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On the use of Hahn’s asymptotic formula and stabilized recurrence for a
fast, simple, and stable Chebyshev–Jacobi transform
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We describe a fast, simple, and stable transform of Chebyshev expansion coefficients to Jacobi expansion
coefficients and its inverse based on the numerical evaluation of Jacobi expansions at the Chebyshev–
Lobatto points. This is achieved via a decomposition of Hahn’s interior asymptotic formula into a small
sum of diagonally scaled discrete sine and cosine transforms and the use of stable recurrence relations.
It is known that the Clenshaw–Smith algorithm is not uniformly stable on the entire interval of orthog-
onality. Therefore, Reinsch’s modification is extended for Jacobi polynomials and employed near the
endpoints to improve numerical stability.
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1. Introduction

Chebyshev expansions:

pN(x) =
N

∑
n=0

ccheb
n Tn(x), x ∈ [−1,1], (1.1)

where Tn(cosθ) = cos(nθ) are ubiquitous in numerical analysis, approximation theory and pseudo-
spectral methods for their near-best approximation, fast evaluation via the discrete cosine transform,
and fast linear algebra for Chebyshev spectral methods, among the many other properties that facilitate
their convenient use (see e.g. Mason & Handscomb (2002); Olver et al. (2010); Trefethen (2012)).

Jacobi expansions:

pN(x) =
N

∑
n=0

cjac
n P(α,β )

n (x), x ∈ [−1,1], α,β >−1, (1.2)

also have useful properties. The Jacobi polynomials are orthogonal with respect to L2([−1,1],w(α,β )(x)dx),
where w(α,β )(x) = (1− x)α(1+ x)β is the Jacobi weight. Jacobi expansions are therefore useful in
pseudo-spectral methods where it is more natural to measure the error in Jacobi weighted Hilbert
spaces (see Li & Shen (2010)). As well Wimp et al. (1997) show that the Jacobi weighted finite Hilbert
and Cauchy transforms are diagonalized by Jacobi polynomials.

For N ∈ N, define θθθ
cheb
N as the vector of N +1 equally spaced angles:

[θθθ cheb
N ]n =

πn
N , n = 0, . . . ,N, (1.3)
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and the vector of N + 1 Chebyshev–Lobatto points xcheb
N = cosθθθ

cheb
N . We express the vectors of the

evaluation of the expansion (1.1) and (1.2) at xcheb
N as the equality of the matrix-vector products:

pN(xcheb
N ) = TN(xcheb

N )ccheb
N = P(α,β )

N (xcheb
N )cjac

N , (1.4)

where the entries of the matrices are:[
TN(xcheb

N )
]

i, j
= Ti−1([xcheb

N ] j−1),
[
P(α,β )

N (xcheb
N )

]
i, j

= P(α,β )
i−1 ([xcheb

N ] j−1). (1.5)

We define the forward Chebyshev–Jacobi transform to be:

ccheb
N = TN(xcheb

N )−1P(α,β )
N (xcheb

N )cjac
N , (1.6)

and the inverse Chebyshev–Jacobi transform by:

cjac
N = P(α,β )

N (xcheb
N )−1TN(xcheb

N )ccheb
N . (1.7)

1.1 Previous work on computing Legendre, Gegenbauer, and Jacobi expansion coefficients

The origins of the method proposed and analyzed in this paper start with the fast eigenfunction trans-
form of Orszag (1986). The novelty of his approach, which is improved by Mori et al. (1999) is the
observation that, for large N, the matrix P(0,0)

N (xcheb
N ) is well approximated by a small sum of diagonally

scaled Discrete Cosine Transforms of type-I (DCT-I’s) and Discrete Sine Transforms of type-I (DST-
I’s). However, by not accounting for the region in the N-x plane where the matrix significantly differs
from the interior asymptotics, their initial advances were unstable.

Families of orthogonal polynomials are related by the so-called connection coefficients (Andrews
et al., 1998, p. 357). The connection coefficients fill in a lower-triangular matrix that allows conver-
sion between two different families of orthogonal polynomials. Alpert & Rokhlin (1991) leverage the
asymptotically smooth functions which define the connection coefficients between Chebyshev and Leg-
endre polynomials for an O(N logN) hierarchical approach to the Chebyshev–Legendre transform. This
hierarchical approach has been extended by Keiner (2009) for expansions in Gegenbauer polynomials.

When transforming polynomial expansions of analytic functions, an alternative approach to hierar-
chical decomposition of the connection coefficients can be used. With geometric decay in the coeffi-
cients of both the source expansion and the target expansion, the algebraic off-diagonal decay of the
connection coefficients has been used by Cantero & Iserles (2012) and Wang & Huybrechs (2014) for
O(N logN +MN) Gegenbauer and Jacobi expansion coefficients of analytic functions, where M ∈ N is
a parameter.

