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Abstract

We consider general logarithmic minimal models LM(p, p′), with p, p′ coprime, on a strip of N columns
with the (r, s) Robin boundary conditions introduced by Pearce, Rasmussen and Tipunin. On the
lattice, these models are Yang-Baxter integrable loop models that are described algebraically by the
one-boundary Temperley-Lieb algebra. The (r, s) Robin boundary conditions are a class of integrable
boundary conditions satisfying the boundary Yang-Baxter equations which allow loop segments to
either reflect or terminate on the boundary. The associated conformal boundary conditions are
organized into infinitely extended Kac tables labelled by the Kac labels r ∈ Z and s ∈ N. The
Robin vacuum boundary condition, labelled by (r, s− 1

2) = (0, 12 ), is given as a linear combination
of Neumann and Dirichlet boundary conditions. The general (r, s) Robin boundary conditions are
constructed, using fusion, by acting on the Robin vacuum boundary with an (r, s)-type seam consisting
of an r-type seam of width w columns and an s-type seam of width d = s − 1 columns. The r-type

seam admits an arbitrary boundary field which we fix to the special value ξ = −λ
2 where λ = (p′−p)π

2p′

is the crossing parameter. The s-type boundary introduces d defects into the bulk. We consider the
commuting double-row transfer matrices and their associated quantum Hamiltonians and calculate
analytically the boundary free energies of the (r, s) Robin boundary conditions. Using finite-size
corrections and sequence extrapolation out to system sizes N +w+ d ≤ 26, the conformal spectrum of
boundary operators is accessible by numerical diagonalization of the Hamiltonians. Fixing the parity

of N for r 6= 0 and restricting to the ground state sequences w =
⌊ |r|p′

p

⌋
, r ∈ Z with the inverse

r = (−1)N+w+d
⌈pw

p′

⌉
, we find that the conformal weights take the values ∆p,p′

r,s− 1
2

where ∆p,p′
r,s is given by

the usual Kac formula. The (r, s) Robin boundary conditions are thus conjugate to scaling operators
with half-integer values for the Kac label s − 1

2 . Level degeneracies support the conjecture that the
characters of the associated (reducible or irreducible) representations are given by Virasoro Verma
characters.
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1 Introduction

It is well established that, in the continuum scaling limit, Conformal Field Theories (CFTs) such as
the family of minimal models M(m,m′) [1] describe the universal scaling properties of two-dimensional
lattice models. In the case of unitary [2] minimal models, m = m′−1, the associated lattice models are
the multicritical Ising models [3]. The simplest CFTs fall into the class of rational CFTs [4,5] which are
characterized by a finite number of primary scaling operators. The representations associated with these
operators are irreducible and close among themselves under fusion. For rational boundary CFTs [6], the
conformal boundary conditions are conjugate (in one-to-one correspondence) to the primary scaling
operators. It follows that the conformal data, including the central charges and conformal weights,
can be obtained from the lattice by studying the finite-size corrections [7, 8] to the eigenvalues of the
transfer matrices, or equivalently, the associated one-dimensional quantum Hamiltonians.

In fact, many CFTs are realized as the continuum scaling limit of Yang-Baxter integrable lattice
models [9]. For example, the minimal models describe the continuum scaling limit of the Restricted
Solid-On-Solid (RSOS) lattice models [10]. A boundary condition on the lattice is integrable if it
satisfies the boundary Yang-Baxter equation [11–13]. Invariably, if a rational CFT is associated with a
lattice model that is Yang-Baxter integrable in the bulk, it seems possible to construct a representative
integrable lattice boundary condition to realize each of the conformal boundary conditions in the
continuum scaling limit. This program has been carried to completion [14] for the critical A-D-E
RSOS models [15] associated with the A-D-E minimal models [16]. The RSOS models have degrees of
freedom in the form of local heights. The continuum scaling limit of such theories with local degrees
of freedom are described by rational CFTs.

In this paper, we study the logarithmic minimal models LM(p, p′) [17] with Virasoro conformal
symmetry (as opposed to W-extended conformal symmetry [18]). The first members of this family
are critical dense polymers LM(1, 2) [19] and the loop version LM(2, 3) [20] of the square lattice
bond percolation model. Like the minimal models [21], the logarithmic minimal models are coset
CFTs [22, 23]. But unlike the minimal models, these theories describe systems with nonlocal degrees
of freedom in the form of loop segments. The continuum scaling limit of such theories with nonlocal
degrees of freedom are described by logarithmic CFTs [24] that are nonunitary and non-rational. The
family of logarithmic minimal models plays the same role for logarithmic CFTs that the minimal models
play for rational CFTs. The properties of logarithmic CFTs, however, are profoundly different to those
of rational CFTs. Most importantly, these theories are characterized [25] by the existence of reducible
yet indecomposable representations but, as yet, there is no exhaustive classification of all possible
representations. Instead, the focus has been on identifying different kinds of Virasoro representations
such as irreducible, fully reducible, projective and their W-algebra counterparts. In the logarithmic
context, it is no longer true in general that each representation is conjugate to a conformal boundary
condition. For the logarithmic minimal models, however, it is known [17, 26–29] that there are a
countably infinite number of Virasoro Kac representations with conjugate (r, s) boundary conditions
organized into infinitely extended Kac tables. The central charges and conformal weights, given by the
Kac formula, are

c = cp,p
′

= 1−
6(p′ − p)2

pp′
, ∆p,p′

r,s =
(rp′ − sp)2 − (p′ − p)2

4pp′
, 1 ≤ p < p′, r, s ∈ N (1.1)

All of these models are nonunitary with effective central charge ceff = 1.
The conformal properties of polymers and percolation have been studied [30–33] since the late

eighties. Remarkably, there are indications [31, 33] that certain representations occur with conformal
weights given by the Kac formula (1.1) with half-integer Kac labels. Indeed, it has been suggested [34]
that a field with conformal weight ∆2,3

2, 5
2

= 0 plays the role of Watts’ [35] primary field in the description
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of critical percolation. Moreover, the existence of a family of spin fields with conformal weights ∆p,p+1

r− 1
2
,0

for r ∈ N has recently been posited [36]. We restrict r and s to be integers and use r, s as integer Kac
labels and r − 1

2 , s −
1
2 as half-integer Kac labels throughout this paper.

Robin boundary conditions [37] are linear combinations of Neumann and Dirichlet boundary
conditions. In the context of loop models, they allow loop segments to either reflect or terminate
at the boundary. In this paper, we apply the (r, s) Robin boundary conditions of Pearce, Rasmussen
and Tipunin [38] to the general minimal models and confirm numerically that the associated conformal

weights are ∆p,p′

r,s− 1
2

where r ∈ Z and s ∈ N. The (r, s) Robin boundary conditions are thus conjugate

to scaling operators with half-integer values for the Kac label s− 1
2 . In particular, the Robin vacuum

(r, s− 1
2) = (0, 12) has conformal weight

∆p,p′

0, 1
2

= −
(2p′ − p)(2p′ − 3p)

16pp′
, 1 ≤ p < p′, p, p′ ∈ N (1.2)

These results were established analytically in [38] for critical dense polymers LM(1, 2) with β = 0.
The (r, s) Robin boundary conditions are so-named because of the (r, s)-type seam by which they
are constructed. The (r, s) Robin boundary conditions have similarities to the so-called JS boundary
conditions [39]. The main differences are that the (r, s) Robin boundary conditions are (i) manifestly
Yang-Baxter integrable and (ii) they are constructed using standard r- and s-type seams, which behave
as topological defects. These seams propagate freely along the row due to the generalized Yang-Baxter
equation and ensure the expected su(2) fusion rules for Cardy fusion [40] of boundary conditions on
the lattice.

The layout of this paper is as follows. In Section 2, we describe the logarithmic minimal lattice
models on the strip in terms of the one-boundary Temperley-Lieb algebra. Following [38], we recall
the definition of the Robin link states and the construction of the integrable (r, s) Robin boundary
conditions. The commuting double-row transfer matrices and their associated quantum Hamiltonians
are revisited in Section 3. The analytic derivation of the exact bulk and boundary free energies and
their Hamiltonian limits are also given in this section. The details of the derivation and solution of
the inversion relation are relegated to Appendices A and B. Our numerical results for the finite-size
spectra are presented in Section 4 along with a discussion of the finitized conformal partition functions
and the logarithmic limit. Properties of the Robin boundaries as representations of the one-boundary
Temperley-Lieb algebra are discussed in Appendix C. Some final remarks are given in the conclusion.

