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Abstract

Let Ln denote the set of all paths from [0, 0] to [n, n] which consist of either unit north
steps N or unit east steps E or, equivalently, the set of all words L ∈ {E,N}∗ with n E’s
and n N ’s. Given L ∈ Ln and a subset A of [n] = {1, . . . , n}, we let psL(A) denote the word
that results from L by removing the ith occurrence of E and the ith occurrence of N in L for
all i ∈ [n]−A, reading from left to right. Then we say that a paired pattern P ∈ Lk occurs
in L if there is some A ⊆ [n] of size k such that psL(A) = P . In this paper, we study the
generating functions of paired pattern matching in Ln.

1 Introduction

Let Ln denote the set of all paths from [0, 0] to [n, n] which consist of either unit north [0, 1]
steps or unit east [1, 0] steps. The six paths in L2 are pictured at the top of Figure 2. Clearly,

|Ln| =
(

2n

n

)

.

We code elements in Ln as words over the alphabet {N,E} with n N ’s and n E’s. Given
L ∈ Ln and a subset A of [n] = {1, . . . , n}, we let psL(A) denote the word that results from L by
removing the ith occurrence of E and the ith occurrence of N in L for all i ∈ [n]−A, reading from
left to right. For example, suppose L = NEEENN ∈ L3, then psL({1}) = NE, psL({2}) =
EN , psL({3}) = EN , psL({1, 2}) = psL({1, 3}) = NEEN , and psL({2, 3}) = EENN . We shall
think of a word in {N,E} with n N ’s and n E’s as a paired pattern where the ith occurrence of
E is paired with the ith occurrence of N , reading from left to right, for i = 1, . . . , n.

Definition 1. Given a set of paired patterns Γ ⊆ Lk and word L ∈ Ln, we say that

1. Γ occurs in L if there is an A ⊆ [n] of size k such that psL(A) ∈ Γ,

2. there is a Γ-match in L starting at the jth paired step
if psL({j, j + 1, j + 2 · · · , j + k − 1}) ∈ Γ and

3. L avoids Γ if there is no Γ-matches in L.

Alternatively, we can code a path L as a 2×n array T (L) where the bottom row of T consists
of the positions of the east steps, reading from left to right, and the top row of T consists of
the positions of the north steps, reading from left to right. We let T (L)k,1 denote the element
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in the kth column of the bottom row of T (L), and let T (L)k,2 denote the element in the kth

column of the top row. Given any 2 × n array S filled with pairwise distinct positive integers,
let the reduction of S, red(S), denote the 2× n array which results from S by replacing the ith

smallest integer in S by i. An example of the reduction operation red is pictured at the bottom
of Figure 1.

L=EENENNNENENE
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Figure 1: The correspondence between paths and 2× n arrays.

It is then easy to see that given L ∈ L and A ⊆ [n], the array associated with psL(A)
corresponds to the array obtained by taking the columns in T (L) corresponding to A and
reducing. This process is pictured in Figure 1. This given, we can restate our pattern matching
conditions in terms of 2 × n arrays. That is, the Tn denote the set of all 2 × n arrays T filled
with the numbers 1, 2 . . . , 2n such that the rows of T are increasing reading from left to right.
Given T ∈ Tn and A ⊆ [n], we let T [A] be the array that results by removing the columns
corresponding to elements in [n]−A. For example, if T = T (L) is the array pictured in Figure
1, then T [{1, 4, 5}] is pictured at the bottom left of Figure 1.

Then from the point of view of arrays in Tn, our paired pattern matching conditions can be
stated as follows.

Definition 2. Given a set of 2× k arrays Γ ⊆ Tk and a 2× n array S ∈ Tn, we say that

1. Γ occurs in S if there is an A ⊆ [n] of size k such that red(S[A]) ∈ Γ,

2. there is a Γ-match in S starting at column j if red(S[{j, j+1, j+2 · · · , j+k−1}]) ∈ Γ
and

3. S avoids Γ if there is no Γ-matches in S.

Note that from this point of view, Γ-matches correspond naturally to consecutive patterns
matches in 2× n arrays. Results about consecutive patterns in arrays can be found in [4]. We
let Γ-mch(L) denote the number of Γ-matches in L. If Γ-mch(L) = 0, then we will say that L
has no Γ-matches. If Γ = {P} is a singleton, then we will write P -mch(L) for Γ-mch(L).

For example, there are six possible patterns of length four, as pictured in Figure 2, namely,
P1 = EENN,P2 = ENEN,P3 = NEEN,P4 = ENNE,P5 = NENE,P6 = NNEE.

We note that paired patterns differ from classic consecutive patterns in words (e.g. [2] [10]
[11]). Paired patterns actually describe relationships between paths and the diagonal y = x, the
subdiagonal y = x − 1, and the superdiagonal y = x + 1. For our purposes, the set of Dyck
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Figure 2: L2 = {P1, P2, P3, P4, P5, P6.}

paths Dn is the set of paths of Ln which stay weakly below the diagonal y = x. For example,
in L2, the only two Dyck paths are P1 and P2. Actually, a path L is a Dyck path if and only if
L has no (L2 −{P1, P2})-matches. More details and geometric interpretation of paired patterns
can be found in Section 2.

By Theorem 4 and Theorem 5, we see that some certain paired patterns are equivalent to
returns (bouncings) and crossings of a path. These classical statistics have been studied in
literature such as [9], [3], [13] and [6].

In this paper, we will focus on paired patterns of length 4 and pattern matching for subsets
of these pattern. In other wordsd, we would study generating functions of the form

FPk
(x, t) := 1 +

∑

n≥1

tn
∑

L∈Ln

xPk-mch(L), (1)

where k ∈ {1, 2, 3, 4, 5, 6}, and

F∆(x, t) := 1 +
∑

n≥1

tn
∑

L∈Ln





∏

j∈∆
x
Pj-mch(L)
j



 , (2)

where ∆ is a subset of {1, 2, 3, 4, 5, 6}.
Note there are two basic symmetries in our study of paired patterns. First one can reflect a

path L ∈ Ln about the diagonal y = x which has the effect of interchanging E’s with N ’s in the
word of L or interchanging the rows in the diagram of T (L) of L. Second, one can rotate the
path by 180 degrees which has the effect of interchanging the E’s and N ’s and then reversing
the word of L. These symmetries immediately show that

FP1
(x, t) = FP6

(x, t),

FP2
(x, t) = FP5

(x, t), and

FP3
(x, t) = FP4

(x, t).

Thus we need only compute three generating functions of the form FPk
(x, t).

We can also give geometric interpretations to Pk-matches for each k. For example, we shall
show that the number of P1-matches in a path L ∈ Ln is the number of east steps that are below
the subdiagonal y = x− 1. The formulas for the generating functions that we will derive, then
lead to many interesting bijective problems. For example, we will show that the total number
of east steps that lie below the subdiagonal y = x − 1 over all paths L ∈ Ln equals the sum of
the areas under all Dyck paths in Dn.
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The outline of this paper is as follows. In Section 2, we shall give the geometric interpretations
of the number of Pk-matches in paths in Ln. In Section 3, we shall derive closed formulas for
the generating functions FPk

(x, t) for k = 1, . . . , 6 and explore some of the consequences of such
formulas. In Section 4, we derive a number of formulas for F∆(x, t) for certain ∆ ⊆ {P1, . . . , P6}.
Finally, in Section 5, we discuss topics for future research such as finding bijections between paths
with certain pattern matching condition and other known objects, extending the definition of
paired patterns to Delannoy paths and finding generating functions FP (x, t) for paths P of
length greater than 4.

2 The geometric interpretation of the number of Pk-matches.

In this section, we shall give our geometric interpretations of Pk-matches for k = 1, . . . , 6.

Theorem 3. Let L ∈ Ln. Then the number of P1-matches in L is the number of east steps

below the subdiagonal y = x − 1. Hence, by symmetry, the number of P6-matches in L is the

number of north steps above the superdiagonal y = x+ 1.

Proof. Suppose that the ith east step in L occurs below the subdiagonal y = x − 1 and that
this step corresponds to the jth letter in the word w1 . . . w2n of L. Then it must be the case
that the number of E’s in w1 . . . wj exceeds the number of N ’s in w1 . . . wj by at least two. This
means that when we restrict the diagram T (L) to the letters 1, . . . , j, then there are no elements
in the (i − 1)th and ith columns of the bottom row. This means that T (L)i−1,1 < T (L)i,1 <
T (L)i−1,2 < T (L)i,2 so that red(T (L)[{i− 1, i}]) matches the array for P1. Hence each such east
step represents a P1-match in L.

On the other hand suppose red(T (L)[{i − 1, i}]) matches the array for P1. If T (L)i,1 = j,
then in the word w = w1 . . . w2n of L, the jth E, reading from right to left, must be proceded
by at most i − 2 north steps which means that the east step corresponding to wj is below the
subdiagonal y = x− 1.

Given a path L ∈ Ln, we let bounce−(L) denote the number of points [x, x] on L such that
the preceding step is a north step N and the following step is an east step E. This means that
the path bounces off the diagonal to the right. We let bounce+(L) denote the number of points
[y, y] on L which is preceded by an east step E and followed by a north step N . This means that
the path bounces off the diagonal to the left. For example, for the path L pictured in Figure
3, the points [6, 6], [7, 7], and [8, 8] are points preceded by a north step and followed by an east
step so that bounce−(L) = 3 and the point [4, 4] is preceded by an east step and followed by a
north step so that bounce+(L) = 1.

Theorem 4. Let L ∈ Ln. Then the number of P2-matches in L equals bounce−(L). Hence, by

symmetry, the number of P5-matches in L equals bounce+(L).

