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ON THE CONGRUENCE

1n + 2n + · · ·+ n
n
≡ p (mod n)

MAX ALEKSEYEV, JOSÉ MARÍA GRAU, AND ANTONIO M. OLLER-MARCÉN

Abstract. It is well-known that the congruence
∑n

i=1 i
n ≡ 1 (mod n) has

exactly five solutions: {1, 2, 6, 42, 1806}. In this work, we characterize the
solutions to the congruence in the title for every prime p. This characterization
leads to an algorithm that allows to compute all such solutions when there is
finite number of them and, in general, to find all the solutions up to very
high bounds in comparison to the computational complexity appearing if the
problem is naively addressed by exhaustive search.

AMS 2010 Mathematics Subject Classification 11B99, 11A99, 11A07
Keywords: Power sum, primary pseudoperfect numbers, algorithm

1. introduccion

Very often in the literature we find equations with “few” solutions whose search is
a hard both from the theoretical and computational point of view. One of the best-
known examples is possibly the so-called Erdös-Moser Equation,

∑m−1
i=1 in = mn,

for which it has been proved that there only exists the trivial solution 11 +21 = 31

if m < 1.485× 109321155 [2]. Another famous examples are Giuga’s Conjecture [4],

that states that there is no composite n such that
∑n−1

i=1 in ≡ −1 (mod n) and that
has been verified up to 1013800 [1] or Lehmer’s Totient Problem asking if there exists
any composite number n such that ϕ(n) | (n − 1) and having no solution smaller
than 1022 or with less than 14 prime divisors [3]. If we have a look at equations
with “few” known solutions, we can mention

∑

p|N
1
p − 1

N ∈ N for which only 12

solutions are known (the so-called Giuga numbers, sequence A007850 in OEIS)
or

∑

p|N
1
p + 1

N = 1 having only 8 known solutions (the Primary pseudoperfect

numbers [2], sequence A054377 in OEIS).
In some cases, the search for new solutions to an equation only leads to the

extension of the set of integers for which no solution is known. In other cases,
theoretical and computational effort succeed in finding all the solutions. This is the
case, for instance, of the equation 1n + 2n + · · · + nn ≡ 19 (mod n) that we will
show to have only 8 solutions, namely {1, 2, 6, 19, 38, 114, 798, 34314}.

Let us define Sk(n) :=

n
∑

i=1

ik. Throughout the paper we deal with congruences

of the form Sn(n) ≡ a (mod n). We will denote its set of solutions by Mp. It is
easy to see that n ∈ M0 if and only if n is odd [5, Theorem 1]. In [6, Proposition
1] the set M1 was determined. Namely, M1 = {1, 2, 6, 42, 1806}.

In this work, we focus on the case when a is prime. Both of the situations
described above appear. In some cases we will be able to prove the finiteness of
the set of solutions (and to compute them) and in other cases we will find the
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solutions up to very high bounds (which would be unreachable only by “brute
force” methods). The main contribution of this paper is the characterization of
the solutions to the previous congruence and the implementation of an algorithm
by which the possible prime divisors of the solutions are found. Hence, if this set
of possible prime divisors is finite, the search for solutions can restrict to products
of them. Moreover, the relation of this problem with weak primary pseudoperfect

numbers will allow us to compute all the solutions up to 1030 with very little
computational effort.

2. Characterization and computation of Mp with prime p

The following lemma (see [5]) will be useful in the sequel.

Lemma 1. Let d, k, n, and t be positive integers.

i) If d divides n, then

Sk(n) ≡
n

d
Sk(d) (mod d).

ii) Let pt be an odd prime power. Then

Sk(p
t) ≡

{

−pt−1 (mod pt), if p− 1 | k;

0 (mod pt), otherwise.

iii) We have

Sk(2
t) ≡











2t−1 (mod 2t), if t = 1, or t > 1 and k > 1 is even;

−1 (mod 2t), if t > 1 and k = 1;

0 (mod 2t), if t > 1 and k > 1 is odd.

Next theorem gives a characterization of the set Mp in terms of the prime power
factorization of its elements.

