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COMPUTATION OF DILATED KRONECKER

COEFFICIENTS

V. BALDONI AND M. VERGNE

Abstract. The computation of Kronecker coefficients is a chal-
lenging problem. In this paper we present an approach to it based
on methods from symplectic geometry and residue calculus. We
outline a general algorithm for the problem and then illustrate its
effectiveness in several interesting examples. As a byproduct of our
algorithm, we are also able to compute several Hilbert series.
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Introduction

Let N = n1n2 · · ·ns where n1, n2, . . . , ns are positive integers, and
write CN = Cn1 ⊗ Cn2 ⊗ · · · ⊗ Cns. Endow each Cni with the usual
Hermitian inner product. Then the group U(n1)×· · ·×U(ns) acts uni-
tarily on the complex vector space CN via the exterior tensor product,
i.e. (k1, . . . , ks)(v1 ⊗ · · · ⊗ vs) = k1v1 ⊗ · · · ⊗ ksvs. By means of this
action we obtain a representation of U(n1)×· · ·×U(ns) on Sym(CN),
the full symmetric algebra of CN . The aim of this article is to give
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2 V. BALDONI AND M. VERGNE

an algorithm to compute the multiplicity of an irreducible representa-
tion of U(n1)× · · · × U(ns) in Sym(CN). As a corollary, we obtain an
algorithm to compute the corresponding Hilbert series.
The algebra Sym(CN) has a natural grading by degree. For nota-

tional convenience we let Symc(CN) be the space of symmetric tensors
of degree c, so we have

Sym(CN) = ⊕∞
c=0Sym

c(CN).

The action of U(n1)×· · ·×U(ns) provides a refinement of this, namely,

Sym(CN) = ⊕g(µ1, µ2, . . . , µs)V
U(n1)
µ1 ⊗ · · · ⊗ V U(ns)

µs .

Here µj are polynomial representations of U(nj) indexed by Young di-
agrams with nj rows. The content of a Young diagram is the number
of its boxes, and we denote the content of the Young diagram µ by
|µ|. If one considers the action of the center of U(nj), one sees that

all diagrams µj, j = 1, . . . , s such that V
U(n1)
µ1 ⊗ · · · ⊗ V

U(ns)
µs occurs in

Symc(CN) have the same content c. Hence the diagrams also index
irreducible representations πµj of the symmetric group Sc. By Schur
duality, g(µ1, µ2, . . . , µs) is then the multiplicity of the trivial represen-
tation of the symmetric group Sc in πµ1 ⊗ · · · ⊗ πµs .
The numbers g(µ1, µ2, . . . , µs) are called Kronecker coefficients, while

the function k 7→ g(kµ1, kµ2, . . . , kµs), k ∈ {0, 1, 2, . . .}, gives the
dilated Kronecker coefficients. It follows from the [Q,R] = 0 theo-
rem, obtained by Meinrenken-Sjamaar [28], that the function k 7→
g(kµ1, kµ2, . . . , kµs) is given by a quasi-polynomial formula for k ≥ 1.
In this paper we shall present an algorithm that computes the func-

tion g(µ1, µ2, . . . , µs) locally. More precisely, given as input a fixed
s-tuple (µ0

1, µ
0
2, . . . , µ

0
s), our algorithm produces a symbolic function

which coincides with the function g(µ1, µ2, . . . , µs) in a conic neighbor-
hood of this fixed s-tuple. In particular since the algorithm is valid
in a conic neighborhood, we can compute the dilated Kronecker coef-
ficients k 7→ g(kµ1, kµ2, . . . , kµs) as a quasi-polynomial function of k.
The Maple implementation of this algorithm is available at [38].
We now describe briefly our approach. For s = 2, the decomposition

of Sym(Cn1 ⊗ Cn2) is given by the Cauchy formula (see Ex. 10). For
s > 2, we use the Cauchy formula to reduce the number s of factors.
First we observe (see Ex. 5) that it suffices to consider the case where
n1 = maxi(ni), and when n1 ≤M = n2n3 · · ·ns. Consider the obvious
homomorphism of K = U(n2)× · · · × U(ns) into G = U(M).
Using the Cauchy formula, we can write

Sym(CN) = Sym(Cn1 ⊗ C
M) = ⊕µ1∈PΛU(n1),≥0

V U(n1)
µ1

⊗ V
U(M)
µ̃1
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where PΛU(n1),≥0 indexes the finite dimensional irreducible polynomial
representations of U(n1) and µ̃1 is the polynomial representation of
G = U(M) obtained from µ1 by adding more zeros on the right (see

Ex.4). Now restrict V
U(M)
µ̃1

to K and obtain

V
U(M)
µ̃1

= ⊕µ2∈Û(n2),...,µs∈Û(ns)
mG,K(µ̃1, µ2⊗· · ·⊗µs)V U(n2)

µ2
⊗· · ·⊗V U(ns)

µs

where mG,K(µ̃1, µ2 ⊗ · · · ⊗ µs) is the branching coefficient computing
the multiplicity of the representation µ2 ⊗ · · · ⊗ µs in the restriction of
V G
µ̃1

to K = U(n2)× U(n3)× · · · × U(ns) via the specified action.
Then we have

Corollary 1.

g(µ1, . . . , µs) =

{

mG,K(µ̃1, µ2 ⊗ · · · ⊗ µs) if |µ1| = |µ2| = · · · = |µs|,
0 otherwise

Thus the objective of the paper is to give a formula for the branching
coefficient and an algorithm to implement it.
Our expression for mG,K(λ, µ), in a general context of branching

rules, is the content of Theorem 31. The starting point for the compu-
tation is the notion of Jeffrey-Kirwan residue that allows us to produce
a symbolic function of (λ, µ) coinciding with mG,K(λ, µ) in a conic
neignborhood of a given couple (λ0, µ0). This problem is part of the
more general problem of computing (symbolically) multiplicities. Our
algorithm is based on a variation of the Kostant multiplicity formula
for a weight [23], together with Szenes-Vergne [35] iterated residues
formula to compute partition functions. However, we use the results of
Meinrenken-Sjamaar on piecewise quasi-polynomial behavior of multi-
plicity functions in order to justify our method.
Some of the results herein were presented at the conference Quan-

tum Marginals (2013) (recorded on video) at the Isaac Newton Insti-
tute, Oxford. The preprint [1] is an extended version of the talk of the
second author at this conference, and is not intended to be published.
However, it may be interesting to the reader to consult this survey
paper, since various aspects of the theory that come into play (Hamil-
tonian geometry, convexity, quasi-polynomial behavior, Jeffrey-Kirwan
residues) are presented there, together with an extended bibliography.
In this article, our focus is the application of our general methods for
computing branching coefficients to the particularly challenging case of
Kronecker coefficients.
Introductory examples

Throughout the text we have included many examples. Some are
known and are included to show the consistency of our results with
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other techniques of computation, and several new examples are in-
cluded to show the power, and the limits, of our computational ap-
proach. For example, we consider the case of n1 = 6, n2 = 3, n3 = 2.
Then given as input a point (α0, β0, γ0), where α0 is a Young diagram
with 6 rows, β0 with 3 rows and γ0 with 2 rows, we can effectively
compute symbolically the Kronecker coefficient g(α, β, γ) in a conic
neighborhood of (α0, β0, γ0).
We also can compute the dilated Kronecker coefficient g(kα, kβ, kγ)

with α, β, γ Young diagrams with 3 rows. For general α, β, γ with
3 rows, we obtain a quasi-polynomial of degree 11 (with coefficients
periodic functions of period at most 12, see Ex. 38). When α, β, γ are
special, the degree might be much smaller.
The dilated rectangular Kronecker coefficients, i.e. those involving

partitions of rectangular shape, are of special interest because of their
direct relation with invariant theory. If we consider the group U(n1)×
U(n2) × · · · × U(ns) acting on C

n1 ⊗ C
n2 ⊗ · · · ⊗ C

ns and characters
χu = [pu, . . . , pu], 1 ≤ u ≤ s, with equal content c := punu, then
g(kχ1, kχ2, . . . , kχs) is equal to

dim
[

Symkc (Cn1 ⊗ C
n2 ⊗ · · · ⊗ C

ns)SL(C
n1 )×SL(Cn2 )×···×SL(Cns)

]

.

Thus the series R(t) =
∑∞

k=0 g(kχ1, kχ2, . . . , kχs)t
k is the Hilbert series

of the ring of invariant polynomials under the action considered. This
is presented in Ex. 6.
Particularly challenging examples are the Hilbert series for 5-qubits

given by [25] and the Hilbert series for entanglement of 4-qubits given
by [41]. We compute these (and correct a misprint in [25]) with our
residue techniques in Section 5.2, especially Ex. 39.
We conclude this introduction with two examples, first a classical

one, (see [19], [40], [20]), then a new one.

Example 2.

The dilated Kronecker coefficientm(k)
def
= g(k[1, 1, 1], k[1, 1, 1], k[1, 1, 1]),

for χ = [1, 1, 1], corresponds to the Hilbert series of the ring of invari-
ants of SL(C3)× SL(C3)× SL(C3) in C

3 ⊗ C
3 ⊗C

3. An efficient way
to represent periodic functions is by using step-polynomials (see [37]).
In this representation, m(k) is given by the following quasi-polynomial

1− 3

2

{

1

3
k

}

+
3

2

{

1

3
k

}2

− 3

2

{

1

2
k

}

−
{

3

4
k

}2

+

{

3

4
k

}{

1

2
k

}

+

{

1

2
k

}2

+

(

1

4
− 1

4

{

1

2
k

})

k +
1

48
k2



COMPUTATION OF DILATED KRONECKER COEFFICIENTS 5

Here for s ∈ R, {s} = s − ⌊s⌋ ∈ [0, 1) where ⌊s⌋ denotes the largest
integer smaller or equal to s. It is easy to check that (fortunately)
the result of our algorithm agrees with the determination of the ring
of invariants, [⊕∞

k=0Sym
3k(C3 ⊗C3 ⊗C3)]SL(C

3)×SL(C3)×SL(C3), which is
freely generated with generators in degree 2, 3, 4. Indeed

∞
∑

k=0

m(k)tk =
1

(1− t2)(1− t3)(1− t4)
.

�

Example 3.

Another example is

m(k) = g(k[3, 3, 3, 3], k[4, 4, 4], k[4, 4, 4])

= dim
[

Sym12k(C4 ⊗ C
3 ⊗ C

3)SL(C
4)×SL(C3)×SL(C3)

]

.

Our algorithm gives the Hilbert series
∞
∑

k=0

m(k)tk =
1 + t9

(1− t) (1− t2)2 (1− t3) (1− t4)
.

�

Outline of the article

In Section 1, we consider the action of a connected compact Lie group
K in an Hermitian finite dimensional space H. Then

Sym(H) =
∑

λ∈K̂

mH
K(λ)V

K
λ .

We introduce the Kirwan cone, which is the asymptotic support of the
multiplicity function λ 7→ mH

K(λ). The Kirwan cone is a polyhedral
cone. A facet (that is a face of codimension one) of this cone generates
an hyperplane that we call a wall of CK(H).
In Section 2, we define topes and Orlik-Solomon bases. We dis-

cuss quasi-polynomial functions and recall the Szenes-Vergne iterated
residue formula for the piecewise quasi-polynomial function mH

K(λ),
when K is a torus. We discuss the Meinrenken-Sjamaar theorem on the
piecewise quasi-polynomial behavior of mH

K(λ), when K is a compact
connected Lie group. This theorem is important for our present work
since it allows us to compute mK

H(λ) by a deformation argument. We
state some corollaries on the degrees of the function k 7→ mH

K(kλ),on
the interior of the Kirwan cone, as well as on faces.
In Section 3, we consider the general problem of branching rules:

given a homomorphism K → G and an irreducible representation
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V G
λ of G, decompose it into irreducible representations of K, V G

λ =
⊕mG,K(λ, µ)V

K
µ . In Theorem 23, we recall some of the qualitative

properties of this function, as follows from Meinrenken-Sjamaar. This
again allows us to compute mG,K(λ, µ) by deformation arguments. We
discuss the regions where mG,K(λ, µ) is given by a quasi-polynomial
function. Our main result is Theorem 23. As we already said, essen-
tially we use the Kostant multiplicity formula, together with iterated
residues method to compute mG,K(λ, µ). However, in some examples
the stabilizer of λ in the Weyl group of G is large, and we take advan-
tage of this situation. When some roots of G restrict to 0 on Cartan
subalgebras of K, again we use residue techniques.
In Section 4, we review the algorithm that we use for computing

Kronecker coefficients.
In Section 5, we list many examples. As for the computations in [12]

of dilated Littlewood-Richardson coefficients c(kλ, kµ, kν), our method
to compute g(kλ1, kλ2, · · · , kλs) is efficient for small n1, n2, . . . , ns, but
does not depend on the size of the λi. More precisely, fixing the number
ni of rows, the algorithm is polynomial in terms of λ1, λ2, . . . , λs (and
relatively quick).

