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Total positivity of recursive matrices
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Abstract

Let A = [an,k]n,k≥0 be an infinite lower triangular matrix defined by the recur-

rence

a0,0 = 1, an+1,k = rkan,k−1 + skan,k + tk+1an,k+1,

where an,k = 0 unless n ≥ k ≥ 0 and rk, sk, tk are all nonnegative. Many well-known

combinatorial triangles are such matrices, including the Pascal triangle, the Stirling

triangle (of the second kind), the Bell triangle, the Catalan triangles of Aigner and

Shapiro. We present some sufficient conditions such that the recursive matrix A is

totally positive. As applications we give the total positivity of the above mentioned

combinatorial triangles in a unified approach.

MSC: 05A20; 15B36; 15A45
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1 Introduction

Let A = [an,k]n,k≥0 be an infinite matrix. It is called totally positive of order r (or

shortly, TPr), if its minors of all orders ≤ r are nonnegative. It is called TP if its minors of

all orders are nonnegative. Let (an)n≥0 be an infinite sequence of nonnegative numbers. It

is called a Pólya frequency sequence of order r (or shortly, a PFr sequence), if its Toeplitz

matrix

[ai−j ]i,j≥0 =















a0

a1 a0

a2 a1 a0

a3 a2 a1 a0
... · · ·

. . .















is TPr. It is called PF if its Toeplitz matrix is TP. We say that a finite sequence

a0, a1, . . . , an is PFr (PF, resp.) if the corresponding infinite sequence a0, a1, . . . , an, 0, . . .

∗
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is PFr (PF, resp.). We say that a nonnegative sequence (an) is log-convex (log-concave,

resp.) if aiaj+1 ≥ ai+1aj (aiaj+1 ≤ ai+1aj , resp.) for 0 ≤ i < j. Clearly, the sequence (an)

is log-concave if and only if it is PF2, i.e., its Toeplitz matrix [ai−j ]i,j≥0 is TP2, and the

sequence is log-convex if and only if its Hankel matrix

[ai+j ]i,j≥0 =















a0 a1 a2 a3 · · ·

a1 a2 a3 a4 · · ·

a2 a3 a4 a5 · · ·

a3 a4 a5 a6 · · ·
...

...
...

...
. . .















is TP2 [5].

Let π = (rk)k≥1, σ = (sk)k≥0, τ = (tk)k≥1 be three sequences of nonnegative numbers

and define an infinite lower triangular matrix

A := Aπ,σ,τ = [an,k]n,k≥0 =















a0,0

a1,0 a1,1

a2,0 a2,1 a2,0

a3,0 a3,1 a3,2 a3,3
...

. . .















by the recurrence

a0,0 = 1, an+1,0 = s0an,0 + t1an,1, an+1,k = rkan,k−1 + skan,k + tk+1an,k+1, (1.1)

where an,k = 0 unless n ≥ k ≥ 0. Following Aigner [3], we say that Aπ,σ,τ is the recursive

matrix and an,0 are the Catalan-like numbers corresponding to (π, σ, τ). Such triangles

arise often in combinatorics and many well-known counting coefficients are the Catalan-

like numbers. The following are several basic examples of recursive matrices.

Example 1.1. (i) The Pascal triangle P =
[(

n

k

)]

n,k≥0
satisfies

(

n+1

k

)

=
(

n

k−1

)

+
(

n

k

)

.

(ii) The Stirling triangle (of the second kind) S = [S(n, k)]n,k≥0 satisfies S(n + 1, k) =

S(n, k − 1) + (k + 1)S(n, k).

(iii) The Catalan triangle of Aigner is

C = [Cn,k] =





















1

1 1

2 3 1

5 9 5 1

14 28 20 7 1
...

. . .





















,

where Cn+1,0 = Cn,0+Cn,1, Cn+1,k = Cn,k−1+2Cn,k +Cn,k+1 [1]. The corresponding

Catalan-like numbers Cn,0 are precisely the Catalan numbers Cn.
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The Catalan triangle of Shaprio is

B = [Bn,k] =





















1

2 1

5 4 1

14 14 6 1

42 48 27 8 1
...

. . .





















,

where Bn+1,k = Bn,k−1+2Bn,k+Bn,k+1 [15]. The corresponding Catalan-like numbers

Bn,0 are precisely the Catalan numbers Cn+1. There are a lot of papers to consider

combinatorics of the Catalan triangle [1, 4, 9, 14–16]. See also Sloane’s OEIS [17,

A039598].

(iv) The Bell triangle, introduced by Aigner [2], is

X = [Xn,k] =





















1

1 1

2 3 1

5 10 6 1

15 37 31 10 1
...