Proof. Consider the diagram T (L) of L. Then a P2-match in L corresponds to a pair of columns
i − 1 and i such red(T (L)[{i − 1, i}]) matches the array for P2. This means that T (L)i−1,1 <
T (L)i−1,2 < T (L)i,1 < T (L)i,2. Now suppose that T (L)i−1,2 = x. It follows that all the elements
in the columns to the right of x must be greater than x and all the elements in the columns to
the left of x must be less than x. Since x > T (L)i−1,1 it follows that x = 2(i − 1). Similarly,
if T (L)i,1 = y, then all the elements in the columns to the right of y must be greater than y
and all the elements in the columns to the left of y must be less than y. Since y < T (L)i−1,1 it
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Figure 3: bounce+(L) = 1, bounce−(L) = 3, crossh(L) = 1 and crossv(L) = 2.

follows that y = 2(i − 1) + 1. This means that in the word of w = w1 . . . w2n of L, w2(i−1) = N
and is preceded by i east steps and i− 1 north steps so that point [i, i] is on the path of L and
is preceded by a north step and followed by an east step.

Vice versa, if [i, i] is on the path of L and is preceded by a north step and followed by an east
step, then it is easy to see that in the array T (L) of L, we must have that T (L)i−1,2 = 2(i− 1)
and T (L)i,1 = 2(i − 1) + 1 so that red(T (L)[{i − 1, i}]) must match P2.

Given a path L ∈ Ln, we let crossh(L) denote the number of points [x, x] on L such that
the preceding step is an east step E and the following step is an east step E. This means that
the path crosses the diagonal horizontally. We let crossv(L) denote the number of points [y, y]
on L which is preceded by a north step N and followed by a north step N . This means that
the path crosses the diagonal vertically. For example, for the path L pictured in Figure 3, there
is a horizontal crossing of the diagonal at the point [5, 5] so that crossh(L) = 1 and there are
vertical crossings at the points [4, 4] and [9, 9] so that crossv(L) = 2.

Theorem 5. Let L ∈ Ln. Then the number of P3-matches in L equals crossh(L). Hence, by

symmetry, the number of P4-matches in L equals crossv(L)

Proof. Consider the diagram T (L) of L. Then a P3-match in L corresponds to a pair of columns
i−1 and i such that red(T (L)[{i−1, i}]) matches the array for P3. This means that T (L)i−1,2 <
T (L)i−1,1 < T (L)i,1 < T (L)i,2. Now suppose that T (L)i−1,1 = x. It follows all the elements in
the columns to right of x must be greater than x and all elements in the columns to the left of
x must be less than x. Since x > T (L)i−1,2 it follows that x = 2(i− 1). Similarly, if T (L)i,1 = y.
It follows all the elements in the columns to the right of y must be greater than y and all the
elements in the columns to the left of y must be less than y. Since y < T (L)i−1,1 it follows
that y = 2(i − 1) + 1. This means that in the word of w = w1 . . . w2n of L, w2(i−1) = E and
is preceded by i − 1 east steps and i north steps so that point [i, i] is on the path of L and is
preceded by an east step and followed by an east step.

Vice versa, if [i, i] is on the path of L and is preceded by an east step and followed by an east
step, then it is easy to see that in the array T (L) of L, we must have that T (L)i−1,1 = 2(i− 1)
and T (L)i,1 = 2(i − 1) + 1 so that red(T (L)[{i − 1, i}] must match P3.

5



3 Generating functions

Let Fi(x, t) = FPi
(x, t) for i = 1, . . . , 6. The goal of this section is to compute the generating

functions Fk(x, t) for k = 1, . . . , 6.
To obtain a recurrence for Dyck paths, the usual way is to factorize Dyck paths based on

where it returns to the diagonal for the first time. Application of this decomposition can be
found in many papers focused on lattice path enumeration such as [2], [3] and [11]. We shall
show that similar ideas allow us to obtain recurrences for the number of Pk-matches.

3.1 Pattern P1

For pattern P1, consider the ordinary generating function F1(x, t) as follows,

F1(x, t) := 1 +
∑

n≥1

tn
∑

L∈Ln

xP1-mch(L). (3)

We know for a path L, P1-mch(L) is equal to the number of east steps below subdiagonal
y = x− 1. By our observation in the introduction, F1(x, t) = F6(x, t).

P1

Figure 4: An example of recurrence based on P1.

We split the analysis of P1-mch(L) into two cases. Case 1 is when P1-mch(L) = 0, that is,
path L stays above y = x− 1. It is easy to see that the number of paths in Ln above y = x− 1
is Cn+1 = 1

n+2

(2n+2
n+1

)

, the (n + 1)th Catalan number. Case 2 is when P1-mch(L) > 0, that is,
path L has at least one east step below y = x− 1. Now consider the first time the path touches
y = x − 1 and the first time after that where the path hits a point [i, i] on the diagonal. It
is easy to see that the two steps preceding the point [i, i] must be north steps. An example of
recurrence is pictured in Figure 4, where two boxes are the two positions mentioned above and
three diagonal dots stand for a whatever path follows the second box.

Suppose the position of the first box has coordinates [j, j − 1], j ≥ 1, clearly there are Cj

ways to choose steps before reaching [j, j − 1]. Similarly, suppose the position of the second box
has coordinates [i + j, i + j], i ≥ 1, clearly there are Ci ways to choose steps between [j, j − 1]
and [i+ j, i + j].

Since the ordinary generating function for Catalan numbers is

C(x) =
∑

n≥0

Cnx
n =

1−
√
1− 4x

2x
= 1 + x+ 2x2 + 5x3 + 14x4 + 42x5 · · · , (4)
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it follows that

F1(x, t) =
∑

n≥0

Cn+1t
n +

∑

i≥1

∑

j≥1

CiCjx
iti+jF1(x, t)

=
C(t)− 1

t
+
∑

i≥1

Ci(xt)
i
∑

j≥1

Cjt
jF1(x, t)

=
C(t)− 1

t
+
∑

i≥1

Ci(xt)
i(C(t)− 1)F1(x, t)

=
C(t)− 1

t
+ (C(xt)− 1)(C(t)− 1)F1(x, t)

and therefore by Equation (4),

F1(x, t) =
C(t)− 1

t (1− (C(xt)− 1)(C(t)− 1))
=

2x

x
√
1− 4t+

√
1− 4xt+ x− 1

.

Some initial terms of F1(x, t) are

F1(x, t) = 1 + 2t+ (x+ 5)t2 + (2x2 + 4x+ 14)t3 + (5x3 + 9x2 + 14x+ 42)t4

+(14x4 + 24x3 + 34x2 + 48x+ 132)t5

+(42x5 + 70x4 + 95x3 + 123x2 + 165x+ 429)t6 + · · · .

The number of paths in Ln avoiding P1 is Cn+1, (n + 1)th Catalan number. In general, the
number of paths having exactly k P1-matches has the generating function as follows,

1

k!

∂kF1(x, t)

∂xk

∣

∣

∣

∣

x=0

or
1

k!

∂kF1(x, t)

∂xk

∣

∣

∣

∣

x→0

.

We evaluate the derivative at x = 0 or when x = 0 is a singularity of the derivative, we take the
limit as x approaches zero. For example,

∂F1(x, t)

∂x

∣

∣

∣

∣

x→0

=

(−1 +
√
1− 4t+ 2t

2t

)2

= t2 + 4t3 + 14t4 + 48t5 + 165t6 + 572t7 + 2002t8 + · · · .

The sequence 1, 4, 14, 48, 165, 572, 202, . . . is sequence A002057 in the OEIS [14]. It has a number
of combinatorial interpretations including the number of standard tableaux of shape (n+2, n−1)
and, with an offset of 4, the number of 123-avoiding permutations on {1, 2, · · · , n} for which the
integer n is in the fourth spot. It follows from the hook length formula for the number of standard
tableaux that the number of paths L in Ln with exactly one east below the subdiagonal y = x−1
equals 4((2n − 1)!)/((n − 2)!(n + 2)!) and is equal to the number of 123-avoiding permutations
on {1, 2, · · · , n+ 2} for which the integer n is in the fourth spot.

Similarly, one can obtain the generating function for the number of paths having exactly two
east steps below the subdiagonal as follows,

1

2!

∂2F1(x, t)

∂x2

∣

∣

∣

∣

x→0

= −
(

−1 +
√
1− 4t− 2t

) (

−1 +
√
1− 4t+ 2t

)2

8t2

= 2t3 + 9t4 + 34t5 + 123t6 + 440t7 + 1573t8 + 5642t9 + · · · .
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The sequence 2, 9, 34, 123, 440, 1573, 5642, · · · is sequence A120989 in the OEIS [14]. The nth

term in this sequence counts the level of the first leaf in preorder of a binary tree, summed over
all binary trees with n− 2 edges. Thus the number of paths L in Ln with exactly two east steps
below the subdiagonal y = x− 1 equals the sum of the level of the first leaf in preorder over all
binary trees with n− 2 edges. We leave open the problem of giving a bijective proof of this fact.

Next, we shall answer the following question, for a random path L ∈ Ln, what is the
expectation of P1-mch(L), or in other words, on average how many east steps of L are below
y = x− 1? Consider that

∂F1(x, t)

∂x

∣

∣

∣

∣

x=1

= −−1 +
√
1− 4t+ 2t

2(1− 4t)3/2
(5)

= t2 + 8t3 + 47t4 + 244t5 + 1186t6 + 5536t7 + · · · . (6)

For example, a random L ∈ L7, expectation of P1-mch(L)

E[P1-mch(L) : L ∈ L7] =
5536
(14
7

) ≈ 1.63,

which implies in average there are roughly 1.63 east steps below y = x− 1.
In general, by the OEIS, the coefficient of tn in Equation (6) has formula 1

2((n+1)
(2n
n

)

−4n).
Using Stirling’s formula to approximate n!, we have

E[P1-mch(L) : L ∈ Ln] =
(n+ 1)

(

2n
n

)

− 4n

2
(2n
n

) ∼ n+ 1

2
−

√
πn, (7)

which implies when n is large, for a random path L ∈ Ln, the expected number of east steps
that lie below y = x− 1 is n+1

2 −√
πn.

