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1 Introduction

Leonhard Euler (1707–1783) famously invented graph theory in 1735, when he was faced with a
puzzle, which some of the inhabitants of Königsberg amused themselves with. They were looking
for a way to walk across each of their seven bridges once and only once, but they could not find any.
Euler reduced the problem to its bare bones and showed that such a puzzle would have a solution
if and only if every “node” (i.e., every land mass) in the underlying “graph” was at the origin of an
even number of “edges” (each corresponding a bridge) with at most two exceptions—which could
only be at the start or at the end of the journey. Since this was not the case at Königsberg, the
puzzle had no solution.

Except for tiny examples like that historical one, a sketch on paper is rarely an adequate
description of a graph. One convenient representation of a directed graph (often called digraph for
short) is given by its adjacency matrix A, where the element Ai,j is the number of edges that go
from node i to node j (in a simple graph, that number is either 0 or 1). An undirected graph, like
the Königsberg graph, can be viewed as a digraph with a symmetric adjacency matrix (as every
undirected edge between two nodes corresponds to a pair of directed edges going back and forth
between the nodes).

A fruitful bonus of using adjacency matrices for representation of graphs is that the ordinary
multiplication of such matrices is surprisingly meaningful: the n-th power of the adjacency matrix
of a graph describes walks along n successive edges (not necessarily distinct) in this graph. This
observation leads to a method called the transfer-matrix method (e.g., see [2, Section 4.7]) that
employs the linear algebra techniques to enumerate walks very efficiently. In the present work, we
shall perform a few spectacular enumerations using the transfer-matrix method.

The element Ai,j of the adjacency matrix A can be viewed as the number of walks of length 1
from node i to node j. What is the number of such walks of length 2? Well, it is clearly the number
of ways to go from i to some node k along one edge and then from that node k to node j along
a second edge. This amounts to the sum over k of all products Ai,k · Ak,j , which is immediately
recognized as a matrix element of the square of A, namely (A2)i,j . More generally, the above is the
pattern for a proof by induction on n of the following theorem.

Theorem 1 ([2, Theorem 4.7.1]). The number (An)i,j equals the number of walks of length n going
from node i to node j in the digraph with the adjacency matrix A.

A walk is called closed if it starts and ends at the same node. Theorem 1 immediately implies
the following statement for the number of closed walks.

Corollary 2. In a digraph with the adjacency matrix A, the number of closed walks of length n
equals tr(An), the trace of An.
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It is often convenient to represent a sequence of numbers a0, a1, a2, . . . as a generating function
f(z) (of indeterminate z) such that the coefficient of zn in f(z) equals an for all integers n ≥ 0 (e.g.,
see [4] for a nice introduction to generating functions). In other words, f(z) = a0+a1 ·z+a2 ·z2+· · · .
The generating function for the number of closed walks has a neat algebraic expression:

Theorem 3 ([2, Corollary 4.7.3]). For any m×m matrix A,
∞∑
n=0

tr(An) · zn = m− zF ′(z)

F (z)
,

where F (z) = det(Im − z ·A), and Im is the m×m identity matrix.

We will show how to put these nice results to good use by reducing some enumeration problems
to the counting of walks or closed walks in certain digraphs.

2 Silent Circles

One of our motivations for the present work was the elegant solution to a problem originally posed
by Philip Brocoum, who described the following game as a preliminary event in a drama class
he once attended at MIT. The game was played repeatedly by all the students until silence was
achieved.1

An even number (2n) of people stand in a circle with their heads lowered. On cue, everyone
looks up and stares either at one of their two immediate neighbors (left or right) or at the person
diametrically opposed. If two people make eye contact, both will scream! What is the probability
that everyone will be silent? For n > 1,2 since each person has 3 choices, there are 32n possible
configurations (which are assumed to be equiprobable). The problem then becomes just to count
the number of silent configurations.