. . .





















,

where Xn+1,k = Xn,k−1+(k+1)Xn,k+(k+1)Xn,k+1. The corresponding Catalan-like

numbers Xn,0 are the Bell numbers Bn.

Aigner [1–4] studied various combinatorial properties of recursive matrices and Hankel

matrices of the Catalan-like numbers. It is well known that the Pascal triangle is TP [11,

p. 137]. Brenti [6] showed, among other things, that the Stirling triangle is TP. Very

recently, Zhu [19, Theorem 3.1] showed that if sk−1sk ≥ rktk for k ≥ 1, then the sequence

(an,0)n≥0 of Catalan-like numbers defined by (1.1) is log-convex. Zhu [20, Theorem 2.1]

also showed that if rk, sk are nonnegative quadratic polynomials in k and tk = 0 for

all k, then the corresponding matrix A is TP. The object of this paper is to give some

sufficient conditions for total positivity of recursive matrices. In the next section, we

present our main results. As applications, we show that many well-known combinatorial

triangles, including the Pascal triangle, the Stirling triangle, the Bell triangle, the Catalan

triangles of Aigner and Shapiro are TP in a certain unified approach. As consequences,

the corresponding Catalan-like numbers, including the Catalan numbers and the Bell

numbers, form a log-convex sequence respectively. In Section 3, we point out that our

results can be carried over verbatim to their q-analogue. We also propose a couple of

problems for further work.
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2 Main results and applications

We first review some basic facts about TP matrices. The first is direct by definition

and the second follows immediately from the classic Cauchy-Binet formula.

Lemma 2.1. A matrix is TPr (TP, resp.) if and only if its leading principal submatrices

are all TPr (TP, resp.).

Lemma 2.2. The product of two TPr (TP, resp.) matrices is still TPr (TP, resp.).

Rewrite the recursive relation (1.1) as










a1,0 a1,1

a2,0 a2,1 a2,2

a3,0 a3,1 a3,2 a3,3

· · ·
. . .











=











a0,0

a1,0 a1,1

a2,0 a2,1 a2,2

· · ·
. . .























s0 r1

t1 s1 r2

t2 s2
. . .

. . .
. . .













,

or briefly,

A = AJ (2.1)

where A is obtained from A by deleting the 0th row and J is the Jacobi matrix

J := Jπ,σ,τ =

















s0 r1

t1 s1 r2

t2 s2 r3

t3 s3
. . .

. . .
. . .

















. (2.2)

Clearly, the recursive relation (1.1) is decided completely by the tridiagonal matrix J .

Call J the coefficient matrix of the recursive relation (1.1). For convenience, we also call

J the coefficient matrix of the recursive matrix A.

For example, the coefficient matrix of the Bell triangle is
















1 1

1 2 1

2 3 1

3 4
. . .

. . .
. . .

















,

the coefficient matrices of Catalan triangles of Aigner and Shapiro are
















1 1

1 2 1

1 2 1

1 2
. . .

. . .
. . .

















and

















2 1

1 2 1

1 2 1

1 2
. . .

. . .
. . .

















.
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Theorem 2.3. Let A be a recursive matrix with the coefficient matrix J .

(i) If J is TPr (TP, resp.), then so is A.

(ii) If A is TP2, then the sequence (an,0)n≥0 of the Catalan-like numbers is log-convex.

Proof. (i) Clearly, it suffices to consider the TPr case. Let

An =











a0,0

a1,0 a1,1
...

...
. . .

an,0 an,1 · · · an,n











, Jn =













s0 r1

t1 s1
. . .

. . .
. . . rn

tn sn













and

An+1 =















a1,0 a1,1

a2,0 a2,1 a2,2

· · · · · · · · ·
. . .

an,0 an,1 an,2 · · · an,n

an+1,0 an+1,1 an+1,2 · · · an+1,n















be the nth leading principal submatrices of A, J and A respectively. Then An+1 = AnJn

by (2.1). Now J is TPr, so is Jn. Assume that An is TPr. Then the product An+1 = AnJn

is also TPr. It follows that An+1 is TPr. Thus A is TPr by induction.

(ii) By (1.1), we have










a0,0 a1,0

a1,0 a2,0

a2,0 a3,0
...

...











=











a0,0

a1,0 a1,1

a2,0 a2,1 a2,2

· · ·
. . .





















1 s0

0 t1

0 0
...

...











. (2.3)

Clearly, the second matrix in the right hand side of (2.3) is TP2 since s0 and t1 are

nonnegative. If A is TP2, then so is the matrix in the left hand side of (2.3), which is

equivalent to the log-convexity of the sequence (an,0)n≥0. This completes the proof.

