n/ρ, as well as finding a single representative of
each equivalence class. Here we will describe an algorithm, which overcomes some difficulties, which
would inevitably arise with sufficiently great m and n if we apply the classical algorithm (Algorithm 1.2).
The main difficulty arises from the great number of elements of M̃ = Bm×n/ρ with comparatively small
integers m and n, according to formula (1.1).

For undefined notions and definitions, we refer to [Aigner (1979); Sachkov and. Tarakanov (2002)].

2 Description of an algorithm with the use of a multidi-
mensional array

Theorem 2.1. Let us denote by Pn the set

Pn = {0, 1, . . . , 2n − 1} (2.1)

Then a one-to-one correspondence (bijection) between the elements of the Cartesian product Pm
n =

Pn × Pn × · · · × Pn︸ ︷︷ ︸
m

and the elements of the set Bm×n of all m× n binary matrices exists.

Proof. We consider the mapping α : Pm
n → Bm×n, defined in the following way: If π ∈ Pm

n and
π =< p1, p2, . . . , pm > then let us denote by zi, i = 1, 2, . . . ,m, the representation of the integer
pi in a binary notation, and if less than n digits 0 or 1 are necessary, we fill zi from the left with
insignificant zeros, so that zi will be written with exactly n digits. Since by definition, pi ∈ Pn, i.e.
0 ≤ pi ≤ 2n − 1, this will always be possible. Then we form an m × n binary matrix, so that the i-th
row is zi, i = 1, 2, . . .m. Apparently this is a correctly defined mapping of Pm

n to Bm×n. It is clear that
for different n-tuples from Pm

n with the help of α we will obtain different matrices from Bm×n, i.e. α is
an injection. Conversely, rows of each binary matrix can be considered as natural numbers, written
in binary system by using exactly n digits 0 or 1, eventually with insignificant zeros in the beginning,
that is, these numbers belong to the set Pn = {0, 1, . . . , 2n − 1}. Therefore each m×n Binary matrix
corresponds to an m-tuple of numbers < p1, p2, . . . , pm >∈ Pn

m, that is, α is a surjection. Hence α is
a bijection.

It is easy to see the validity of the following statement, which in fact shows the meaning of our
considerations.

Proposition 2.1. Let us denote by µ the maximum integer, which we use when coding the elements
of the set Bm×n by means of the bijection, defined in Theorem 2.1. Then, for sufficiently great m and
n, the following is valid:

µ = max (2n − 1,m) ≪ |Bm×n| = 2mn (2.2)

Proof. Trivial.

Let a and b be integers, b 6= 0. With a/b we will denote the operation ”integer division” of a by
b, i.e. if the division has a remainder, then the fractional part is cut, and with a%b we will denote the
remainder when dividing a by b. In other words, if

a

b
= p+

q

b
, where p and q are integers, 0 ≤ q < b

then by definition a/b = p, a%b = q.
We consider the function

ξ(a) = (a%2) 2n−1 + a/2, (2.3)

where % and / are the defined in the above operations.
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Definition 2.1. Let α be the defined in the proof of Theorem 2.1 bijection and let the functions
fr, fc : Pm

n → Pm
n be defined such that for every π =< p1, p2, . . . , pm >∈ Pm

n

fr(π) =< pm, p1, p2, . . . pm−1 > (2.4)

fc(π) =< ξ(p1), ξ(p2), . . . , ξ(pm) >, (2.5)

where the function ξ(a) is the defined with (2.3).

Theorem 2.2. Let A ∈ Bm×n be an arbitrary m×n binary matrix and let α be the defined in the proof
of Theorem 2.1 bijection. Let us to get the matrices

B = α
(
fr

(
α−1(A)

))
(2.6)

and
C = α

(
fc

(
α−1(A)

))
(2.7)

Then B is obtained from A by moving the last row to the first place, and C is obtained from A by
moving the last column to the first place (respectively the first row or column becomes the second,
the second becomes the third respectively etc.).

Proof. Let π =< p1, p2, . . . , pm >= α−1(A) ∈ Pm
n . Then the integer pi, 0 ≤ pi ≤ 2n − 1, i =

1, 2, . . . ,m will correspond to the i-th row of the matrix A. Then obviously, the matrix B = α(fr(<
p1, p2, . . . , pm >)) = α(< pm, p1, p2, . . . , pm−1 >) is obtained from A by moving the last row in the
place of the first one, and moving the remaining rows one row below.