The sequence 1, 8, 47, 244, 1186, 5536, · · · from Equation (6) is sequence A029760 and A139262
in the OEIS [14]. A029760 and A139262 count the total area under all the Dyck paths from
[0, 0] to [n, n], the total number of inversions in all 132-avoiding permutations of length n and
also total number of two-element anti-chains over all ordered trees on n edges. Again we leave
open the problem of finding a bijective proof of these facts. We suspect that finding a bijective
proof is a challenge because Dyck paths, 132-avoiding permutations and ordered trees are all
Catalan objects while lattice paths in Ln are not.

Next, by manipulating F1(x, t) we can also find the number of paths having even number
many east steps below the subdiagonal y = x− 1. The generating function is as follows,

1

2
(F1(1, t) + F1(−1, t))

= 1 + 2t+ 5t2 + 16t3 + 51t4 + 180t5 + 622t6 + 2288t7 · · · .

Similarly, the generating function for the number of paths having odd number many east steps
below the subdiagonal y = x− 1 is

1

2
(F1(1, t)− F1(−1, t))

= t2 + 4t3 + 19t4 + 72t5 + 302t6 + 1144t7 + 4643t8 · · · .

Neither of the series correspond to entries in the OEIS [14].
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3.2 Pattern P2

For pattern P2, P2-mch(L) counts the number of times L bounces off the diagonal y = x to the
right, in other words, P2-mch(L) = bounce−(L). We shall study

F2(x, t) := 1 +
∑

n≥1

tn
∑

L∈Ln

xP2-mch(L). (8)

As we observed in the introduction, F2(x, t) = F5(x, t).
We shall consider two cases. Case 1 are the paths that start with an east step and Case 2

are the paths that start with a north step. We define

G2(x, t) :=
∑

n≥1

tn
∑

L∈Ln starting with E

xP2-mch(L)

and
H2(x, t) :=

∑

n≥1

tn
∑

L∈Ln starting with N

xP2-mch(L).

Clearly, F2(x, t) = 1 + G2(x, t) +H2(x, t). For H2(x, t), we consider where is the first time a

P2

Figure 5: An example of recurrence based on P2.

path starting with a north step crosses the diagonal y = x horizontally. In the middle diagram
of Figure 5, the three dots stand for a path starting with ‘E’ or an empty path.

H2(x, t) =
∑

j≥1

Cjt
j (G2(x, t) + 1) = (C(t)− 1)(G2(x, t) + 1). (9)

Similarly, for G2(x, t), we consider where is the first time a path starting with an east step
crosses the diagonal y = x vertically. In the right diagram of Figure 5, three dots stand for
a path starting with ‘N ’ or an empty path. Since we want to keep track of P2-matches, here
we need to introduce Catalan’s triangle Ci,j, which is the number of Dyck paths in L2j with i
returns to the diagonal [2]. By [2], Ci,j has generating function as follows,

C(x, t) =
∑

i≥0

∑

j≥0

Ci,jx
itj = 1 +

1−
√
1− 4t

(
√
1− 4t− 1)x+ 2

(10)

9



Then

G2(x, t) =
∑

i≥0

∑

j≥1

Ci,jx
itj (H2(x, t) + 1) =

1−
√
1− 4t

(
√
1− 4t− 1)x+ 2

(H2(x, t) + 1). (11)

By Equation (9),

G2(x, t) =
1−

√
1− 4t

(
√
1− 4t− 1)x+ 2

((C(t)− 1)(H2(x, t) + 1) + 1). (12)

We can then solve G2(x, t) to obtain that

G2(x, t) =

1−
√
1−4t

(
√
1−4t−1)x+2

C(t)

1 + 1−
√
1−4t

(
√
1−4t−1)x+2

− 1−
√
1−4t

(
√
1−4t−1)x+2

C(t)

=
(
√
1− 4t− 1)2

2(
√
1− 4t(t(x− 1) + 1)− t(x− 5)− 1)

.

Then we have

F2(x, t) = 1 +G2(x, t) +H2(x, t)

= 1 +G2(x, t) + (C(t)− 1)(G2(x, t) + 1)

= (G2(x, t) + 1)C(t)

=
−(

√
1− 4t− 1)(

√
1− 4tx−

√
1− 4t− x+ 3)

2(
√
1− 4txt− xt−

√
1− 4tt+ 5t+

√
1− 4t− 1)

.

A few initial terms of F2(x, t) are

F2(x, t) = 1 + 2t+ (x+ 5)t2 + (x2 + 4x+ 15)t3 + (x3 + 5x2 + 16x+ 48)t4

+(x4 + 6x3 + 23x2 + 62x+ 160)t5 + · · · .

F2(0, t) is the generating function for the number of paths that do not bounce off the diagonal
to the right. One can compute that

F2(0, t) =
2(t+

√
1− 4t− 1)

(
√
1− 4t− 5)t−

√
1− 4t+ 1

= 1 + 2t+ 5t2 + 15t3 + 48t4 + 160t5 + 548t6 + 1914t7 + · · · .

The sequence 1, 2, 5, 15, 48, 160, 548, 1914 · · · does not appear in the OEIS [14].
Similarly, we can compute the generating function of the number of paths that bounce at

diagonal to right exactly one time. That is,

∂F2(x, t)

∂x

∣

∣

∣

∣

x=0

=

(

−1 +
√
1− 4t+ 2t

1−
√
1− 4t+

(

−5 +
√
1− 4t

)

t

)2

= t2 + 4t3 + 16t4 + 62t5 + 238t6 + 910t7 + · · · .

The sequence 1, 4, 16, 62, 238, 910 · · · does not appear in the OEIS [14].
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Also we could ask, for a random path L ∈ Ln, what is the expectation of P2-mch(L), or in
other words, on average how many times do L bounce at y = x to right? Consider that

∂F2(x, t)

∂x

∣

∣

∣

∣

x=1

=

(−1 +
√
1− 4t+ 2t

−1 +
√
1− 4t+ 4t

)2

(13)

= t2 + 6t3 + 29t4 + 130t5 + 562t6 + 2380t7 + · · · . (14)

Coefficient of tn in Equation (14) agrees with sequence A008549 of the OEIS [14] which counts
the total area of all the Dyck excursions of length 2n − 2. By OEIS [14], the coefficient of tn is
given by the formula 4n−1 −

(2n−1
n−1

)

. Using Stirling’s formula to approximate n!, one finds that

E[P2-mch(L) : L ∈ Ln] =

∑

L∈Ln
bounce−(L)

|Ln|
=

4n−1 −
(

2n−1
n−1

)

(

2n
n

) ∼
√
πn

4
− 1

2
≈ 0.443

√
n,

which implies when n is large, the expected number of times a random path L ∈ Ln bounces off
the diagonal to the right is roughly 0.443

√
n.

Next, by manipulating F2(x, t) we can also find the number of paths having even number of
bounces off the diagonal to the right. The generating function is as follows,

1

2
(F2(1, t) + F2(−1, t))

= 1 + 2t+ 5t2 + 16t3 + 53t4 + 184t5 + 654t6 + 2368t7 · · · .

Similarly, the generating function for the number of paths having odd number of bounces off
the diagonal to the right is

1

2
(F2(1, t)− F2(−1, t))

= t2 + 4t3 + 17t4 + 68t5 + 270t6 + 1064t7 + 4181t8 · · · .

Again, neither of the series correspond to sequences in the OEIS [14].

3.3 Pattern P3

For pattern P3, as discussed in Section 2, P3-mch(L) counts the number of times L crosses the
diagonal y = x horizontally. We shall study

F3(x, t) := 1 +
∑

n≥1

tn
∑

L∈Ln

xP3-mch(L). (15)

By our observation in the introduction F3(x, t) = F4(x, t).
Similar to the discussion of P2, we consider two cases. Case 1 are the paths that start with

a north step and Case 2 are the paths that start with an east step. We define

G3(x, t) :=
∑

n≥1

tn
∑

L∈Ln starting with E

xP3-mch(L)

and
H3(x, t) :=

∑

n≥1

tn
∑

L∈Ln starting with N

xP3-mch(L).

11



Clearly, F3(x, t) = 1+G3(x, t) +H3(x, t). Essentially, the way we shall decompose the paths in
this case is the same as how we decomposed the paths for pattern P2. For paths starting with a
north step, we consider where is the first the path crosses the diagonal y = x from left to right
and then it is followed by a path starting with an east step or an empty path. Then

H3(x, t) =
∑

j≥1

Cjt
j (xG3(x, t) + 1) = (C(t)− 1)(xG3(x, t) + 1) (16)

Similarly, for paths starting with an east step , we consider where is the first time that the path
crosses the diagonal vertically. Then

G3(x, t) =
∑

j≥1

Cjt
j (H3(x, t) + 1) = (C(t)− 1)(H3(x, t) + 1). (17)

Then by Equation (16),

H3(x, t) = (C(t)− 1) (x(C(t)− 1)(H3(x, t) + 1) + 1)

and we solve the formula above for H3(x, t)

H3(x, t) =
(1−C(t))(x(C(t) − 1) + 1)

x(C(t)− 1)2 − 1

= −
(

2t+
√
1− 4t− 1

) (

2t(x− 1) + (
√
1− 4t− 1)x

)

2
(

2t2(x− 1) + 2
(√

1− 4t− 2
)

tx−
√
1− 4tx+ x

)

Therefore,

F3(x, t) = 1 +G3(x, t) +H3(x, t)

= 1 + C(t)H3(x, t) + C(t)−H3(x, t)− 1 + hN (x, t)

= (H3(x, t) + 1)C(t)

=
2

(2t(x− 1) + (
√
1− 4t− 1)x+

√
1− 4t+ 1)

A few initial terms of F3(x, t) are

F3(x, t)

= 1 + 2t+ (x+ 5)t2 + (6x+ 14)t3 + (x2 + 27x+ 42)t4 + (10x2 + 110x + 132)t5 + · · · .