In principle, the hierarchical approach of Alpert & Rokhlin (1991) can be adapted to the Jacobi
connection coefficients for an O(N logN) algorithm. However, this approach will also be saddled with
the same high pre-computation of the hierarchical matrix. Instead, we extend the approach of Hale
& Townsend (2014) by developing fast and numerically stable evaluation of Jacobi polynomials at
the Chebyshev–Lobatto points. This approach does not have high pre-computation nor does it require
analyticity of the function underlying the expansion. Indeed, the transform produces high absolute
accuracy for expansion coefficients of a function with any regularity C ρ [−1,1], ρ > 0. In exchange, we
accept an asymptotically slower algorithm.

Hale & Townsend (2014) advocate for a modification of the approach of Mori et al. (1999) based on
a block partitioning of the matrix P(0,0)

N (xcheb
N ) into an O(logN/ log logN) number of partitions within
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which the interior asymptotics of the Legendre polynomials are guaranteed accurate and the remainder
of the matrix is evaluated via recurrence relations. The balancing of operations between stable fast
transforms in the blocks with the recurrence relations leads to the complexity O(N log2 N/ log logN).
While asymptotically slower than the hierarchical decomposition of Alpert & Rokhlin (1991), Hale and
Townsend advocate that the partitioning algorithm is a practical alternative with a smaller setup cost.

Hale & Townsend (2014) leave behind a mystery regarding the discrepancy in the numerically com-
puted error in the coefficients and the theoretical estimates based on model coefficients. In particular,
they show that for Legendre coefficients [cleg

N ]n =O(n−r), and for some r ∈R, the sup-norm in applying
P(0,0)

N (xcheb
N ) is asymptotically:

∥∥∥P(0,0)
N (xcheb

N )cleg
N

∥∥∥
∞

=

 O(N1−r), r < 1,
O(logN), r = 1,

O(1), r > 1,
as N→ ∞, (1.8)

but in their numerical experiments they observed the larger errors:

Observed Error =

{
O(N

3
2−r/ logN), r = 0, 1

2 ,1,
O(1), r = 3

2 ,
as N→ ∞. (1.9)

For the Chebyshev–Legendre transform and more generally for the Chebyshev–Jacobi transform,
this mystery is solved here by an extension of Reinsch’s modification of the Clenshaw–Smith algorithm
to the Jacobi polynomials. It is known that the Clenshaw–Smith algorithm is not uniformly stable on the
entire interval of orthogonality, i.e. the error bound of the recurrence relation is spatially dependent. In
particular, the loss of accuracy near the endpoints of the interval [−1,1] is significant. Reinsch suggested
a modification of Clenshaw’s algorithm near the endpoints; the modification is extended by Levrie &
Piessens (1985) to the Clenshaw–Smith algorithm for Legendre, ultraspherical, and Laguerre polyno-
mials; and here, we extend it to the Jacobi polynomials.

1.2 General definitions and properties

The Gamma function is defined for all ℜz > 0 by Abramowitz & Stegun (1965):

Γ (z) =
∫

∞

0
xz−1e−x dx, (1.10)

and it is analytically continued to z ∈ C\{−N0} by the property Γ (z+1) = zΓ (z).
The Pochhammer symbol is then defined by Abramowitz & Stegun (1965):

(x)n =
Γ (x+n)

Γ (x)
, (1.11)

and the beta function is defined similarly by Abramowitz & Stegun (1965):

B(x,y) =
Γ (x)Γ (y)
Γ (x+ y)

. (1.12)

Jacobi polynomials have the Rodrigues formula (Olver et al., 2010, §18.5):

P(α,β )
n (x) =

(−1)n

2nn!
(1− x)−α(1+ x)−β dn

dxn

(
(1− x)α(1+ x)β (1− x2)n

)
; (1.13)
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their values at x =±1 are known:

P(α,β )
n (1) =

(
n+α

n

)
, P(α,β )

n (−1) = (−1)n
(

n+β

n

)
; (1.14)

and, they satisfy the symmetry relation:

P(α,β )
n (x) = (−1)nP(β ,α)

n (−x). (1.15)

Their three-term recurrence relation is given by:

P(α,β )
n+1 (x) = (Anx+Bn)P

(α,β )
n (x)−CnP(α,β

n−1 (x), P(α,β )
−1 (x) = 0, P(α,β )

0 (x) = 1, (1.16)

where the recurrence coefficients are given by (Olver et al., 2010, §18.9.2):

An =
(2n+α +β +1)(2n+α +β +2)

2(n+1)(n+α +β +1)
, (1.17)

Bn =
(α2−β 2)(2n+α +β +1)

2(n+1)(n+α +β +1)(2n+α +β )
, (1.18)

Cn =
(n+α)(n+β )(2n+α +β +2)

(n+1)(n+α +β +1)(2n+α +β )
. (1.19)

The relation between Jacobi polynomials of differing parameters:

(α +β +2n+1)P(α,β )
n (x) = (α +β +n+1)P(α,β+1)

n (x)+(α +n)P(α,β+1)
n−1 (x), (1.20)

combined with the symmetry relation (1.15), allows for integer-valued increments and decrements of
parameters with linear complexity in the degree.