Let us first do so in the slightly easier case of an n-prism of people (we will come back to
the original question later). This is a fancy way to say that the people are now arranged in two
concentric circles each with n people, where every person faces a “partner” on the other circle and
is allowed to look either at that partner or at one of two neighbors on the same circle.

The key idea is to notice that the silent configurations are in an one-to-one correspondence with
the closed walks of length n in a certain digraph on 8 nodes. Indeed, there are 32 − 1 = 8 different
ways for the two partners in a pair to not make an eye contact with each other. We call each such
way a gaze and denote it with a pair of arrows, one over another, indicating sight directions of the
partners. We build the gaze digraph, whose nodes are the different gazes. There is a (directed) edge
from node i to node j if and only if gaze j can be clockwise next to gaze i in a silent configuration.
The gaze digraph and its adjacency matrix A are shown in Fig. 1.

Let tn be the number of “silent” n-gonal prisms. By Corollary 2, we have tn = tr(An). Theo-
rem 3 further implies (by direct calculation) that

∞∑
n=0

tn · zn =
8− 56z + 96z2 − 50z3 + 4z4

1− 8z + 16z2 − 10z3 + z4
.

From this generating function, we can easily derive a recurrence relation for tn. Namely, multiplying
of the generating function by 1− 8z + 16z2 − 10z3 + z4, we get

(1− 8z + 16z2 − 10z3 + z4) ·
∞∑
n=0

tn · zn = 8− 56z + 96z2 − 50z3 + 4z4.

1Presumably, the teacher would participate only if the number of students was odd.
2The case n = 1 is special, since the two immediate neighbors and the diametrically opposite person all coincide.
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Figure 1: The gaze digraph and its adjacency matrix A.

For n ≥ 5, the equality of coefficients of zn in the left-hand and right-hand sides gives

tn − 8tn−1 + 16tn−2 − 10tn−3 + tn−4 = 0.

The values of tn form the sequence A141384 in the OEIS [3].
Returning to the original question, we remark that each gaze is formed by two diametrically

opposite people from the same circle. For n > 1, a silent configuration for a circle of 2n is therefore
defined by a walk on n+ 1 nodes, where the starting and ending nodes represent the same pair of
people but in different order. It follows that the starting and ending gazes must be obtained from
each other by a vertical flip. The entries in the adjacency matrix corresponding to such gaze flips
are colored green: the number sn of such walks equals the sum of elements in these entries in the
matrix An. Since the minimal polynomial of A is

x5 − 8x4 + 16x3 − 10x2 + x,

the sequence sn (sequence A141221 in the OEIS [3]) satisfies the recurrence relation:

sn = 8sn−1 − 16sn−2 + 10sn−3 − sn−4, n ≥ 6,

which matches that for tn. Taking into account the initial values of sn for n = 2, 3, 4, 5, we further
deduce the generating function

∞∑
n=2

sn · zn =
30z2 − 84z3 + 58z4 − 6z5

1− 8z + 16z2 − 10z3 + z4
.

We give initial numerical values of the sequences tn and sn along with the corresponding prob-
abilities of silent configurations in the table below. Quite remarkably we have tn = sn + 2 for all
n > 1. It further follows that both probabilities tn/32n and sn/32n grow as (α/9)n ≈ 0.5948729n,
where

α =
1

3

(
7 + 2 ·

√
22 · cos

(
arctan(

√
5319/73)

3

))
≈ 5.353856

is the largest zero of the minimal polynomial of A.
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Figure 2: (a) The antiprism graph C1,2
10 . (b) A directed Hamiltonian cycle in C1,2

10 that does not visit either of the
edges (4, 6), (5, 6), (5, 7), i.e., has signature 000 at node 4.

n 2 3 4 5 6 7 8 9 10

tn 32 158 828 4408 23564 126106 675076 3614144 19349432
tn/32n 0.395 0.217 0.126 0.075 0.044 0.026 0.016 0.009 0.006

sn 30 156 826 4406 23562 126104 675074 3614142 19349430
sn/32n 0.370 0.214 0.126 0.075 0.044 0.026 0.016 0.009 0.006

