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On Enumeration of Paths in Catalan–Schröder Lattices∗
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Abstract

We address the problem of enumerating paths in square lattices, where allowed steps include
(1, 0) and (0, 1) everywhere, and (1, 1) above the diagonal y = x. We consider two such lattices
differing in whether the (1, 1) steps are allowed along the diagonal itself. Our analysis leads to
explicit generating functions and an efficient way to compute terms of many sequences in the
Online Encyclopedia of Integer Sequences, proposed by Clark Kimberling over a decade and a
half ago.

1 Introduction

The Catalan numbers Cn =
1

n+1

(2n
n

)

(sequence A000108 in the OEIS [3]) enumerate among other
combinatorial objects [2] the paths from (0, 0) to (n, n) in the integer lattice bounded by lines y = 0
and y = x with unit steps (0, 1) and (1, 0), called Dyck paths. We represent these restrictions as a
directed lattice, which we will refer to the Catalan latticeLC (Fig. 1, left panel). If we allow diagonal
steps (1, 1) in this lattice, the paths in it become known as Schröder paths [1], and the number of
such paths from (0, 0) to (n, n) is given by the large Schröder numbers Sn (sequence A006318 in the
OEIS). So we refer to the resulting lattice as the Schröder lattice LS (Fig. 1, right panel).

Over one and a half decades ago, Clark Kimberling contributed the sequences A026769–A026790
to the OEIS [3], concerning a composition of the Catalan and Schröder lattices that below the diago-
nal y = x represents the Catalan lattice and above the diagonal represents the transposed Schröder
lattice. There are two such lattices LCS and L⋆

CS
, where the (1, 1) steps along the diagonal are

allowed and disallowed, respectively (Fig. 2). In this note, we address the problem of enumerating
paths in the lattices LCS and L⋆

CS
. We begin our analysis by recalling some useful facts about the

Catalan and Schröder lattices.
The generating functions for Catalan and Schröder numbers are given by

C(x) =

∞
∑

n=0

Cn · xn =
1 −
√

1 − 4x

2x

and

S(x) =

∞
∑

n=0

Sn · xn =
1 − x −

√
1 − 6x + x2

2x
=

1

1 − x
· C

(

x

(1 − x)2

)

,

respectively [1]. So the number of paths from (0, 0) to (n, n) in LC and LS is given by [xn] C(x) and
[xn] S(x), respectively, where [xn] denotes the operator of taking the coefficient of xn.

∗The work is supported by the National Science Foundation under grant No. IIS-1462107.
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Figure 1: Catalan lattice LC and Schröder lattice LS.

We will need the following lemma, which states well-known facts about the number of paths
and the number of subdiagonal paths (i.e., paths that lay below the line y = x, except possibly for
their endpoints) from (0, 0) to (n, k) in LC and LS.

Lemma 1. For any integers n ≥ k ≥ 0,

(i) the number of paths from (0, 0) to (n, k) in LC and LS equals [xk] C(x)n−k+1 and [xk] S(x)n−k+1,
respectively.

(ii) the number of subdiagonal paths from (0, 0) to (n, n) inLC andLS equals [xn−1]C(x) and [xn−1]S(x),
respectively.

(iii) for n > k, the number of subdiagonal paths from (0, 0) to (n, k) in LC and LS equals [xk] C(x)n−k and
[xk] S(x)n−k, respectively.

2 Enumeration of paths in Catalan–Schröder lattices

Theorem 2. Let fn and f⋆n be the number of paths from (0, 0) to (n, n) in the lattices LCS and L⋆
CS

,
respectively. Then

F ⋆(x) =

∞
∑

n=0

f⋆n · xn =
1

1 − x · (C(x) + S(x))

and

F (x) =

∞
∑

n=0

fn · xn =
1

1 − x · (C(x) + S(x) + 1)
=

S(x)

1 − x · C(x) · S(x)
.

Proof. Any path from (0, 0) to (n, n) in L⋆
CS

consists of subdiagonal and/or supdiagonal1 subpaths
from (p0, p0) to (p1, p1), from (p1, p1) to (p2, p2), . . ., from (pm−1, pm−1) to (pm, pm), where m ≥ 0 and

1Similarly to subdiagonal paths, we define supdiagonal paths as those that lay above the diagonal y = x, except
possibly for their endpoints.
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Figure 2: Catalan–Schröder lattices LCS and L⋆
CS

.

0 = p0 < p1 < · · · < pm = n are integers (in other words, pi represent the coordinates of vertices
where the path visits the diagonal). By Lemma 1, for any k = 0, 1, . . . ,m − 1, the number of
subdiagonal and/or supdiagonal paths from (pk, pk) to (pk+1, pk+1) equals

[xpk+1−pk−1] (C(x) + S(x)).

Indeed, every such path is either subdiagonal (enumerated by C(x)) or supdiagonal (enumerated
by S(x)).