So we may focus our attention on the total positivity of tridiagonal matrices. We first

give two simple applications of Theorem 2.3 from this point of view.

Corollary 2.4 ([19, Theorem 3.1]). If sk−1sk ≥ rktk for k ≥ 1, then the sequence (an,0)n≥0

of Catalan-like numbers defined by (1.1) is log-convex.

Proof. If sk−1sk ≥ rktk for k ≥ 1, then J is TP2, and so is A by Theorem 2.3 (i). Thus

(an,0)n≥0 is log-convex by Theorem 2.3 (ii).

Corollary 2.5. Let A = [an,k]n,k≥0 be a recursive matrix defined by

a0,0 = 1, an+1,k = rkan,k−1 + skan,k. (2.4)

If rk and sk are nonnegative, then A is TP.
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Proof. In this case, the coefficient matrix is a bidiagonal matrix, which is obviously TP,

and so is the recursive matrix by Theorem 2.3 (i).

Remark 2.1. An immediate consequence of Corollary 2.5 is Zhu’s result [20, Theorem

2.1], which states that if rk, sk are nonnegative quadratic polynomials in k, then the

matrix [an,k]n,k≥0 defined by (2.4) is TP. In particular, the Pascal triangle and the Stirling

triangle are TP.

There are many well-known results about the total positivity of tridiagonal matrices.

The following is one of them.

Lemma 2.6 ([13, Theorem 4.3]). A finite nonnegative tridiagonal matrix is TP if and

only if all its principal minors containing consecutive rows and columns are nonnegative.

Actually, it is also known that an irreducible nonnegative tridiagonal matrix is TP if

and only if all its leading principal minors are positive [12, Example 2.2].

We next consider the problem in which case a tridiagonal matrix has nonnegative

determinant. Let M = [mij ]1≤i,j≤n be a real n × n matrix. We say that M is row

diagonally dominant if

mii ≥ |mi,1|+ · · ·+ |mi,i−1|+ |mi,i+1|+ · · ·+ |mi,n|, i = 1, 2, . . . , n. (2.5)

If all inequalities in (2.5) are strict, then we say thatM is strictly row diagonally dominant.

It is well known [18] that if M is strictly row diagonally dominant, then |M | > 0. More-

over, if M is irreducible row diagonally dominant and there is at least one strict inequality

in (2.5), then |M | > 0. The case for nonnegative tridiagonal matrices is simpler.

Lemma 2.7. Let

Jn =





















y0 x1

z1 y1 x2

z2 y2 x3

. . .
. . .

. . .

zn−1 yn−1 xn

zn yn





















,

where xk, yk, zk are all nonnegative.

(i) If Jn is row diagonally dominant, then |Jn| ≥ 0.

(ii) If Jn is column diagonally dominant, then |Jn| ≥ 0.

Proof. (i) We proceed by induction on n. Assume that yn = zn. Then

|Jn| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y0 x1

z1 y1 x2

. . .
. . .

. . .

zn−1 yn−1 − xn xn

0 yn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= yn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y0 x1

z1 y1 x2

. . .
. . .

. . .

zn−2 yn−2 xn−1

zn−1 yn−1 − xn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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Thus |Jn| is nonnegative by the inductive hypothesis. Assume that yn > zn. Then

|Jn| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y0 x1

z1 y1 x2

. . .
. . .

. . .

zn−1 yn−1 xn

zn zn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y0 x1

z1 y1 x2

. . .
. . .

. . .

zn−1 yn−1 xn

0 yn − zn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Clearly, two determinants on the right hand side are nonnegative, so is |Jn|.

(ii) Apply (i) to the transpose JT
n of Jn.

Combining Theorem 2.3 (i) and Lemma 2.7 we obtain the following criterion.

Theorem 2.8. Let A be the recursive matrix defined by (1.1).

(i) If s0 ≥ r1 and sk ≥ rk+1 + tk for k ≥ 1, then A is TP.

(ii) If s0 ≥ t1 and sk ≥ rk + tk+1 for k ≥ 1, then A is TP.

Theorem 2.9. Let A be the recursive matrix defined by (1.1). If s0 ≥ 1 and sk ≥ rktk+1

for k ≥ 1, then A is TP.

Proof. By Theorem 2.3, we need to show that the corresponding coefficient matrix J is

TP. By Lemma 2.6, it suffices to show that the tridiagonal matrix of form

Jn =

















y0 x1

z1 y1 x2

z2 y2
. . .

