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Abstract

We present sufficient conditions for total positivity of Riordan arrays. As appli-
cations we show that many well-known combinatorial triangles are totally positive
and many famous combinatorial numbers are log-convex in a unified approach.
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1 Introduction

Riordan arrays play an important unifying role in enumerative combinatorics [18].
A (proper) Riordan array, denoted by (g(x), f(x)), is an infinite lower triangular matrix
whose generating function of the kth column is xkfk(x)g(x) for k = 0, 1, 2, . . ., where
g(0) = 1 and f(0) 6= 0. A Riordan array R = [rn,k]n,k≥0 can also be characterized by two
sequences (an)n≥0 and (zn)n≥0 such that

r0,0 = 1, rn+1,0 =
∑

j≥0

zjrn,j, rn+1,k+1 =
∑

j≥0

ajrn,k+j (1.1)

for n, k ≥ 0 (see [6, 10, 14, 20] for instance). Call (an)n≥0 and (zn)n≥0 the A- and Z-
sequences of R respectively.

Many triangles in combinatorics are Riordan arrays with simple A- and Z-sequences.
For example, the Pascal triangle with Z = (1, 0, . . .) and A = (1, 1, 0, . . .), the Cata-
lan triangle with Z = (2, 1, 0 . . .) and A = (1, 2, 1, 0, . . .) [17], the Motzkin triangle with
Z = (1, 1, 0, . . .) and A = (1, 1, 1, 0, . . .) [1], the ballot table with Z = A = (1, 1, 1, . . .)[2],
the large Schröder triangle with Z = (2, 2, 2, . . .) and A = (1, 2, 2, . . .) [6], and the little
Schröder triangle with Z = A = (1, 2, 2, . . .) [6]. Such triangles arise often in the enumer-
ation of lattice paths, e.g., the Dyck paths, the Motzkin paths, and the Schröder paths
and so on [6, 14, 18]. The 0th column of such an array counts the corresponding lattice
paths, including the Catalan numbers, the Motzkin numbers, the large and little Schröder
numbers. There have been quite a few papers concerned with combinatorics of Riordan
arrays (see [6, 10, 14, 16, 18, 20] for instance). Our concern in the present paper is total
positivity of Riordan arrays.
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Following Karlin [11], an infinite matrix is called totally positive of order r (or shortly,
TPr), if its minors of all orders ≤ r are nonnegative. The matrix is called TP if its
minors of all orders are nonnegative. Let (an)n≥0 be an infinite sequence of nonnegative
numbers. It is called a Pólya frequency sequence of order r (or shortly, a PFr sequence),
if its Toeplitz matrix

[ai−j ]i,j≥0 =















a0
a1 a0
a2 a1 a0
a3 a2 a1 a0
... · · · . . .















is TPr. It is called PF if its Toeplitz matrix is TP. We say that a finite sequence
a0, a1, . . . , an is PFr (PF, resp.) if the corresponding infinite sequence a0, a1, . . . , an, 0, . . .
is PFr (PF, resp.). A fundamental result of Aissen, Schoenberg and Whitney states that
a finite sequence of nonnegative numbers is PF if and only if its generating function has
only real zeros (see [11, p. 399] for instance). For example, the sequence (r, s, t) of non-
negative numbers is PF if and only if s2 ≥ 4rt. We say that a nonnegative sequence (an)
is log-convex (log-concave, resp.) if aiaj+1 ≥ ai+1aj (aiaj+1 ≤ ai+1aj, resp.) for 0 ≤ i < j.
Clearly, the sequence (an) is log-concave if and only if it is PF2, i.e., its Toeplitz matrix
[ai−j ]i,j≥0 is TP2, and the sequence is log-convex if and only if its Hankel matrix [ai+j ]i,j≥0

is TP2 [4].
There are often various total positivity properties in a Riordan array. For example,

the Pascal matrix is TP [11, p. 137] and each row of it is log-concave (see [22] for more
information), the Catalan numbers, the Motzkin numbers, the large and little Schröder
numbers form a log-convex sequence respectively [13]. However, there is no systematic
study of total positivity of Riordan arrays. The object of this paper is to study various
positivity properties of Riordan arrays, including the total positivity of such a matrix, the
log-convexity of the 0th column and the log-concavity of each row. The paper is organized
as follows. In the next section, we present sufficient conditions for total positivity of
Riordan arrays. As applications, we show that many well-known combinatorial triangles
are totally positive and many famous combinatorial numbers are log-convex in a unified
approach. In Section 3, we propose some problems for further work.