1. Towards a multiplicity formula: the tools

We use a general setting of notations. Let K be a compact connected
Lie group and TK be a maximal torus of K. We denote by k and tk
the corresponding Lie algebras. We use the upper index ∗ to denote
dual space, the lower index C to denote complexification, for example
we write t∗k and kC.
Denote by Wk the Weyl group, and by w 7→ ǫ(w) = dettk w its sign

representation.
The weight lattice ΛK of TK is a lattice in it∗k , i =

√
−1. If λ ∈ ΛK ⊂

it∗k , it determines a one dimensional representation of TK by t 7→ e〈λ,X〉,
with t = expX, X ∈ tk. As λ takes imaginary values on tk, e

〈λ,X〉 is of
modulus 1.
We denote by ΓK ⊂ itk the dual lattice of ΓK : if λ ∈ ΛK , γ ∈ ΓK ,

then 〈λ, γ〉 is an integer.
Let ∆k ⊂ it∗k be the root system for k with respect to tk. If α ∈ ∆k,

its coroot Hα is in itk, and 〈α,Hα〉 = 2. Fix ∆+
k , a positive system for

∆k, and let
it∗k,≥0 = {ξ, 〈ξ,Hα〉 ≥ 0, α ∈ ∆+

k }
be the corresponding positive Weyl chamber. Let ρk =

1
2

∑

α∈∆+
k
α.

We denote by ΛK,≥0 the ”cone” of dominant weights, that is the

set ΛK ∩ it∗k,≥0. We parameterize K̂, the set of classes of irreducible
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finite dimensional representations of K, by ΛK,≥0: given λ ∈ ΛK,≥0, we
denote by V K

λ the corresponding irreducible representation of K with
highest weight λ.
When the group K is understood, we denote ΛK simply by Λ, TK

by T , tk by t, etc.
Finally, when dealing with different groups K,G, .. etc... as in Sec-

tion 3, then we will use corresponding German letters for the Lie alge-
bras, k, g, . . ., and subscripts to distinguish the objects: ΛK ,ΛG, tk, tg, . . ..

Example 4.

We consider the case K = U(n) and T ⊂ K the torus consisting of
the diagonal matrices. Then the Lie algebra k consists of the n × n
anti Hermitian matrices and ik is the space of Hermitian matrices. If
we identify k and k∗ via the bilinear form Tr(AB), then t = t∗ is the
set of diagonal anti Hermitian matrices. The positive Weyl chamber is
it∗≥0 = {ξ = [ξ1, ξ2, . . . , ξn]} with ξj ∈ R and ξ1 ≥ ξ2 ≥ · · · ≥ ξn where
ξ represents the Hermitian matrix with diagonal entries ξj. Denote by
ΛU(n) = {λ = [λ1, λ2, . . . , λn]} with λj ∈ Z the weight lattice of T and
by ΓU(n) ⊂ it the dual lattice.
The “cone” of dominant weights is ΛU(n),≥0 = {λ = [λ1, λ2, . . . , λn]}

with λj ∈ Z and λ1 ≥ λ2 ≥ · · · ≥ λn.
If λ ∈ ΛU(n),≥0 is such that λn ≥ 0, then λ indexes a finite dimen-

sional irreducible polynomial representation of GL(n,C). The corre-
sponding subset of ΛU(n),≥0 will be denoted by PΛU(n),≥0 (P for poly-
nomial). If λ ∈ PΛU(n),≥0, we also identify λ to a Young diagram
with n rows. Recall that the content |λ| of the corresponding dia-
gram is the number of its boxes, that is |λ| = ∑

i λi. The dominant
weight [k, k, . . . , k] corresponds to a rectangular Young diagram with
k columns and n rows and indexes the one-dimensional representation
det(g)k of U(n).
Assume now N ≥ n, then there is a natural injection from PΛU(n),≥0

to PΛU(N),≥0 obtained just by adding more zeros on the right of the

sequence λ. We denote by λ̃ the new sequence so obtained.
Define similarly Pit∗u(n) = {ξ ∈ it∗≥0 with ξn ≥ 0} and ξ̃.
�

Let H be a finite dimensional Hermitian vector space provided with
a representation of K by unitary transformations. Assume (temporar-
ily) that K contains the subgroup of homotheties {eiθIdH}. Consider
Sym(H), the space of symmetric tensors, so we have

Sym(H) = ⊕λ∈K̂m
H
K(λ)V

K
λ
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where mH
K(λ), the multiplicity of V K

λ in Sym(H), is finite. We also
write Sym(H) = ⊕µm

H
TK

(µ)eµ, where mH
TK

(µ) is the multiplicity of the
weight µ. The relation between the K and the TK multiplicities is given
by the following formula:

mH
K(λ) =

∑

w∈Wk

ǫ(w)mH
TK

(λ+ ρk − wρk). (1)

Before going on, we give two examples. The first one is the main
example we will be interested in this paper and the second is related
to the computation of Hilbert series.

Example 5. (Kronecker example)

Consider H = Cn1 ⊗ Cn2 ⊗ · · · ⊗ Cns with action of K = U(n1) ×
· · ·×U(ns) on H. Denote byM = n2n3 · · ·ns. In computing Kronecker
coefficients, we may assume n1 ≤ M , and that n1 is the maximum
of the ni. Indeed, if n1 ≥ M , by Cauchy formula, the multiplicities
g(µ1, µ2, . . . , µs) stabilize in the sense that g(µ1, µ2, . . . , µs) is non zero
only if µ1 = ν̃1 is obtained from an element ν1 in PΛU(M),≥0, by adding
more zeroes on its right, and

g(µ1, µ2, . . . , µs) = g(ν1, µ2, . . . , µs).

Thus it is sufficient to study Kronecker coefficients in the case where
n1 ≤M = n2n3 · · ·ns (ni is the number of rows of the Young diagrams
corresponding to µi).
�

Example 6. Hilbert series

Assume that k = z ⊕ [k, k], and assume that the center z = RJ of k
acts by the homothety onH. Consider χ ∈ ΛK such that χ(iJ) = 1 and
χ = 0 on i(tk ∩ [k, k]). Then mH

K(kχ) = dim[Sk(H)][K,K]. So the series
R(t) =

∑∞
k=0m

H
K(kχ)t

k is the Hilbert series of the ring of invariant
polynomials under the action of [KC, KC]. This is a Gorenstein ring, so

its Hilbert series is of the form P (t)
∏N
j=1(1−t

aj )
, where P (t) is a palindromic

polynomial, ([30]). Furthermore, it follows from [28] that the degree of
P (t) is strictly less than

∑

j aj .
�

Equip H with a K invariant Hermitian form 〈−,−〉 so that 〈Xv, v〉
is purely imaginary when X ∈ k. The K action on H admits a moment
map, (in the sense of symplectic geometry [14]) ΦK : H → ik∗ given by

ΦK(v)(X) = 〈Xv, v〉, v ∈ H, X ∈ k.
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We consider it∗k,≥0 as a subset of ik∗. The Kirwan cone is the in-
tersection of the image of the moment map with the positive Weyl
chamber, CK(H) = ΦK(H) ∩ it∗k,≥0.
Kirwan convexity theorem implies that CK(H) is a rational polyhe-

dral cone. The cone CK(H) is related to the multiplicities through the
following basic result, which is a particular case of Mumford theorem
[29](a proof of Mumford theorem, following closely Mumford argument,
can be found in [6]).

Proposition 7. We have mH
K(λ) = 0 if λ /∈ CK(H). Conversely, if λ

is a dominant weight belonging to CK(H), there exists an integer k > 0
such that mH

K(kλ) is non zero.

Thus the support of the function mH
K(λ) is contained in the Kirwan

cone CK(H) and its asymptotic support is exactly CK(H).

Remark 8.

As CK(H) is a rational polyhedral cone, it can be described by in-
equations determined by a finite number of elements Xa ∈ ΓK as:
CK(H) = {ξ ∈ it∗k,≥0|〈Xa, ξ〉 ≥ 0, ∀a}. It is in general quite difficult to
determine the explicit inequations of the cone CK(H). An algorithm
to describe the inequations of this cone, based on Ressayre’s notion of
dominant pairs [33], is given in Vergne-Walter [39].
�

Define Hpure = {v ∈ H, 〈v, v〉 = 1}, the set of elements of H of
norm 1. Such an element is called a pure state. A pure state in the
space C2 is called a qubit, and a pure state in H = (C2)⊗N is called
a N -qubit. The Kirwan polytope is the rational polytope defined by:
∆K(H) = ΦK(Hpure) and CK(H) = R≥0∆K(H) is the cone over the
Kirwan polytope.
Remark that it is not always true that the cone CK(H) has not empty
interior in it∗k,≥0, (see [1], Ex. 14).

Example 9.

Let us write explicitly Higuchi-Sudbery-Szulc [17] description of the
Kirwan cone for H = (C2)⊗N and K = (U(2))×N .
Consider λ1 = [λ11, λ

2
2], . . . , λN = [λN1 , λ

N
2 ] a sequence of N elements

of Pit∗u(2),≥0 (that is λ1j ≥ λ2j ≥ 0). Then (λ1, . . . , λN) ∈ CK(H) if and

only if, for any j = 1, 2, . . . , N, λ2j ≤
∑

k 6=j λ
2
k and λ11 + λ21 = λ12 + λ22 =

· · · = λ1N + λ2N .
�

We conclude this section with one more example of the connection
between multiplicities and Kirwan cone.
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Example 10. (The Cauchy formula)

Let N, n be positive integers, and assume N ≥ n. Let H = Cn⊗CN

under the action of K = U(n) × U(N). As we already discussed, the
decomposition of Sym(Cn⊗CN) with respect to U(n)×U(N) (see [24],
page 63) is given by Cauchy formula:

Sym(Cn ⊗ C
N ) = ⊕λ∈PΛU(n),≥0

V
U(n)
λ ⊗ V

U(N)

λ̃
. (2)

Using the Hermitian inner product, we identify A ∈ H to a matrix
A : Cn → CN . Then the moment map ΦK : H → ik∗ is given by
ΦK(A) = [AA∗, A∗A] with value Hermitian matrices of size n and size
N respectively. We can identify the Kirwan cone CK(H) as the ”di-

agonal” (ξ, ξ̃) with ξ ∈ Pit∗u(n),≥0, thus seeing that the multiplicity

function determined in Cauchy formula (2) is supported exactly on the
set ΛK ∩ CK(H) (and with value 1).
�

2. Multiplicities and Partitions functions

2.1. Topes, Iterated residues and Orlik-Solomon bases. Let E
be a real vector space.
First, recall the notion of iterated residue. If f is a meromorphic

function in one variable z, consider its Laurent series
∑

n anz
n at z = 0.

The coefficient of z−1 is denoted by Resz=0 f .
Let r = dimE. Consider a basis of E and an order on it: −→σ =

[α1, α2, . . . , αr]. For z ∈ E∗
C
, let zj = 〈z, αj〉. Then (z1, z2, . . . , zr)

are coordinates for E∗
C
∼ Cr. Express a meromorphic function f(z)

on E∗
C

with poles on a union of hyperplanes as a function f(z) =
f(z1, z2, . . . , zr), (in particular f may have poles on zj = 0). Define the
iterated residue functional associated to −→σ by:

Res−→σ (f(z)) := Resz1=0(Resz2=0 · · · (Reszr=0 f(z1, z2, . . . , zr)) · · · ). (3)

Let Ψ = [ψ1, . . . , ψN ] be a finite list of vectors of E. We say that
a hyperplane H ⊂ E is Ψ-admissible if H is generated by elements
of Ψ. We denote by A(Ψ) the set of admissible hyperplanes. We say
that ξ ∈ E is Ψ-regular if ξ doesn’t belong to any hyperplane in the
set of admissible hyperplanes A(Ψ) and we say that τ is a Ψ-tope if
τ is a connected component of the complement of the union of the
Ψ-admissible hyperplanes.
Let σ be a sublist of Ψ such that elements of σ form a basis of E.