Theorem 1. Let p be a prime number. Then n ∈ Mp if and only if the following

conditions hold:

i) The prime power factorization of n is given by n = psq1 · · · qr, with 0 ≤
s ≤ 2.

ii) For every i ∈ {1, . . . , r}, qi − 1 | n and n/qi + p ≡ 0 (mod qi).
iii) If s = 1, then p− 1 ∤ n.
iv) If s = 2, then p− 1 | n and n/p2 + 1 ≡ 0 (mod p).

Proof. We will work out the odd p case, if p = 2 the proof is identical. Let n =
2tpsqu1

1 · · · qur
r be the prime power factorization of n. Then Sn(n) ≡ p (mod n) if

and only if Sn(n) ≡ p (mod 2t), Sn(n) ≡ p (mod ps) and Sn(n) ≡ p (mod qui

i ).

Due to Lemma 1, Sn(n) ≡
n

2t
Sn(2

t) (mod 2t) so Sn(n) ≡ p (mod 2t) if and only

if r ≤ 1 with n/2 + p ≡ 0 (mod 2) if t = 1 by Lemma 1 iii).

Furthermore, by Lemma 1 i) Sn(n) ≡
n

ps
Sn(p

s) (mod ps) so Sn(n) ≡ p (mod ps)

if and only if
n

ps
Sn(p

s) ≡ p (mod ps) and we apply Lemma 1 ii) repeatedly. If s = 1

the latter congruence holds if and only if p− 1 ∤ n. If s > 1, it holds if and only if
p− 1 | n and n/p2 + 1 ≡ 0 (mod ps−1) and this latter congruence is possible only
if s ≤ 2.
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Finally, by Lemma 1 i) again, Sn(n) ≡
n

qui

i

Sn(q
ui

i ) (mod qui

i ) and hence, since

p 6= qi, it follows from Lemma 1 iii) that Sn(n) ≡ p (mod qui

i ) if and only if
qi − 1 | n and n/qi + p ≡ 0 (mod qui

i ) with this latter congruence being possible
only if ui ≤ 1. �

This result motivates a decomposition Mp = M
(0)
p ∪M

(1)
p ∪M

(2)
p , with

M(0)
p = {n ∈ Mp : p ∤ n},

M(1)
p = {n ∈ Mp : p || n},

M(2)
p = {n ∈ Mp : p2 || n}.

We will now study each of these sets separately. To do so, the following results
will be useful. Their proofs can be found in [6].

Lemma 2. Let P be a non-empty set of primes p such that

i) p− 1 is square-free, and

ii) if q is a prime divisor of p− 1, then q ∈ P.

Then P is one of the sets {2}, {2, 3}, {2, 3, 7}, or {2, 3, 7, 43}.

Lemma 3. Let N be a set of positive integers ν such that

i) ν is square-free, and

ii) if p is a prime divisor of ν, then p− 1 divides ν.

Then N ⊆ {1, 2, 6, 42, 1806}.

Lemma 3 provides the following result regarding M
(0)
p .

Proposition 1. Let p be a prime. Then, M
(0)
p ⊆ {1, 2, 6, 42, 1806}= M1

Proof. Let n ∈ M
(0)
p . Theorem 1 i) implies that n is square-free. Moreover, Thorem

1 ii) implies that if q is a prime divisor of n, then q − 1 divides n. Hence, we can
apply Lemma 3 and the result follows. �

In fact, the following result is straightforward and completely determines the set

M
(0)
p .

Proposition 2. Let p be a prime. Then, M
(0)
p = {n ∈ M1 : p ≡ 1 (mod n)}.

To study the set M
(1)
p we introduce the following set of primes associated to p.

Definition 1. Let p be a prime. The set Qp is the set of prime numbers defined
by the property: q ∈ Qp if and only if the following conditions hold:

i) q − 1 is square-free.
ii) p− 1 ∤ q − 1.
iii) If t is a prime divisor of q − 1, then t = p or t ∈ Qp.

In addition, we define the following set of integers associated to each Qp,

Np := {n ∈ N : n is square-free, p− 1 ∤ n and q ∈ Qp, for every prime q | n}.