2 Main results and applications

We first present a basic result about total positivity of Riordan arrays. Let R =
[rn,k]n,k≥0 be a Riordan array defined by the recursive system (1.1). Call

J(R) =















z0 a0
z1 a1 a0
z2 a2 a1 a0
z3 a3 a2 a1 a0
...

... · · · . . .















.

the coefficient matrix of the Riordan array R.
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Theorem 2.1. Let R be a Riordan array defined by (1.1).

(i) If the coefficient matrix J(R) is TPr (TP, resp.), then so is R.

(ii) If R is TP2 and all zn ≥ 0, then the 0th column (rn,0)n≥0 of R is log-convex.

To prove Theorem 2.1, we need two lemmas. The first is direct by definition and the
second follows from the classic Cauchy-Binet formula.

Lemma 2.2. A matrix is TPr (TP, resp.) if and only if its leading principal submatrices
are all TPr (TP, resp.).

Lemma 2.3. If two matrices are TPr (TP, resp.), then so is their product.

Proof of Theorem 2.1. (i) It suffices to show that J(R) is TPr implies R is TPr. Let

Rn =















r0,0
r1,0 r1,1
r2,0 r2,1 r2,2

...
. . .

rn,0 rn,1 rn,2 · · · rn,n















be the nth leading principal submatrix of R. Then by Lemma 2.2, it suffices to show that
Rn is TPr for n ≥ 1. We proceed by induction on n. Assume that Rn is TPr. By (1.1),
we have











r0,0
r1,0 r1,1

...
. . .

rn+1,0 rn+1,1 · · · rn+1,n+1











=











1
0 r0,0
...

...
. . .

0 rn,0 · · · rn,n





















1
z0 a0

...
...

. . .

zn an · · · a0











,

or briefly,

Rn+1 =

[

1 O
O Rn

] [

1 O
ζn An

]

, (2.1)

where ζn = [z0, z1, . . . , zn]′ and An = [ai−j ]0≤i,j≤n. By the induction hypothesis, Rn is
TPr, so is the first matrix on the right hand side of (2.1). On the other hand, [ζn,An] is
TPr since it is a submatrix of the TPr matrix J(R), so is the second matrix on the right
hand side of (2.1). It follows from Lemma 2.3 that the product Rn+1 is TPr. Thus the
matrix R is TPr.

(ii) Note that










r0,0 r1,0
r1,0 r2,0
r2,0 r3,0

...
...











=











r0,0
r1,0 r1,1
r2,0 r2,1 r2,2

...
. . .





















1 z0
0 z1
0 z2
...

...











. (2.2)

Clearly, the second matrix on the right hand side of (2.2) is TP2 since all zn are nonneg-
ative. Now R is TP2 by the assumption. Hence the matrix on the left hand side of (2.2)
is TP2 by Lemma 2.3. In other words, the sequence (rn,0)n≥0 is log-convex.
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In the sequel we consider applications of Theorem 2.1 to two classes of special inter-
esting Riordan arrays. The first are recursive matrices introduced by Aigner [1, 2]. Let
a, b, s, t be four nonnegative numbers. Define a Riordan array R(a, b; s, t) = [rn,k]n,k≥0 by

r0,0 = 1, rn+1,0 = arn,0 + brn,1, rn+1,k = rn,k−1 + srn,k + trn,k+1.

Following Aigner [1, 2], the numbers Cn(a, b; s, t) = rn,0 are called the Catalan-like num-
bers. Many well-known triangles are recursive matrices. For example, the Pascal triangle,
the Catalan triangle and the Motzkin triangle are R(1, 0; 1, 0), R(2, 1; 2, 1) and R(1, 1; 1, 1)
respectively. Also, the Catalan-like numbers unify many famous counting coefficients, such
as the Catalan numbers Cn(2, 1; 2, 1), the Motzkin numbers Cn(1, 1; 1, 1), the central bi-
nomial coefficients Cn(2, 2; 2, 1), and the large Schröder numbers Cn(2, 2; 3, 2). See [2] for
details.

Theorem 2.4. Let a, b, s, t be four nonnegative numbers.

(i) If as ≥ b and s2 ≥ t, then the sequence (rn,0)n≥0 is log-convex.

(ii) If s2 ≥ 4t and a s+
√
s2−4t
2

≥ b, then the matrix R(a, b; s, t) is totally positive.

Remark 2.5. From Theorem 2.4 it follows immediately that the Pascal triangle and
the Catalan triangle are totally positive, and that the Catalan numbers, the Motzkin
numbers, the central binomial coefficients, and the large Schröder numbers are log-convex
respectively.

Remark 2.6. Let

H(a, b; s, t) = [rn+m,0]n,m≥0 =











r0,0 r1,0 r2,0 · · ·
r1,0 r2,0 r3,0 · · ·
r2,0 r3,0 r4,0 · · ·

...
...