2 Logarithmic Minimal Models and Robin Boundary Conditions

2.1 Temperley-Lieb algebra and local relations

We study the logarithmic minimal models LM(p, p′) [17] on a square lattice with the geometry of the
strip and apply Robin boundary conditions. Here p, p′ are coprime integers with 1 ≤ p < p′. The
models are built using the one-boundary Temperley-Lieb (TL) or blob algebra [20,41–45] and describe
the statistical interaction of densely packed self- and mutually-avoiding loops. The strip has N bulk
columns and 2M rows and is built by M applications of the double-row transfer matrix. Closed loops
in the bulk have a fugacity β = 2cos λ where the crossing parameter is

λ =
(p′ − p)π

p′
, 1 ≤ p < p′, p, p′ ∈ N (2.1)

Loop configurations on the square lattice are built on two face tiles which are the generators of
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the planar TL algebra [46]

and (2.2)

These tiles, corresponding to the identity I and monoids ej respectively, can be viewed as operators
acting from the bottom-left edges to the top-right edges of an elementary face. Together they generate
the linear TL algebra

TLN(β) :=
〈
I, ej ; j = 1, . . . , N − 1

〉
(2.3)

satisfying the relations

ejej±1ej = ej , e2j = βej , ejek = ekej , |j − k| ≥ 2 (2.4)

The diagrammatic action of the tiles on a set of N parallel strings, where ej acts between string j and
j + 1, gives a faithful representation of the algebra

I =

1 2 N−1 N

. . . ej =

1 2 j j+1 N−1 N

. . . . . . (2.5)

To build commuting transfer matrices [17], we introduce a spectral parameter u related to spatial
anisotropy [47]. Face operators are defined as the linear combinations

u := s1(−u) + s0(u) , Xj(u) = s1(−u)I + s0(u)ej (2.6)

where

s(u) = s0(u), sk(u) :=
sin(u+ kλ)

sinλ
, k ∈ Z (2.7)

and the marked corner fixes the orientation of the face. The face operators satisfy the Yang-Baxter
equation

Xj+1(u)Xj(u+ v)Xj+1(v) = Xj(v)Xj+1(u+ v)Xj(u) (2.8)

or diagrammatically

u

v
v−u =

v

u
v−u (2.9)

The face operators Xj also satisfy the local inversion and crossing relations

u −u = s(λ− u)s(λ+ u) , u = λ−u (2.10)

2.2 Robin link states

In this section we describe the link states associated with (r, s) Robin boundary conditions. We denote

the vector space of Robin link states by V
(N,w)
d . A link state on N bulk and w boundary nodes is a

planar diagram of non-crossing arc segments. It contains d = s− 1 ≥ 0 defects (vertical line segments)
attaching individual nodes to a point above at infinity and b ≥ 0 boundary links linking individual
nodes to the right boundary. The remaining 1

2 (N+w−d−b) nodes are connected pairwise by half-arcs
with

w = width of r-type seam, N + w − d− b = 0 mod 2 (2.11)

A Robin link state satisfies the three properties:
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(i) no half-arc joins a pair of boundary nodes

(ii) no boundary link emanates from a boundary node

(iii) every boundary node is either a defect or is linked to a bulk node

In the Robin vacuum sector with w = d = 0, the vector space of link states with N = 4 is

V
(4,0)
0 = span

{
, , , , ,

}
(2.12)

The number of these link states is dimV
(N,0)
0 =

( N
⌊N/2⌋

)
. Examples of vector spaces of Robin link states

with defects are

V
(3,1)
1 = span

{ }

V
(3,2)
1 = span

{
, ,

}
(2.13)

V
(4,2)
0 = span

{
, , ,

}

where the dashed line separates the bulk and right boundary. The number of these link states is

dimV
(N,w)
d =

(
N⌊

N−d
2

⌋
+ (−1)N−d−w

⌈
w
2

⌉
)

(2.14)

The defects can be closed to an s-type seam on the left or, equivalently, on the right by passing under
the boundary links. The latter is used in the construction of Robin boundaries using (r, s)-type seams
but the former implementation is convenient in our numerical calculations. The dimension of the vector
space V(N,w) of Robin link states with an arbitrary number of defects is independent of w

dimV(N,w) =

N+w∑

d=0

dimV
(N,w)
d = 2N (2.15)

2.3 One-boundary Temperley-Lieb algebra

The one-boundary TL or blob algebra [41–45] is a planar diagrammatic algebra generated by two bulk
face tiles and one boundary triangle

(2.16)

Fixing the direction of transfer gives the linear one-boundary TL algebra

TLN (β;β1, β2) :=
〈
I, ej , fN ; j = 1, . . . , N − 1

〉
(2.17)

where β1, β2 are fugacities of loops that terminate on the boundary. The generators

I := ...

1 N

, ej := ... ...

1 Nj

, fN := ...

1 N

(2.18)

satisfy
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[ei, ej ] = 0, |i− j| > 1

eiejei = ei, |i− j| = 1

e2j = βej , j = 1, . . . , N − 1

[ej , fN ] = 0, j = 1, . . . , N − 2

eN−1fNeN−1 = β1eN−1, f2
N = β2fN

(2.19)

Multiplication is by vertical concatenation of diagrams. For example

f2
N =

...

...

1 N

= β2 × ...

1 N

= β2fN (2.20)

In this paper, for the numerics, we fix β1 = β2 = 1.
For β2 6= 0 the one-boundary TL algebra is equivalent ( [38] Appendix A), up to a rescaling, to the

blobbed TL algebra that consists of the elements I, ej and the blob projector b = fN/β2 that commutes
with ej for j < N − 1 and satisfies

eN−1beN−1 =
β1
β2

eN−1, b2 = b (2.21)

The blobbed TL algebra was used by Jacobsen and Saleur in [39] to define boundary conditions with
similarities to the Robin boundary conditions.

2.4 Robin vacuum boundary condition

The Robin vacuum boundary condition, introduced in the vertex model context in [48] and further
developed in the loop context in [38], is a solution to the boundary Yang-Baxter equation [11–13] (2.32).
It is a linear combination of Neumann and Dirichlet boundary conditions

u = Γ(u) + s0(2u) (2.22)

With Neumann boundary conditions, the loop segments are reflected at the boundary. With Dirichlet
boundary conditions, loops are allowed to terminate on the boundary. In agreement with (2.19),
boundary half-loops terminating on the boundary receive a different fugacity β1 or β2 depending on
the parity of the (single) row where the lower rows in each double row are designated as odd

β1 :
...

odd

even

β2 :
...

even

odd

(2.23)

In [38], the function Γ(u) is written as

Γ(u) = s1(ξ − u)[β1s1(ξ + u)− β2s0(ξ + u)], Γ(ξ + λ) = 0 (2.24)

where the boundary field ξ is an arbitrary parameter defined modulo π. Most importantly Γ(ξ+λ) = 0
is required [38], in the presence of an r-type seam, to impose a drop-down property ensuring the rule

7



which disallows boundary links emanating from the lower edge of the r-type seam to propagate up to
the upper edge. This relation, reflecting a coupling between the Robin vacuum and the r-type seam,
fixes the coincidence of the boundary field ξ in the r-type seam and the Robin vacuum. It is convenient
to parameterize the boundary loop fugacities by the variables R ∈ R

+ and α ∈ [0, 2π) as

β1 =
R sinα

sinλ
, β2 =

R sin(α− λ)

sinλ
(2.25)

so that Γ(u) takes a factorized form

Γ(u) = Γ(u|ξ, α) = Rs1(ξ − u)s0(ξ + u+ α) (2.26)

This form of Γ(u) and (2.22) agree with (3.46) of [14] with ξBP = ξ + λ and α = rλ so that our later
specialization to ξ = −λ

2 , for the numerics, coincides with the specialization ξBP = λ
2 . For the numerics,

we also specialize to the case β1 = β2 = 1, for which R = 2 sin λ
2 and

α =
λ+ π

2
, Γ(u) =

sin(ξ + λ− u) cos(ξ + λ
2 + u)

sinλ cos λ
2

(2.27)

For later reference, in the case β1 = β2 = 1, we note that

Γ(0)

s1(ξ)
= s1(ξ)− s0(ξ) =

cos(ξ + λ
2 )

cos λ
2

(2.28)

In the notation of Doikou and Martin [48], µDM = λ, θDM = −iu/λ, mDMλ = λ − α and ζDMλ =
ξ + (λ+ α)/2 with R = 1.

At first sight, the Robin boundary conditions depend on the three parameters R, ξ and α (in
addition to the bulk parameters u, λ). Upon renormalization of the boundary operator fN , it can be
shown that the parameter R 6= 0 corresponds to an overall scale factor. Let us introduce the quantities
β̃1, β̃2 independent of R as β1 = Rβ̃1 and β2 = Rβ̃2 and define the operator f̃N as fN = Rf̃N such
that eN−1f̃NeN−1 = β̃1eN−1 and f̃2

N = β̃2f̃N . Noticing that Γ̃(u) = R−1Γ(u) is independent of R, we
deduce that the R-dependence of the Robin vacuum factorizes

Γ(u)I + s0(2u)fN = R
[
Γ̃(u)I + s0(2u)f̃N

]
(2.29)

We deduce that the thermodynamic and conformal properties are independent of R and only depend
on the angle α or, equivalently, on the ratio β1/β2 for β2 6= 0.