We say that σ is an ordered basis of Ψ . The underlying set to the list
σ will be called simply a basis of Ψ. We denote by Cone(σ) the cone
generated by elements of σ.
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Example 11.

Consider E = Rǫ1 ⊕ Rǫ2. Let Ψ = [ψ1, ψ2, ψ3] = [ǫ1, ǫ2, ǫ1 + ǫ2], then
{[ψ1, ψ2], [ψ1, ψ3], [ψ2, ψ3]} is the set of ordered bases of Ψ.
�

Assume now that the elements in Ψ generates a lattice L in E. For
σ a basis of Ψ, let dσ be the smallest integer such that dσL is contained
in the lattice Zσ generated by σ. Then we define the index of Ψ (with
respect to L) as q(Ψ) := least common multiple{dσ, σ basis of Ψ}.

Let −→σ = [ψi1 , ψi2, . . . , ψir ] be an ordered basis of Ψ. Then −→σ is
an Orlik Solomon basis, OS in short, if for each 1 ≤ l ≤ r, there is
no j < il such that the elements ψj , ψil , . . . , ψir are linearly dependent.
Denote by OS(Ψ) the set of OS bases. Note that the notion of Orlik
Solomon basis depends on the order on Ψ.

Example 12.

We continue with Ex. 2.1. We compute OS(Ψ) = {[ψ1, ψ2], [ψ1, ψ3]}.
�

Definition 13. If τ is a Ψ-tope, we denote by OS(Ψ, τ) = {−→σ ∈
OS(Ψ), τ ⊂ Cone(σ)}.
The set OS(Ψ, τ) is called the set of OS adapted bases to τ .

Example 14.

We continue with Ex. 2.1. Then τ = R>0ǫ2 ⊕ R>0(ǫ1 + ǫ2) is a
Ψ-tope, and OS(Ψ, τ) = {[ψ1, ψ2]}. �
For an algorithmic method to compute OS(Ψ, τ(v)), see [1] Section

4.9.6. The method is based on the notion of Maximal Nested Sets
(MNS) of De Concini-Procesi, [13], and developed in [3]. Here v is a
Ψ-regular element, and τ(v) the unique tope which contains v.

2.2. Quasi-polynomial function. We now describe the nature of the
function mH

K(λ) on CK(H). In particular the results will apply to
Kronecker coefficients.
Let L be a lattice in a real vector space E. Given an integer q, a

function c on L will be called a periodic function on L of period q, if
c(λ + qν) = c(λ) for all λ, µ in L. We say that c is periodic if there
exists a q such that c is periodic of period q. If q = 1, then c is a
constant function on L.
Let u ∈ L and q an integer. The restriction to a coset u + qL of a

polynomial function on E will be called a polynomial function on the
coset u+ qL.
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A quasi-polynomial function on L is a function on L which is
a linear combination of products of polynomial functions on L with
periodic functions. In other words a quasi polynomial function on L
can be written as p(λ) =

∑

i ci(λ)pi(λ) where pi are polynomial and the
functions ci are periodic. If all functions ci(λ) are periodic of period
q, we say that p is quasi-polynomial of period q. In this case, for any
λ0 ∈ L, the function λ 7→ p(λ0 + qλ) is a polynomial function on L.
So we can represent a periodic polynomial function of period q as a
family of polynomials indexed by L/qL. If q is very large, the above
description is not efficient (the numbers of cosets being quite large). In
this present work, we will only have to consider relatively small periods
q.
The space of quasi-polynomial functions is graded: we say that p is
homogeneous of degree k if the polynomials pj are homogeneous of
degree k. As for polynomials, we say that p is of degree k if p is a sum
of homogeneous terms of degree less or equal to k, and the term of
degree k is non zero.

Example 15.

m(k) =
1

2
k2 + k +

3

4
+

1

4
(−1)k

is a quasi-polynomial function of k ∈ Z, of degree 2 and period 2. On
each of the 2 cosets the quasi-polynomial function m(k) coincides with
a polynomial m[i](k) defined by

m(k) =

{

m0(k) =
1
2
k2 + k + 3

4
+ 1

4
if k = 0 (mod 2)

m1(k) =
1
2
k2 + k + 3

4
− 1

4
if k = 1 (mod 2)

�

In practice, the quasi-polynomial p will be naturally obtained as a
sum of quasi-polynomial functions p1, p2, . . . , pu of periods q1, q2, . . . , qu.
So p is of period q where q is the least common multiple of q1, q2, . . . , qu.
Furthermore, in our examples, when the period qi is large, the degree
of the corresponding quasi polynomial pi is small. So it is already more
efficient to keep p as represented as

∑

pi, the number of cosets needed
to describe each pi being qi, since

∑

qi is usually much smaller that
q. We thus will say that the set of periods of the quasi-polynomial
function p is the set {q1, q2, . . . , qu}. For example

m(k) =
1

2
k2 + k +

3

4
+

1

4
(−1)k

is the sum of p1(k) = 1
2
k2 + k + 3

4
of period 1 and degree 2 and of

p2(k) =
1
4
(−1)k of period 2 and degree 0. So the set of periods of m is

{1, 2}.
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In the Kronecker case, we do not know the set of periods of the
dilated Kronecker coefficient. Here are some examples.

Example 16.

(See Section 5). For the case n1 = n2 = n3 = 3, the function
g(kλ, kµ, kν) is a quasi polynomial function of k with set of periods
included in {1, 2, 3, 4} leading to polynomial behavior on cosets f+12Z.
For the 4-qubits case n1 = n2 = n3 = n4 = 2, the function g(kλ, kµ, kν)

is a quasi-polynomial with set of periods included in {1, 2, 3} leading
to polynomial behavior on cosets f + 6Z.
For the 5-qubits case n1 = n2 = n3 = n4 = n5 = 2, the func-

tion g(kλ, kµ, kν) is a quasi-polynomial with set of periods included in
{1, 2, 3, 4, 5} leading to polynomial behavior on cosets f + 60Z.
�

In the case of one variable, we can give the following characteriza-
tion of quasi-polynomial functions p(k). If the function p(k) is quasi-
polynomial, its generating series

∑∞
k=0 p(k)t

k is the Taylor expansion

at t = 0 of a rational function R(t) = P (t)
∏s
i=1(1−t

ai )
, where the ai are inte-

gers, and P (t) a polynomial in t of degree strictly less than
∑

i ai. The
correspondence is as follows. Consider a quasi-polynomial p(k) of pe-
riod q, equal to 0 on all cosets except the coset f + qZ, with 0 ≤ f < q.
Write the polynomial function j 7→ p(f + qj) of degree R in terms of

binomials: p(f + qj) =
∑R

n=0 a(n)
(

j+n
n

)

. Then

∞
∑

j=0

p(f + qj)tf+qj = tf
R
∑

n=0

a(n)
1

(1− tq)n+1
.

In our examples, the degree of the quasi-polynomial function p, as
well as its period, will not be very large, so there is no computational
difficulty to write the rational function R(t) starting from p(k), and
conversely. We give a striking example of the function R, giving the
Hilbert series of entanglement of 4-qubits, and the corresponding p in
Ex. 39.

Let us return to the setting of K acting on a N -dimensional complex
Hermitian space H and let E = it∗k . We choose an order on the weights
for the action of TK and write

Ψ = [ψ1, ψ2, . . . , ψN ]

with ψi ∈ ΛK ⊂ E
Now, we do not necessarily assume that the action of K contains

the homotheties eiθIdH. Instead, we assume that the cone Cone(Ψ)
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generated by Ψ is a pointed cone: Cone(Ψ) ∩ −Cone(Ψ) = {0}. This
condition insures that the multiplicity for the action of TK are finite.
For convenience we also assume that the lattice of weights ΛK is gen-
erated by Ψ.
Let PΨ be the function on ΛK that computes the number of ways we

can write µ ∈ ΛK as
∑

xiψi with xi nonnegative integers. The function
PΨ(µ) is called the Kostant partition function (with respect to Ψ).
It is thus immediate to see that

mH
TK

(µ) = PΨ(µ). (4)

The cone CTK (H) is just the cone Cone(Ψ) generated by the list Ψ
of weights.
For z ∈ (tk)C such that ℜ(〈ψ, z〉) < 0 for all ψ ∈ Ψ, we have the

equality
1

∏

ψ∈Ψ(1− e〈ψ,z〉)
=

∑

µ∈Cone(Ψ)

PΨ(µ)e
〈µ,z〉. (5)

Let y ∈ it∗k . Define the polytope ΠΨ(y) = {[x1, . . . , xN ] ∈ RN , xi ≥
0,
∑N

a=1 xaψa = y}, then mH
TK

(µ) (µ ∈ ΛK) is the number of inte-
gral points in the polytope ΠΨ(µ). Remembering that Sym(H) =
⊕λ∈K̂m

H
K(λ)V

K
λ and Sym(H) = ⊕µ∈T̂K

mH
TK

(µ)eµ, then for λ ∈ ΛK,≥0,
we have

mH
K(λ) =

∑

w∈Wk

ǫ(w)PΨ(λ+ρk−wρk) =
∑

w∈Wk

ǫ(w)mH
TK

(λ+ρk−wρk). (6)

Remark 17.

Christandl-Doran-Walter [10] compute the multiplicity mH
K(λ) for

the Kronecker coefficients, when H = Cn1 ⊗ Cn2 ⊗ Cn3. They use the
fact that the multiplicity for TK is the number of points in the polytope
ΠΨ(λ) and employ the ”Barvinok algorithm”, as implemented in [37].
Their method is of polynomial complexity, when the number of rows is
fixed.
�

We now describe our own approach to compute multiplicities based
on iterated residues. For z ∈ (tk)C, define :

SΨ
TK

(µ, z) = e〈µ,z〉
1

∏

ψ∈Ψ(1− e−〈ψ,z〉)
.

Let ΓK be the dual lattice to ΛK . Let q := q(Ψ) be the index of Ψ
with respect to ΛK . So, if σ is a basis of Ψ, then qΛK ⊂

∑

ψ∈σ Zψ.
If γ ∈ ΓK , and if we apply an iterated residue to the function z 7→

SΨ
TK

(µ, z + 2iπ
q
γ), we obtain a quasi-polynomial function of µ of period
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q. Indeed, the residue depends on µ through the Taylor series at z = 0

of e〈µ,z+
2iπ
q
γ〉 = e〈µ,

2iπ
q
γ〉e〈µ,z〉, and e〈µ,

2iπ
q
γ〉 is a periodic function of µ of

period q.

Definition 18. Let τ be a Ψ-tope. Define

pΨτ (µ) =
∑

−→σ ∈OS(Ψ,τ)

∑

γ∈Γ/qΓ

Res−→σ S
Ψ
TK

(µ, z +
2iπ

q
γ).

Remark 19.

The role of τ here is to select the set OS(Ψ, τ), that is the paths
along which to calculate the iterated residue in z of the function z 7→
SΨ
TK

(µ, z + 2iπ
q
γ).

�

Theorem 20. ([35]) Let τ ⊂ it∗k be a Ψ-tope and µ ∈ τ . If τ is
contained in Cone(Ψ), then for any µ ∈ τ ∩ ΛK,

mH
TK

(µ) = pΨτ (µ).

We now recall a consequence of Meinrenken-Sjamaar theorem ([28],
see also [32] for a different proof). This theorem is important in our
computational applications to justify the correctness of our algorithm.
A cone decomposition of a rational polyhedral cone C is a set {c1, c2, . . . , cm}

of (closed) rational polyhedral cones such that
i) C = ∪mi=1ci,
ii) c1, c2, . . . , cm have all the same dimension dimC
iii) c1, c2, . . . , cm intersect along faces, that is ci ∩ cj is a face of both

ci and cj.
We say that a cone c ⊂ it∗k is solid if its interior is non empty. Define

d = dimC(H) − |∆+
k | − dimCK(H). Then, if the cone CK(H) is solid,

d = dimC(H)− |∆+
k | − dim tk.

Theorem 21. (Meinrenken-Sjamaar) There exists a cone decomposi-
tion CK(H) = ∪aca, in cones ca, and for each a, there exists a quasi-
polynomial function pHK,a of degree d on the lattice ΛK such that, if
λ ∈ ca ∩ ΛK,

mH
K(λ) = pHK,a(λ).

Remark 22.