Next, we shall find the generating function of the number of paths crossing the diagonal hori-
zontally exactly once.

∂F3(x, t)

∂x

∣

∣

∣

∣

x=0

= −2
(

−1 +
√
1− 4t+ 2t

)

(

1 +
√
1− 4t− 2t

)2

= t2 + 6t3 + 27t4 + 110t5 + 429t6 + 1638t7 + · · · ,

The sequence 1, 6, 27, 110, 429, 1638, · · · is sequence A003517 on OEIS [14]. This sequence has
several combinatorial interpretations such as the number of standard tableaux of shape (n+3, n−
2) and the number of permutations of {1, . . . , n+1} with exactly one increasing subsequence of
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length 3. It follows from the hook length formula for the number of standard tableaux that the
number of paths L in Ln with exactly one horizontal crossing equal 6((2n+1)!)/(n−2)!(n+4)!).

Similarly, the number of paths L in Ln with exactly 2 horizontal crossings has the following
generating function:

1

2!

∂2F3(x, t)

∂x2

∣

∣

∣

∣

x→0

=
4
(

−1 +
√
1− 4t+ 2t

)

(

1 +
√
1− 4t− 2t

)2

= t4 + 10t5 + 65t6 + 350t7 + 1700t8 + 7752t9 · · · ,

The sequence 1, 10, 65, 350, 1700, · · · is sequence A003519 on OEIS [14]. It counts the number
of standard tableaux of shape (n − 5, n − 4) from which it follows that the number of paths L
in Ln with exactly 2 horizontal crossings equals 10

n+6

(

2n+1
n−4

)

.
Also we could ask, for a random path L ∈ Ln, what is the expectation of P3-mch(L), or in

other words, on average how many times does L cross y = x from left to right? In this case, we
have computed that

∂

∂x
F3(x, t)|x=1 =

−1 =
√
1− 4t+ 2t

−2 + 8t

= t2 + 6t3 + 29t4 + 130t5 + 562t6 + 2880t7 + 9949t8 + · · ·
=

∂

∂x
F2(x, t)|x=1,

which means the total number of P3-matches in paths in Ln is equal to the total number of
P2-matches paths in Ln.

Next we give a bijection that shows this fact. Since the total number of P3-matches in paths
in Ln is half of total {P3, P4}-matches in paths in Ln and the total number of P2-matches in
paths in Ln is half of total {P2, P5}-matches in paths in Ln, we only need to show that the total
number of {P2, P5}-matches in paths in Ln is equal to the total number of {P3, P4}-matches in
paths in Ln. In other words, we only need to show that the total number of times that all the
paths in Ln bounce off the diagonal is equal to the total number of times that all the paths in
Ln cross the diagonal.

By the reflection principle, we can construct a bijection between the set of paths in Ln

crossing the diagonal k times, denoted by Cn,k and the set of paths in Ln bouncing off the
diagonal k times, denoted by Bn,k. The procedure of the bijection is as follows. For any path
L ∈ Cn,k, L crosses the diagonal k times and suppose L touches the diagonal j times at positions
{p1, p2, · · · , pj}, j ≥ k. First we retain the part between [0, 0] and p1 of the path and flip the
path between p1 and [n, n] along the diagonal, then we can get a new path L1. At the second
step, we retain the part between [0, 0] and p2 of the path L1 and flip the part between p2 and
[n, n] along the diagonal, then we can get a new path L2. We repeat the process above until we
acquire Lj. Lj is a path in Bn,k because the procedure above transforms a crossing of L into a
bouncing of Lj and a bouncing of L into a crossing of Lj . An example is pictured in Figure 6.
L ∈ C5,2 is mapped to L3 ∈ B5,2 under the bijection.

Therefore,

E[P3-mch(L)] = E[P2-mch(L)] ∼
√
nπ

4
− 1

2
≈ 0.443

√
n.

Next, by manipulating F3(x, t) we can also find the number of paths having even number

13



L	 L	1 L	2 L	3

Figure 6: L is mapped to L3 by the bijection.

many horizontal crossings. The generating function is as follows,

1

2
(F3(1, t) + F3(−1, t))

= 1 + 2t+ 5t2 + 14t3 + 43t4 + 142t5 + 494t6 + 1780t7 · · · ,

The sequence 1, 2, 5, 14, 43, 142, 494, . . . is sequence A005317 in the OEIS [14] where no com-
binatorial interpretation is given. Thus we have given a combinatorial interpretation to this
sequence.

Similarly, the generating function for the number of paths having odd number many hori-
zontal crossings is

1

2
(F3(1, t) − F3(−1, t))

= t2 + 6t3 + 27t4 + 110t5 + 430t6 + 1652t7 + 6307t8 · · · ,

in which coefficient of tn also counts number of unordered pairs of distinct length-n binary
words having the same number of 1’s according to A108958 in the OEIS [14]. We leave open
the problem of giving a bijective proof of this fact.

4 Multivariate generating functions

In this section, we shall study multivariate generating functions for ∆-matches for certain ∆ ⊆
{P1, . . . , P6}. Our choices for the ∆ that we consider are motivated by picking those pattern
matching conditions which have the clearest geometric interpretations. Let

F∆(x, t) := 1 +
∑

n≥1

tn
∑

L∈Ln





∏

j∈∆
x
Pj-mch(L)
j



 ,

where ∆ is a subset of {1, 2, 3, 4, 5, 6}. We start by looking at the two elements sets that have
symmetry, namely, ∆ = {1, 6}, ∆ = {2, 5}, and ∆ = {3, 4}.

4.1 P1 and P6

Pattern P1 has one east step below y = x − 1 and P6 has one east step above y = x + 1. We
know that for a path L ∈ Ln, P1-mch(L) and P6-mch(L) are the numbers of east steps below
y = x− 1 and above y = x+ 1, respectively.

14



P1 P6

Figure 7: Pattern P1 and P6.

In this subsection, we shall consider the multivariate generating function

F1,6(x1, x6, t) := 1 +
∑

n≥1

tn
∑

L∈Ln

x
P1-mch(L)
1 x

P6-mch(L)
6 .

We use essentially the same ideas as in Section 3.1 to decompose the paths in Ln to obtain
recurrences that will allow us to compute F1,6(x1, x6, t). In this case, we take three cases into
account. Case 1 are the paths that have no P1-match or P6-match. In addition, we can see
paths avoiding P1 and P6 must stay between y = x − 1 and y = x + 1. It is easy to see that
if the word of such as path is u1 . . . u2n, then either u2i−1u2i = EN or u2i−1u2i = NE for all
i. Thus the number of paths in Ln bounded by y = x− 1 and y = x + 1 is 2n. Case 2 are the
paths L such that the first pattern matching of either P1 or P6 in path L is P1 and Case 3 are
the paths L such that the first pattern matching of either P1 or P6 in L is P6. Then we have

F1,6(x1, x6, t) =
∑

n≥0

2ntn +
∑

i≥1

∑

j≥1

(

Ci2
j−1xi1t

i+j + CiC2j−1xi6t
i+j
)

F1,6(x1, x6, t)

=
1

1− 2t
+

t

1− 2t
(C(x1t) + C(x6t)− 2)F1,6(x1, x6, t).

Then solving above equation for F1,6, we have

F1,6(x1, x6, t) =
2x1x6

(

−1 +
√
1− 4x1t

)

x6 +
(

−1 +
√
1− 4x6t

)

x1 + 2x1x6

= 1 + 2t+ (x1 + x6 + 4)t2 + (2x21 + 4x1 + 2x26 + 4x6 + 8)t3

+(5x31 + 9x21 + 12x1 + 5x36 + 9x26 + 12x6 + 2x1x6 + 16)t4 + · · · .

Clearly, F1,6(x, 1, t) = F1,6(1, x, t) = F1(x, t). Next, we discuss coefficients of x1t
n and x1x6t

n in
F1,6(x1, x6, t) which count the number of paths in Ln having exactly one P1 pattern and avoiding
P6 and the number of paths in Ln having exactly one P1 and exactly one P6. In general, the
generating function for coefficients of xj1x

k
6 is

1

j!k!

∂j+kF1,6(x1, x6, t)

∂xj1∂x
k
6

∣

∣

∣

∣

∣

x1=0,x6=0

, (18)

where if the derivative cannot be evaluated at zero, we take the limit.
By the symmetry of P1 and P6, the coefficient of x1t

n in F1,6(x1, x6, t) equals the coefficient
of x6t

n in F1,6(x1, x6, t). By Equation (18), the generating function for the coefficients of x1t
n

in F1,6(x1, x6, t) equals

t2

(1− 2t)2
= t2 + 4t3 + 12t4 + 32t5 + 80t6 + 192t7 + 448t8 · · · .
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The sequence 1, 4, 12, 32, 80, 192, · · · is A001787 in the OEIS [14]. The nth term of this sequence
is n2n−1 which means that the number of paths L ∈ Ln with exactly one east step below the
subdiagonal y = x− 1 and no east step above the superdiagonal y = x+ 1 equals (n − 1)2n−2.
This is easy to prove directly. That is, if L is such a path, the one east that occurs below the
subdiagonal y = x−1 must arise by starting at a point [a, a] on the diagonal where 0 ≤ a ≤ n−2
followed by a sequence EENN . If we remove this sequence from the word of L, we will end
up with the word u1 . . . u2n−4 of path L′ ∈ Ln−2 which has no east steps either below the
subdiagonal y = x − 1 or above the superdiagonal y = x + 1. It is easy to see that in such a
path L′ either u2i−1u2i = EN or u2i−1u2i = NE for all i. Hence there are 2n−2 such paths L′

so that the number of paths L ∈ Ln with exactly one east step below the subdiagonal y = x− 1
and no east step above the superdiagonal y = x+ 1 equals (n− 1)2n−2.