Proposition 3. Let p be a prime. Then, M
(1)
p ⊆ p · Np.

Proof. Let n ∈ M
(1)
p . Theorem 1 i), ii) and iii) clearly imply that n/p ∈ Np and

hence the result. �
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Finally, let us turn to the set M
(2)
p . We will see that this set is empty in most

cases. To do so we first need the following lemma.

Lemma 4. Let n ∈ M
(2)
p . If q is a prime such that p > q | n, then q ∈ {2, 3, 7, 43}.

Proof. Let us consider the set of primes {q : p > q, q | n, for some n ∈ M
(2)
p }.

Theorem 1 implies that this set is in the conditions of Lemma 2 and hence the
result. �

Proposition 4. Let p 6= 2, 3, 7, 43 be a prime. Then M
(2)
p is empty.

Proof. Assume that n ∈ M
(2)
p . Since theorem 1 implies that n = p2q1 · · · qr and

p − 1 | n, it follows that p − 1 is square-free. Moreover, if we consider the set of
primes S = {q : q | p − 1}, Lemma 4 implies that S ⊆ {2, 3, 7, 43}. Thus, p is a
prime such that p − 1 is square-free and the only possible prime divisors of p − 1
are {2, 3, 7, 43}. The only primes in these conditions are precisely {2, 3, 7, 43} as
can be directly checked. �

The following result shows that in the remaining cases; i.e., if p = 2, 3, 7 or 43

the set M
(2)
p is also finite.

Proposition 5. Let p ∈ {2, 3, 7, 43}. Then, M
(2)
p ⊆ p2 ·M1

Proof. Define the set of primes {q 6= p : q | n, for some n ∈ M
(2)
p }. Theorem 1

implies that the set S ∪ {p} is in the conditions of Lemma 2 and hence S ∪ {p} ⊆
{2, 3, 7, 43}. But, since p ∈ {2, 3, 7, 43} it follows that also S ⊆ {2, 3, 7, 43}. Thus,

the result follows from the fact that every element in M
(2)
p is of the form p2q1 · · · qr

with qi 6= p prime. �

Corollary 1. Let p be a prime. Then,

Mp =

{

M
(0)
p ∪M

(1)
p ⊆ M1 ∪ p · Np, if p 6= 2, 3, 7, 43;

M
(0)
p ∪M

(1)
p ∪M

(2)
p ⊆ M1 ∪ p · Np ∪ p2 ·M1, otherwise.

In particular if Np is finite then so is Mp.

Corollary 2.

M7 = {1, 2, 6, 7, 14, 294, 12642},

M43 = {1, 2, 6, 42, 43, 86, 258, 77658}.

Although Theorem 1 gives a complete characterization of the set Mp for a prime
p, from a practical point of view, Corollary 1 is more useful if we want tho effectively
compute the elements of this set. In particular, Corollary 1 implies that in order
to compute Mp we need to compute the set of primes Qp. Since this set is not
necessarily finite and it is constructed iteratively, we need stopping criteria in case
they are finite. We give one in the following result.

Proposition 6. Let K ∈ Qp. Given a subset Ω ⊂ {q ∈ Qp : q < K +1}, we define

integers

wΩ := 1 +
∏

q∈Ω

q, w′
Ω := 1 + p

∏

q∈Ω

If wΩ and w′
Ω are not prime for any subset Ω, then Qp is finite and K = maxQp.
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Proof. Let K ∈ Qp an assume that it is not the maximum. Then, define q =
min{q ∈ Qp : K < q}. Since q ∈ Qp we can put q − 1 =

∏

ti with ti primes.

Consider Ω = {ti : ti 6= p}. Since q ∈ Qp, it follows that Ω ⊆ Qp and the
minimality of q implies that ti < K + 1. But in this situation either wΩ or w′

Ω
is a

prime (depending on whether p | 1 or not) and the result follows. �

The following algorithm constructs, for any given prime p, an increasing sequence
of setsXi[p]. In the cases when this sequence stabilizes, it does at a set X[p] that will
be shown to be Qp ∪{p}. In fact, the stabilization criterion is given by Proposition
6.