2.5 Integrable (r, s) Robin boundary conditions

Following [14, 17, 38], we dress the Robin vacuum boundary condition by fusing with r- and s-type
seams on the right boundary

=

=(r,s− 1
2
) (r,1) ⊗

✁
✁
✁✁

❆
❆
❆❆

u−ξw u−ξw−1 u−ξ1

−u−ξw−1−u−ξw−2 −u−ξ0

u,ξ

�

�

� �

� �

(1,s) (0,
1
2 )⊗

✁
✁
✁✁

❆
❆
❆❆. . .

. . .

︸ ︷︷ ︸
w columns

︸ ︷︷ ︸
d columns

u

�

�

� �

� �

(2.30)
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The fusion within a seam is implemented diagrammatically [27,28,49] (as opposed to using Wenzl-Jones
projectors) by forbidding closed half-arcs along the lower edge. A drop-down property ensures that
no closed half-arcs can occur along the top edge. With the parameters appropriately tuned (2.24) to
give a drop-down property of boundary arcs, this gives the general integrable (r, s) Robin boundary
conditions. The column inhomogeneities are ξk = ξ+kλ and the dependence on ξ in the Robin vacuum
is suppressed but is coupled to coincide with the value of ξ in the r-type seam. The action of the double-

row transfer matrix must map V
(N,w)
d back to itself. This is implemented by the diagrammatic fusion

projection in the r- and s-type seams and the drop-down property of boundary arcs. In the s-type
seam, this prevents the closing of two defects to form a closed loop ensuring that the number of defects
is conserved and s or d is a good quantum number. In the r-type seam, the action also kills [27] certain
words among the boundary TL generators. We also note that, due to the generalized Yang-Baxter
equation, the r- and s-type boundary seams commute and freely propagate along the row under a
similarity transformation that preserves the spectrum. In particular, they obey the fusion rules

(r, s − 1
2) = (r, 1) ⊗ (1, s)⊗ (0, 12 ) = (r, s) ⊗ (0, 12) (2.31)

Using the fact that the Robin vacuum satisfies the boundary Yang-Baxter equation, and following
[13], it follows that the (r, s) Robin boundary conditions satisfy the boundary Yang-Baxter equation

u−v

λ−u−v

u,ξ

v,ξ

=

u−v

λ−u−v

v,ξ

u,ξ

(2.32)

where the boundary conditions are represented diagrammatically by the u- or v-dependent right
boundary triangles. Although we do not do so in this paper, similar integrable boundary conditions
can be constructed on the left boundary.

As an operator acting on V(N,w), the boundary operator implementing the (r, s) Robin boundary
condition is

K
(w)
N (u, ξ) = XN (u− ξw)XN+1(u− ξw−1) . . . XN+w−1(u− ξ1)

[
Γ(u)I + s0(2u)fN+w

]

XN+w−1(u+ ξ1)XN+w−2(u+ ξ2) . . . XN (u+ ξw) (2.33)

When restricted to acting from V
(N,w)
d to itself, the boundary operator reduces [38] to

K
(w)
N (u, ξ) ≃

w∏

j=1

s−1(u+ ξj)s−1(u− ξj)
[
α
(w)
0 I + α

(w)
1 eN + α

(w)
2 eNeN+1 + . . .

+ α(w)
w eNeN+1 . . . eN+w−1 + α

(w)
w+1eNeN+1 . . . eN+w−1fN+w

]
(2.34)

where

α
(w)
0 = Γ(u)

α
(w)
k =

(−1)ks0(2u)

s0(u+ ξ)sw+1(ξ − u)

(
sw−k(λ) Γ(u)− β1sw−k+1(u+ ξ)s1(ξ − u)

)
, k = 1, 2, . . . , w

α
(w)
w+1 =

(−1)ws0(2u)s1(ξ − u)

sw+1(ξ − u)
(2.35)

All other TL words are killed. The similarity sign ≃ (instead of an equality sign) indicates that the

actions agree only when restricted to the vector space V
(N,w)
d .
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3 Transfer Matrices, Hamiltonians and Non-Universal Quantities

3.1 Commuting double-row transfer matrices

In this paper, we study the double row transfer matrix D(u) with a Neumann or (1, 1) Kac boundary
condition on the left edge of the strip and an (r, s) Robin boundary condition (2.30) on the right edge
of the strip

D(u) :=
1

N (w)(u, ξ)
u u u

λ−u λ−u λ−u

. . .

. . .

u,ξ

︸ ︷︷ ︸

N

(3.1)

This transfer matrix acts on the link states described in Section 2.2 with the fixed d = s − 1 defects
closed to the right, under the boundary arcs, and onto the s-type seam. Following the diagrammatic
arguments of [13], the Yang-Baxter and boundary Yang-Baxter equations (2.9) and (2.32) ensure the
commutation of the transfer matrices D(u) and D(v). As in [38], it also follows that the transfer
matrices are crossing symmetric

D(λ− u) = D(u) (3.2)

The double row transfer matrix is normalized by a crossing symmetric factor (c.f. (3.4) of [28])

N (w)(u, ξ) =





(−1)wβ Γ(0)s(ξ)s(ξw+1)
w−1∏

j=1

s(ξj + u)s(ξj+1 − u), w > 0

βΓ(0)
s(ξ)s(ξ1)

s(ξ + u)s(ξ1 − u)
, w = 0

(3.3)

so that, in addition, it satisfies D(0) = D(λ) = I. For w ≥ 2, the product removes the common factors
resulting from fusion in the seam, otherwise, this product takes the value 1. Note, by convention [13],
the (normalized) weight associated with an r-type seam of width w = 0 is not unity and is effectively
fixed to

κ̃0(u, ξ) = κ̃0(λ− u, ξ) =
s(ξ + u)s(ξ1 − u)

s(ξ)s(ξ1)
(3.4)

3.2 Quantum Hamiltonians

In this paper we work with the normalized transfer matrix D(u) given in (3.1). But, to take the
Hamiltonian limit, it is convenient to use a transfer matrix normalized as in [38]

d(u) =
N (w)(u, ξ)

η(u)
D(u), η(u) =

β Γ(0)s(u+ ξw)s(ξ)η
(w)(u, ξ)

s(u+ ξ)s(ξw)
(3.5)

where

η(w)(u, ξ) =

w∏

j=1

s−1(u+ ξj)s−1(u− ξj),
η(u)

N (w)(u, ξ)
=

s(u+ ξw)s(ξw+1 − u)

s(ξw)s(ξw+1)
(3.6)

With this normalization the transfer matrix d(u) is crossing symmetric d(λ − u) = d(u) and satisfies
the intial condition d(0) = I.
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The commuting family D(u) of double-row transfer matrices produces an infinite set of commuting
conserved quantities by expansion in the spectral parameter u. The Hamiltonian H arises as the first
non-trivial operator in the limit u → 0

d(u) =
N (w)(u, ξ)

η(u)
D(u) = I −

2u

sinλ
(H + hI) +O(u2) (3.7)

where h measures a convenient shift in the groundstate energy. Explicitly, as an operator acting on

the vector space V
(N,w)
d with β1 = β2 = 1 and λ 6= π

2 , the Hamiltonian is [38]

H = Hw,d ≃ −
N−1∑

j=1

ej −
w∑

k=1

(−1)k

s0(ξ)sw+1(ξ)

(
sw−k(λ)−

s1(ξ)sw−k+1(ξ)

Γ(0)

)
eNeN+1 . . . eN+k−1

− (−1)w
s1(ξ)

sw+1(ξ)Γ(0)
eNeN+1 . . . eN+w−1fN+w (3.8a)

= −
N−1∑

j=1

ej −
cos λ

2

sw+1(ξ) cos(ξ +
λ
2 )

w∑

k=0

(−1)k
cos((w − k − 1

2)λ)

cos λ
2

eNeN+1 . . . eN+k (3.8b)

= −
N−1∑

j=1

ej −
cos λ

2

sw+1(ξ) cos(ξ +
λ
2 )

FN (3.8c)

where, by convention, we set eN+w = fN+w and FN is a generalized projector described in
Appendix C.1. We observe that the boundary term is singular at ξ+α = 0 mod π and at ξ+(w+1)λ = 0
mod π. So it is anticipated that the boundary energies will be discontinuous at these points. Fixing
λ,w and varying ξ, it follows that the singularities occur at one or two points in the interval [0, π).
The two points coincide whenever (w+ 1

2 )λ = π
2 mod π. Allowing for periodicity, the boundary energy

ER(ξ) will accordingly consist of one or two analytic branches separated by the points of discontinuity.
Note that Hw,d is independent of d which only enters via the vector space of link states on

which the Hamiltonian acts. For λ = π
2 , that is critical dense polymers LM(1, 2), the Hamiltonian is

different. In this case, since the O(u) term vanishes, the Hamiltonian is given by the O(u2) term in
the expansion [38]. In the absence of an r-type seam (w = 0), the Hamiltonian (3.8c) reduces to