Hence, the total number of paths in from (0, 0) to (n, n) in L⋆
CS

equals

∞
∑

m=0

∑

0<p1<···<pm−1<n

m−1
∏

k=0

[xpk+1−pk−1] (C(x) + S(x)) =

∞
∑

m=0

[xn−m] (C(x) + S(x))m

=[xn]

∞
∑

m=0

(x · (C(x) + S(x)))m
= [xn]

1

1 − x · (C(x) + S(x))
.

In the latticeLCS, in addition to subdiagonal and/or supdiagonal subpaths, we need to account
for single diagonal steps (when pk+1 = pk+1), which brings the additional summand 1 toC(x)+S(x).
That is, the total number of paths in from (0, 0) to (n, n) in LCS equals the coefficient of xn in

1

1 − x · (C(x) + S(x) + 1)
=

S(x)

1 − x · C(x) · S(x)
.

The last equality follows from the algebraic identity:

x · S(x)2 − (1 − x) · S(x) + 1 = 0.

�

Theorem 3. For integers n, k, the number of paths from (0, 0) to (n, k) in LCS equals














[xk] F (x) · C(x)n−k, if n ≥ k;

[xn] F (x) · S(x)k−n , if n ≤ k.
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Similarly, the number of paths from (0, 0) to (n, k) in L⋆
CS

equals















[xk] F ⋆(x) · C(x)n−k, if n ≥ k;

[xn] F ⋆(x) · S(x)k−n, if n ≤ k.

Proof. Any path from (0, 0) to (n, k) in LCS is formed by a path from (0, 0) to (m,m) for some m ≥ 0
and a path from (m,m) to (n, k) that never visits the diagonal again. Clearly, this decomposition
is unique and so is m. The number of paths from (0, 0) to (m,m) equals [xm] F (x). If n > k, then
the number of paths from (m,m) to (n, k) avoiding the diagonal equals the number of subdiagonal
paths from (0, 0) to (n − m, k − m) in LC, which is [xk−m] C(x)n−k (by Lemma 1). In this case, the
number of paths (0, 0) to (n, k) in LCS equals

∞
∑

m=0

[xm] F (x) · [xn−m] C(x)n−k = [xn] F (x) · C(x)n−k.

Similarly, if n < k, then the number of paths from (m,m) to (n, k) avoiding the diagonal equals
the number of subdiagonal paths from (0, 0) to (k − m, n − m) in LS, which is [xn−m] S(x)k−n (by
Lemma 1). In this case, the number of paths (0, 0) to (n, k) inLCS equals [xn]F (x) ·S(x)k−n . It is easy
to see that the formulae in both cases are also consistent with the case n = k, where the number of
paths equals [xn] F (x) by the definition of F (x).

The lattice L⋆
CS

is considered similarly. �

3 Sequences in the OEIS

Below we derive formulae for sequences A026769–A026779 (concerning the lattice L⋆
CS

) and se-
quences A026780–A026790 (concerning the lattice LCS) in the Online Encyclopedia of Integer
Sequences [3].

3.1 Sequences A026769 and A026780

A026769(n, k) and A026780(n, k) give the number of paths from (0, 0) to (k, n − k) in the lattices L⋆
CS

and LCS, respectively. Formulae for these numbers are given in Theorem 3.

3.2 Sequences A026770–A026774 and A026781–A026785

The n-th term of A026770–A026774 enumerate paths in L⋆
CS

from (0, 0) to (n, n), (n − 1, n + 1),
(n − 2, n + 2), (n − 1, n), and (n − 2, n + 1), respectively. By Theorem 3, the ordinary generating
function for the number of such paths is F ⋆(x), x · F ⋆(x) · S(x)2, x2 · F ⋆(x) · S(x)4, x · F ⋆(x) · S(x),
and x2 · F ⋆(x) · S(x)3, respectively.

The sequences A026781–A026785 enumerate similar paths inLCS and have ordinary generating
functions F (x), x · F (x) · S(x)2, x2 · F (x) · S(x)4, x · F (x) · S(x), and x2 · F (x) · S(x)3, respectively.

3.3 Sequences A026775 and A026786

The terms A026775(n) and A026786(n) give the number of paths from (0, 0) to (⌊n/2⌋, ⌈n/2⌉) in the
lattices L⋆

CS
and LCS, respectively. By Theorem 3, these are the coefficients of x⌊n/2⌋ in F ⋆(x) ·

S(x)n mod 2 andF (x) ·S(x)n mod 2, which are the same as the coefficients of xn inF ⋆(x2) · (1+x ·S(x2))
and F (x) · (1 + x · S(x2)).
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3.4 Sequences A026776 and A026787

The terms A026776(n) and A026787(n) give the total number of paths from (0, 0) to (i, n − i), where
i = 0, 1, . . . , n, in the lattices in L⋆

CS
and LCS, respectively.

Theorem 4. The ordinary generating function for A026776 is

F ⋆(x2) ·
(

1

1 − x · S(x2)
+

1

1 − x · C(x2)
− 1

)

.

The ordinary generating function for A026787 is

F (x2) ·
(

1

1 − x · S(x2)
+

1

1 − x · C(x2)
− 1

)

.