Algorithm. INPUT: p, i = 1; X1[p] := {2, p};

ProdParts(Xi[p]) := {1 +
∏

q∈Ω

q : Ω ⊆ Xi[p]}
⋂

{n : p− 1 ∤ n− 1};

STEP1 If ProdParts(Xi[p]) \Xi[p] = ∅ then X[p] = Xi[p]. STOP .
STEP2

Xi+1[p] := Xi[p]
⋃

{q prime : q ∈ ProdParts(Xi[p])}.

STEP3: i = i+ 1; GOTO STEP1.

Theorem 2. For every i, we have that Xi[p] ⊆ Qp ∪ {p}. Moreover, the algorithm

stops if and only if Qp is finite, in which case X[p] = Qp ∪ {p}.

Proof. Clearly X1[p] ⊆ Qp ∪ {p}. Let us assume that Xi−1[p] ⊆ Qp while Xi[p] \
(Qp ∪ {p}) 6= ∅. Let q the minimum of Xi[p] \ Qp ∪ {p}. Since q no pertenece a
Qp∪{p} but q−1 is square free and p−1 | q−1, there must exist a prime q1 dividing
q− 1 not in Qp ∪{p} and, consequently, not in Xi−1[p] either. This contradicts the
fact that every element of Xi[p] is of the form 1+ p1...pk with pj ∈ Xi−1[p]. Hence,
Xi[p] ⊆ Qp ∪ {p} for every i as claimed.

Now, if Qp is finite it is clear that the algorihtm stops. Let us see that, if it
stops, the output is Qp∪{p}. If it was not the case, put q = min{(Qp∪{p})\X[p]}.
Then, q − 1 = q1....qr is squarefree with qi ∈ Qp ∪ {p}. But, in this case, qi ∈ X[p]
so q = 1+ q1....qr ∈ X[p] because otherwise the algorithm would not have stopped.
This contradicts the assumption of (Qp ∪ {p}) \X[p] being non empty so the result
follows. �

Example 1. For p = 19 the algorithm stops because X7[19] = X8[19] and its output

is Q19 ∪ {19} = {2, 3, 7, 19, 43, 4903, 168241543, 5773040306503}. This implies that

M19 is finite.

The following result determines the finiteness of Qp (and hence of Mp) for a
family of primes.

Corollary 3. If p 6∈ {2, 3, 7, 43} and the set

{1 + 2p, 1 + 1806 p, 1+ 6 p, 1 + 14 p, 1 + 86 p, 1 + 42 p, 1 + 258 p, 1 + 602 p}

does not contain any prime, then Mp ⊆ M1 ∪ pM1 and thus, it is finite.

Proof. In this situation the above algorithm stops giving X[p] = {2, 3, 7, 43, p}.
Hence, Qp = {2, 3, 7, 43} and the result follows. �
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There seem to exist many primes p satisfying the condition of Corollary 3. The
following are those smaller than 1000:

{67, 97, 127, 163, 307, 317, 337, 349, 409, 521, 523, 547, 643, 709, 757, 811, 839, 857, 919, 967, 997}

There also exist primes for which Qp and Mp are finite that do not satisfy the
condition of Corollary 3. The following table gives some examples.

p stop Qp Mp

19 i=8 {2, 3, 7, 43, 4903, 168241543, 5773040306503} {1, 2, 6, 19, 38, 114, 798, 34314}
79 i=5 {2, 3, 7, 43, 3319, 1573207} {1, 2, 6, 79, 158, 474, 3318, 142674}
193 i=5 {2, 3, 7, 43, 348559} {1, 2, 6, 193, 386, 1158, 8106, 348558}

Unfortunately, in some cases we cannot determine if the algorithm stops due to
the size of the involved sets of primes. For instance, if p = 5, we have that X5[5]
contains 77 primes and it was impossible to compute X6[5].

3. Relación entre the primary pseudoperfect numbers and Mp

When Qp is infinite, the previous algorithm never stops. Nevertheless, there is
an easy result that allows us to compute the elements of Mp up to p · (8.49× 1030).
Before we introduce this result, we recall the set W of weak primary pseudoperfect

numbers defined in [6]. An integer n ≥ 1 is a weak primary pseudoperfect number

if it satisfies the congruence
∑

p|n

n

p
+ 1 ≡ 0 (mod n).