H = −
N−1∑

j=1

ej −
1

Γ(0)
fN (3.9)

This is the Hamiltonian studied by Jacobsen and Saleur [39]. In this case, they argue that the conformal
properties depend on the sign of β2/Γ(0) or, equivalently, the value of the parameter ξ ∈ [0, π). The
JS critical phase corresponds to

0 <
β2
Γ(0)

=
sinλ sin(α− λ)

sin(ξ + λ) sin(ξ + α)
(3.10)

3.3 Bulk and boundary free energies

The logarithmic minimal models LM(p, p′) [17] are exactly solvable on the lattice. The key to this
exact integrability are functional equations in the form of T - and Y -systems [50–52, 13]. Indeed, it is
known [53] that the logarithmic minimal models satisfy T - and Y -systems on the strip and cylinder.
Since the structure of these equations is universal [54] in the sense that the same equations hold
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independent of the topology and boundary conditions, it is expected that the same equations will
also hold for logarithmic minimal models with (r, s) Robin boundary conditions. In principle, these
equations could be solved for the conformal weights using dilogarithm identities [55,51]. In practice, the
required methodologies have not yet been developed so, in this paper, we calculate the conformal weights
numerically. In this section, we use an inversion identity [56], which is the first functional equation
in the T -system, to calculate the bulk and boundary free energies exactly. The bulk free energy is
obtained using the inversion relation method [57,58]. The boundary free energies are calculated using
the boundary inversion relation methods of [59, 28]. Knowing the bulk and boundary free energies
exactly greatly improves the accuracy of the numerically extrapolated estimates for the conformal
weights in Section 4.

The transfer matrix D(u) (3.1) satisfies an inversion identity [56] of the form

D(u)D(u+ λ) = φ(λ+ u)φ(λ− u)I + φ(u)D2(u) (3.11)

where D
2(u) denotes the transfer matrix at fusion level 2. In calculating the bulk and boundary

free energies we observe that, in the physical region, the second term can be neglected since it is
exponentially small compared to the first term. This yields an inversion relation, derived in Appendix A,
for each eigenvalue

D(u)D(u+ λ) = D(u)D(−u) = φ(λ+ u)φ(λ − u) (3.12)

= [s1(u)s1(−u)]2N
s2(2u)s2(−2u)

s1(2u)s1(−2u)

Γ(u)Γ(−u)

β2 Γ(0)2
s(ξ + u)s(ξ − u)s(ξw+1 + u)s(ξw+1 − u)

s(ξ)2s(ξw+1)2

The inversion relation is sufficient to determine analytically the bulk and boundary free energies in the
thermodynamic limit N → ∞. Subsequently, taking the Hamiltonian limit u → 0, yields the exact
bulk and boundary energies.

The partition function per site κ(u, ξ), given by the largest eigenvalue D(u) of the transfer matrix
D(u) in a given (r, s) sector, factorizes into contributions of order O(N), O(1) and O(1/N)

D(u)

κ̃0(u, ξ)
= κ(u, ξ) = κbulk(u)

2Nκ0(u)κR(u,w, ξ) ℓ(u), κR(u,w, ξ) = κR(u, ξ)κw(u, ξ) (3.13)

The non-universal contributions, common to all eigenvalues in the given sector, are denoted by κbulk(u),
κ0(u), κR(u, ξ), κw(u, ξ) and κ̃0(u, ξ) for the bulk, the left Kac vacuum, the right Robin vacuum, the
r-type seam of width w > 0 and the zero width seam respectively. They will be determined exactly by
solving the inversion relation (3.12). In the case w = 0, the trivial extra normalization of the transfer
matrix removes the contribution (3.4) from the seam of zero width. For compatibility with w = 0, we
also require

κR(u, 0, ξ) = κR(u, ξ) ⇒ κ0(u, ξ) = 1 (3.14)

The boundary contribution is thus

κbdy(u,w, ξ) = κ0(u)κR(u,w, ξ) = κ0(u)κR(u, ξ)κw(u, ξ) (3.15)

The remaining O(1/N) contribution ℓ(u) is different for each eigenvalue. It encodes the universal
conformal properties of the model and can only be obtained by solving the full Y -system.
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As a result of the factorization of the inversion identity (3.12), the non-universal quantities satisfy

κbulk(u)κbulk(u+ λ) =
sin(λ+ u) sin(λ− u)

sin2 λ
(3.16a)

κ0(u)κ0(u+ λ) =
sin2 λ sin(2λ+ 2u) sin(2λ− 2u)

sin2 2λ sin(λ+ 2u) sin(λ− 2u)
(3.16b)

κR(u, ξ)κR(u+ λ, ξ) = Γ(u)Γ(−u)/Γ(0)2 (3.16c)

κw(u, ξ)κw(u+ λ, ξ) =
sin2 ξ1 sin(ξw+1 + u) sin(ξw+1 − u)

sin2 ξw+1 sin(ξ1 + u) sin(ξ1 − u)
, w > 0 (3.16d)

together with the crossing symmetry κ(λ − u, ξ) = κ(u, ξ). The last inversion relation is related to
κPTC
ρ (u, ξ) and (3.21) of [28] by the trivial rescaling

κPTC
ρ (u, ξ) = κ̃0(u, ξ)κw(u, ξ) =

s(ξ + u)s(ξ1 − u)

s(ξ)s(ξ1)
κw(u, ξ), ρ = w + 1 (3.17)

The O(N) inversion relation for the bulk free energy fbulk(u) has been solved by Baxter [58] using
Fourier/Laplace transforms to give

− fbulk(u) = log κbulk(u) =

∫ ∞

−∞

cosh(π − 2λ)t sinhut sinh(λ− u)t

t sinhπt cosh λt
dt (3.18)

TheO(1) inversion relation for the boundary free energy f0(u) of the left Kac vacuum has been similarly
solved in [28]

−f0(u) = log κ0(u) = log
cos u cos(λ− u)

2 cos λ cos(u− λ
2 )

−

∫ ∞

−∞

sinhut sinh(λ− u)t

t sinh πt coshλt
dt

−

∫ ∞

−∞

sinh λt
2 sinh(3λ2 − π)t cosh(λ− 2u)t

t sinhπt coshλt
dt, 0 ≤ λ ≤ π (3.19)

Further modifications to the method lead to the derivation, given in Appendix B, of the new
contribution fR(u, ξ) arising from the Robin vacuum

− fR(u, ξ) = log κR(u, ξ) =

∫ ∞

−∞

sinhut sinh(λ− u)t

t sinh πt coshλt
(cosh θξ+λt+ cosh θξ+αt)dt (3.20)

For x ∈ R, the angle θx ∈ [−π, π] is defined by

θx + π = 2x mod 2π, x ∈ R (3.21)

with jump discontinuities at x = kπ, k ∈ Z. The function θx is π-periodic in x on R.
In accord with (3.7), the bulk and boundary energies of the Hamiltonian are obtained from these

expressions by taking a derivative with respect to u and setting u = 0

Ebulk = − sinλ

∫ ∞

−∞

tanhλt cosh(2λ− π)t

sinhπt
dt− cos λ, 0 < λ < π (3.22a)

E0 = sinλ

∫ ∞

−∞

tanhλt sinh (π2 − 3λ
2 )t sinh

λt
2

sinh πt
2

dt+
1

2 cos λ
, 0 < λ < π/2 (3.22b)

ER(ξ, α) = −1
2 sinλ

[ ∫ ∞

−∞

tanhλt

sinh πt
(cosh θξ+λt+ cosh θξ+αt)dt+ cot(ξ+λ)−cot(ξ+α)

]
(3.22c)
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The Kac boundary energy E0 exhibits a pole at λ = π
2 and the integral formula requires an analytic

continuation in λ performed in [28]

E0 =
1
2 +

1
2 sinλ

∫ ∞

−∞

[
1− 2 sinh λt

2 sinh
(
3λ
2 − π

)
t
]tanhλt
sinhπt

dt, 0 < λ < π (3.23)

The cotangents in the Robin boundary energy ER(ξ, α) can be absorbed into the integral formula (3.22c)
using

cot x = −

∫ ∞

−∞

sinh θxt

sinh πt
dt, x ∈ R (3.24)

which yields

ER(ξ, α) =
1
2 sinλ

∫ ∞

−∞

sinh(θξ+λ − λ)t− sinh(θξ+α + λ)t

sinhπt cosh λt
dt, 0 < λ < π (3.25)

So far, we have only treated the case of the Robin vacuum. Note that there are no contributions
to the boundary energies arising from the s-type seam. So, finally, we need to find the contribution
from the r-type seam. In fact, this has been calculated in [28] but it is convenient to alternatively
include this contribution with the contribution from the Robin vacuum. The expression for the Robin
boundary energy (dressed by an r-type seam) is suggested as a consequence of an observation made
in Appendix C. Namely, as an operator, the r-type Robin operator is algebraically equivalent (as
a representation of the one-boundary TL algebra) to the vacuum Robin operator with the shifted
parameters ξw = ξ+wλ and α−w = α−wλ. The corresponding Hamiltonians are algebraically related
in a similar manner. So it actually suffices to apply these shifts to the values of ξ and α in (3.25) to
obtain the (r, s) Robin boundary energies

Ebdy(w, ξ) = E0 + ER(ξ) + Ew(ξ) = E0 + ER(ξw, α−w), ξw = ξ + wλ, α−w = α− wλ (3.26)

A proper derivation of this formula, based on the inversion relations (3.16c) and (3.16d), is given
in Appendix B. We have checked numerically that these shifted formulas agree with the expressions
coming from [28]. Example plots of the analytic Robin boundary energies Ebdy(w, ξ) against numerical
values are shown in Figures 1 and 2. The analytic formulas for the boundary energies, including the
jump discontinuities, are numerically confirmed with high accuracy.