3 Hamiltonian Cycles in Antiprism Graphs

An antiprism graph represents the skeleton of an antiprism. The n-antiprism graph (defined for
n ≥ 3) has 2n nodes and 4n edges and is isomorphic to the circulant graph C1,2

2n ; that is, its nodes
can be placed along a circle and enumerated with numbers from 0 to 2n− 1 such that each node i
(i = 0, 1, . . . , 2n− 1) is connected to nodes i± 1 mod 2n and i± 2 mod 2n (Fig. 2a).

A cycle is a closed walk without repeated edges, up to a choice of a starting/ending node. A
cycle is Hamiltonian if it visits every node in the graph exactly once. A recurrence formula for the
number of Hamiltonian cycles in C1,2

2n was first obtained in [1]. Here we present a simpler derivation
for the same formula.

For a subgraph G of C1,2
2n , we define the visitation signature of G at node i as a triple of binary

digits describing whether edges (i, i+ 2), (i+ 1, i+ 2), (i+ 1, i+ 3) belong to (visited by) G, where
digits 1/0 mean visited/non-visited. Then a Hamiltonian cycle Q (viewed as a subgraph) in C1,2

2n

has one of the following two types:

(T1) there exists i such that the visitation signature of Q at i is 000;

(T2) for every i, the visitation signature of Q at i is not 000.

It is not hard to see that for each fixed i, there exist exactly two directed Hamiltonian cycles
(of opposite directions) that has visitation signature 000 at i (an example of such a cycle for n = 5
and i = 4 is given in Fig. 2b). Moreover, the value of i is unique for such cycles. So the total
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Figure 3: Possible visitation signatures for a Hamiltonian cycle of type (T2) in C1,2
2n . Visited and non-visited edges

are shown as solid and dashed, respectively.

number of directed Hamiltonian cycles of type (T1) equals 4n. Their generating function is

∞∑
n=3

4n · zn =
4z3(3− 2z)

(1− z)2
. (1)

Now we focus on computing the number of Hamiltonian cycles of type (T2), for which we need
the following lemma.

Lemma 4. A subgraph Q of C1,2
2n is a Hamiltonian cycle of type (T2) if and only if (i) every node

of C1,2
2n is incident to exactly two edges in Q; and (ii) the visitation signature of Q at every node is

111, 001, 010, or 100 (shown in Fig. 3).

Proof. If Q is a Hamiltonian cycle of type (T2), then condition (i) trivially holds. Condition (ii)
can also be easily established by showing that no other visitation signature besides 111, 001, 010,
and 100 is possible in Q. Indeed,

• the signature 000 cannot happen anywhere in Q by the definition of type (T2);

• the signature 011 at node i implies the signature 000 at node i− 1;

• the signature 110 at node i implies the signature 000 at node i+ 1;

• the signature 101 at node i implies the presence of edges (i, i+ 1) and (i+ 2, i+ 3) in Q; that
is, Q must coincide with the cycle (i, i+ 2, i+ 3, i+ 1, i), a contradiction to n ≥ 3.

Now, let Q be a subgraph of C1,2
2n satisfying conditions (i) and (ii). Let Q′ ⊂ Q be a connected

component of Q. Since every node is incident to two edges from Q, Q′ represents a cycle in C1,2
2n .

We claim that for any i ∈ {0, 1, . . . , 2n− 1}, Q′ either contains node i+ 1 or both nodes i and
i + 2. If this is not so, then starting at a node belonging Q′ and increasing its label by 1 or 2
modulo 2n (keeping the node in Q′), we can find a node i in Q′ such that neither i + 1, nor i + 2
are in Q′. Then Q′ (and Q) contains edges (i − 2, i) and (i − 1, i), and since every node in Q is
incident to exactly two edges, Q does not contain edges (i− 1, i+ 1), (i, i+ 1), and (i, i+ 2). That
is, the visitation signature of Q at node i− 1 is 000, a contradiction.