The only known weak primary pseudoperfect numbers are:

1, 2, 6, 42, 1806, 47058, 2214502422, 52495396602, 8490421583559688410706771261086.

and it is not even known whether W is finite.

Proposition 7. Let p be a prime. Then, Mp ⊆ M1 ∪ p · W.

Proof. Let n ∈ Mp. If p ∤ n, then n ∈ M1 due to Proposition 1. On the other
hand, if p | n [6, Corollary 1] states that n/p ∈ W and hence the result. �

Thus, this proposition allows us to compute all the elements of Mp up to p ·
maxW . It is enough to determine computationally if Sn(n) ≡ p (mod n) for every
element of M1 ∪ p · W . Observe that this set has, to this day, only 14 elements.

In some cases it is possible to use ad hoc arguments to prove that Mp is finite
and, hence, to compute its elements. This is the case, e.g., for p = 2, 3. To see that
both M2 and M3 are finite we need to recall some ideas from [6]. For every Q ∈ N
we define

MQ := {n ∈ N : SQn(Qn) ≡ n (mod n)}.

IfMQ 6= ∅, then Q ∈ W [6, Corollary 1] and, moreover, we have that [6, Proposition
3]

Proposition 8. Given a weak primary pseudoperfect number Q, define the integer

nQ :=

{

lcm
{

p−1
gcd(p−1,Q) : p | Q

}

, if Q 6= 1;

1, if Q = 1.

Then MQ = ∅ if and only if q − 1 | QnQ for some prime q | nQ. Moreover, if

MQ 6= ∅, then nQ | n for every n ∈ MQ and, in particular, nQ = minMQ.
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The following lemma is straightforward.

Lemma 5. Let p be a prime. Then, n ∈ M
(1)
p ∪M

(2)
p if and only if n/p ∈ W and

p ∈ Mn/p.

Even if it might be true that the setMp is finite for every prime p, there are many
primes p for which the algorithm fails to prove the finiteness of Qp. Nevertheless,
in the previous setting, we can directly prove the finiteness of Mp in a couple of
easy cases.

Proposition 9. If p ∈ {2, 3}, then Mp is finite.

Proof. Due to Proposition 1 and Corollary 1 it is enough to prove that M
(1)
p ∪M

(2)
p

is finite. Thus, assume that n ∈ M
(1)
p ∪M

(2)
p and observe that, due to Lemma 5,

n/p ∈ W and p ∈ Mn/p.
Let p = 2 with n/2 ∈ W and 2 ∈ Mn/2. It follows from Proposition 8 that

nn/p | 2; i.e., nn/2 = 1 or 2. Now, if nn/2 = 2, Proposition 8 implies that Mn/2 = ∅
which is a contradiction. Hence, nn/2 = 1 which implies that p− 1 | n/2 for every

p | n/2; i.e., that n/2 ∈ M1 due to Lemma 3. Consequently, M
(1)
p ∪M

(2)
p ⊆ 2 ·M1

is finite and so is M2 ⊆ M1 ∪ 2 ·M1.
On the other hand, Let p = 3 with n/3 ∈ W and 3 ∈ Mn/3. Again, we obtain

that nn/3 = 1 or 3. Since n ∈ Mp and 3 | n, if n 6= 3, it follows from Theorem
1 that q − 1 | n for every prime q | n/3. In particular 2 | n, so 2 | n/3 and
Proposition 8 implies that Mn/3 = ∅ which is a contradiction. Hence, nn/3 = 1 and
M3 ⊆ M1 ∪ 3 · M1 is finite. �

As a consequence, it is easy to compute the elements of Mp for p = 2, 3.

Corollary 4.

M2 = {1, 4, 12, 84, 3612},

M3 = {1, 2, 3, 18, 126, 5418}.

In Proposition 2 and Corollary 4 we have determined the finiteness and we have
computed the elements of Mp for p = 2, 3, 7, 43. Recall that these are precisely the

cases when M
(2)
p might be non-empty. In the remaining cases Mp = M

(0)
p ∪M

(1)
p .