4 Finite-Size Spectra

4.1 Finitized characters

We conjecture that, if ∆r,s− 1
2
6= ∆r′,s′ for any r′, s′ ∈ N, the (r, s− 1

2) Robin representations correspond to

irreducible (highest weight) Virasoro Verma modules. If ∆r,s− 1
2
= ∆r′,s′ for some r′, s′ ∈ N, the (r, s− 1

2)

Robin representation may be reducible. These modules may exhibit Feigin-Fuchs structures [29]. In
all cases, the associated conformal characters

chp,p
′

∆ (q) = q−
c
24

+∆ ĉh
p,p′

∆ (q) = q−
c
24

+∆
∑

E

qE (4.1)

are the spectrum generating functions of the integer conformal energies E ≥ 0 with c = cp,p
′

as in (1.1).
The finitized characters, given by the finitized conformal partition functions in the (r, s) sector, are

ch
p,p′;(N)

r,s− 1
2

(q) = Z
p,p′;(N)
(1,1)|(r,s)(q) = q

− c
24

+∆p,p′

r,s−1/2

[
N⌊

N−d
2

⌋
+ (−1)N−d−w

⌈
w
2

⌉
]

q

, r ∈ Z, s ∈ N (4.2)
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Figure 1: Plots of the boundary energy Ebdy(w, ξ) against ξ for (i) LM(2, 5) with λ = 3π
5 , w = 3 and
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for critical percolation LM(2, 3).

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

...

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

. . . . .
.

287
8 27 155

8 13 63
8 4 11

8 0 −1
8 1 27

8

1287
40

119
5

667
40

54
5

247
40

14
5

27
40 −1

5
7
40

9
5

187
40

1147
40

104
5

567
40

44
5

187
40

9
5

7
40 −1

5
27
40

14
5

247
40

203
8 18 95

8 7 27
8 1 −1

8 0 11
8 4 63

8

891
40

77
5

391
40

27
5

91
40

2
5 − 9

40
2
5

91
40

27
5

391
40

155
8 13 63

8 4 11
8 0 −1

8 1 27
8 7 95

8

667
40

54
5

247
40

14
5

27
40 −1

5
7
40

9
5

187
40

44
5

567
40

−5 −4 −3 −2 −1 0 1 2 3 4 5 r

1

2

3

4

5

6

7

s

Figure 4: Robin Kac table of conformal weights ∆r,s− 1
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for the logarithmic Yang-Lee model LM(2, 5).
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These encode finitely truncated sets of the integer conformal energies of the infinite system. Setting
q = 1 in the q-binomial gives the correct counting of states (2.14). Taking the thermodynamic limit
N → ∞ gives the Virasoro Verma characters

chp,p
′

r,s− 1
2

(q) =
q
− c

24
+∆p,p′

r,s−1/2

(q)∞
, r ∈ Z, s ∈ N, (q)∞ =

∞∏

n=1

(1− qn) (4.3)

Example Robin Kac tables of conformal weights ∆p,p′

r,s− 1
2

are shown for LM(2, 3) and LM(2, 5) in

Figures 3 and 4. These Kac tables can be extended to s ≤ 0 using the periodicity

∆p,p′

r,s = ∆p,p′

r+p,s+p′, (r, s) ≡ (r + p, s+ p′) (4.4)

In the case that these conformal weights correspond to irreducible (highest weight) Virasoro Verma
modules, any two modules with the same conformal weight are isomorphic and can be identified. As
in the case of critical dense polymers LM(1, 2) [38], the Kac tables extended to s ≤ 0 are expected to
encode the su(2) fusion rules.

4.2 Logarithmic limit

The conformal data and Kac characters of the Kac boundary conditions [17,26–29] can be understood
in terms of taking a logarithmic limit [60] of the conformal data of the rational nonunitary minimal
models M(m,m′). Symbolically, this limit of the minimal CFTs is given by

lim
m,m′→∞, m′

m
→ p′

p
+

M(m,m′) = LM(p, p′), 1 ≤ p < p′, p, p′ coprime (4.5)

The (one-sided) limit is taken through coprime pairs (m,m′) with m′

m > p′

p to ensure the correct limiting
ground states. The logarithmic limit is taken in the continuum scaling limit, after the thermodynamic
limit. Since p ≥ 1, the limit must ultimately be taken through a sequence of nonunitary models with
m′−m > 1. The equality indicates the identification of the spectra of these CFTs. In principle, with
(r, s) Robin boundary conditions on both sides of the strip, the Jordan cells appearing in the reducible
yet indecomposable representations of the logarithmic minimal models should emerge in this limit
but there are subtleties [60]. Here we consider the limit of chiral spectra, corresponding to a single
character, for which purpose the logarithmic limit is robust in the sense that there are no Jordan cells
and the limit is independent of the choice of the sequence.

Taking the logarithmic limit of the conformal data of the rational minimal models M(m,m′)
yields the conformal data of the logarithmic minimal models LM(p, p′) including the central charges,
conformal weights (1.1) and Kac characters

χp,p′
r,s (q) = q−c/24+∆p,p′

r,s
(1− qrs)

(q)∞
, r, s = 1, 2, 3, . . . (4.6)

Explicitly, using |q| < 1, the limiting CFT data for r, s = 1, 2, 3, . . . are given by

cm,m′

= 1−
6(m′ −m)2

mm′
→ 1−

6(p′ − p)2

pp′
= cp,p

′

(4.7)

∆m,m′

r,s =
(rm′ − sm)2 − (m′ −m)2

4mm′
→

(rp′ − sp)2 − (p′ − p)2

4pp′
= ∆p,p′

r,s (4.8)

chm,m′

r,s (q) =
q−

c
24

+∆m,m′

r,s

(q)∞

∞∑

k=−∞

[
qk(kmm′+rm′−sm)−q(km+r)(km′+s)

]
→ q−

c
24

+∆p,p′

r,s
(1−qrs)

(q)∞
= χp,p′

r,s (q) (4.9)
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The characters associated with half-integer Kac labels can also be obtained using the logarithmic
limit. Since m and m′ are coprime, at most one can be even. We fix these parities and take three
different logarithmic limits. The half-integer boundary conditions, correspond to the logarithmic
limit of free boundary conditions for the minimal models labelled [14] by either (r + m

2 , s+
m′−1

2 ),

(r + m−1
2 , s+ m′

2 ) or (r + m−1
2 , s + m′−1

2 ) depending on the parities of m,m′. For m,m′ large with
r, s ∈ Z finite, these sit at the center of a very large but finite rational Kac table. Explicitly, the three
logarithmic limits give infinitely extended half-integer Kac tables with

lim
m,m′→∞, m′

m →
p′
p +

m even, m′ odd

chm,m′

r+m
2
,s+m′−1

2

(q) =
q
− c

24
+∆p,p′

r,s− 1
2

(q)∞
= chp,p

′

r,s− 1
2

(q), r, s ∈ Z (4.10a)

lim
m,m′→∞, m′

m →
p′
p +

m odd, m′ even

chm,m′

r+m−1
2

,s+m′

2

(q) =
q
− c

24
+∆p,p′

r−1
2
,s

(q)∞
= chp,p

′

r− 1
2
,s
(q), r, s ∈ Z (4.10b)

lim
m,m′→∞, m′

m →
p′
p +

m odd, m′ odd

chm,m′

r+m−1
2

,s+m′−1
2

(q) =
q
− c

24
+∆p,p′

r−1
2
,s− 1

2

(q)∞
= chp,p

′

r− 1
2
,s− 1

2

(q), r, s ∈ Z (4.10c)

4.3 Finite-size corrections

Consider the LM(p, p′) lattice models on a strip with N columns and M double rows with Neumann
boundary conditions applied on the left edge and (r, s) Robin boundary conditions on the right edge.
The lattice partition function is

Z
(N,M)
(1,1)|(r,s) = TrD(u, ξ)M =

∑

j

Dj(u, ξ)
M =

∑

j

e−MEj(u,ξ), j = 0, 1, 2, 3, . . . (4.11)

where Dj(u, ξ) are the eigenvalues of D(u, ξ) and Ej(u, ξ) are their associated energies. In the
thermodynamic limit, only the ground state eigenvalue D0(u, ξ) of the double row transfer matrix
in each (r, s) sector contributes to the lattice partition function.