We say that Q′ skips node i if it contains nodes i−1 and i+1, but not i. It is easy to see that if Q′

does not skip any nodes, then it contains all nodes 0, 1, . . . , 2n−1, in which case Q′ = Q represents
a Hamiltonian cycle. If Q′ skips a node i, consider a connected component Q′′ of Q that contains
i. It is easy to see that the nodes of Q′ and Q′′ must interweave, i.e., Q′ = (i− 1, i+ 1, i+ 3, . . . )
and Q′ = (i, i+ 2, i+ 4, . . . ). Then the signature of Q at node i is 101, a contradiction proving that
Q′ cannot skip nodes.

Lemma 4 allows us to compute the number of Hamiltonian cycles of type (T2) in C1,2
2n as the

number of subgraphs Q satisfying conditions (i) and (ii). To compute the number of such subgraphs,
we construct a directed graph S on the allowed visitation signatures as nodes, where there is a
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Figure 4: The signature graph S and its adjacency matrix.

directed edge (s1, s2) whenever the signatures s1 and s2 can happen in Q at two consecutive nodes.
The graph S and its adjacency matrix AS are shown in Fig. 4.

By Lemma 4 and Corollary 2, the number of Hamiltonian cycles of type (T2) in C1,2
2n equals

tr(A2n
S ). Correspondingly, the total number of directed Hamiltonian cycles hn in C1,2

2n equals 4n+
2 tr(A2n

S ); its generating function (derived from (1) and Theorem 3) is

∞∑
n=3

hn · zn =
4z3(3− 2z)

(1− z)2
+

2z3(10 + 11z + 5z2)

1− z − 2z2 − z3
=

2z3(16− 19z − 15z2 + 3z3 + 9z4)

(1− z)2(1− z − 2z2 − z3)
.

It further implies that the sequence hn satisfy the recurrence relation:

hn = 3hn−1 − hn−2 − 2hn−3 + hn−5, n ≥ 8

with the initial values 32, 58, 112, 220, 450, . . . for n = 3, 4, . . . (sequence A124353 in the OEIS [3]).

4 Hamiltonian Cycles and Paths in Arbitrary Graphs

Similarly to cycles, a path (i.e., a non-closed walk without repeated edges) in a graph is called Hamil-
tonian if it visits every node of the graph exactly once. Enumeration of Hamiltonian paths/cycles
in an arbitrary graph represents a famous NP-complete problem. That is, one can hardly hope
for existence of an efficient (i.e., polynomial-time) algorithm for this enumeration and thus has
to rely on less efficient algorithms of (sub)exponential time complexity. Below we describe such
not-so-efficient but very neat and simple algorithm,3 which is based on the transfer-matrix method
and another basic combinatorial enumeration method called inclusion-exclusion (e.g., see [2, Sec-
tion 2.1]).

We denote the number of (directed) Hamiltonian cycles and paths in a graph G by HC(G) and
HP(G), respectively.

Theorem 5. Let G be a graph with a node set V = {v1, . . . , vn} and A be the adjacency matrix of
G. Then

HP(G) =
∑
S⊂V

(−1)|S| · sum
(
An−1V \S

)
(2)

3We are not aware if this algorithm has been described in the literature before, but based on its simplicity we
suspect that this may be the case.
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and

HC(G) =
1

n

∑
S⊂V

(−1)|S| · tr
(
AnV \S

)
, (3)

where sum(M) is the sum of all4 elements of a matrix M .

Proof. First, we notice that a Hamiltonian path in G is the same as a walk of length n − 1 that
visits every node. Indeed, a walk of length n − 1 visits n nodes, and if it visits every node in G,
then it must visit each node only once. That is, such a walk is a Hamiltonian path.