...
. . .











be the Hankel matrix of the Catalan-like numbers rn,0. Aigner [1, 2] computed the de-
terminants of the leading principal submatrices of H . Aigner’s Fundamental Theorem in
[2] gives H = RTR′, where T = diag(1, t, t2, t3, . . .). So the total positivity of R implies

that of the Hankel matrix H . In particular, if s2 ≥ 4t and a s+
√
s2−4t
2

≥ b, then the Hankel
matrix H(a, b; s, t) is totally positive.

By Theorem 2.1, to prove Theorem 2.4, it suffices to prove that the coefficient matrix
of R(a, b; s, t)















a 1
b s 1

t s 1
t s 1

. . .
. . .

. . .















is TP2 and TP under the conditions respectively. We do this by establishing the following
stronger result.
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Proposition 2.7. Let a, b, r, s, t be five nonnegative numbers and the Jacobi matrix

J =















a r
b s r

t s r
t s r

. . .
. . .

. . .















.

Then

(i) J is TP2 if and only if as ≥ br and s2 ≥ rt.

(ii) J is TP if and only if s2 ≥ 4rt and a
(

s +
√
s2 − 4rt

)

/2 ≥ br.

Proof. (i) is obvious, and it remains to prove (ii).
Clearly, the tridiagonal matrix J is TP if and only if all its principal minors containing

consecutive rows and columns are nonnegative (see, e.g., [15, Theorem 4.3]), i.e., all
determinants of forms

dn = det















s r
t s r

t s
. . .

. . .
. . . r
t s















n×n

and

Dn = det















a r
b s r

t s
. . .

. . .
. . . r
t s















(n+1)×(n+1)

are nonnegative. Note that all dn are nonnegative if and only if the Toeplitz matrix















r
s r
t s r

t s r
. . .

. . .
. . .















is TP, i.e., the sequence (r, s, t) is PF. Hence all dn ≥ 0 if and only if s2 ≥ 4rt. We complete
the proof of (ii) by showing that all Dn ≥ 0 if and only if (s +

√
s2 − 4rt)/2 ≥ br/a.

Note that D0 = a and Dn = adn−brdn−1 by expanding the determinant along the first
column, where d0 = 1 and d1 = s. Hence all Dn ≥ 0 if and only if all dn/dn−1 ≥ br/a. We
next show that the sequence dn/dn−1 is nonincreasing and convergent to (s+

√
s2 − 4rt)/2,

which means that all dn/dn−1 ≥ br/a is equivalent to (s +
√
s2 − 4rt)/2 ≥ br/a, and so

all Dn ≥ 0 if and only if (s +
√
s2 − 4rt)/2 ≥ br/a.
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Actually, we have by expanding the determinant along the first column

dn = sdn−1 − rtdn−2, d0 = 1, d1 = s. (2.3)

Solving this linear recurrence relation we obtain

dn =
n

∑

k=0

λkµn−k,

where

λ =
s +

√
s2 − 4rt

2
, µ =

s−
√
s2 − 4rt

2

are two roots of the characteristic equation x2 − sx + rt = 0 of (2.3).
By (2.3), we have

[

dn dn+1

dn−1 dn

]

=

[

s −rt
1 0

] [

dn−1 dn
dn−2 dn−1

]

.

It follows that d2n − dn−1dn+1 = rt(d2n−1 − dn−2dn) = · · · = (rt)n−1(d21 − d0d2) = (rt)n ≥ 0.
Thus the sequence dn/dn−1 is nonincreasing, and is therefore convergent. Let α be the
limit. Rewrite (2.3) as

dn
dn−1

= s− rt

dn−1/dn−2
.

Take the limit to obtain α = s − rt/α, i.e., α2 − sα + rt = 0, so α = λ or µ. Now
d1/d0 = s ≥ λ. Assume that dn−1/dn−2 ≥ λ. Then

dn
dn−1

= s− rt

dn−1/dn−2
≥ s− rt

λ
= λ.

Thus all dn/dn−1 ≥ λ. It follows that the limit α = λ since λ ≥ µ, as desired.

The second we concern about are Riordan arrays whose A- and Z-sequences are iden-
tical or nearly so. Following [6], we say that a Riordan array R = [rn,k]n,k≥0 is consistent
if A = Z. We say that R is a quasi-consistent Riordan array if A = (a0, a1, a2, . . .) and
Z = (a1, a2, . . .). In this case, we have

rn+1,k = a0rn,k−1 + a1rn,k + a2rn,k+1 + · · ·

for all n, k ≥ 0, where rn,j = 0 unless 0 ≤ j ≤ n. For example, the little Schröder
triangle is consistent, the Pascal triangle, the Catalan triangle, the Motzkin triangle and
the large Schröder triangle are quasi-consistent, and the ballot table is both consistent
and quasi-consistent. The following theorem gives a unified settle for the total positivity
of these well-known triangles.