Theorem 21 and Theorem 23 are two particular cases of the [Q,R] =
0 theorem, [28]. This theorem gives a geometric formula for the quan-
tization of a K-Hamiltonian manifold M. In Theorem 21, M is H, and
in Theorem 23, M is T ∗G. For more details, see [1].
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�

Thus the multiplicity function λ 7→ mH
K(λ) is a piecewise quasi-

polynomial function supported on the Kirwan cone. However it is
quite difficult to cover explicitly the cone CK(H) by a finite number of
polyhedral cones ca where the function mH

K is quasi-polynomial on ca.
Informally we will say that such decomposition is a decomposition in
cones of ”quasi-polynomiality”. Already when K is a torus, this is the
difficult problem of describing the decomposition of the cone CK(H) in
chambers (see [2]).
Our iterated residues algorithm produces, for a given input λ0, a

quasi-polynomial function λ 7→ wH
K(λ, λ

0) coinciding with mH
K in a

conic neighborhood of λ0 in CK(H). Indeed, given v ∈ CK(H) close to
λ0 and not belonging to any admissible hyperplane, we can compute
∩σc(σ) over the OS basis adapted to v. Then, on ∩σc(σ)∩CK(H), mH

K

is quasi-polynomial.
In particular, for any dominant weight λ belonging to CK(H), the

function k → mH
K(kλ) is of the form mH

K(kλ) =
∑N

i=0 ci(k)k
i where

ci(k) are periodic functions of k. This formula is valid for any k ≥ 0
(so c0(0) = 1). The highest degree term for which this function
is non zero will be called the degree of the quasi-polynomial func-
tion mH

K(kλ). For any λ contained in the relative interior of CK(H),
this degree is d. Consider now λ in the boundary of CK(H). It is
clear that the degree of the quasi-polynomial function k → mH

K(kλ)
is less or equal to d, as this is the restriction of a quasi-polynomial
of degree d. In particular the dilated Kronecker multiplicity function
k 7→ g(kµ1, . . . , kµs) is a quasi-polynomial function of degree at most

d =
∏s

j=1 nj −
∑s

j=1
nj(nj−1)

2
−∑s

j=1 nj + s− 1. If the degree is strictly
smaller than d, the corresponding point is in the boundary of the Kir-
wan cone.

2.3. Faces and degree. Consider a decomposition CK(H) = ∪aca in
cones of quasi-polynomiality. We already remarked that the degree d
of the quasi polynomial pHK,a is the same for each ca. Let us however

remark that the periods of the quasi polynomial pHK,a can be different

in different cones ca. On the example when H = C6⊗C3⊗C2 (see 37),
we produce a cone ca where pHK,a is of degree 8 and periods {1, 2, 3},
and a cone cb where p

H
K,b is of degree 8 and polynomial, that is with

period {1}.
When F is a face of CK(H), then F = ∪aF ∩ ca, where we restrict

the decomposition to cones ca such that dim(ca∩F ) = dimF . In other
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words, the closed cone ca contains a point vF in the relative interior of
F . We will say that such a cone ca is adjacent to the face F .
The restriction to F ∩ ca of the function mH

K is the restriction of the
quasi-polynomial pHK,a. Thus the function mH

K restricted to F is again
a piecewise quasi-polynomial function. We can consider the degree of
this quasi polynomial function restricted to F ∩ ca. The degree drops,
but if F is a regular face (that is a face intersecting the interior of
the Weyl chamber), then the degree is the same on each cone ca ∩
F and can be computed with a formula analogous to the Formula
in Theorem 21. Indeed, Meinrenken-Sjamaar geometric formula for
multiplicities implies a reduction principle of multiplicities on regular
faces: the function mH

K restricted to a regular face F coincides with a
multiplicity function mH0

K0
, for smaller datas (see [1]). An example is

given in Section 5, Ex. 37. When K is a torus, and ca adjacent to a
facet F , then the quasi polynomial pHK,a vanishes on a certain number
of affine hyperplanes parallel to the hyperplane generated by the facet
F , leading to divisibility properties. We believe this is also the case for
the functions pHK,a, however we do not have a precise guess. We give a
striking example of this divisibility property in Ex. 37.
We recall that a point λ is called a stable point, if the function k 7→

mH
K(kλ) is a bounded function of k. Then it takes value zero or one

[31]. For a given non zero λ ∈ CK(H) ∩ ΛK,≥0, the saturation factor is
the smallest positive k such that mH

K(kλ) 6= 0.

3. The Branching Rules

3.1. Branching cone. Consider a pair K ⊂ G of two compact con-
nected Lie groups, with Lie algebras k, g respectively. Let π : g∗ → k∗

be the projection. Let TG, TK be maximal tori of G,K. We may as-
sume, and we do so, that TK ⊂ TG. Let tg, tk be the corresponding

Cartan subalgebras. Given ξ ∈ it∗g, denote by ξ the restriction ξ|itk . We
choose Weyl chambers it∗g,≥0, it

∗
k,≥0, and we denote the corresponding

cones of dominant weights by ΛG,≥0, ΛK,≥0. We denote by ΛG,K,≥0 the
sum ΛG,≥0⊕ΛK,≥0, by it

∗
g,k,≥0 the sum it∗g,≥0⊕it∗k,≥0 of the closed positive

Weyl chambers relatives to G,K, and by it∗g,k,>0 its interior. We may
also choose compatible positive root systems on K, G: if λ is dominant
for G, then the restriction of λ to itk is dominant.
For λ ∈ ΛG,≥0 (resp. µ ∈ ΛK,≥0), denote by V G

λ (resp. V K
µ ) the

irreducible representation of G (resp. K) of highest weight λ (resp. µ).
Denote by λ∗, µ∗, etc. the contragradient representations.
Define

V = ⊕λ∈ΛG,≥0
V G
λ ⊗ V G

λ∗ .
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So, under the action of G×K,

V = ⊕λ,µmG,K(λ, µ)V
G
λ ⊗ V K

µ∗

(λ varies in ΛG,≥0, and µ in ΛK,≥0). Here mG,K(λ, µ) is the multiplicity
of the representation µ in the restriction of V G

λ to K.
Define

CG,K =
{

(ξ, η) ∈ it∗g,≥0 × it∗k,≥0; η ∈ π(G · ξ)
}

.

It is a particular case of Kirwan convexity theorem that CG,K is a poly-
hedral cone, that the support of the function mG,K(λ, µ) is contained
in CG,K and that its asymptotic support is exactly the cone CG,K .
Remark that if G = K, the cone CG,K is just the diagonal {(ξ, ξ), ξ ∈

it∗g,≥0} in it∗g,g,≥0. However, we assume from now on that no nonzero
ideal of k is an ideal of g (this condition excludes the preceding case). It
implies that the polytope CG,K is solid (Duflo, private communication).
As we already pointed out, the [Q,R] = 0 theorem of Meinrenken-
Sjamaar implies the following theorem.

Theorem 23. There exists a cone decomposition CG,K = ∪aca, in
solid polyhedral cones ca such that mG,K(λ, µ), (λ, µ) ∈ ca ∩ (ΛG ⊕
ΛK), is given by a non zero quasi-polynomial function on each cone ca.

In particular, for any pair (λ, µ) of dominant weights contained in
CG,K, the function k 7→ mG,K(kλ, kµ) is of the form: mG,K(kλ, kµ) =
∑N

i=0Ei(k)k
i where Ei(k) are periodic functions of k. This formula is

valid for any k ≥ 0, and in particular E0(0) = 1.
To describe the cone CG,K is difficult, and has been the object of

numerous works, notably Berenstein-Sjamaar, Belkale-Kumar, Kumar,
Ressayre. We refer to the survey article [9]. The complete description of
the multiplicity functionmG,K , in particular the decomposition of CG,K
in ∪aca is even more so. However, we will give an algorithm where, given
as input (λ, µ), the output is the dilated function k 7→ mG,K(kλ, kµ).
In particular, we can test if the point (λ, µ) is in the cone CG,K or not,
according if the output is not zero or zero.
We implicitly choose an order and consider the list Ψ of non zero

restrictions of the roots ∆+
g to itk. We say that Ψ is the list of restricted

roots (for the pair g, k).
Recall that an hyperplane in it∗k is Ψ-admissible if it is spanned by

elements of Ψ. Let A be the set of Ψ-admissible hyperplanes. For
H ∈ A, consider X ∈ tk such that H = X⊥. Let Wg be the Weyl group
of G. If X ∈ itk ⊂ itg, consider w

−1X ∈ tg and the hyperplane

H(w) = {(ξ, ν) ∈ it∗g ⊕ it∗k ; 〈ξ, w−1X〉 − 〈ν,X〉 = 0}.
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When H varies in A, and w in the Weyl group of G, we obtain a finite
set F of hyperplanes in it∗g ⊕ it∗k .
Consider a connected component τ of the complement of the union

of the hyperplanes belonging to F . We say that τ is a tope for the
system of hyperplanes F . So τ is an open conic subset of it∗g ⊕ it∗k .
Thus, if (ξ, ν) ∈ τ , for any Ψ-admissible hyperplane H with equation
X , and any w ∈ Wg, we have

〈ξ, w−1X〉 − 〈ν,X〉 6= 0. (7)

Then for each w ∈ Wg, the element w(ξ) − ν is Ψ-regular, that is, is

not on any hyperplane of A. Given w ∈ Wg, we denote by a(w(ξ)− ν)

the unique tope for Ψ which contains the element w(ξ)− ν. The tope

a(w(ξ)− ν) depends only on w and τ , so we denote it by aτw.
The facets of the cones ca generates hyperplanes belonging to the

family F , as follows from the description of the Duistermaat-Heckman
measure [16]. Thus given a cone ca and a tope τ , then τ ∩ it∗g,k,≥0 is
either contained in ca, or is disjoint from ca. The closed cone ca is the
union of the closures of the sets τ ∩ it∗g,k,≥0 over the τ such that τ ∩ ca
is non empty. Remark that there might be several topes τ needed to
obtain ca.

Let λ ∈ ΛG,≥0. We say that λ is regular if 〈λ,Hα〉 6= 0 for all roots
α ∈ ∆g. Otherwise, we say that λ is singular. The function mG,K(λ, µ)
can in principle by computed by Heckman formula [16]. However, in the
case we are interested in, Heckman formula is of formidable complexity,
but on the other hand the parameter λ is quite singular. We will obtain
formulae for mG,K(λ, µ), maybe less beautiful, but of much smaller
complexity, taking advantage of the fact that λ vanishes on a large
number of Hα. We will comment in Remark 33 over the advantages
of writing a specific formula for the singular case instead of using the
Kostant-Heckman branching theorem.

Thus fix a subset Σ of the simple roots of ∆+
g . Let it∗g,Σ be the set

of the elements ξ ∈ it∗g such that 〈ξ,Hα〉 = 0 for all α ∈ Σ. We define

consistently t∗g,k,Σ,≥0 = it∗g,Σ ⊕ it∗k , Λ
Σ
G = ΛG ∩ it∗g,Σ, a lattice in it∗g,Σ,

ΛΣ
G,K,≥0 = ΛG,K,≥0 ∩ it∗g,k,Σ, and similarly. Define

CΣ
G,K = {(ξ, ν) ∈ CG,K ; ξ ∈ it∗g,Σ}.

If Σ is empty, then CΣ
G,K = CG,K . Otherwise, (ξ, ν) ∈ CΣ

G,K if ν
belongs to the projection on ik∗ of the singular orbit Gξ. Thus the
cone CΣ

G,K is contained in the cone CG,K and is in its boundary if Σ is
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not empty, and our aim is to describe a specific formula for the function
mG,K on this cone CΣ

G,K .

The cone CΣ
G,K is solid in it∗g,Σ if and only if there exists ξ ∈ it∗g,Σ

such that the projection on ik∗ of the singular orbit Gξ has a non zero
interior in ik∗. In other words, if and only if the Kirwan polytope
π(Gξ) ∩ it∗k is solid.

Example 24. ([39])

Consider the embedding of K = (U(n2)×U(n3))/Z in G = U(n2n3).
Here n2, n3 ≥ 2 and Z is the subgroup {t2Id, t3Id} of the center of
U(n2)× U(n3) with t2t3 = 1. We take λ a dominant weight of G with
more than two non zero coordinates. Then π(Gλ) has interior in ik∗.
�

We consider the system of hyperplanes FΣ in it∗g,Σ ⊕ it∗k defined by

the equations 〈ξ, w−1X〉 − 〈ν,X〉 = 0, where X is an equation for a
Ψ-admissible hyperplane, and w ∈ Wg. That is, an hyperplane in FΣ

is the intersection of an hyperplane belonging to F with it∗g,Σ ⊕ it∗k . If
(ξ, ν) ∈ it∗g,Σ ⊕ it∗k is in a tope τΣ for FΣ, then (ξ, ν) is in a unique tope
τ for F .
Remark that if τΣ is a tope for FΣ, then τΣ ∩CΣ

G,K is empty if CΣ
G,K

is not solid. If the cone CΣ
G,K is solid, it is the union of the closures of

the sets τΣ ∩ t∗g,k,Σ,≥0 contained in CΣ
G,K .