The generating function of the coefficients of x1x6t
n in F1,6(x1, x6, t) equals

2t4

(1− 2t)3
= 2t4 + 12t5 + 48t6 + 160t7 + 480t8 + 1344t9 + · · · .

The sequence 2, 12, 48, 160, 480, · · · is sequence A001815 in the OEIS [14]. We can show directly
that the number of paths L ∈ Ln with exactly one east step below the subdiagonal y = x − 1
and exactly step above the superdiagonal y = x + 1 equals (n − 2)(n − 3)2n−4. That is, if L
is such a path, then the one east that occurs below the subdiagonal y = x − 1 must arise by
starting at a point [a, a] on the diagonal where 0 ≤ a ≤ n − 2 followed by a sequence EENN
and the one east that occurs above the subdiagonal y = x+ 1 must arise by starting at a point
[b, b] on the diagonal where 0 ≤ a ≤ n−2 followed by a sequence NNEE. We have n−1 choices
for the point [a, a]. But these n − 1 choices lead to different situations according to different
values of a. If a = 0 or a = n− 2, we have n− 3 choices to choose a point [b, b] on the diagonal
followed by a sequence NNEE. If 0 < a < n− 2, there are n− 4 choices to choose a point [b, b]
on the diagonal followed by a sequence NNEE. So the total ways to choose positions of one
P1-match and one P6-match is equal to 2(n − 3) + (n− 3)(n− 4) = (n− 2)(n − 3). We remove
sequence EENN and NNEE from the word of L, we will end up with the word u1 . . . u2n−8 of
path L′ ∈ Ln−4 which has no east steps either below the subdiagonal y = x − 1 or above the
superdiagonal y = x+1. Hence there are 2n−4 such paths L′ so that the number of path L ∈ Ln

with exactly one east step below the subdiagonal y = x− 1 and exactly on east step above the
superdiaganal y = x+ 1 equals (n− 2)(n − 3)2n−4.

If we are interested in counting lattice paths by the number of east steps below y = x− 1 or
above y = x+ 1, then we consider the following generating function:

F1,6(x, x, t) =
x

−1 + x+
√
1− 4xt

.

And also clearly,
∂F1,6(x, x, t)

∂x

∣

∣

∣

∣

x=1

= 2
∂F1(x, t)

∂x

∣

∣

∣

∣

x=1

because the symmetry of P1 and P6. Then by Equation (7),

E[{P1, P6}-mch(L) : L ∈ Ln] = 2E[P1-mch(L) : L ∈ Ln] ∼ n+ 1− 2
√
πn.

Next, by manipulating F1,6(x1, x6, t) we can also find the number of paths having even
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number many east steps below y = x− 1 or above y = x+ 1. The generating function equals

1

2
(F1,6(1, 1, t) + F1,6(−1,−1, t)) (19)

= 1 + 2t+ 4t2 + 12t3 + 36t4 + 132t5 + 456t6 + 1752t7 · · · . (20)

Similarly, the generating function for the number of paths having odd number many east
steps below the subdiagonal y = x− 1 or above y = x+ 1 is

1

2
(F1,6(1, 1, t) − F1,6(−1,−1, t)) (21)

= 2t2 + 8t3 + 34t4 + 120t5 + 468t6 + 1680t7 + 6530t8 · · · . (22)

Neither of the two sequences above is recorded in the OEIS [14].

4.2 P2 and P5

In this subsection, we shall study

F2,5(x2, x5, t) := 1 +
∑

n≥1

tn
∑

L∈Ln

x
P2-mch(L)
2 x

P5-mch(L)
5 .

F2,5(x2, x5, t) is the generating function which keeps track of the number of lattice paths by

P2 P5

Figure 8: Pattern P2 and P5.

the number of times it bounces off the diagonal to the right or to the left. By the symmetry
induced by reflecting paths about the diagonal discussed in the introduction, it is easy to see
that F2,5(x2, x5, t) is a symmetric function in x2 and x5. It is also clear that F2,5(x, x, t) is the
generating function which counts number of times a lattice path in Ln bounces off the diagonal
y = x.

First we define

G2,5(x2, x5, t) :=
∑

n≥1

tn
∑

L∈Ln starting with E

x
P2-mch(L)
2 x

P5-mch(L)
5 tn

and
H2,5(x2, x5, t) :=

∑

n≥1

tn
∑

L∈Ln starting with N

x
P2-mch(L)
2 x

P5-mch(L)
5 tn.

Clearly,
F2,5(x2, x5, t) = 1 +G2,5(x2, x5, t) +H2,5(x2, x5, t).

Here we employ the decomposition of paths used in Section 3.2, then we have

G2,5(x2, x5, t) =
∑

i≥0

∑

j≥1

Ci,jx
i
2t

j (H2,5(x2, x5, t) + 1)

= (C(x2, t)− 1)(H2,5(x2, x5, t) + 1)
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and

H2,5(x2, x5, t) =
∑

i≥0

∑

j≥1

Ci,jx
i
5t

j (G2,5(x2, x5, t) + 1)

= (C(x5, t)− 1)(G2,5(x2, x5, t) + 1),

where C(x, t) is given as Equation (10). Then

G2,5(x2, x5, t) = (C(x2, t)− 1) ((C(x5, t)− 1) (G2,5(x2, x5, t) + 1) + 1) .

Solving the above formula for G2,5 we have,

G2,5(x2, x5, t) = − (C(x2, t)− 1)C(x5, t)

C(x2, t)(C(x5, t)− 1)− C(x5, t)

= − 2(1 − x5)t+ (x5 − 2)
(

1−
√
1− 4t

)

1 +
√
1− 4t+ x2(x5 − 1)

(

1−
√
1− 4t

)

− x5 +
√
1− 4tx5 + 2(1− x2x5)t

.

Therefore,

F2,5(x2, x5, t) = 1 +G2,5(x2, x5, t) +H2,5(x2, x5, t)

= 1 +G2,5(x2, x5, t) + (C(x5, t)− 1)(G2,5(x2, x5, t) + 1)

= C(x5, t)(G2,5(x2, x5, t) + 1)

=

(

1 +
1−

√
1− 4t

2− x5
(

1−
√
1− 4t

)

)

·
(

1− 2(1− x5)t+ (x5 − 2)
(

1−
√
1− 4t

)

1 +
√
1− 4t+ x2(x5 − 1)

(

1−
√
1− 4t

)

− x5 +
√
1− 4tx5 + 2(1− x2x5)t

)

.

A few initial terms of F2,5(x2, x5, t) are

F2,5(x2, x5, t)

= 1 + 2t+ (x2 + x5 + 4)t2 + (x22 + 4x2 + x25 + 4x5 + 10)t3

+(x32 + 5x22 + 14x2 + x35 + 5x25 + 14x5 + 2x2x5 + 28)t4

+(x42 + 6x32 + 21x22 + 48x2 + x45 + 6x35 + 21x25 + 48x5 + 2x22x5 + 2x2x
2
5 + 12x2x5 + 84)t5

+ · · · .

By Equation (18), we can obtain the generating functions of the coefficients of x2t
n in F2,5(x2, x5, t)

which equals

∂F2,5(x2, 0, t)

∂x2

∣

∣

∣

∣

x2=0

=
1−

√
1− 4t+ 2t(−2 +

√
1− 4t+ t)

2t2

= t2 + 4t3 + 14t4 + 48t5 + 165t6 + 572t7 + 7072t8 + · · ·

=
∂F1(x, t)

∂x

∣

∣

∣

∣

x→0

.

This implies there exists a bijection between paths having exactly one P2-match but no P5-
matches and paths having exactly one step below y = x− 1. We leave this as an open problem.
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Similarly, we can get coefficients of x2x5t
n,

∂2F2,5(x2, x5, t)

∂x2∂x5

∣

∣

∣

∣

x2=x5=0

= 2t4 + 12t5 + 56t6 + 236t7 + 948t8 + 3712t9 · · · .

The sequence 2, 12, 56, 236, 948, · · · is not in the OEIS [14].
It is also the case that F2,5(1, x, t) = F5(x, t) = F2(x, t) = F2,5(x, 1, t) and

F2,5(0, 0, t) = 1 + 2t+ 4t2 + 10t3 + 28t4 + 84t5 + 264t6 · · ·
= 1 + 2C1t+ 2C2t

2 + 2C3t
3 + 2C4t

4 + 2C5t
5 + · · · ,

where Ck is the kth Catalan number. F2,5(x, x, t) is the generating function over paths L in Ln

by the number of times L bounces off the diagonal.

F2,5(x, x, t) =
1−

√
1− 4t− t− x+ x2t

−x+ (1 + x2)t

= 1 + 2t+ 2(x+ 2)t+ 2(x+ 2)t2 + 2(x2 + 4x+ 5)t3

+2(x3 + 6x2 + 14x+ 14)t4 + 2(x4 + 8x3 + 27x2 + 48x+ 42)t5 · · · .