For a subset S ⊂ V , we define PS as the set of all walks of length n− 1 in G that do not visit
any node from S. Then by the inclusion-exclusion, the number of Hamiltonian paths HP(G) is
given by

HP(G) =
∑
S⊂V

(−1)|S| · |PS |.

To use this formula for computing HP(G), it remains to evaluate |PS | for every S ⊂ V , which can
be done as follows. Let GV \S be the graph obtained from G by removing all nodes (along with their
incident edges) present in S, and let AV \S be the adjacency matrix of GV \S . Then the elements
of PS are nothing else by the walks of length n− 1 in the graph GV \S . Hence, by Theorem 1, |PS |
equals sum

(
An−1V \S

)
, which implies formula (2).

Similarly, a Hamiltonian cycle in G can be viewed as a closed walk of length n that starts/ends
at node v1 and visits every node. Hence, the number HC(G) of Hamiltonian cycles in G can be
computed by the formula

HC(G) =
∑

S⊂V \{v1}

(−1)|S| ·
(
AnV \S

)
1,1
.

Similar formulae hold if we view closed walks as starting/ending at node vi. Averaging over i =
1, 2, . . . , n gives us formula (3).

Formulae (2) and (3) can be used for practical computing HP(G) and HC(G), although they
have exponential time complexity as they sum 2n terms (indexed by the subsets S ⊂ V ). On a
technical side, we remark that the matrix AV \S can be obtained directly from the adjacency matrix
A of G by removing the rows and columns corresponding to the nodes in S.

In an undirected graph G, the number of undirected Hamiltonian paths and cycles is given by
1
2 HP(G) and 1

2 HC(G), respectively.

5 Simple Cycles and Paths of a Fixed Length

Our approach for enumerating Hamiltonian paths/cycles can be further extended to enumerating
simple (i.e., visiting every node at most once) paths/cycles of a fixed length. We refer to simple
paths and cycles of length k as k-paths and k-cycles, respectively. We denote the number of
(directed) k-cycles and k-paths in a graph G by SCk(G) and SPk(G), respectively.

Theorem 6. Let G be a graph with a node set V = {v1, . . . , vn} and A be the adjacency matrix of
G. Then, for an integer k ≥ 1,

SCk(G) =
1

k

∑
T⊂V

(
n− |T |
k − |T |

)
· (−1)k−|T | · tr

(
AkT

)
(4)

4Alternatively, we can define sum(M) as the sum of all non-diagonal elements of M ; formula (2) still holds in this
case.
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and

SPk(G) =
∑
T⊂V

(
n− |T |

k + 1− |T |

)
· (−1)k+1−|T | · sum

(
AkT

)
. (5)

Proof. If a k-cycle c visits nodes from a set U ⊂ V , |U | = k, then c represents a Hamiltonian cycle
in the subgraph GU of G induced by U . Hence, the number of k-cycles in G equals

SCk(G) =
∑

U⊂V, |U |=k

HC(GU ).

By formula (3), we further have

SCk(G) =
∑

U⊂V, |U |=k

1

k

∑
S⊂U

(−1)|S| · tr
(
AkU\S

)
=

1

k

∑
T⊂V

∑
U : T⊂U⊂V, |U |=k

(−1)k−|T | · tr
(
AkT

)
=

1

k

∑
T⊂V

(
n− |T |
k − |T |

)
· (−1)k−|T | · tr

(
AkT

)
,

which proves (4). (Here T stands for the set U \ S.)
If a k-path p visits nodes from a set U ⊂ V , |U | = k+ 1, then p represents a Hamiltonian path

in the subgraph GU of G induced by U . Similarly to the above, we can employ formula (2) to
obtain (5).

In an undirected graph G, the number of undirected k-cycles and k-paths is given by 1
2 SCk(G)

and 1
2 SPk(G), respectively.

Using formula (4), we have computed the number of k-cycles in the graph of the regular 24-cell
for various values of k (sequence A167983 in the OEIS [3]).
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