3.2. Branching theorem: a piecewise quasi-polynomial formula.

When τΣ is a tope for FΣ, we now give a specific quasi-polynomial for-
mulae for the function mG,K on τΣ ∩ CΣ

G,K.
Fix a subset Σ of the simple roots of ∆+

g , and let l be the Levi

subalgebra of g, with simple root system Σ. Let ∆+
l be its positive

root system. Let ∆u = ∆+
g \∆+

l and denote by Wl the Weyl group of l.
For any λ ∈ ΛG,≥0∩ it∗g,Σ, we can write the character formula on TG as:

χλ|TG =
∑

w∈Wg/Wl

ew(λ)
∏

α∈∆u
(1− e−w(α))

.

Remark 25.

This formula, a special case of the Atiyah-Bott fixed point formula,
is easily obtained by the Weyl character formula. When λ is regular,
∆u = ∆+

g , it is Weyl character formula. When λ is singular, this sum
is over an eventually much smaller set of elements w, and of simpler
functions. The extreme case is λ = 0, with just one term equal to 1.
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3.2.1. We start by considering the case where all elements of ∆g have a
non zero restriction to itk. The general situation is treated in Subsection
3.2.2.
The space itk contains a regular (with respect to ∆k) elementX which

is regular also for ∆g.We use this element to define positive compatible
root systems ∆+

g and ∆+
k as follows: ∆+

g := {α ∈ ∆g, α(X) > 0} and

∆+
k = {α ∈ ∆k, α(X) > 0}. Thus the list Ψ of elements of it∗k consists

on the restrictions of ∆+
g repeated with multiplicities (we implicitly

choose an order):

Ψ = [α, α ∈ ∆+
g ].

The list Ψ contains ∆+
k . By our construction, all elements ψ in Ψ

satisfy 〈ψ,X〉 > 0.

Example 26.

Let G = SU(n) and K = SU(n1) × SU(n2) with n = n1n2. We
consider t the Cartan subalgebra of g given by the diagonal matrices
of trace zero and tk = t1 × t2 the Cartan subalgebras of k given by the
corresponding diagonal matrices. The embedding of K in G leads to
the embedding of it1 × it2 → it given by

diag(a1, . . . , an1)× diag(b1, . . . , bn2) →

diag(a1+b1, a2+b1, . . . , an1+b1, a1+b2, . . . , an1+b2, . . . , a1+bn2 , . . . , an1+bn2).

We take the lexicographic order. The list of restricted roots is thus the
list

Ψ = [(ai − aj + bk − bℓ)]. (8)

There i, j varies between 1 and n1, and k, ℓ varies between 1 and n2.
The couple (i, k) being different from (j, ℓ), so all restricted roots are
non zero. This lexicographic order is compatible. Explicitly, we can
associate it to the element X = diag(n1, n1 − 1, . . . , 1) × diag((n2 −
1)n1 + 1, (n2 − 2)n1 + 1, . . . , 1). For example, for n1 = 2, n2 = 3, X =
diag(2, 1)× diag(5, 3, 1) with embedded element diag(7, 6, 5, 4, 3, 2).
�

We can write the restriction of χλ on TK as a sum, indexed by w ∈
Wg/Wl, of meromorphic functions:

χλ|TK =
∑

w∈Wg/Wl

ew(λ)
∏

α∈∆u
(1− e−w(α))

.

To compute mG,K(λ, µ) for ΛG,≥0 ∩ it∗g,Σ by iterated residues, we
consider the function of z ∈ (tk)C:
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SΣ,w
λ,µ (z) =

∏

β∈∆+
k

(1− e−〈β,z〉)
e〈w(λ)−µ,z〉

∏

α∈∆u
(1− e−〈w(α),z〉)

. (9)

If τ is a tope for F , we have defined the tope aτw for Ψ and the set
OS(Ψ, aτw) of adapted basis to the tope aτw (Def. 13). Let q = q(Ψ) be
the index of Ψ. The following proposition is clear.

Proposition 27. Let

pΣτ (λ, µ) =
∑

w∈Wg/Wl

∑

γ∈ΓK/qΓK

∑

−→σ ∈OS(Ψ,aτw)

Res−→σ S
Σ,w
λ,µ (z +

2iπγ

q
).

Then pΣτ (λ, µ) is a quasi-polynomial function on ΛΣ
G ⊕ ΛK.

We can state our formula for the branching coefficients.

Theorem 28. Let τΣ be a tope in it∗g,Σ ⊕ it∗k for FΣ, and let τ be the
tope for F containing τΣ.
Let (λ, µ) ∈ τΣ ∩ ΛΣ

G,K,≥0. Then

(1) if (λ, µ) /∈ CΣ
G,K then

mG,K(λ, µ) = pΣτ (λ, µ) = 0.

(2) if (λ, µ) ∈ CΣ
G,K, and the tope τΣ intersect CΣ

G,K, then

mG,K(λ, µ) = pΣτ (λ, µ).

Proof. The set τΣ ∩ CΣ
G,K is contained in τ ∩ CG,K , so we know from

Theorem 23 that on τ ∩ΛG,K,≥0, the function mG,K is given by a quasi-

polynomial formula, so a fortiori its restriction to τΣ ∩ΛΣ
G,K,≥0. So it is

sufficient to prove (see the uniqueness result in Lemma 30) that when
(λ, µ) ∈ τΣ ∩ΛΣ

G,K,≥0 is sufficiently far away from all walls belonging to

FΣ, then mG,K(λ, µ) coincide with pΣτ (λ, µ).
Let w ∈ Wg. Using our regular element X , we can rewrite the

formula for χλ|TK polarizing the linear form w(α): if 〈w(α), X〉 < 0,

we replace w(α) by its opposite; we then make use of the identity
1

1−e−β
= − eβ

1−eβ
. Precisely we can define Ψw,u = Ψ1

w,u∪Ψ2
w,u with Ψ1

w,u =

{wα, α ∈ ∆u, 〈w(α), X〉 > 0}, Ψ2
w,u = {−w(α), α ∈ ∆u, 〈w(α), X〉 <

0}. Elements in Ψw,u are positive on X , so Ψw,u is contained in Ψ. In
contrast to the regular case, Ψw,u depends on w and may not contain
∆+

k .
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Let sΣw = |Ψ2
w,u| and eg

Σ
w =

∏

w(α), 〈w(a),X〉<0 e
w(α), then we obtain that

χλ|TK is equal to

∑

w∈Wg/Wl

(

ew(λ)
∏

ψ∈Ψ1
w,u

(1− e−ψ)

(−1)s
Σ
weg

Σ
w

∏

ψ∈Ψ2
w,u

(1− e−ψ)

)

=
∑

w∈Wg/Wl

(

ew(λ)(−1)s
Σ
weg

Σ
w

∏

ψ∈Ψw,u
(1− e−ψ)

)

.

Lemma 29. The following equality holds on TK:

χλ|TK =
∑

w∈Wg/Wl

∑

µ∈ΛK

(−1)s
Σ
wPΨw,u(w(λ) + gΣw − µ)eµ

where PΨw,u is the partition function determined by the restricted roots
Ψw,u. So

mG,TK (λ, µ) =
∑

w∈Wg/Wl

(−1)s
Σ
wPΨw,u(w(λ) + gΣw − µ). (10)

When K is the maximal torus TG and λ is regular, Formula 10. is
Kostant multiplicity formula for a weight [23]. The formula above is
obtained by the same method. Let us now use Formula 6

mG,K(λ, µ) =
∑

w̃∈Wk

ǫ(w̃)mG,TK (λ, µ− w̃(ρk) + ρk).

We obtain for (λ, µ) ∈ ΛG,K,≥0

mG,K(λ, µ) =
∑

w̃∈Wk

ǫ(w̃)
∑

w∈Wg/Wl

(−1)s
Σ
wPΨw,u(w(λ)+g

Σ
w−(µ−w̃(ρk)+ρk)).

(11)
Observe that, if λ is regular, then we may rewrite this expression as

a sum of partitions functions for Ψ\∆+
k obtaining Heckman formula,

[16], but we will not use this fact.

The point (λ, µ) being in τΣ, the point w(λ) − µ is in aτw. We can

assume that (λ, µ) is sufficiently far away from all walls, so that w(λ)+
gΣw − (µ− w̃(ρk) + ρk)) is also in aτw. Now use Theorem 20 to express

PΨw,u(w(λ) + gΣw − (µ− w̃(ρk) + ρk)).

We obtain that mG,K(λ, µ) is equal to

∑

w̃∈Wk

ǫ(w̃)
∑

w∈Wg/Wl

(−1)s
Σ
w

∑

γ∈ΓK/qΓK

∑

−→σ ∈OS(Ψw,u,aτw)

Res−→σ
e〈w(λ)+g

Σ
w−(µ−w̃(ρk)+ρk),z+

2iπ
q
γ〉

∏

ψ∈Ψw,u
(1− e−〈ψ,z+ 2iπ

q
γ〉)

.
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Inverting the polarization process, we rewrite

(−1)s
Σ
w

e〈w(λ)+g
Σ
w,z+

2iπ
q
γ〉

∏

ψ∈Ψw,u
(1− e−〈ψ,z+ 2iπ

q
γ〉)

=
e〈w(λ),z+

2iπ
q
γ〉

∏

α∈∆u
(1− e−〈wα,z+ 2iπ

q
γ〉)
.

So, remembering that
∏

β∈∆+
k
(1− e−β) =

∑

w̃ e
−ρk+w̃(ρk), we obtain

mG,K(λ, µ) = pτ (λ, µ)

when (λ, µ) ∈ τΣ ∩ΛΣ
G,K,≥0 is ”very” far away from all the walls H(w).

Now the proof follows by the following lemma which shows that a quasi-
polynomial function is determined by its values on a sufficiently large
subset.

Lemma 30. Let p1, p2 be two quasi-polynomial functions on a lattice
L. If there exists a open cone τ such that p1, p2 agree on a translate
(s+ τ) ∩ L of τ , then p1 = p2.

The proof is left to the reader.

3.2.2. We now explain how to deal with the general case. We start
with the character formula

χλ|TG =
∑

w∈Wg/Wl

ew(λ)
∏

α∈∆u
(1− e−w(α))

.

We cannot write directly the restriction of each term ew(λ)
∏

α∈∆u
(1−e−w(α))

to

TK since the denominator could vanish identically on TK . So we com-
pute a limit formula as follows. Choose X1 ∈ itg so that 〈w(α), X1〉 6=
0, ∀α ∈ ∆u and w ∈ Wg/Wl.
Let z ∈ (tk)C and w ∈ Wg/Wl. For ǫ small, consider the expres-

sion e〈w(λ),z〉e〈w(λ),ǫX1〉
∏

α∈∆u
(1−e−〈w(α),z+ǫX1〉)

and define Θǫ(z,X1) =
e〈w(λ),ǫX1〉

∏

α∈∆u
(1−e−〈w(α),z+ǫX1〉)

.

The function ǫ 7→ Θǫ(z,X1) has a pole at ǫ = 0 of order p = |{α ∈
∆u| 〈w(α), z〉 = 0}|. Consider the Laurent expansion

∑

i≥−p ciǫ
i of this

function at ǫ = 0 and say that c0 is its constant term. Define Fw(z,X1)
to be the constant term of the Laurent expansion of ǫ 7→ Θǫ(z,X1) at
ǫ = 0 and define

Gw(z,X1) = e〈w(λ),z〉Fw(z,X1).

When the order p of the pole is 0, Gw(z,X1) is just equal to

e〈w(λ),z〉
∏

α∈∆u
(1− e−〈w(α),z〉)

.

Observe that
∑

w∈Wg/Wl
Gw(z,X1) does not depend on the choice of

X1 and it is equal to the restricted character χλ(exp(z)).
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The function Gw(z,X1) is of the form P/Q where P is a sum of
exponentials and Q is a product of the form 1

∏

ψ∈Ψ(1−e−ψ)
nψ , Ψ being the

list of (nonzero) restricted roots. Thus the restricted character χλ|TK
can be expressed again as a sum of partition functions associated to
lists of elements belonging to Ψ (with eventual higher multiplicities).
Define

SΣ,w
λ,µ (z) =

∏

β∈∆k

(1− e−〈β,z〉)e〈w(λ)−µ,z〉Fw(z,X1)

=
∏

β∈∆k

(1− e−〈β,z〉)e−〈µ,z〉Gw(z,X1).