Proof. By Theorem 3, A026776(n) equals

⌊n/2⌋
∑

i=0

[xi] F ⋆(x) · S(x)n−2i +

n
∑

i=⌊n/2⌋+1

[xn−i] F ⋆(x) · C(x)2i−n

=

⌊n/2⌋
∑

i=0

[x2i] F ⋆(x2) · S(x2)n−2i +

n
∑

i=⌊n/2⌋+1

[x2n−2i] F ⋆(x2) · C(x2)2i−n

=[xn] F ⋆(x2) ·

















⌊n/2⌋
∑

i=0

(

x · S(x2)
)n−2i

+

n
∑

i=⌊n/2⌋+1

(

x · C(x2)
)2i−n

















.

We notice that in the first sum, the powers of x · S(x2) go over the nonnegative integers up to n of
the same oddness as n. Since we are interested only in the coefficient of xn, we can drop both these
restrictions. Namely, the powers above n have the coefficient of xn equal zero, while the power
m of the opposite oddness than n may have nonzero coefficients only for x in powers of the same
oddness as m. The same arguments apply for the powers of x · C(x2), except that in this case they
go over the positive integers. That is, the above expression simplifies to

[xn] F ⋆(x2) ·














∞
∑

m=0

(

x · S(x2)
)m
+

∞
∑

m=1

(

x · C(x2)
)m















=[xn] F ⋆(x2) ·
(

1

1 − x · S(x2)
+

1

1 − x · C(x2)
− 1

)

,

which gives the ordinary generating function for A026776.
The generating function for A026787 is be obtained by replacing F ⋆(x2) with F (x2). �

3.5 Sequences A026777 and A026788

The term A026777(n) gives the total number of paths in L⋆
CS

from (0, 0) to (i, n − i), where i =

0, 1, . . . , ⌊n/2⌋. The ordinary generating function for A026777 is
F ⋆(x2)

1−x·S(x2)
, which can be easily obtained

from our analysis of the sequence A026776 above.
The ordinary generating function for A026788, which enumerates similar paths in LCS, equals

F (x2)

1−x·S(x2)
.
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3.6 Sequences A026778 and A026789

The term A026778(n) gives the total number of paths inL⋆
CS

from (0, 0) to (i, i− j), where 0 ≤ j ≤ i ≤ n.
It is easy to see that

A026778(n) =

n
∑

m=0

A026776(m)

and thus the ordinary generating function for A026778 can be obtained from the one for A026776
by multiplying it by 1

1−x . That is, the ordinary generating function for A026778 equals

F ⋆(x2)

1 − x
·
(

1

1 − x · S(x2)
+

1

1 − x · C(x2)
− 1

)

.

The ordinary generating function for A026789, which enumerates similar paths in LCS, equals

F (x2)

1 − x
·
(

1

1 − x · S(x2)
+

1

1 − x · C(x2)
− 1

)

.

3.7 Sequences A026779 and A026790

The terms A026779(n) and A026790(n) give the total number of paths from (0, 0) to (i, n− 2i), where
i = 0, 1, . . . , ⌊n/2⌋, in the lattices in L⋆

CS
and LCS, respectively.

Theorem 5. The ordinary generating function for A026779 is

F ⋆(x3) ·
(

1

1 − x · S(x3)
+

1

1 − x2 · C(x3)
− 1

)

.

The ordinary generating function for A026790 is

F (x3) ·
(

1

1 − x · S(x3)
+

1

1 − x2 · C(x3)
− 1

)

.

Proof. By Theorem 3, A026779 equals

⌊n/3⌋
∑

i=0

[xi] F ⋆(x) · S(x)n−3i +

⌊n/2⌋
∑

i=⌊n/3⌋+1

[xn−2i] F ⋆(x) · C(x)3i−n

=

⌊n/3⌋
∑

i=0

[x3i] F ⋆(x3) · S(x3)n−3i +

⌊n/2⌋
∑

i=⌊n/3⌋+1

[x3n−6i] F ⋆(x3) · C(x3)3i−n

=[xn] F ⋆(x3) ·

















⌊n/3⌋
∑

i=0

(

x · S(x3)
)n−3i

+

⌊n/2⌋
∑

i=⌊n/3⌋+1

(

x2 · C(x3)
)3i−n

















,

from where we conclude the proof with arguments similar to those in the proof of Theorem 4. �
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[2] Stanley, R. P. Catalan Numbers. Cambridge University Press, New York, NY, 2015.

[3] The OEIS Foundation. The On-Line Encyclopedia of Integer Sequences. Published electronically
at http://oeis.org, 2016.

6

http://oeis.org

	1 Introduction
	2 Enumeration of paths in Catalan–Schröder lattices
	3 Sequences in the OEIS
	3.1 Sequences A026769 and A026780
	3.2 Sequences A026770–A026774 and A026781–A026785
	3.3 Sequences A026775 and A026786
	3.4 Sequences A026776 and A026787
	3.5 Sequences A026777 and A026788
	3.6 Sequences A026778 and A026789
	3.7 Sequences A026779 and A026790