The conformal data of interest is accessible [7, 8] through the finite-size corrections to the
eigenvalues of the transfer matrix or associated Hamiltonian. For the double row transfer matrix
eigenvalues, the leading finite-size corrections for large N take the form

Ej = − logDj(u, ξ) = 2Nfbulk(u) + fbdy(u,w, ξ) +
2π sinϑ

N

(
−

c

24
+ ∆p,p′

r,s− 1
2

+ k
)
+ ..., k = 0, 1, 2, ...

(4.12)
where k labels the level in the conformal tower. The anisotropy angle ϑ [47] and modular nome q are

ϑ =
πu

λ
, λ =

(p′ − p)π

p′
, q = exp

(
− 2π

M

N
sinϑ

)
(4.13)

Referring to (1.1), the central charge of the CFT is c = cp,p
′

while the spectrum of conformal weights

is given by the possible values of ∆p,p′

r,s− 1
2

in the Kac table with excitations or descendants labelled by

the non-negative integers k. Similarly, for the associated quantum Hamiltonian Hw,d, the finite-size
corrections of the eigenenergies take the form

Ej = NEbulk + Ebdy(w, ξ) +
πvs
N

(
−

c

24
+ ∆p,p′

r,s− 1
2

+ k
)
+ ..., k = 0, 1, 2, ... (4.14)
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where vs = π sinλ
λ is the velocity of sound. The Hamiltonian energies Ebulk and Ebdy(w, ξ) are

determined, up to the shift of the ground state energy, by evaluating the derivative at u = 0 of
fbulk(u) and fbdy(u,w, ξ) respectively.

4.4 Numerical conformal weights

In this section, we present details of the numerical calculations for the conformal weights of the
LM(p, p′) models with (r, s) Robin boundary conditions. Since it is numerically more efficient, we
calculate the conformal spectra using the Hamiltonians rather than the double row transfer matrices.
In Mathematica [61], it is convenient to represent a link state as an ordered list of the unique site
connected to the N + w + d nodes numbered sequentially from left to right. The defects are folded,
without introducing crossings, onto an s-type seam on the left. A node from which a boundary link
emanates is considered connected to itself. For example, from (2.13),

V
(3,1)
1 = span

{
{2, 1, 3, 5|4}

}
, V

(3,2)
1 = span

{
{2, 1, 6, 5|4, 3}, {6, 3, 2, 5|4, 1}, {6, 5, 4, 3|2, 1}

}
(4.15)

The action of the TL generators on the vector space V
(N,w)
d of link states is implemented succinctly

in Mathematica using transformation rules. The matrix representatives are economically encoded as
sparse matrices using dispatch tables. The additional generators in the Hamiltonian (3.8c) are similarly

encoded directly as the matrix representatives of the operators mapping from V
(N,w)
d to itself.

For a given sector, labelled by w, d or the quantum numbers (r, s), the eigenvalues of the quantum
Hamiltonian Hw,d (3.8c) are obtained numerically using Mathematica for increasing system sizes N
out to N +w+ d ≤ 26. For r = 0, the parity of N is not restricted. For r 6= 0, the parity of N is fixed
by

sgn(r) = (−1)N+w+d (4.16)

Although the real transfer matrices are not symmetric, the transfer matrices in all sectors appear to
be diagonalizable with real eigenvalues. Presumably, applying non-trivial boundary conditions on both
the left and the right edge of the strip would lead to real but non-diagonalizable transfer matrices and
reducible yet indecomposable representations. The first 10 to 20 dominant eigenvalues are obtained
numerically using the Arnoldi method [62]. Estimates of the conformal eigenergies Ej, and hence the

conformal weights ∆p,p′

r,s− 1
2

, are extrapolated to infinite system size from the finite-size sequences (4.14)

using a combination of Vanden Broeck-Schwartz [63] sequence acceleration and polynomial fits in 1/N .
There are no free parameters to fit and, since the bulk and boundary energies are known analytically,
these extrapolation methods lead to accurate numerical results. The most accurate estimates occur for
r = 0 and s small for values of λ away from the endpoints at λ = 0, π. In such cases, the typical absolute
error is of the order of 10−7 with relative errors in the range 10−8 to 10−6. Absolute and relative errors
gradually increase to be of the order of 10−1 for the plotted points with larger values of r, s. For larger
seam widths, the errors increase and the accuracy decreases because, for given maximum total width,
the maximum bulk width is decreased giving fewer data points for numerical extrapolation. Likewise,
the accuracy decreases as λ approaches 0 or π.

Our numerical data is presented in a series of plots. Plots of the numerical conformal weights

∆p,p′

r,1/2 as a function of λ for 0 ≤ r ≤ 7 and −1 ≥ r ≥ −7 are shown in Figures 5 and 6. Plots of

the numerical conformal weights ∆p,p′

r,3/2 as a function of λ for 0 ≤ r ≤ 6 and −1 ≥ r ≥ −6 are shown

in Figures 7 and 8. Plots of the numerical conformal weights ∆p,p′

0,s−1/2 for 1 ≤ s ≤ 7 are shown in

Figure 9. Plots of the numerical conformal weights ∆p,p′

±1,s−1/2 and ∆p,p′

±2,s−1/2 as a function of λ are
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Figure 5: Plot of the numerical conformal weights ∆p,p′

r, 1
2

as a function of λ for r = 0, 1, 2, . . . , 6, 7.

Figure 6: Plot of the numerical conformal weights ∆p,p′

r, 1
2

as a function of λ for r = −1,−2, . . . ,−6,−7.
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Figure 7: Plot of the numerical conformal weights ∆p,p′

r, 3
2

as a function of λ for r = 0, 1, 2, . . . , 5, 6.
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Figure 8: Plot of the numerical conformal weights ∆p,p′

r, 3
2

as a function of λ for r = −1,−2, . . . ,−5,−6.
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Figure 9: Plot of the numerical conformal weights ∆p,p′

0,s− 1
2

as a function of λ for s = 1, 2, . . . , 6, 7.

shown in Figures 10, 11, 12 and 13 respectively. The sequences of curves start with red, blue or blue,
violet. The points in these plots at λ = π

2 , related to critical dense polymers, are the values obtained
analytically in [38].

4.5 Numerical conformal partition functions

A consequence of the conjecture that the (r, s) Robin representations correspond to reducible or
irreducible modules, with characters (4.3), is that the level degeneracies are determined by the partition
numbers Pn [64] independent of the values of p, p′, r and s

1

(q)∞
=

1∏∞
n=1(1− qn)

=
∞∑

n=0

Pnq
n = 1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 11q6 + · · · (4.17)

This expectation is well supported by the first 7-20 degeneracy levels obtained numerically. Typical
results for LM(3, 5) are

ĉh
3,5

0, 1
2
(q) = 1 + q + 2q2 + 3q3 + 5q4 + 7q5 + · · · (4.18)

ĉh
3,5

0, 3
2
(q) = 1 + q + 2q2 + 3q3 + 5q4 + · · · (4.19)

ĉh
3,5

2, 1
2
(q) = 1 + q + 2q2 + 3q3 + 5q4 + · · · (4.20)

ĉh
3,5

−2, 1
2
(q) = 1 + q + 2q2 + 3q3 + · · · (4.21)

ĉh
3,5

2, 3
2
(q) = 1 + q + 2q2 + 3q3 + · · · (4.22)
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Figure 10: Plot of the numerical conformal weights ∆p,p′

1,s− 1
2

as a function of λ for s = 1, 2, . . . , 6, 7.

Figure 11: Plot of the numerical conformal weights ∆p,p′

−1,s− 1
2

as a function of λ for s = 1, 2, . . . , 6, 7.
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Figure 12: Plot of the numerical conformal weights ∆p,p′

2,s− 1
2

as a function of λ for s = 1, 2, . . . , 6, 7.

Figure 13: Plot of the numerical conformal weights ∆p,p′

−2,s− 1
2

as a function of λ for s = 1, 2, . . . , 6, 7.

24



ĉh
3,5

−2, 3
2
(q) = 1 + q + 2q2 + 3q3 + · · · (4.23)

We have analyzed many other cases and the results for other logarithmic minimal models are similar.