Remark that in the case where the restriction to itk of any α ∈ ∆g is

non zero, the function SΣ,w
λ,µ (z) is indeed equal to the function defined

by Equation (9). In the general case, the function SΣ,w
λ,µ (z) depends on

our choice of X1, but we leave this choice implicit.
Given a tope τ for F , we define, similarly to what we did in Propo-

sition 27

pΣτ (λ, µ) =
∑

w∈Wg/Wl

∑

γ∈ΓK/qΓK

∑

−→σ ∈OS(Ψ,aτw)

Res−→σ S
Σ,w
λ,µ (z +

2iπγ

q
)

and, by arguing as in the proof of Lemma 29, we can prove that

Theorem 31. Let τΣ be a tope in it∗g,Σ ⊕ it∗k for FΣ, and let τ be the
tope for F containing τΣ.
Let (λ, µ) ∈ τΣ ∩ ΛΣ

G,K,≥0. Then

(1) if (λ, µ) /∈ CΣ
G,K then

mG,K(λ, µ) = pΣτ (λ, µ) = 0.

(2) if (λ, µ) ∈ CΣ
G,K, and the tope τΣ intersect CΣ

G,K, then

mG,K(λ, µ) = pΣτ (λ, µ).

Example 32.

Let us give two simple examples to illustrate the difference of the
computation of Sw,Σλ,µ in the case 3.2.1 and in the case 3.2.2.
We consider first the case of G = U(4) and K = SU(2) × SU(2)

embedded inG by considering C4 = C
2⊗C

2. Then tk is two dimensional,
and none of the roots of g vanishes identically in itk.
Let λ = [k, k, 0, 0] be a highest weight for a representation of G. If

Σ = {e1 − e2, e3 − e4}, then λ ∈ it∗g,Σ.
∆u restricted to itk is [e2,−e2,−e2− e1,−e2+ e1] where e1, e2 are the

simple roots of SU(2) × SU(2). If z = [z1, z2] are the coordinates of
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z ∈ itk with respect to the dual basis of {e1, e2} then the expression for

the function e〈w(λ),z〉
∏

α∈∆u
(1−e−〈w(α),z〉)

restricted to itk is

uk2
(

1− 1
u2

)2 (

1− 1
u1u2

)(

1− u1
u2

)
,

where we made the change of variables ez1 = u1 and similarly. To
obtain the restricted character, we have to sum over 6 permutations
and we obtain that

χλ(exp(z)) =
uk2

(

1− 1
u2

)2 (

1− u1
u2

)(

1− 1
u1u2

)

+

uk1
(

1− 1
u1

)2 (

1− 1
u1u2

)(

1− u2
u1

)
+

2

(1− u2) (1− u1)
(

1− 1
u1

)(

1− 1
u2

)+

u−k1

(1− u1)
2 (1− u1u2)

(

1− u1
u2

) +
u−k2

(1− u2)
2 (1− u1u2)

(

1− u2
u1

) .

For the permutation w = 1, µ = [µ1, µ2] (with µ1, µ2 integers), the

function Sw,Σλ,µ (z1, z2) is

(1− 1/u1)(1− 1/u2)
uk2u

−µ1
1 u−µ22

(

1− 1
u2

)2 (

1− u1
u2

)(

1− 1
u1u2

)

(with u1 = ez1 , u2 = ez2).
Consider now G = U(4), K1 = SU(2)×{1} contained in K. Contin-

uing with the above example, we now would like to have an expression
for the restriction of χλ to TK1 as a sum of explicit meromorphic func-
tions. Consider for example the permutation w = 1. Then the term

uk2
(

1− 1
u2

)2(

1− 1
u1u2

)(

1−
u1
u2

) cannot be restricted to K1 = SU(2)×{1}, since

u2 − 1 vanishes identically on K1.
Thus for z = [z, 0] and X1 = [0, 1], w = id, we compute with u = ez

that

Gw(z,X1) = −1

2

(k + 4)2 u

(u− 1)2
+

1

2

(k + 4)u

(u− 1)2
+

(k + 4) u2

(u− 1)3
− (k + 4) u

(u− 1)3
− u3

(u− 1)4
+

u2

(u− 1)4
− u

(u− 1)4
.

For µ an integer, our function Sw,Σλ,µ (z) is (1−1/u)u−µGw(z,X1) (with
u = ez)
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�

Remark 33.

We have remarked that our method to compute mG,K(λ, µ) is a gen-
eralization of the Kostant-Heckman branching theorem. On the other
hand if λ is not regular, the formula obtained for χλ|TK is not very
explicit, but it has two obvious advantages from an algorithmic point
of view:
• there is a smaller number of elements of the Weyl group over which

we sum up.
• the function of which we compute the residues has less poles.
We fully take advantages of these points when we compute the ex-

ample of Hilbert series, Section 5.2.
�

�

4. The algorithm to compute Kronecker coefficients

We now explain our algorithm to compute g(λ1, . . . , λs) using The-
orem 28. We assume that s ≥ 3 and ni ≥ 2. From Theorem 21, there
exists a cone decomposition of CU(n1)×···×U(ns)(C

n1 ⊗· · ·⊗Cns) in cones
ca (solid inside the vector space determined by |λ1| = |λ2| = · · · = |λs|)
such that the function g(λ1, . . . , λs) is given by a quasi-polynomial for-
mula on ca. Our program computes symbolically the branching coeffi-
cients in a conic neighborhood of a given point. Let us summarize the
steps of the algorithm.
We are given a sequence of s strictly positive integers [n1, . . . , ns]

and for each integer ni a sequence νi of integers: νi = [νi1, . . . , ν
i
ni
] with

νi1 ≥ νi2 ≥ · · · ≥ νini ≥ 0. Each νi parameterizes an irreducible polyno-
mial representation of U(ni) of highest weight νi. Write N =

∏s
i=1 ni

and M =
∏s

i=2 ni. We want to compute the dilated Kronecker coef-
ficients g(kν1, . . . , kνs), that is the multiplicity of the tensor product

representation V
U(n1)
kν1

⊗ · · · ⊗ V
U(ns)
kνs

in Sym(CN).
Our approach uses Cauchy formula to reduce the number of factors

s. We may assume that n1 ≤ M = n2 · · ·ns and that |ν1| = |ν2| =
· · · = |νs|.
We set G = U(M) and K = U(n2)× · · · × U(ns).
The first reduction step is:
• If |ν1| = |ν2| = · · · = |νs| then g(ν1 ⊗ · · · ⊗ νs) = mG,K(ν̃1, ν2 ⊗

· · ·⊗νs) where ν̃1 is the highest weight representation of U(M) obtained
from ν1 by adding M − n1 zeros and the branching coefficient mG,K is
computed in Theorem 28 via the function defined in Proposition 27.
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Let us write λ = ν̃1, µ = ν2 ⊗ · · · ⊗ νs. If n1 < M , λ is a singular
weight for the group U(M). Denote by Σ the set of simple roots [en1+2−
en1+1, . . . , eM − eM−1] of U(M). Let l = u(M − n1) be the Lie algebra
with this simple root system. We have 〈λ,Hα〉 = 0 for all α ∈ Σ. Then
(λ, µ) ∈ ΛΣ

G,≥0 ⊕ ΛK≥0 with the notations as in Section 3.
Let us review the key steps of the algorithm to compute mG,K . See

the discussion in [1] outlining the limits of the implementation.
Given as input (λ, µ), we wish to compute the branching coefficients.

Recall that :

mG,K(λ, µ) =
∑

w∈Wg/Wl

∑

γ∈ΓK/qΓK

∑

−→σ ∈OS(Ψ,aτw)

Res−→σ S
Σ,w
λ,µ (z +

2iπγ

q
). (12)

One of the difficult point in computing the right hand side of equation
(12) is to find the index q of the list of restricted roots (for g, k) with
respect to the lattice ΛK . We do it by brute force in our examples.
Another tricky point is to find a FΣ-tope τΣ such that (λ, µ) ∈ τΣ.

We do this by computing a regular point inside the Kirwan cone and
deform (λ, µ) along the line from (λ, µ) to this interior point. For doing
so

(1) We list all the equations X of the Ψ- admissible hyperplanes.
(2) For each such equation given by X and for w ∈ Wg, we compute

H(X,w, λ, µ) = 〈λ, wX〉 − 〈µ,X〉. As (λ, µ) is in the lattice of
weights, and X in the dual lattice, H(X,w, λ, µ) is an integer.

Remember λ, µ are our fixed input.
(3) If H(X,w, λ, µ) 6= 0 ∀w,X , then (λ, µ) is FΣ-regular and then

it is in a tope τΣ. A fortiori it is in a unique F tope τ and
therefore w(λ)− µ is in a unique tope aτw ⊂ it∗k .
In conclusion we can compute OS(Ψ, aτw).

(4) Else if H(w,X, λ, µ) = 0 for some X and w, then we deform as
follows:
(a) We find ǫ = (ǫ1, ǫ2) in the interior of CΣ

G,K . We can find
this point in the cases we treat because, either we know the
equations of the Kirwan cone, either we know some points
in the Kirwan cone by directly computing projections. The
lists of integers (n1, n2, . . . , ns) where the inequations of the
cone CK(H) are known can be found in [1].

(b) We rescale ǫ so that |〈wX, ǫ1〉−〈X, ǫ2〉| < 1/2, so (λ, µ)+tǫ
stays in the same tope τΣ for all 0 < t < 1.

(c) We define (λdef , µdef) as (λ+ ǫ1, µ+ ǫ2).
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(5) We can now pick the tope τ defined by (λdef , µdef) and compute
OS(Ψ, aτw) as in step 3.

(6) Now for a given w ∈ Wg, we compute

SΣ,w
λ,µ (z) =

∏

β∈∆+
k

(1− e−〈β,z〉)
e〈w(λ)−µ,z〉

∏

α∈∆u
(1− e−〈w(α),z〉)

(13)

and the residue along an OS basis adapted to τ with an appro-
priate series expansion.

Remark 34.

For not so many w′s, the set of OS basis adapted to τ is non
empty. Indeed, w has to be such that wλ − µ is in the cone
generated by the restricted roots. This is the so called set of
valid permutations for (λ, µ) defined by Cochet in [12]. See also
the notion of Weyl alternative sets in [15].

�

(7) Finally to compute mG,K(λ, µ), we have to sum the contribu-
tion from w ∈ Wg/Wl, over the set γ ∈ ΓK/qΓK and −→σ ∈
OS(Ψ, aτw). Each individual term of these two sums, that is if
we fix γ and −→σ , is easy to compute in low rank, but there can
be really many of these terms.

Remark that if ν1 is a rectangular tableau, then λ = ν̃1 is even more
singular. This enable us to compute more easily using a larger set Σ
(reducing then the number of roots in ∆u and the number of permuta-
tions). Indeed in this case Σ consists of all the simple roots minus one.
When all νi are rectangular tableaux, this corresponds to the case of
Hilbert series. We list the corresponding results in the last Subsection
5.2.
It is not more difficult to compute the function mG,K(λ, µ) on a tope

τ with symbolic variables (λ, µ). So given as input (λ0, µ0), the output
is either the numerical value mG,K(λ

0, µ0) , either the dilated coeffi-
cient k 7→ mG,K(kλ

0, kµ0), or (in low dimensions), a tope τ containing
(λ0, µ0) in its closure and the quasi-polynomial function in both vari-
ables λ, µ coinciding with mG,K(λ, µ) on the closure of the tope τ .
It is clear that for fixed n1, n2, . . . , ns, the algorithm to compute the

dilated Kronecker coefficients g(kν1, . . . , kνs) is of polynomial complex-
ity with respect to the input ν1, . . . , νs.
We checked our results on Kronecker coefficients against computa-

tions made by different authors with various theoretical or computa-
tional aims (Hilbert series, stability, representations of the symmetric
group, etc..). Here is a list probably far from being complete, [8],
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[10], [19],[21], [25], [26], [27], [34],[36], [41]. In contrast to our method,
some of these computations use directly the representation theory of
the symmetric group (see for example [21],[34]) and can be made for
(relatively) large number of rows, provided the content c = |νi| is small.

5. Examples

All examples were computed by a Maple program executed on a
MacBookpro (Intel core i7 processor). The running time is at most
20 minutes for the most difficult cases. One exception is the example
of entanglement of the 4-qubits (see Ex. 39). It was the hardest to
compute in terms of running time, but on the other hand, we did not
try to optimize the program for this particular case.