We take partial derivative of F2,5(x, x, t) with respect x and evaluate at x = 1,

∂F2,5(x, x, t)

∂x

∣

∣

∣

∣

x=1

=

√
1− 4t

−1 + 4t
− 1− 2t

−1 + 4t

=
∑

n≥2

(

4n

2
− 2

(

2n− 1

n− 1

))

tn

= 2t2 + 12t3 + 58t4 + 260t5 + 1124t6 + 4760t6 + 19898t8 + · · ·

= 2
∂F2(x, t)

∂x

∣

∣

∣

∣

x=1

.

It follows that

E[{P2, P5}-mch(L) : L ∈ Ln] = 2E[P2-mch(L) : L ∈ Ln] ≈
√
πn

2
− 1 ≈ 0.886

√
n

gives the expected number of times a path in Ln bounces off the diagonal.
1
2(F2,5(1, 1, t) + F2,5(−1,−1, t)) is the generating function of the number of lattice paths in

Ln that bounce off the diagonal an even number of times. We have computed that

1

2
(F2,5(1, 1, t) + F2,5(−1,−1, t))

=
1−

√
1− 4t+

(

−6 + 4
√
1− 4t

)

t+ 4t2

1−
√
1− 4t+

(

−4 + 2
√
1− 4t

)

t

= 1 + 2
∑

n≥1

(

2n − 2

n− 1

)

tn

= 1 + 2t+ 4t2 + 12t3 + 40t4 + 140t5 + 504t6 + · · · .
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The sequence 2, 4, 12, 40, 140, · · · is sequence A028329 in the OEIS [14]. It would be nice to have
a direct combinatorial proof that the number of lattice paths in Ln that bounce off the diagonal
an even number of times equals 2

(2n−2
n−1

)

.
1
2(F2,5(1, 1, t) − F2,5(−1,−1, t)) is the generating function of the number of lattice paths L

in Ln that bounce off the diagonal an odd number of times. We have computed that

1

2
(F2,5(1, 1, t) − F2,5(−1,−1, t))

= 2
∑

n≥2

(

2n− 2

n− 2

)

tn

= 2t2 + 8t3 + 30t4 + 112t5 + 420t6 + 1584t7 · · · .

The sequence 2, 8, 30, 112, 420, 1584, · · · is sequence A162551 in the OEIS [14]. It would be nice
to have a direct combinatorial proof of that the number of lattice paths in Ln that bounce off
the diagonal an odd number of times equal 2

(

2n−2
n−2

)

.

4.3 P3 and P4

We define
F3,4(x3, x4, t) := 1 +

∑

n≥1

tn
∑

L∈Ln

x
P3-mch(L)
3 x

P4-mch(L)
4 , (23)

where x3 is used to keep track of the number of horizontal crossings and x4 is used to keep track
of the number of vertical crossings. Clearly, F3,4(x3, x4, t) is symmetric in x3 and x4.

P3 P4

Figure 9: Pattern P3 and P4.

We also define

G3,4(x3, x4, t) :=
∑

n≥1

tn
∑

L∈Ln starting with E

x
P3-mch(L)
3 x

P4-mch(L)
4

and
H3,4(x3, x4, t) :=

∑

n≥1

tn
∑

L∈Ln starting with N

x
P3-mch(L)
3 x

P4-mch(L)
4 .

We employ the same decomposition of paths used in Section 4.2 for P3 and P4. Then

H3,4(x3, x4, t) =
∑

j≥1

Cjt
j (x3G3,4(x3, x4, t) + 1) = (C(t)− 1)(x3G3,4(x3, x4, t) + 1)

and

G3,4(x3, x4, t) =
∑

j≥1

Cjt
j (x4H3,4(x3, x4, t) + 1) = (C(t)− 1)(x4H3,4(x3, x4, t) + 1).
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Combining the two equations above, we can then solve for G3,4 to obtain that

G3,4(x3, x4, t) =
(1− C(t))((x4C(t)− 1) + 1)

x3x4(C(t)− 1)2 − 1

= −
(

−1 +
√
1− 4t+ 2t

) (

2t(1− x4) +
(

−1 +
√
1− 4t

)

x4
)

−2(−1 +
√
1− 4t)x3x4 + 4(−2 +

√
1− 4t)x3x4t+ 4(x3x4 − 1)t2

.

Then

F3,4(x3, x4, t) = 1 +G3,4(x3, x4, t) +H3,4(x3, x4, t)

= 1 +G3,4(x3, x4, t) + (C(t)− 1)(x3G3,4(x3, x4, t) + 1)

= (x3C(t)− x3 + 1)G3,4(x3, x4, t) +C(t)

=
1−

√
1− 4t

2t
−

(

1− 1−
√
1−4t
2t

)(

1− x3 +
1−

√
1−4t
2t x3

)(

1− x4 +
1−

√
1−4t
2t x4

)

−1 +
(

−1 + 1−
√
1−4t
2t

)2
x3x4

.

A few initial terms of F3,4(x3, x4, t) are

F3,4(x3, x4, t)

= 1 + 2t+ (x3 + x4 + 4)t2 + (4x3 + 4x4 + 2x3x4 + 10)t3

+(14x3 + 14x4 + x23x4 + x3x
2
4 + 12x3x4 + 28)t4

+(48x3 + 48x4 + 2x23x
2
4 + 8x23x4 + 8x3x

2
4 + 54x3x4 + 84)t5

+ · · · .

By symmetry, F3,4(1, x, t) = F4(x, t) = F3(x, t) = F3,4(x, 1, t). It is also clear that F3,4(0, 0, t) =
F2,5(0, 0, t) = 2C(t), where C(t) is the generating function of Catalan numbers, since if a path
in Ln has no vertical or horizontal crossings, then the path either stays on or below the diagonal
or on and above the diagonal.

By Equation (18), we see that coefficients of x3t
n in F3,4(x3, x4, t) yield the generating

function of the number of paths in Ln that have exactly one horizontal crossing and no vertical
crossings. We have computed that

∂F3,4(x3, 0, t)

∂x3

∣

∣

∣

∣

x3=0

=
1−

√
1− 4t+ 2t(−2 +

√
1− 4t+ t)

2t2

= t2 + 4t3 + 14t4 + 48t5 + 165t6 + 572t7 + 7072t8 + · · ·

=
∂F1(x, t)

∂x

∣

∣

∣

∣

x→0

=
∂F2,5(x2, 0, t)

∂x2

∣

∣

∣

∣

x2=0

,

which implies the number of paths in Ln having exactly one P3-match and avoiding P4 is equal
to the number of paths in Ln having exactly one P2-match and avoiding P5. This can be verified
by the bijection defined in Section 3.3. However, coefficients of x3x4t

n in F3,4(x3, x4, t) is not
equal to the coefficient of x2x5t

n in F2,5(x2, x5, t). This is due to the fact that a path in Ln
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cannot cross the diagonal horizontally twice without crossing the diagonal vertically. We have
computed that

∂2F3,4(x3, x4, t)

∂x3∂x4

∣

∣

∣

∣

x3=x4=0

= 2
∂F3(x, t)

∂x

∣

∣

∣

∣

x=0

= − 8t2
(

−1 +
√
1− 4t+ 2t

)

(
√
1− 4t

(

1 +
√
1− 4t− 2t

)3

= 2t2 + 12t3 + 54t4 + 220t5 + 858t6 + 3276t7 + · · · ,

The sequence 2, 12, 54, 220, 858, 3276, · · · is Column 2 in A118920 and the exactly same inter-
pretation is given by Emeric Deutsch in the OEIS [14].

For F3,4(x, x, t), we can show that F3,4(x, x, t) = F2,5(x, x, t) by the bijection defined in
Section 3.3, which gives us that for a random L ∈ Ln, the expectation of the number of crossings
has asymptotic approximation as follows,

E[{P3, P4}-mch(L)] ∼
√
πn

2
− 1 ≈ 0.886

√
n,

and also
1

2
(F3,4(1, 1, t) + F3,4(−1,−1, t)) =

1

2
(F2,5(1, 1, t) + F2,5(−1,−1, t)).

4.4 P2 and P4

Due to space limitations, we shall consider only one more set of patterns of size 2, namely,
∆ = {2, 4}. First, we define

F2,4(x2, x4, t) := 1 +
∑

n≥1

tn
∑

L∈Ln

x
P2-mch(L)
2 x

P4-mch(L)
4 .

F2,4(x2, x4, t) counts the number of lattice paths by the number of times it bounces off the

P2 P4

Figure 10: Pattern P2 and P4.

diagonal to the right and by the the number of times it crosses the diagonal vertically. It follows
that F2,4(x, x, t) is the generating function over lattice paths L in Ln by the number of times L
touches the diagonal with a north step. By symmetry, F3,5(x, x, t) is also the generating function
over lattice paths L in Ln by the number of times L touches the diagonal with an east step.

First we define

G2,4(x2, x4, t) :=
∑

n≥1

tn
∑

L∈Ln starting with E

x
P2-mch(L)
2 x

P4-mch(L)
4
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and
H2,4(x2, x4, t) :=

∑

n≥1

tn
∑

L∈Ln starting with N

x
P2-mch(L)
2 x

P4-mch(L)
4 .

Clearly,
F2,4(x2, x4, t) = 1 +G2,4(x2, x4, t) +H2,4(x2, x4, t).

Employing the same decomposition that is used in Section 4.2, we have

G2,4(x2, x4, t) =
∑

i≥0

∑

j≥1

Ci,jx
i
2t

j (x4H2,4(x2, x4, t) + 1)

= (C(x2, t)− 1) (x4H2,4(x2, x4, t) + 1)

and

H2,4(x2, x4, t) =
∑

j≥1

Cjt
j(G2,4(x2, x4, t) + 1)

= (C(t)− 1)(G2,4(x2, x4, t) + 1).