Let pi ∈ Pn = {0, 1, . . . , 2n − 1}, i = 1, 2, . . . ,m. Then di = pi%2 gives the last digit of the
binary notation of the integer pi. If pi is written in binary notation with precisely n digits, optionally
with insignificant zeros in the beginning, then by applying integer division of pi by 2, we practically
remove the last digit di and we move it to the first position, in case we multiply by 2n−1 and add
it to pi/2. This is, by definition, how the function ξ(pi) works. Hence, the m × n binary matrix
C = α(fc(< p1, p2, . . . , pm >)) = α(< ξ(p1), ξ(p2), . . . , ξ(pm) >)) is obtained from the matrix A by
moving the last column to the first position, and all the other columns are moved one column to the
right.

From the definitions of the functions fr, according to (2.4) and fc, according to (2.5) it is easy to
verify the validity of the following

Proposition 2.2. If by definition
f0

r (π) = f0

c (π) = π (2.8)

fk
r (π) = fr

(
fk−1

r (π)
)

(2.9)

fk
c (π) = fc

(
fk−1

c (π)
)
, (2.10)

where π ∈ Pm
n and k is a positive integer, then

fm
r (π) = π (2.11)

and
fn
c (π) = π. (2.12)

Proof. Trivial.

As a direct consequence of Theorem 2.1, Theorem 2.2, Proposition 2.2 and their constructive
proofs, it follows that the following algorithm that finds exactly one representative of each equiva-
lence class with respect to the defined in Problem 1.3 equivalence relation ρ and that calculates the
cardinality of the factor set Bm×n/ρ.
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Algorithm 2.3. Receives exactly one representative of each equivalence class of the factor-set M̃ =
M/ρ and calculates the cardinality of the factor set M̃ = M/ρ when m and n are given.

1. We declare the m-dimensional Boolean arrays W 1 and W 2 which we will be indexed by using
the elements of the set Pm

n , i.e. W 1[< p1, p2, . . . , pm >] will correspond to the element <
p1, p2, . . . , pm >∈ Pm

n . We proceed analogically with the array W 2.

2. Initially we take all elements of W 1 and W 2 to be 0. In W 1 we will remember all elements
selected from Bm×n (one for each equivalence class) by changing W 1[< p1, p2, . . . , pm >] to
1 if we have selected the element α(< p1, p2, . . . , pm >) for a representative of the respective
equivalence class. We will change the elements of W 2 to 1 for each selection of an element
from Bm×n, i.e. for each π′′ ∈ Pm

n , for which there exists π′ ∈ Pm
n , such that W 1[π′] = 1

and α(π′′)ρα(π′), or in other words, π′ and π′′ encode two different matrices of the same
equivalence class as we have chosen α(π′) for a representative of this equivalence class.

3. We declare the counter N , which we initialize by 0. In case of normal ending of the algorithm,
N will be showing the cardinality of the factor set Bm×n/ρ.

4. While a zero element exists in W 2 do
{ Begin of loop 1

5. We choose the minimal π =< p1, π2, . . . , πm >∈ Pm
n according to the lexicographic

order, for which W 1[π] = 0.

6. W 1[π] := 1;

7. N := N + 1;

8. For i = 1, 2, . . . ,m do
{ Begin of loop 2

9. π = f i
r(π).

10. For j = 1, 2, . . . , , n do
{ Begin of loop 3

11. π := f j
c (π);

12. W 2[π] := 1;
End of loop 3}

End of loop 2}
End of loop 1}

13. End of the algorithm.

3 CONCLUSIONS

Applying the above ideas, a computer program that receives a computer program that gets only one
representative from each equivalence class of the factor-set B̃n×n = Bn×n/ρ. The purpose of these
calculations was to describe and classify some textile structures [Yordzhev and Kostadinova (2012)].
The results relate to obtaining quantitative estimation of all kinds of textile fabric.

In fact, the cardinality of the factor-set M coincides with an integer sequence noted in On-Line
Encyclopedia of Integer Sequences [Encyclopedia (2015)] as number A179043, namely

A179043={ 2, 7, 64, 4156, 1342208, 1908897152, 11488774559744, 288230376353050816,
29850020237398264483840, 12676506002282327791964489728,

21970710674130840874443091905462272, 154866286100907105149651981766316633972736,
... }
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