5.1. Examples of computation of dilated Kronecker coefficients.

Example 35. The case C4 ⊗ C2 ⊗ C2

This example has been studied in complete details by [8]. In partic-
ular, a cone decomposition in 74 cones of quasi-polynomiality is given,
together with the corresponding quasipolynomial of degree 2 and pe-
riod 2.

We now list a number of new examples that we computed using our
Maple program.

Example 36. The case of 4-qubits C2 ⊗ C
2 ⊗ C

2 ⊗ C
2

The Kirwan polytope has been described by Higuchi-Sudbery-Szulc,
[17]. We have no idea of the number of cones in a cone decomposition
of CK(H) in cones of quasi-polynomiality. Nevertheless, given highest
weights α, β, γ, δ, we can compute g(kα, kβ, kγ, kδ) as a periodic poly-
nomial in k. It is a quasi-polynomial of degree at most 7 and period 6.
More precisely, this function of the form

f(k) + (−1)kg(k) + h(k)

where f(k) is a polynomial of k of degree less or equal to 7, g(k) of
degree less or equal to 3, and h(k) is a periodic function of kmod 3.
Here is an example. When α = β = γ = δ = [2, 1], then:

g(kα, kβ, kγ, kδ) =

23

241920
k7+

13

5760
k6+

155

6912
k5+

139

1152
k4+

(

81601

207360
+

1

1536
(−1)k

)

k3+

(

9799

11520
+ (−1)k

5

256

)

k2 +

(

38545

32256
+ (−1)k

179

1536

)

k + P (k)
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where

P (k) =

(

5

243
+

1

243
θ

)

(

θ2
)k

+

(

4

243
− 1

243
θ

)

θk+
5279

6912
+

51

256
(−1)k

where θ is a primitive root θ3 = 1. Thus the constant term P (k) is
a sum of a periodic function of period 2 and of a periodic function of
period 3, leading to periodic behavior modulo 6.
The values of P (k) on 0, 1, 2, 3, 4, 5 are

[

1,
5725

10368
,
76

81
,
77

128
,
77

81
,
5597

10368

]

This formula gives the Kronecker coefficients g(kα, kβ, kγ, kδ) for
any k. Starting from k = 0, they are

1, 3, 13, 39, 110, 264, 588, 1194, 2289, 4134, 7152, 11865, . . .

Example 37. The case C6 ⊗ C3 ⊗ C2

When n2 = 3, n3 = 2, it is sufficient to consider the case when n1 =
6. In this case the maximum degree of the quasi-polynomial function

g(kλ, kµ, kν) is computed by the formula
∏s

j=1 nj −
∑s

j=1
nj(nj−1)

2
−

∑s
j=1 nj + s− 1 = 8. Then the multiplicity function k 7→ g(kλ, kµ, kν)

is a quasi-polynomial function of the form

f(k) + (−1)kg(k) + h(k)

where f(k) is a polynomial of k of degree less or equal to 8, g(k) of
degree less or equal to 2 and h(k) is a periodic function of kmod 3.
Here is an example where the degree of the quasi-polynomial is the

maximum one.
We fix λ = [15, 10, 9, 4, 3, 2], µ = [21, 14, 8], ν = [27, 16] and com-

pute:

g(kλ, kµ, kν) =

413587

967680
k8 +

66773

17280
k7 +

3072191

207360
k6+

1091771

34560
k5 +

710713

17280
k4 +

871363

25920
k3+

(

(−1)k
55

1024
+

1833073

107520
)

)

k2 +

(

(−1)k
79

512
+

117661

23040

)

k+

(

10

243
+

4

243
θ

)

θk +

(

2

81
− 4

243
θ

)

(

θ2
)k

+
275

2048
(−1)k +

398071

497664
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where θ is a third primitive root of 1. The term of the degree zero
in g(kλ, kµ, kν) is thus a periodic function r of k, of period 6, whose
values are given by

[r(0), r(1), r(2), r(3), r(4), r(5)] =

[

1,
50429

82944
,
25

27
,
749

1024
,
71

81
,
18175

27648

]

.

Thus, the values of g(kλ, kµ, kν) starting from k = 0, are

1, 148, 3570, 34140, 197331, 829417, 2797696, . . . .

We now illustrate some other particularly interesting examples that
connect the behavior of the quasi polynomial function g(λ, µ, ν) on
cones ca adjacent to a facet F of the Kirwan cone.
Recall that a wall of the Kirwan polytope is regular if it intersects

the interior of the Weyl chamber. Thus the Kirwan cone is determined
by inequations defined by regular walls, and inequations determining
the Weyl chamber. The regular walls of the Kirwan cone for the action
of U(6)×U(3)×U(2) in C6⊗C3⊗C2 have been described by Klyachko
[22]. Given λ = [λ1, λ2, λ3, λ4, λ5, λ6], µ = [µ1, µ2, µ3] and ν = [ν1, ν2] ,
the regular walls leads to the following 5 types of inequations in λ, µ, ν
(and equations |λ| = |µ| = |ν|).
More precisely, for each of the inequations F below, Table 1, there

is a particular subset S of S6 × S3 × S2 (where Sk is the group
of permutations of k elements) computed by Klyachko such that the
permuted inequations is a irredundant inequation of the corresponding
Kirwan cone. Each subset S contains the identity.

type Inequations

I FI : ν1 − ν2 − λ1 − λ2 − λ3 + λ4 + λ5 + λ6 ≤ 0

II FII : µ1 + µ2 − 2µ3 − λ1 − λ2 − λ3 − λ4 + 2λ5 + 2λ6 ≤ 0

III FIII : 2µ1 − 2µ3 + ν1 − ν2 − 3λ1 − λ2 − λ3 + λ4 + λ5 + 3λ6 ≤ 0

IV FIV : 2µ1 + 2µ2 − 4µ3 + 3 ν1 − 3 ν2 − 5λ1 − 5λ2 + λ3 + λ4 + λ5 + 7λ6 ≤ 0

V FV : 4µ1 − 2µ2 − 2µ3 + 3 ν1 − 3 ν2 − 7λ1 − λ2 − λ3 − λ4 + 5λ5 + 5λ6 ≤ 0

Table 1. Walls type

We will now give a list of elements vF = [λF , µF , νF ] in the rel-
ative interior of each facet {F = 0} ∩ CK(H) of the cone. Here
F ∈ {FI , FII , FIII , FIV , FV }. Thus the corresponding dilated Kro-
necker coefficients g(kvF ) is of the maximum degree (as predicted by
Lemma 37 in [1], Table 2), among the dilated coefficients g(kλ, kµ, kν)
when (λ, µ, ν) varies in a facet of the given type F .
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Facet vF = [λ, µ, ν] g(kλ, kµ, kν)

FI [[288, 192, 174, 120, 30, 6], [343, 270, 197], [654, 156]] 1 + 17k

FII [[300, 186, 150, 78, 48, 6], [438, 276, 54], [465, 303]] 121077 k3

4
+ 21051 k2

8
+ 311 k

4
+ 3/16 (−1)k + 13

16
FIII [[47, 35, 23, 13, 5, 1], [76, 38, 10], [85, 39]] 1

FIV [[276, 204, 120, 66, 30, 6], [351, 273, 78], [552, 150]] 1 + 36k

FV [[276, 198, 126, 66, 48, 6], [406, 201, 113], [536, 184]] 1 + 41k

Table 2. Dilated Kronecker coefficients on walls

Let CIII = {FIII = 0} ∩ CK(H). From the reduction principle of
multiplicities on regular faces, we know that the restriction of g(λ, µ, ν)
to CIII ∩ ΛK (or any facet obtained by the Klyacho permutations) is
identically 1. Indeed let X0 = [[−3,−1,−1, 1, 1, 3], [2, 0,−2], [1,−1]],
the element of itk perpendicular to the wall associated to CIII . Let
K0 the stabilizer of X0 in K, and H0 the subspace of H stable by X0.
Then K0 is isomorphic to the subgroup (U(1)× U(2)× U(2)× U(1))×
(U(1)× U(1)× U(1)) × (U(1)× U(1)) of U(6) × U(3) × U(2). The
multiplicity mH

K restricted to CIII ∩ΛK coincides with mH0
K0
. This mul-

tiplicity function is easily computed to be identically 1 on CIII ∩ ΛK .
Thus any element of CIII ∩ ΛK (or any facet obtained by the Klyacho
permutations) is stable.
For each of the cases in Table 2 we can also compute symbolically

a quasi-polynomial function coinciding with the Kronecker coefficients
on a closed solid cone cvF of CK(H) containing the element vF . Fol-
lowing the general method, we compute an element vǫF close to vF
and not on any admissible wall. For example for vFI and FI , we can
choose vǫFI = [[291, 194, 175, 120, 30, 6], [347, 272, 197], [659, 157]]. Then
the function g(λ, µ, ν) on the tope τ(vǫF ) containing vǫF is a quasi-
polynomial function. The closure cvF of τ(vǫF ) contains vF and cvF is
a cone of quasi-polynomiality adjacent to the facet {F = 0} ∩ CK(H).
The degree of the quasi polynomial function g(λ, µ, ν) on cvF is 8, as we
know. When we restrict this symbolic quasi polynomial to the element
kvF , we do indeed get g(kvF ).
For the element vFI , we find that the symbolic function on cvFI is

polynomial, instead of merely quasi-polynomial. Remark the striking
result that this polynomial function is divisible by 7 linear factors with
constant value 1, 2, 3, 4, 5, 6, 7 on the face FI . Thus the restriction of
this function to FI is indeed linear. The results for the element vFI are
summarized in Table 3. The polynomial on the next to the last line
of Table 3 is the symbolic polynomial in a neighborhood of vFI in the
hyperplane{FI = 0}. When computed on vFI it gives indeed 1 + 17k,
that we have computed independently by using the element vFI .
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[λ, µ, ν] ∈ τI g(λ, µ, ν)
1

5040
(λ1 + λ2 + λ3 − ν1 + 7) (λ1 + λ2 + λ3 − ν1 + 6)

(λ1 + λ2 + λ3 − ν1 + 5) (λ1 + λ2 + λ3 − ν1 + 4)
[λ, µ, ν] (λ1 + λ2 + λ3 − ν1 + 3) (λ1 + λ2 + λ3 − ν1 + 2)

(λ1 + λ2 + λ3 − ν1 + 1) (λ1 + λ2 + λ3 − µ1 − µ2 + 1)

λ = [291 k, 194 k, 175 k, 12 k, 30 k, 6 k] 1
5040

(7 + k)(6 + k)(k + 5)(k + 4)

µ = [347 k, 272 k, 197 k], ν = [659 k, 157 k] (k + 3)(k + 2)(k + 1)(16k + 1)

[λ, µ, ν] ∈ {FI = 0} ∩ cvFI
1 + 503

140
(λ1 + λ2) + λ4 + λ5 + 363

140
(λ3 + ν1)

k vFI
1 + 17k

Table 3. Results for the wall of type I

We do not obtain such nice expressions in the other cases, (in par-
ticular the quasi polynomials obtained are not polynomials), but we
can compute nonetheless the symbolic quasi polynomial. The results
of the computations are too long to be included here.
Let us observe that we do not know how to compute the degree

when (λ, µ, ν) is on a face defined by the Weyl chamber, see Subsection
5.2 for the case of three rectangular tableaux. Here is an example for
which the degree is smaller for singular µ. Consider λ = [9, 7, 5, 3, 2, 1],
µ = [9, 9, 9], ν = [14, 13], then
g(kλ, kµ, kν) is given by the following formula
(

13
64

(−1)k + 67
64

)

k+ 17
12
k2+ 617

432
k3+ 19

24
k4+ 55

288
k5+ 1

81
θk (−2 θ + 8)+

1
81
θ2 k (2 θ + 10) + 85

144
+ 3

16
(−1)k

Here θ is again a primitive root θ3 = 1. Thus the term of degree zero
is a periodic function r of k such that

[r(0), r(1), r(2), r(3), r(4), r(5)] = [1, 71/216, 17/27, 5/8, 19/27, 55/216]

Of course, the value of g(0, 0, 0) is equal to 1. Here g(λ, µ, ν) = 5 and
for instance the value g(17λ, 17µ, 17ν) = 344715.