To end this section we are going to give a characterization of M
(1)
p when p 6=

2, 3, 7, 43.

Lemma 6. Let p 6= 2, 3, 7, 43 be a prime. Then, p ·M1 = {p, 2p, 6p, 42p, 1806p} ⊂

M
(1)
p .

Proof. It is enough to apply Theorem 1 and recall the definition of M
(1)
p . �

Proposition 10. Let p 6= 2, 3, 7, 43 be a prime. Then, n ∈ M
(1)
p if and only if

n/p ∈ W, nn/p | p and nn/p − 1 ∤ n/p.

Proof. Assume that n ∈ M
(1)
p . Then, by Lemma 5, n/p ∈ W and p ∈ Mn/p.

Hence, Mn/p 6= ∅ and due to Proposition 8 nn/p | p and nn/p − 1 ∤ n/p.
Conversely, assume that n/p ∈ W , nn/p | p and nn/p − 1 ∤ n/p. If nn/p = 1,

then like in the second part of the proof of Proposition 9 we obtain that n ∈

p · M1 ⊂ M
(1)
p . On the other hand, if nn/p = p, since nn/p − 1 = p − 1 ∤ n/p we

apply Proposition 8 to obtain that p ∈ Mn/p. Lemma 5 applies and the proof is
complete. �
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Proposition 10 above allows us to compute, without great computational effort,
all the elements of Mp up to the product of p and the largest known weak primary
pseudoperfect number which is today of the order of p · 8.49× 1030. We just have
to check if Sn(n) ≡ p (mod n) for every element of pW ∪M1. Following this idea,
we have the following result.

Proposition 11. For every prime p 6= 5, we have that

[1, p · 8.49× 1030] ∩Mp ⊆ M1 ∪ pM1.

The prime p = 5 is exceptional because it is the only known prime for which
weak primary pseudoperfect numbers Q exist satisfying nQ = 5. Namely, n47058 =
n2214502422 = 5. In this case, we obtain the following result.

Proposition 12. M5 ∩ [1, 1031] = {1, 2, 5, 10, 30, 210, 9030, 235290, 11072512110}.

So, while no new weak primary pseudoperfect numbers are found it will not be
possible to find more than 10 solutions to the congruence Sn(n) ≡ p (mod n) with
prime p. In other words, to find a solution not lying on the set M1 ∪ pM1 for
some prime p 6= 5 would be equivalent to find a new weak primary pseudoperfect
number.

4. Further work

A natural extension of this work is, of course, to have a closer look at Mm with
composite m. In this general case we have an analogue to Theorem 1.

Theorem 3. Let m = pr11 · · · prss be an integer and let n ∈ N. Then n ∈ Mm if

and only if the following conditions hold:

i) The prime power factorization of n is given by n = q1 · · · qrp
t1
1 · · · ptss , with

0 ≤ ti ≤ ri + 1.
ii) For every i ∈ {1, . . . , r}, qi − 1 divides n and n/qi +m ≡ 0 (mod qi).
iii) For every j ∈ {1, . . . , s}, if 0 < tj ≤ rj then pj − 1 ∤ n.

iv) For every j ∈ {1, . . . , s}, if tj = rj + 1 then pj − 1 | n and n/p
rj+1
j + 1 ≡ 0

(mod pj).

Proof. Clearly n ∈ Mm if and only if Sn(n) ≡ m (mod n); i.e., if and only if

Sn(n) ≡ m (mod qi) for every i ∈ {1, . . . , r} and Sn(n) ≡ m (mod q
tj
j ) for very

j ∈ {1, . . . , s}. To get the proof it is enough to apply Lemma 1 and reason just like
in the proof of Theorem 1. �

This result allows us to construct the set Mm for some particular values of m
and to develop algorithms to determine the possible prime divisors of the elements
of Mm like we have just done in the prime case, but they are not operative. New
ideas will have to be developed in order to attack this general situation. In any
case, the following conjecture seems plausible.

Conjecture 1. For every m ∈ N the set of solutions to the congruence Sn(n) ≡ m
(mod n) is finite.
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