Combining the two equations above, we can solve them for G2,4,

G2,4(x2, x4, t) = −(C(x2, t)− 1)(x4(C(t)− 1) + 1)

x4(C(x2, t)− 1)(C(t)− 1)− 1
.

Then

F2,4(x2, x4, t) = 1 +G2,4(x2, x4, t) +H2,4(x2, x4, t)

= 1 +G2,4(x2, x4, t) + (C(t)− 1)(G2,4(x2, x4, t) + 1)

= C(t)(G2,4(x2, x4, t) + 1)

=
(x2 − 2)

(

−1 +
√
1− 4t

)

+ 2(x2 − 1)t

x4
(

−1 +
√
1− 4t

)

+ x2
(

2 +
(

−1 +
√
1− 4t

)

+ 3x4 − x4
√
1− 4t

)

t
.

A few initial terms are

F2,4(x2, x4, t)

= 1 + 2t+ (x2 + x4 + 4)t2 + (x22 + 3x2 + 5x4 + x2x4 + 10)t3

+(x32 + 4x22 + 9x2 + x24 + 19x4 + x22x4 + 7x2x4 + 28)t4

+(x42 + 5x32 + 14x22 + 28x2 + 8x24 + 68x4 + x32x4 + 2x2x
2
4 + 9x22x4 + 32x2x4 + 84)t5 + · · · .

By Equation (18), the coefficient of x2t
n in F2,4(x2, x4, t) is the number of paths in Ln which

bounce off the diagonal to the right exactly one time but do not cross the diagonal vertically.
We have computed that

∂F2,4(x2, 0, t)

∂x2

∣

∣

∣

∣

x2=0

= −
(

−1 +
√
1− 4t

)3

8t

= t2 + 3t3 + 9t4 + 28t5 + 90t6 + 297t7 + 1001t8 + · · · .

The sequence 1, 3, 9, 28, 90, 297, · · · is sequence A000245 in the OEIS [14] which has several
interpretations such as the number of permutations on {1, 2, · · · , n + 2} that are 123-avoiding
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and for which the integer n is in the third spot, the number of lattice paths in Ln−1 which touch
but do not cross the y = x− 1 and the number of Dyck paths in Ln that start with ‘EE’.

Similarly, the coefficient of x4t
n in F2,4(x2, x4, t) is the number of paths in Ln which have

exactly one vertical crossing but never bounce off the diagonal to the right. We have computed
that

∂F2,4(0, x4, t)

∂x4

∣

∣

∣

∣

x4=0

= −
(

−3 +
√
1− 4t

) (

−1 +
√
1− 4t+ 2t

)2

8t2

= t2 + 5t3 + 19t4 + 68t5 + 240t6 + 847t7 + 3003t8 + · · · .

The sequence 1, 5, 19, 68, 240, · · · is sequence A070857 in the OEIS [14] which has no combina-
torial interpretation. Thus we have given a combinatorial interpretation to this sequence.

The coefficient of x2x4t
n in F2,4(x2, x4, t) is the number of paths in Ln which bounce off the

diagonal to the right exactly once and cross the diagonal vertically exactly one. The correspond-
ing generating function equals

∂2F2,4(x2, x4, t)

∂x2∂x4

∣

∣

∣

∣

x2=x4=0

= −
(

−1 +
√
1− 4t

)3 (−2 +
√
1− 4t

) (

−1 +
√
1− 4t+ 2t

)

16t2

= t3 + 7t4 + 32t5 + 129t6 + 495t7 + 1859t8 + · · · ,

which has no matches in the OEIS [14].
As we mentioned, F2,4(x, x, t) is the generating function for the times of paths touching the

diagonal y = x with a north step,

F2,4(x, x, t) =
1−

√
1− 4t− t− x+ x2t

−x+ (1 + x)2t

= 1 + 2t+ (2x+ 4)t2 + (2x2 + 8x+ 10)t3 + (2x3 + 12x2 + 28x+ 28)t4 + · · ·
= F2,5(x, x, t) = F3,4(x, x, t).

This fact can be also shown by constructing a bijection. Let Cn,k denote the set of paths
in Ln that cross the diagonal k times and Tn,k denote the set of paths in Ln that touch the
diagonal with a north step k times.

Next, we shall construct a bijection between Tn,k and Cn,k, which is similar to the bijection
defined in Section 3.3. For any path L ∈ Tn,k, assume L touches the diagonal j times and these
positions are denoted by {p1, p2, · · · , pj}. We let p0 = [0, 0] and pj+1 = [n, n]. If pi is a bouncing
right position or pi is a horizontal crossing position, we flip the part between pi−1 and pi along
the diagonal. Then we obtain a new path L′. In this bijection, we can see that the number of
crossings of L is equal to the number of north-touchings of L′, and the number of north-touchings
of L is equal to the number of crossings of L′. For example, in Figure 11, L is mapped to L′

and {P2, P4}-mch(L) = {P3, P4}-mch(L′) = 3 and {P3, P4}-mch(L) = {P2, P4}-mch(L′) = 2.
Because F2,4(x, x, t) = F3,4(x, x, t), for a random L ∈ Ln,

E[{P2, P4}-mch(L)] ∼ πn

2
− 1 ≈ 0.886

√
n

24



L L'

Figure 11: L is mapped to L′ by the bijection.

4.5 P2, P3, P4 and P5

The last example of this section is a generating functions of a subset of {1, . . . , 6} of size 4. That
is, we shall study the generating function

F2,3,4,5(x2, x3, x4, x5, t) := 1 +
∑

n≥1

tn
∑

L∈Ln

x
P2-mch(L)
2 x

P3-mch(L)
3 x

P4-mch(L)
4 x

P5-mch(L)
5 .

For convenience, in this subsection we use F2,3,4,5 to denote F2,3,4,5(x2, x3, x4, x5, t), G2,3,4,5 to
denote G2,3,4,5(x2, x3, x4, x5, t) and H2,3,4,5 to denote H2,3,4,5(x2, x3, x4, x5, t) where

G2,3,4,5 := 1 +
∑

n≥1

tn
∑

L∈Ln starting with E

5
∏

k=2

x
Pk-mch(L)
k

and

H2,3,4,5 := 1 +
∑

n≥1

tn
∑

L∈Ln starting with N

5
∏

k=2

x
Pk-mch(L)
k .

Similar to the recurrences used in previous subsections, we have

G2,3,4,5 =
∑

i≥0

∑

j≥1

Ci,jx
i
2t

j (x4H2,3,4,5 + 1)

= (C(x2, t)− 1) (x4H2,3,4,5 + 1)

and

H2,3,4,5 =
∑

i≥0

∑

j≥1

Ci,jx
i
5t

j (x3G2,3,4,5 + 1)

= (C(x5, t)− 1) (x3G2,3,4,5 + 1)

Combining the two equations above, we can solve them for G2,3,4,5,

G2,3,4,5 =
(C(x2, t)− 1)(x4(C(x5, t)− 1) + 1)

x3x4(C(x2, t)− 1)(C(x5, t)− 1)− 1
.
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Then

F2,3,4,5

= 1 +G2,3,4,5 +H2,3,4,5

= 1 +G2,3,4,5 + (C(x5, t)− 1) (x3G2,3,4,5 + 1)

= C(x5, t) (x3G2,3,4,5 + 1) + (1− x3)G2,3,4,5

=
P (x2, x3, x4, x5, t)

Q(x2, x3, x4, x5, t)
,

where

P (x2, x3, x4, x5, t) =

(−1 +
√
1− 4t+ 2t)x3(−1 + x4) + x4 −

√
1− 4tx4 − 2tx4 + x2(−(−1 +

√
1− 4t)(−2 + x5)−

2t(−1 + x5)) + 2
√
1− 4tx5 + 2tx5 − 2(−2 +

√
1− 4t+ x5)

and

Q(x2, x3, x4, x5, t) =

2+ (−1+
√
1− 4t+2t)x3x4 +(−1+

√
1− 4t)x5 + x2(−1+

√
1− 4t− (−1+

√
1− 4t+2t)x5).

One can imagine that even a few initial terms of F2,3,4,5(x2, x3, x4, x5, t) are very long so that
we will not list them here. However, it is easy to verify that the constant coefficients of tn is
just 2Cn because there are two sets of Dyck paths, namely, the ones that stay on or above the
diagonal and the ones that stay on or below the diagonal.

By manipulating F2,3,4,5(x2, x3, x4, x5, t), one is able to answer certain complicated enumera-
tive problems, such as how many paths in Ln are there that cross the diagonal vertically exactly
once and horizontally exactly twice, and bounce off the diagonal to the right once but not to
the left. The answer to this question has the generating function as follows,

1

2!

∂4F2,3,4,5(x2, x3, x4, 0, t)

∂x2∂x23∂x4

∣

∣

∣

∣

x2=x3=x4=0

=

(

1−
√
1− 4t

)5

16

= 2t5 + 10t6 + 40t7 + 150t8 + 550t9 + 2002t10 + 7280t11 · · · .

Amazingly, the sequence 2, 10, 40, 150550, 2002, · · · is twice the sequence A000344 in the OEIS
[14], which has interpretations such as the number of paths in Ln−3 that touch but do not cross
y = x − 2 and the number of standard tableaux of shape (n − 1, n − 5). We leave open the
problem of finding a bijective proofs of these facts.