Example 38. The case of 3-qutrits C3 ⊗ C3 ⊗ C3

The multiplicity function k 7→ g(kλ, kµ, kν) is a quasi-polynomial
function of degree at most 11 and with constant term a periodic func-
tion of k (mod 12). The actual numerical values are computed in a
rather quick time.
Let us give an example of the dilated Kronecker coefficient. We

omit the actual formula as it is too long. The periodic term for the
coefficient of degree 0 of g(kλ, kµ, kν) with λ = µ = ν = [4, 3, 2] is
given on k (mod 12) by the values:
[

1,
1166651

5308416
,
13403

20736
,
29899

65536
,
59

81
,
1166651

5308416
,
235

256
,
980027

5308416
,
59

81
,
32203

65536
,
13403

20736
,
980027

5308416

]
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In this case g(kλ, kµ, kν) has precisely degree 11.

5.2. Rectangular tableaux and Hilbert series. We give a list of
the Kronecker coefficients for the following situation of rectangular
tableaux. We use the following notations: (C2)3 = C2 ⊗ C2 ⊗ C2,
[[1, 1]]3 = [[1, 1], [1, 1], [1, 1]], C[4,3,3] = C4 ⊗ C3 ⊗ C3 and similarly. In
the following table, the second column refers to the choice of the pa-
rameters [λ, µ, ν] and the third column to the value of the Hilbert series
∑

km(k)tk where m(k) is the Kronecher coefficient g(kλ, kµ, kν).
type parameters value

(C2)3 [[1, 1]]3 1
1−t2

(C2)4 [[1, 1]]4 1
(1−t)(1−t2)2(1−t3)

.

(C2)5 [[1, 1]]5 HS22222

(C3)3 [[1, 1, 1]]3 1
(1−t2)(1−t3)(1−t4)

.

C[4,3,3] [[3, 3, 3, 3], [4, 4, 4], [4, 4, 4]] 1+t9

(1−t2)2(1−t4)(1−t)(1−t3)

where

HS22222 =
∑

g(k[1, 1], k[1, 1], k[1, 1], k[1, 1], k[1, 1]])tk = P (t)/Q(t)

where

P (t) = t52 + 16 t48 + 9 t47 + 82 t46 + 145 t45 + 383 t44 + 770 t43+

1659 t42+3024 t41+5604 t40+9664 t39+15594 t38+24659 t37+36611 t36+52409 t35+

71847 t34+95014 t33+119947 t32+146849 t31+172742 t30+195358 t29+214238 t28+

225699 t27+229752 t26+225699 t25+214238 t24+195358 t23+172742 t22+146849 t21+

119947 t20+95014 t19+71847 t18+52409 t17+36611 t16+24659 t15+15594 t14+9664 t13+

5604 t12+3024 t11+1659 t10+770 t9+383 t8+145 t7+82 t6+9 t5+16 t4+1

and
Q(t) = (1− t2)5(1− t3)(1− t4)5(1− t5)(1− t6)5.

We remark that for the case (C2)5 of 5-qubits the result in [25] cor-
respond to the series

∑

km(k)t2k and has a misprint on the value of
the coefficient an for n = 42 (corresponding to the coefficient of t21 in
our formula for P ), as the numerator is not palindromic. So the value
an for n = 42 in [25] has to be replaced by 146849.
For completeness we give the value of the Kronecker coefficients in

the examples considered, we omit the actual expression for the Kro-
necker coefficients in the 5-qubits case and the one for g(k[3, 3, 3, 3], k[4, 4, 4], k[4, 4, 4])
because the formula is too long to be reproduced here.

g(k[1, 1], k[1, 1]) =
1

2
+

1

2
(−1)k

g(k[1, 1], k[1, 1], k[1, 1], k[1, 1]) =
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23

36
+
1

4
(−1)k+

1

27
θk (2 + θ)+

1

27
θ2 k (1− θ)+

(

29

48
+

1

16
(−1)k

)

k+
1

16
k2+

k3

72

g(k[1, 1, 1], k[1, 1, 1], k[1, 1, 1]) =

107

288
+

9

32
(−1)k +

(

1 + (−1)k
) 1

16
ik +

(

1 + (−1)k+1
) 1

16
ik+1+

1

9
θ2 k +

1

9
θk +

(

1

16
(−1)k +

3

16

)

k +
1

48
k2

where θ is a third root of unity. For g(k[1, 1, 1], k[1, 1, 1], k[1, 1, 1]) we
report, as an example, the expressions on cosets. We have twelve cosets
and thus a sequence of 12 polynomials given by the following list

[1 +
1

4
k +

1

48
k2,− 7

48
+

1

8
k +

1

48
k2,

5

12
+

1

4
k +

1

48
k2,

7

16
+

1

8
k +

1

48
k2,

2

3
+

1

4
k +

1

48
k2,− 7

48
+

1

8
k +

1

48
k2,

3

4
+

1

4
k +

1

48
k2,

5

48
+

1

8
k +

1

48
k2,

2

3
+

1

4
k +

1

48
k2,

3

16
+

1

8
k +

1

48
k2,

5

12
+

1

4
k +

1

48
k2,

5

48
+

1

8
k +

1

48
k2]

The following is the list of values of the Kronecker coefficients com-
puted by the above formula for 0 ≤ k ≤ 20 :

[1, 0, 1, 1, 2, 1, 3, 2, 4, 3, 5, 4, 7, 5, 8, 7, 10, 8, 12, 10, 14].

The above values are part of what is known as the OEIS, The on-line
encyclopedia of integers sequences, sequence A005044.
Observe that in this example the saturation factor is 2.

Example 39. The Hilbert series of entanglement for 4-qubits.

Consider H = (C2)4 = C2⊗C2⊗C2⊗C2 and consider the standard
action of U(2) × U(2) × U(2) × U(2) on H. The space H is the space
of 4-qubits.
We now consider the direct sum H̃ = H⊕H of two copies of H, so

Sym(H̃) = Sym(H)⊗ Sym(H).
The decomposition of the tensor product representation of U(2) ×

U(2) × U(2) × U(2) in Sym(H̃) = Sym(H) ⊗ Sym(H) is considered
in Wallach [41]. The Hilbert series for invariants is called the Hilbert
series of entanglement for 4-qubits.
We write thus H̃ = H⊕H = H⊗C

2, and we consider the action of
U(2)× U(2)× U(2)× U(2)× {1} on H̃ = C

2 ⊗ C
2 ⊗ C

2 ⊗ C
2 ⊗ C

2.
We first write H̃ = C2⊗C2⊗C2⊗C2⊗C2 as C2⊗(C2⊗C2⊗C2⊗C2),

and we consider the action of U(2)×U(16) on C2⊗(C2⊗C2⊗C2⊗C2).
As in the case of 5-qubits, Cauchy formula allows us to compute

Sym(H̃) as a representation of U(2)×G with G = U(16).
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Consider λ = [1, 1] and λ̃ = [1, 1, 0, 0, . . . , 0] a highest weight for
U(16). Let K = U(2) × U(2) × U(2) × U(2) embedded in G = U(16)
and let K1 = SU(2)× SU(2)× SU(2)× {1} embedded in K.
Thus following the method outlined in Subsection 3.2.2, and Theo-

rem 31, we can compute the branching coefficientm(k) = mG,K1(kλ̃, kµ)
with µ = 0 indexing the trivial representation ofK1.We obtain a quasi-
polynomial of degree 19 and periodic of period 6, that we list at the end
by listing 6 polynomials on cosets of Z mod 6Z. Then the generating
function relative to this multiplicity is the Hilbert series of measures of
entanglement for 4-qubits as computed by Wallach in [41]. We recom-
pute his formula
∑

m(k)tk =
∑

dim
[

Sym2k(H̃)SL(C
2)×SL(C2)×SL(C2)×SL(C2)

]

tk =

P (q)

(1− q2)(1− q4)11(1− q6)6

where t2 = q and
P (q) = q54 + 3 q50 + 20 q48 + 76 q46 + 219 q44 + 654 q42 + 1539 q40 +

3119 q38 + 5660 q36 + 9157 q34 + 12876 q32 + 16177 q30 + 18275 q28 +
18275 q26 + 16177 q24 + 12876 q22 + 9157 q20 + 5660 q18 + 3119 q16 +
1539 q14 + 654 q12 + 219 q10 + 76 q8 + 20 q6 + 3 q4 + 1
We conclude by listing the 6 polynomials [W0,W1,W2,W3,W4,W5]

on the cosets [0, 1, 2, 3, 4, 5]. Define

p(k) =
353

472956150389538816000
k19 +

353

3111553620983808000
k18 +

271067

33189905290493952000
k17+

+
90331

244043421253632000
k16+

96329

8134780708454400
k15+

4335209

15252713828352000
k14+

299075479

56317712596992000
k13+

556811179

7039714074624000
k12 +

1343229996

14079428149248000
k11 +

1507096313

159993501696000
k10

and

peven(k) =
30016136009 k9

391095226368000
+

8474560763 k8

16295634432000
+

417926105131 k7

141228831744000
+

84164633999 k6

5884534656000
,

podd(k) =
1920961135001 k9

25030094487552000
+

542157180107 k8

1042920603648000
+

6671912967271 k7

2259661307904000
+

1335013209659 k6

94152554496000

then:

W0(k) := p(k)+peven(k)+
38627139511

653837184000
k5+

50415619753

245188944000
k4+

266225257897

463134672000
k3+

4572054901

3859455600
k2+

14055407 k

8953560
+1

W1(k) := p(k)+podd(k)+
219573425545427

3813178457088000
k5+

276452038823221

1429941921408000
k4+

12577822401820393489

24892428967870464000
k3+

572824001947094231

622310724196761600
k2+

159318923928183241

166314250686431232
k +

290588607887

835884417024

W2(k) := p(k)+peven(k)+
38627139511 k5

653837184000
+
36750520335937 k4

178742740176000
+
1745362160646217 k3

3038626582992000
+
89590754414783 k2

75965664574800
+

815186343623

528698764440
k +

1506571

1594323
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W3(k) := p(k) + podd(k) +
301217799563

5230697472000
k5 +

379529711549

1961511552000
k4 +

1927034414248049

3793999233024000
k3+

29795123615357

31616660275200
k2 +

109432200819 k

104316534784
+

261589

524288

W4(k) := p(k)+peven(k)+
28157390911519

476647307136000
k5+

36724846687937178742740176000
k4+

1738714367494217

3038626582992000
k3+

88327521243583

75965664574800
k2+

2345378642869

1586096293320
k +

1353103

1594323

W5(k) := p(k)+podd(k)+
301217799563

5230697472000
k5+

276657428007221

1429941921408000
k4+

12632281123321577489

24892428967870464000
k3+

583172408085564631

622310724196761600
k2

+
56607866326977347 k

55438083562143744
+

371050038671

835884417024

The complete polynomial, with θ a third primitive root of one, is given
by:

353

472956150389538816000
k19 +

353

3111553620983808000
k18 +

271067

33189905290493952000
k17

+
90331

244043421253632000
k16+

96329

8134780708454400
k15+

4335209

15252713828352000
k14+

299075479

56317712596992000
k13

+
556811179

7039714074624000
k12 +

13432299961

14079428149248000
k11 +

1507096313

159993501696000
k10+

(

(−1)k
17

11890851840
+

3841993839577

50060188975104000

)

k9+

(

(−1)k
17

165150720
+

1084529068939

2085841207296000

)

k8+

(

(−1)k
817

247726080
+

13358730649367

4519322615808000

)

k7 +

(

(−1)k
91

1474560
+

2681647353643

188305108992000

)

k6+

(

2 (θ + 1)

1594323
θk −

2 θ

1594323
(θk)2 + (−1)k

1649

2211840
+

1334555059856737

22879070742528000

)

k5+

(

(229 θ + 251)

4782969
θk +

(−229 θ + 22)

4782969
(θk)2 + (−1)k

559

92160
+

570537819046717

2859883842816000

)

k4+

(

(3488 θ + 4192)

4782969
θk +

(−3488 θ + 704)

4782969
(θk)2 + (−1)k

198924917

5945425920
+

8967103302680393051

16594952645246976000

)

k3+

(

(26512 θ + 34928)

4782969
θk +

(−26512 θ + 8416)

4782969
(θk)2 + (−1)k

10001959

82575360
+

437463645838719389

414873816131174400

)

k2+

(

(100700 θ + 145244)

4782969
θk +

(−100700 θ + 14848)

4782969
(θk)2 (−1)k

688047337

2642411520
+

6335305750969416391

4989427520592936960

)

k+

(

(5684 θ + 241220)

177147
θk +

1

177147
(θk)2 + (−1)k

262699

1048576
+

3413873184941

5015306502144

)
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