. . .
. . . xn

zn yn

















(2.6)

has nonnegative determinant if y0 ≥ 1 and yk ≥ xkzk + 1 for 1 ≤ k ≤ n. Denote

D−1 := 1, D0 = y0 and Dn = |Jn| for n ≥ 1. We show that Dn ≥ Dn−1 ≥ 1 by induction

on n. Assume that Dn−1 ≥ Dn−2 ≥ 1. Note that

Dn = ynDn−1 − xnznDn−2

by expanding the determinant (2.6) along the last row or column. Hence

Dn ≥ ynDn−1 − xnznDn−1 = (yn − xnzn)Dn−1 ≥ Dn−1 ≥ 1,

as desired. Thus J is TP, and so is A.

Finally, we apply Theorem 2.9 to two particularly interesting classes of recursive ma-

trices, which are introduced by Aigner in [1] and [3] respectively. Many well-known

combinatorial triangles are of such recursive matrices (we refer the reader to Aigner [1, 3]

for more information). The motivation of this paper is to study the total positivity of

these combinatorial triangles.
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Corollary 2.10. Let A = [an,k]n,k≥0 be an admissible matrix defined by

a0,0 = 1, an+1,k = an,k−1 + skan,k + an,k+1.

If s0 ≥ 1 and sk ≥ 2 for k ≥ 1, then A is TP.

Corollary 2.11. Let A = [an,k]n,k≥0 be a recursive matrix defined by

a0,0 = 1, an+1,k = an,k−1 + skan,k + tk+1an,k+1.

If s0 ≥ 1 and sk ≥ tk + 1 for k ≥ 1, then A is TP.

Corollary 2.12. The Bell triangle, the Catalan triangles of Aigner and Shapiro are TP

respectively.

3 Concluding remarks and further work

For two real polynomials f(q) and g(q) in q, denote f(q) ≥q g(q) if coefficients of the

difference f(q)−q(q) are all nonnegative. Let A(q) be an infinite matrix all whose elements

are real polynomials in q. It is called q-TP if its minors of all orders have nonnegative

coefficients as polynomials in q. Theorems 2.3, 2.8 and 2.9 can be carried over verbatim

to their q-analogue.

Theorem 3.1. Let π = (rk(q))k≥1, σ = (sk(q))k≥0, τ = (tk(q))k≥1 be three sequences of

polynomials in q with nonnegative coefficients and A(q) = [an,k(q)]n,k≥0 be an infinite

lower triangular matrix defined by

a0,0(q) = 1, an+1,k(q) = rk(q)an,k−1(q) + sk(q)an,k(q) + tk+1(q)an,k+1(q),

where an,k(q) = 0 unless n ≥ k ≥ 0. Then the q-recursive matrix A(q) is q-TP if one of

the following conditions holds:

(i) s0(q) ≥q r1(q) and sk(q) ≥q rk+1(q) + tk(q) for k ≥ 1.

(ii) s0(q) ≥q t1(q) and sk(q) ≥q rk(q) + tk+1(q) for k ≥ 1.

(iii) s0(q) ≥q 1 and sk(q) ≥q rk(q)tk(q) + 1 for k ≥ 1.

There are other forms of recursive matrices. For example, the Eulerian triangle

A = [A(n, k)]n,k≥1 =





















1

1 1

1 4 1

1 11 11 1

1 26 66 26 1
...

. . .





















,
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where A(n, k) is the Eulerian number and satisfies the recursive relation

A(n+ 1, k) = (n− k + 2)A(n, k − 1) + kA(n, k).

Brenti suggested the following.

Conjecture 3.2 ([7, Conjecture 6.10]). The Eulerian triangle A = [A(n, k)]n,k≥1 is TP.

The Narayana triangle

N = [N(n, k)]n,k≥1
=





















1

1 1

1 3 1

1 6 6 1

1 10 20 10 1
...

. . .





















,

where N(n, k) = 1

k

(

n−1

k−1

)(

n

k−1

)

is the Narayana number and satisfies the recursive relation

N(n + 1, k) =
n(n+ 1)

2k(k − 1)
N(n, k − 1) +

n(n+ 1)

2(n− k + 1)(n− k + 2)
N(n, k)

for k ≥ 2. Sometimes N is called the Catalan triangle since its row sum is precisely the

Catalan number:
n

∑

k=1

N(n, k) = Cn.

We refer the reader to Sloane’s OEIS [17, A001263] for more information about the

Narayana triangle. Here we propose the following conjecture.

Conjecture 3.3. The Narayana triangle N = [N(n, k)]n,k≥1 is TP.
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