5 Conclusion

In this paper, we have implemented the (r, s) Robin boundary conditions of Pearce, Rasmussen and
Tipunin [38] for the general logarithmic minimal models LM(p, p′) [17] on the strip. The (r, s) boundary

conditions are built from boundary r- and s-type seams of width w =
⌊ |r|p′

p

⌋
and d = s − 1 columns

respectively. This system is Yang-Baxter integrable in the presence of the boundary. We consider the
commuting double row transfer matrices and the associated one-dimensional quantum chains which are
described algebraically by the action of the one-boundary Temperley-Lieb algebra on suitable spaces
of link states. The eigenvalues of the Hamiltonians are calculated numerically with Mathematica out
to bulk system sizes N with N + w + d ≤ 26. Estimates of the conformal weights in the various (r, s)
Robin sectors are obtained numerically using finite-size corrections to the Hamiltonian eigenenergies.
For r 6= 0, the extrapolated conformal weights depend on the parity of N . The results are neatly
encoded by allowing r to be negative and fixing the parity of N by sgn(r) = (−1)N+w+d. The bulk
free energies are known and the boundary free energies are calculated analytically by solving the
boundary inversion relations. Knowing the exact values of these non-universal quantities allows us to

obtain accurate numerical estimates of the conformal weights which take the values ∆p,p′

r,s− 1
2

, r ∈ Z,

s ∈ N where ∆p,p′
r,s is given by the usual Kac formula. The (r, s) Robin boundary conditions are thus

conjugate to scaling operators with half-integer values for the Kac label s − 1
2 . Extensive numerical

investigation of the level degeneracies support the conjecture that the characters of the associated
reducible or irreducible modules are given by Virasoro Verma characters.

In this paper, we have implemented Robin boundary conditions on just one edge of the strip
with the Kac vacuum boundary condition on the other edge leading to transfer matrices that are
diagonalizable. It would be of interest to implement Robin boundary conditions on both edges of the
strip in accord with Cardy fusion [40] on the lattice. This situation is described by the two-boundary
Temperley-Lieb algebra [65,66] and, in this case, the transfer matrices are expected to exhibit Jordan
blocks and lead to reducible yet indecomposable representations of the Virasoro algebra. It would be
interesting to know the complete closed set of fusion rules for these representations.

Lastly, there are strong indications [36] that there exist conformal weights for the logarithmic
minimal models with half-integer values r − 1

2 for the first Kac label. It is an open question as to
whether there are boundary conditions associated to these representations. But the application of the
logarithmic limit (4.10) suggests that the associated boundary conditions cannot be far away.
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A Derivation of the Inversion Relation

A.1 Inversion relation for the Robin vacuum boundary

In this appendix, we derive the inversion relation (3.12) for the case w = 0. Diagrammatically, the
product of the two transfer matrices on the left of the inversion identity (3.11) is

β2 Γ(0)2

κ̃0(u, ξ)κ̃0(u+ λ, ξ)
D(u)D(u+ λ) =

u u u

λ−u λ−u λ−u

u+λ u+λ u+λ

−u −u −u

. . .

. . .

. . .

. . .

u

u+λ

︸ ︷︷ ︸

N

(A.1)

The first step is to insert, somewhere in the diagram, the identity

=
1

s1(2u)s1(−2u)
2u −2u (A.2)

Using the Yang-Baxter equation, we push the inserted faces to either end

β2 Γ(0)2

κ̃0(u, ξ)κ̃0(−u, ξ)
D(u)D(u+ λ) =

1

s1(2u)s1(−2u)

u u u

u+λ u+λ u+λ

λ−u λ−u λ−u

−u −u −u

. . .

. . .

. . .

. . .

u

u+λ

2u −2u

︸ ︷︷ ︸

N

(A.3)

To obtain the coefficient φ(λ − u)φ(λ + u), we insert the identity decomposed into orthogonal
projectors

I = =
1

β λ +
1

β
−λ (A.4)

The second term leads to the exponentially small second term on the right side of (3.11) which is
neglected. The first term gives

β2 Γ(0)2

κ̃0(u, ξ)κ̃0(−u, ξ)
φ(λ−u)φ(λ+u) =

1

βs1(2u)s1(−2u)

u u u

u+λ u+λ u+λ

λ−u λ−u λ−u

−u −u −u

. . .

. . .

. . .

. . .

u

u+λ

2u −2u

λ

︸ ︷︷ ︸

N

(A.5)
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Using the identity

u

u+λ

λ = s1(u)s1(−u) = s1(u)s1(−u) (A.6)

the projector can be pushed through to the left leaving only the identity behind. On the left boundary,
the contribution is

2u

λ

= s2(−2u) (A.7)

where the boundary triangles have weight 1. We thus have

φ(λ−u)φ(λ+u)

κ̃0(u, ξ)κ̃0(−u, ξ)
=

[s1(−u)s1(u)]
Ns2(−2u)

β3Γ(0)2s1(2u)s1(−2u)

λ−u λ−u λ−u

−u −u −u

. . .

. . .

u

u+λ

−2u

· · ·

(A.8)

On the left, the Neumann boundary acts as a projector due to the drop-down (or push-through)
property

u

u+λ

= s1(u)s1(−u) (A.9)

It can be pushed through to the right to give

φ(λ− u)φ(λ+ u)

κ̃0(u, ξ)κ̃0(−u, ξ)
=

[s1(u)s1(−u)]2Ns2(−2u)

β3Γ(0)2s1(2u)s1(−2u)

u

u+λ

−2u· · · (A.10)

The remaining diagrammatic boundary term is evaluated by computing independently the eight
configurations and summing over the results to give βs2(2u)Γ(u)Γ(−u). The relation thus simplifies to
give the right side of (3.12) with w = 0.

A.2 Inversion relation for a Robin boundary with an r-type seam

The derivation of the inversion relation for an r-type Kac boundary seam is presented in Appendix C
of [28]. The extension to the r-type Robin boundary seam presents no further difficulties. Setting

N = N (w)(u, ξ)N (w)(u+λ, ξ) (A.11)
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the first step is to insert two faces using the local inversion relation (A.2) and to push the two faces to
the ends. No extra factors arise from the presence of the r-type seam

ND(u)D(u+ λ) =
1

s1(2u)s1(−2u)

u

λ+u

u

λ+u

...

...

u−ξw

u−ξw−1

...

...

u−ξ1

u−ξ0

λ−u

−u

λ−u

−u

...

...

−u−ξw−1

−u−ξw

...

...

−u−ξ0

−u−ξ1

2u −2u

u

u+λ

(A.12)

Next, the second projector on the right side of (A.4) is inserted in the bottom two rows on the boundary
between the seam and the bulk. The projector is pushed through the bottom rows of the bulk using
(A.6), reflected at the boundary as in (A.7) and finally pushed back through the top rows of the bulk
using (A.6) again

Nφ(λ− u)φ(λ+ u) =
[s1(u)s1(−u)]2Ns2(−2u)

βs1(2u)s1(−2u)
× −2u

u

u+λ

−u−ξw−1

−u−ξw

...

...

−u−ξ0

−u−ξ1

u−ξw

u−ξw−1

...

...

u−ξ1

u−ξ0

(A.13)

The results from [28] can be borrowed to push the projectors on the boundary through the r-type
seam. The remaining boundary term corresponds to (A.10) so the final result is

Nφ(λ+ u)φ(λ− u) = [s1(−u)s1(u)]
2N s2(−2u)s2(2u)

s1(2u)s1(−2u)
Γ(u)Γ(−u)

×
w∏

j=1

s1(u+ ξj)s1(−u− ξj)s1(u− ξj)s1(−u+ ξj)
(A.14)

The extra product is the contribution from the r-type seam which coincides with the same quantity
computed in [28]. Using the identity
∏w

j=1 s1(u+ξj)s1(−u−ξj)s1(u−ξj)s1(−u+ξj)

N (w)(u, ξ)N (w)(u+λ, ξ)
=

sin(ξ+u) sin(ξ−u) sin(ξw+1+u) sin(ξw+1−u)

β2 Γ(0)2 sin2 ξ sin2 ξw+1
(A.15)

with N (w)(u, ξ) defined as in (3.3) this reduces to precisely (3.12).

B Solution of the Inversion Relation

B.1 Solution of the inversion relation for the Robin vacuum

Taking the logarithm of the inversion relations (3.16) gives functional equations that can be solved by
Fourier/Lapace transforms. In this appendix, we solve (3.16c) for the Robin vacuum boundary free
energy κR(u, ξ). The right side of the inversion relation decomposes as

Γ(u)Γ(−u)

Γ(0)2
=

sin(ξ + λ+ u) sin(ξ + λ− u)

sin2(ξ + λ)

sin(ξ + α+ u) sin(ξ + α− u)

sin2(ξ + α)
(B.1)
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As a result, the Robin vacuum boundary free energy is a sum of two contributions

− fR(u, ξ) = log κR(u, ξ) = gξ+λ(u) + gξ+α(u) (B.2)

where the function gx(u) is the solution of the fundamental inversion relation

gx(u) + gx(u+ λ) = log
sin(x+ u) sin(x− u)

sin2 x
, gx(u) = gx(λ− u) (B.3)

In this formulation, the problem is invariant under the translation of the variable x by a period π. It
is also invariant under reversal of the sign of x. So, for simplicity, we can assume x > 0.