Theorem 2.8. Let R be a consistent or quasi-consistent Riordan array. Suppose that the
A-sequence of R is PFr (PF, resp.). Then R is TPr (TP, resp.). In particular, if the
A-sequence of R is log-concave, then the 0th column (rn,0)n≥0 of R is log-convex, and each
row (rn,k)0≤k≤n of R is log-concave.
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Proof. For a consistent or quasi-consistent Riordan array R, its coefficient matrix is

J(R) =











a0 a0
a1 a1 a0
a2 a2 a1 a0
...

...
. . .











or











a1 a0
a2 a1 a0
a3 a2 a1 a0
...

...
. . .











respectively. Clearly, J(R) is TPr if and only if the Toeplitz matrix [ai−j ]i,j≥0 of the
sequence (an)n≥0 is TPr, or equivalently, the sequence (an)n≥0 is PFr. Thus it follows
from Theorem 2.1 (i) that the Riordan array R is TPr (resp., TP) if its A-sequence is
PFr (resp. PF).

In particular, if (an)n≥0 is PF2, then R is TP2. It follows from Theorem 2.1 (ii) that
the sequence (rn,0)n≥0 is log-convex. In what follows we show that each row of R is log-
concave by induction. Denote si = rn,i for 0 ≤ i ≤ n and tj = rn+1,j for 0 ≤ j ≤ n + 1.
We distinguish two cases.

First consider the case that R is a consistent Riordan array. In this case, t0 = t1 and

tk − tk+1 = a0(sk−1 − sk) + · · · + an−k(sn−1 − sn) + an−k+1sn

for 1 ≤ k ≤ n. It follows that each row of R is nonincreasing by induction. On the other
hand,











tn+1

tn tn+1
...

...
. . .

t1 t2 · · · tn+1











=











sn
sn−1 sn
...

...
. . .

s0 s1 · · · sn





















a0
a1 a0
...

...
. . .

an an−1 · · · a0











. (2.4)

Suppose that the sequence (an)n≥0 is log-concave. Then its Toeplitz matrix A = [ai−j ]i,j≥0

is TP2, and so are the leading principal submatrices of A. Thus the second matrix on the
right hand side of (2.4) is TP2. If the nth row s0, s1, . . . , sn of R is log-concave, then so is
the reverse sequence sn, . . . , s1, s0, which implies that the first matrix on the right hand
side of (2.4) is TP2. Thus the matrix on the left hand side of (2.4) is TP2 by Lemma 2.3,
or equivalently, the sequence tn+1, tn, . . . , t1 is log-concave, and so is the reverse sequence
t1, . . . , tn, tn+1. Note that t0 = t1 ≥ t2. Hence the sequence t0, t1, t2, . . . , tn+1 is also
log-concave. Thus each row of R is log-concave by induction.

Next let R be a quasi-consistent Riordan array. Then











tn+1

tn tn+1
...

...
. . .

t0 t1 · · · tn+1











=















sn
sn−1 sn
...

...
. . .

s0 s1 · · · sn
0 s0 · · · sn−1 sn

























a0
a1 a0
...

...
. . .

an+1 an · · · a0











.

Assume that the sequence s0, s1, . . . , sn is log-concave. Then the first matrix on the right
hand side is TP2. It follows that the matrix on the left hand side is TP2. In other
words, the sequence t0, t1, . . . , tn, tn+1 is log-concave. Thus each row of R is log-concave
by induction. This completes the proof.
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3 Further work

It is known that sequences of binomial coefficients located in a ray or a transversal of
the Pascal triangle have various positivity properties (see [22, 25] for instance). Similar
problems naturally arise in a Riordan array. For example, in which case each row of
such a Riordan array is PF, the corresponding linear transformation can preserve the PF
property (the log-concavity, the log-convexity, resp.), and each column of the array is first
log-concave and then log-convex?

Aigner [2] gave combinatorial interpretations for recursive matrices in terms of weighted
Motzkin paths. Cheon et al. [6] provided combinatorial interpretations for consistent Ri-
ordan arrays in terms of weighted  Lukasiewicz paths. It is not difficult to give a similar
combinatorial interpretation for a quasi-consistent Riordan array. Brenti [5] gave combi-
natorial proofs of total positivity of many well-known matrices by means of lattice path
techniques. It is natural to ask for combinatorial proofs of Theorems 2.4 and 2.8.
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