Next, we consider the formula F2,3,4,5(x, x, x, x, t) which gives us the generating functions for
the times of touching the diagonal,

F2,3,4,5(x, x, x, x, t) =
1 + (x− 1)

(

−1 +
√
1− 4t

)

1 +
(

−1 +
√
1− 4t

)

x

= 1 + 2t+ (4x+ 2)t2 + (8x2 + 8x+ 4)t3 + (16x3 + 24x2 + 20x+ 10)t4

+(32x4 + 64x3 + 72x2 + 56x+ 28)t5 + · · · .
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Next, we want to ask for a random L ∈ Ln how many times in average that L touches the
diagonal. Applying the same idea that we used in previous sections, we see that

∂F2,3,4,5(x, x, x, x, t)

∂x

∣

∣

∣

∣

x=1

=

(√
1− 4t− 1

)2

4t− 1

= 4t2 + 24t3 + 116t4 + 520t5 + 2248t6 + 9530t7 + · · ·

= 4
∂F2(x, t)

∂x

∣

∣

∣

∣

x=1

.

So for a random L ∈ Ln, the expectation of times L touches the diagonal is that

E[{P2, P3, P4, P5}-mch(L)] =
4n − 4

(2n−1
n−1

)

(2n
n

) ∼
√
πn− 2 ≈ 1.772

√
n.

Similarly, we can also obtain the generating functions for the number of paths touching the
diagonal an even number of times or an odd number of times. We have computed that

1

2
(F2,3,4,5(1, 1, 1, 1, t) + F2,3,4,5(−1,−1,−1,−1, t)) (24)

=
4t+

√
1− 4t

4t+ 2
√
1− 4t− 1

(25)

= 1 + 2t+ 2t2 + 12t3 + 34t4 + 132t5 + 468t6 + 1752t7 + 6530t8 + · · · . (26)

and

1

2
(F2,3,4,5(1, 1, 1, 1, t) − F2,3,4,5(−1,−1,−1,−1, t))

= −2
(

−1 +
√
1− 4t+ 2t

)

−1 + 2
√
1− 4t+ 4t

= 4t2 + 8t3 + 36t4 + 120t5 + 456t6 + 1680t7 + 6340t8 + · · · .

Neither of the two series have matches in the OEIS [14].
By observing Equation (20) and (22), we find that coefficient of tk in Equation (26) is equal

to
{

coefficient of tk in 1
2(F1,6(1, 1, t) − F1,6(1, 1, t)), if k is even

coefficient of tk in 1
2(F1,6(1, 1, t) + F1,6(1, 1, t)), if k is odd.

This is because all the six patterns in L2 are mutually exclusive. For any path L ∈ Lk,
L2-mch(L) = k − 1, which implies that

{P1, P6}-mch(L) + {P2, P3, P4, P5}-mch(L) = k − 1.

If k is odd, {P1, P6}-mch(L) and {P2, P3, P4, P5}-mch(L) have the same parity and otherwise,
they do not.
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5 Future research

In this paper, we computed the generating functions FPk
(x, t) for k = 1, . . . 6 and F∆(x, t) for

certain selected ∆ ⊆ {1, . . . , n}. In a subsequent paper, we will systematically compute F∆(x, t)
for all sets of size two. There are only nine such generating functions up to symmetry and
we have computed five of them since FP2,P3

(x2, x3, t) is a specialization of F2,3,4,5. The ones
that we have not computed in the paper are represented by FP1,P2

(x1, x2, t), FP1,P3
(x1, x3, t),

FP1,P4
(x1, x4, t), and FP1,P5

(x1, x5, t). As a special case for pattern P1, P2, F1,2(x, x, t) keeps
track of the number of paths in Ln that have k steps below the diagonal. For any fixed k, the
coefficient of xktn in F1,2(x, x, t) is also Catalan number Cn, shown by Chung and Feller [1].
We shall explore these generating functions in a subsequent paper where we will also add some
additional parameters which keep track of both the area below the diagonal and the area above
the diagonal in path in Ln.

There are many interesting bijective problems that arise from our results. For example, in
Section 3.1, we find that the total east steps below y = x − 1 of all the paths in Ln is equal
to the total area under all Dyck paths in Ln. We take L3 as an example, there are 6 paths
having P1-matches and there are 5 Dyck paths, pictured in Figure 12. The total east steps
below y = x − 1 is equal to 2 + 2 + 1 + 1 + 1 + 1 = 8 and the total area under all the Dyck
paths is also equal to 0+ 1+2+2+3 = 8. Although how to design the bijection is unknown, it
is interesting to see paired pattern matching does have connection to other statistics for lattice
paths.

Figure 12: Total number of east steps below y = x− 1 in Ln equals the total area below Dyck
paths in Dn, n = 3 as an example.

Another direction for further research is to consider Delannoy paths. In this paper, we only
consider paths consisting of north steps [0, 1] and east steps [1, 0]. Naturally, we can extend our
definitions to Delannoy paths which are paths consisting of east steps [1, 0], north steps [0, 1],
and northeast steps [1, 1] which start at [0, 0] and end at [n, n]. We denote the steps [1, 0], [0, 1]
and [1, 1] by E, N and D respectively. The set of all the Delannoy paths from [0, 0] to [n, n] is
denoted by Sn.

According to [12], a Schröder path is a path from [0, 0] to [n, n] consisting of east steps [1, 0],
north steps [0, 1], and northeast steps [1, 1] which never goes above the diagonal y = x. The
number of Schröder paths from [0, 0] to [n, n] is counted by large Schröder number Dn whose
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ordinary generating function equals

D(x) =
∑

n≥0

Dnx
n =

1− x−
√
1− 6x+ x2

2x
= 1 + 2x+ 6x2 + 22x3 + 90x4 + 394x5 + · · · .

The nth little Schröder number D̃(n) counts the number of Schröder paths from [0, 0] to [n, n]
without northeast steps on the diagonal y = x whose ordinary generating function equals

D̃(x) =
∑

n≥0

D̃nx
n =

1 + x−
√
1− 6x+ x2

4x
= 1 + x+ 3x2 + 11x3 + 45x4 + 197x5 + · · · .

Here, we adopt the same definition of paired pattern for Delannoy paths. For example, in
Figure 13, L = EDNDDNNEDE ∈ S7. psL(1, 2) = ENNE = P4 and psL(2, 3) = NNEE =
P6, that is, P4-mch(L) = P6-mch(L) = 1. It matches our observation: L crosses the diagonal
y = x ‘vertically’ once and there is one east step above y = x+ 1.

L=EDNDDNNEDEP4

Figure 13: L = EDNDDNNEDE ∈ S7.

We take pattern P4 as example, P4-mch(L) is the number of times L crosses the diagonal
y = x vertically. We shall study the ordinary generating function

FS4(x, t) := 1 +
∑

n≥1

tn
∑

L∈Sn

xP4-mch(L).

We split the discussion into two cases. Case 1 are the paths in Sn that start with a north step
and Case 2 are the path in Sn that start with an east step or a northeast step. We define

GS4(x, t) :=
∑

n≥1

tn
∑

L∈Sn starting with E or D

xP4-mch(L)

and
HS4(x, t) :=

∑

n≥1

tn
∑

L∈Sn starting with N

xP4-mch(L).

Clearly,
FS4(x, t) = 1 +GS4(x, t) +HS4(x, t).
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We obtain following formulas based on recursion on where is the first time the path starting
with ‘E’ or ‘D’ crosses the diagonal y = x from bottom to top.

GS4(x, t) =

(

D(t)− 1

1− t

)

(xHS4(x, t) + 1) +
t

1− t
(HS4(x, t) + 1)

Similarly, we consider where is the first time a path starting with a north step and having no
northeast steps on the diagonal crosses the diagonal ‘horizontally’.

HS4(x, t) =
(

D̃(t)− 1
)

(GS4(x, t) + 1)

Solving for GS4(x, t), we have

GS4(x, t) = −(t− 1)D(t)((D̃(t)− 1)x+ 1) + (D̃(t)− 1)x− t+ 1

(D̃(t)− 1)x(D(t)(t − 1) + 1)− 2t+ 1

Then we have

FS4(x, t) = 1 +GS4(x, t) +HS4(x, t)

= 1 +GS4(x, t) +
(

D̃(t)− 1
)

(GS4(x, t) + 1)

= D̃(t)(GS4(x, t) + 1)

=
2

3 +
√
1− 6t+ t2 − 2(x−1)

t−1 + t(x− 1)− 3x+
√
1− 6t+ t2x

.

A few initial terms of FS4(x, t) are

FS4(x, t) = 1 + 3t+ (x+ 12)t2 + (11x+ 52)t3 + (x2 + 84x+ 236)t4

+(19x2 + 556x + 1108)t5 + (x3 + 220x2 + 3428x + 5340)t6 + · · · .

By setting x = 0 in FS4(x, t), we obtain the generating function of the number of Delannoy
paths that do not cross the diagonal vertically,

FS4(0, t) =
(t− 1)

(

−1 + 3t+
√
1− 6t+ t2

)

t2
(

3− t+
√
1− 6t+ t2

)

= 1 + 3t+ 12t2 + 52t3 + 236t4 + 1108t5 + 5340t6 + · · · .

The sequence 1, 3, 12, 52, 236, · · · does not appear in the OEIS [14].
Finally, one can study pattern matching for paired patterns in both lattice paths and Delan-

noy paths for patterns P of length ≥ 6. For example, based on Definitions 1 and 2 and Theorem
3 and 4, one can obtain geometric interpretations for the number of P -matches in a path L.

For example, consider the two patterns Pa and Pb are pictured in Figure 14. Note that Pa

has one east step below y = x − 2 and Pb has a vertical crossing immediately followed by a
horizontal crossing. For any path L ∈ Ln, Pa-mch(L) can be interpreted as the number of east
steps of L below y = x − 2 and Pb-mch(L) can be interpreted as the number of such pairs of
crossings of L.
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PbPa

Figure 14: Examples of two patterns in L3
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