The general solution of the fundamental inversion relation takes the form

gx(u) =

∫ ∞

−∞

sinhut sinh(λ− u)t cosh(2x+ kxπ)t

t sinhπt cosh λt
dt (B.4)

where the integer kx ∈ Z is chosen to ensure the convergence of the integral in the physical strip
0 < Reu < λ. The integral converges if |2x + kxπ| < π, leading us to choose kx such that θx + π =
2x+ (kx + 1)π = 2x mod 2π. As a consequence, the function gx(u) is expressed in terms of the angle
θx with θx + π = 2x mod 2π as introduced in (3.21)

gx(u) =

∫ ∞

−∞

sinhut sinh(λ− u)t cosh θxt

t sinh πt coshλt
dt, x ∈ R (B.5)

This solution is π-periodic and even in the variable x. The result (3.20) for the boundary free energy
fR(u, ξ) is given by (B.2) with gx(u) given by (B.5).

B.2 Solution of the inversion relation with an r-type seam

Referring to (3.13) and suppressing the dependence on α, we have

κR(u,w, ξ) = κR(u, ξ)κw(u, ξ), w > 0 (B.6)

From (3.12) and using

Γ(u) = Γ(u|ξ, α) = Γ(u|ξw, α−w)
s(ξ1 − u)

s(ξw+1 − u)
(B.7)

the combined inversion relation is

κR(u,w, ξ)κR(u+ λ,w, ξ) =
Γ(u)Γ(−u)

Γ(0)2
s(ξ1)

2s(ξw+1 + u)s(ξw+1 − u)

s(ξw+1)2s(ξ1 + u)s(ξ1 − u)

=
Γ(u|ξw, α−w)Γ(−u|ξw, α−w)

Γ(0|ξw, α−w)2
(B.8)

It follows that the inversion relation for w = 0 is

κR(u, 0, ξ)κR(u+ λ, 0, ξ) =
Γ(u|ξ, α)Γ(−u|ξ, α)

Γ(0|ξ, α)2
(B.9)

We conclude that κ(u,w, ξ) satisfies the same inversion relation as κ(u, 0, ξ) but with the replacements
(ξ, α) 7→ (ξw, α−w). This is in accord with the algebraic equivalence, found in Appendix C.2, between
the w = 0 and w ≥ 1 Robin K matrices as representations of the one-boundary TL algebra.
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C Boundary Algebra

C.1 Robin boundaries as representations of one-boundary TL algebra

In this section we show that, for β1 = β2 = 1 and w ≥ 0, the TL generators ej , j = 1, 2, . . . , N−1
supplemented with the identity I and the Robin boundary generator

FN (w) =

w∑

k=0

(−1)k
c2w−2k−1

c1
e
(k)
N , ck = 2cos kλ

2 , e
(k)
N = eNeN+1 · · · eN+k, eN+w = fN+w (C.1)

form a representation of the one-boundary TL algebra (2.17) acting from the vector space V
(N,w)
0 to

itself. It is then straightforward to allow for defects. The first few Robin boundary generators are

FN (0) = fN , FN (1) = eN − eNfN+1, FN (2) =
c3
c1

eN − eNeN+1 + eNeN+1fN+2 (C.2)

Specifically, we show that

eN−1FN (w)eN−1 = B1(w)eN−1, FN (w)2 = B2(w)FN (w) (C.3)

where

B1(w) =
c2w−1

c1
, B2(w) =

c2w+1

c1
(C.4)

The first relation follows easily since, in expanding FN (w) in eN−1FN (w)eN−1, only the first term

c2w−1

c1
eN−1eNeN−1 =

c2w−1

c1
eN−1 (C.5)

survives with eN = fN for w = 0. All of the other terms vanish since the eN−1 on the right can be
pushed to the left until it sits immediately to the right of eN . Using eN−1eNeN−1 = eN−1 leaves a
word that starts with eN−1eN+1 or eN−1fN+1 and is killed because a half-arc occurs on the lower edge
of the boundary seam between j = N + 1 and j = N + 2.

Assuming w ≥ 1 and squaring the expanded FN (w) gives

FN (w)2 =
[c2w−1

c1
eN −

c2w−3

c1
eNeN+1

]2
+

c2w−1

c1
eN

w∑

k=2

(−1)k
c2w−2k−1

c1
e
(k)
N

−
c2w−3

c1
eNeN+1

w∑

k=2

(−1)k
c2w−2k−1

c1
e
(k)
N (C.6)

=
c2c2w−1 − c2w−3

c21

[
c2w−1eN − c2w−3eNeN+1 +

w∑

k=2

(−1)kc2w−2k−1e
(k)
N

]
=

c2w+1

c1
FN (w)

where we have used the TL algebra with e2N = c2eN . In the first step, we omitted all the terms that
are killed because a half-arc occurs on the lower edge of the boundary seam. In the second step, we
only use the TL algebra.
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C.2 Algebraic equivalence of Robin boundary conditions

In Appendix C.1, the parameter α of the Robin boundary was fixed to enforce the equality β1 = β2 = 1
of the boundary loop fugacities. However, useful relations can be derived by exploiting this extra degree
of freedom. In this manner, the Robin boundary with an r-type seam of width w can be algebraically
related to a vacuum (w = 0) Robin boundary with shifted parameters ξw = ξ+wλ, α−w = α−wλ. This
algebraic relation holds at the level of transfer matrices considered as elements of the (linear or planar)
one-boundary TL algebra. Note that, since the two transfer matrices act on different spaces of link
states, this relation cannot be used to deduce the conformal dimensions of the (r, s) Robin boundaries.
On the other hand, the boundary energy is a common factor of the eigenvalues in every representation
and is determined by algebraic relations. As such, it is constrained to satisfy the algebraic relation
between Robin boundaries.

To show the algebraic equivalence of an r-type seam of width w ≥ 1 and parameters (ξ, α) to a
vacuum Robin boundary with parameters (ξw, α−w) = (ξ + wλ,α − wλ) we consider the boundary K
matrix as given in (5.12) of [38] and show that

u−ξw u−ξ2 u−ξ1

−u−ξw−1 −u−ξ1 −u−ξ0

. . .

. . .

u,ξ,α =
w+1∑

k=0

α
(w)
k e

(k−1)
N

∼= η(w)(u, ξ)
s(ξ1 − u)

s(ξw+1 − u)
u,ξw,α−w (C.7)

where e
(−1)
N = I, e

(k)
N is as in (C.1) and the α-independent factor η(w)(u, ξ) is given by (3.6). The

symbol ∼= indicates that the expressions are algebraically equivalent but act on different states. Setting
Γ(u) = Γ(u|ξ, α) = Rs(ξ1 − u)s0(α+ ξ + u), β1 = Rs(α), β2 = Rs−1(α) and simplifying (5.12) of [38],

the coefficients α
(w)
k are given by

α
(w)
k

η(w)(u, ξ)
=





Γ(u|ξ, α) = Γ(u|ξw, α−w)
s(ξ1 − u)

s(ξw+1 − u)
, k = 0

(−1)k−1Rsk−1−w(α)
s(2u)s(ξ1 − u)

s(ξw+1 − u)
, k = 1, 2, . . . , w

(−1)w
s(2u)s(ξ1 − u)

s(ξw+1 − u)
, k = w + 1

(C.8)

It follows that

1

η(w)(u, ξ)

w+1∑

k=0

α
(w)
k e

(k−1)
N =

s(ξ1 − u)

s(ξw+1 − u)

[
Γ(u|ξw, α−w)I + s(2u)FN (w)

]
(C.9)

where

FN (w) = R
w−1∑

k=0

(−1)ksk−w(α)e
(k)
N + (−1)we

(w)
N (C.10)

The TL generators ej , j = 1, 2, . . . , N−1 supplemented with the identity I and the Robin boundary
generator FN (w) form a representation of the one-boundary TL algebra (2.17) acting from the vector

space V
(N,w)
0 to itself. The first few Robin boundary generators are

FN (0) = fN , FN (1) = β2eN−eNfN+1, FN (2) = (ββ2−β1) eN−β2eNeN+1+eNeN+1fN+2

FN (3) = (β2β2−β2−ββ1)eN−(ββ2−β1) eNeN+1+β2eNeN+1eN+2−eNeN+1eN+2fN+3

(C.11)
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In particular, following the arguments of Appendix C.1, it can be shown that

eN−1FN (w)eN−1 = B1(w)eN−1, FN (w)2 = B2(w)FN (w) (C.12)

where

B1(w) = Rs(α−w), B2(w) = Rs−1(α−w) (C.13)

are related to the expressions for β1, β2 by replacing α with α−w. Indeed, setting β1 = β2 = 1, or
equivalently R = 2 sin λ

2 and α = λ+π
2 , the results of this section reduce to those of Appendix C.1.
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