LEMMA 1.1 (Wang & Huybrechs (2014)) Assume that:

P(γ,δ )
n (x) =

n

∑
k=0

c(α,β ,γ,δ )
n,k P(α,β )

k (x). (1.21)

Then the coefficients c(α,β ,γ,δ )
n,k are given by:

c(α,β ,γ,δ )
n,k =

(n+ γ +δ +1)k(k+ γ +1)n−k(2k+α +β +1)Γ (k+α +β +1)
(n− k)!Γ (2k+α +β +2)

× 3F2

(
k−n,n+ k+ γ +δ +1,k+α +1
k+ γ +1,2k+α +β +2 ;1

)
, (1.22)

where 3F2 is a generalized hypergeometric function (Olver et al., 2010, §16.2.1).

2. The forward transform: Jacobi to Chebyshev

In this section, we extend the algorithm of Hale & Townsend (2014) for the Chebyshev–Legendre trans-
form to the Chebyshev–Jacobi transform by deriving a fast algorithm to compute:

ccheb
N = TN(xcheb

N )−1P(α,β )
N (xcheb

N )cjac
N .

TN(xcheb
N ) is a diagonally scaled DCT-I that can be applied and inverted in O(N logN) operations.
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2.1 Interior asymptotics of Jacobi polynomials

The interior asymptotics of Jacobi polynomials are given by Hahn (1980). Given M ∈ N0:

P(α,β )
n (cosθ) =

M−1

∑
m=0

Cα,β
n,m fm(θ)+Rα,β

n,M(θ), (2.1)

where:

Cα,β
n,m =

22n−m+α+β+1 B(n+α +1,n+β +1)
π(2n+α +β +2)m

, (2.2)

fm(θ) =
m

∑
l=0

( 1
2 +α)l(

1
2 −α)l(

1
2 +β )m−l(

1
2 −β )m−l

l!(m− l)!
cosθn,m,l

sinl+α+ 1
2
(

θ

2

)
cosm−l+β+ 1

2
(

θ

2

) , (2.3)

θn,m,l =
1
2 (2n+α +β +m+1)θ − (α + l + 1

2 )
π

2 , (2.4)

and where x = cosθ . For (α,β ) ∈ (− 1
2 ,

1
2 ]

2, and for n> 2, the remainder Rα,β
n,M(θ) is bounded by twice

the magnitude of the first neglected term in the summation, and for θ ∈ [π

3 ,
2π

3 ] the summation converges
as M→ ∞.

Rewriting θn,m,l as:

θn,m,l =
1
2 (2n+α +β +m+1)θ − (α + l + 1

2 )
π

2 , (2.5)

= nθ +(α +β +m+1) θ

2 − (α + l + 1
2 )

π

2 , (2.6)
= nθ −θm,l , (2.7)

allows us to insert the cosine addition formula into the asymptotic formula (2.1). The result is:

P(α,β )
n (cosθ) =

M−1

∑
m=0

(um(θ)cosnθ + vm(θ)sinnθ)Cα,β
n,m +Rα,β

n,M(θ), (2.8)

where:

um(θ) =
m

∑
l=0

( 1
2 +α)l(

1
2 −α)l(

1
2 +β )m−l(

1
2 −β )m−l

l!(m− l)!
cosθm,l

sinl+α+ 1
2
(

θ

2

)
cosm−l+β+ 1

2
(

θ

2

) , (2.9)

vm(θ) =
m

∑
l=0

( 1
2 +α)l(

1
2 −α)l(

1
2 +β )m−l(

1
2 −β )m−l

l!(m− l)!
sinθm,l

sinl+α+ 1
2
(

θ

2

)
cosm−l+β+ 1

2
(

θ

2

) . (2.10)

Since in (2.8), cosnθ and sinnθ are the only terms that depend simultaneously and inextricably on both
n and θ , the matrix P(α,β )

N (xcheb
N ) of (1.4) can be expressed in the compact form:

P(α,β )
N (xcheb

N )ASY =
M−1

∑
m=0

(
Dum(θθθ

cheb
N )TN(xcheb

N )+Dvm(θθθ
cheb
N ) sin(θθθ cheb

N [0, . . . ,N]>)
)

D
Cα,β

n,m
+Rα,β

M (θθθ cheb
N ).

(2.11)
Here, Dum(θθθ

cheb
N ) and Dvm(θθθ

cheb
N ) denote diagonal matrices whose entries correspond to um and vm evalu-

ated at the equally spaced angles θθθ
cheb
N , D

Cα,β
n,m

is the diagonal matrix whose entries consist of Cα,β
n,m for
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n = 0, . . . ,N, and Rα,β
M (θθθ cheb

N ) is the matrix of remainders. Since TN(xcheb
N ) is a diagonally scaled DCT-I

and sin(θθθ cheb
N [0, . . . ,N]>) is a diagonally scaled DST-I bordered by zeros, the matrix P(α,β )

N (xcheb
N )ASY

can be applied in O(MN logN +M2N) operations. However, for low degree or for θ ≈ 0 or θ ≈ π , the
approximation of P(α,β )

N (xcheb
N ) by P(α,β )

N (xcheb
N )ASY incurs unacceptably large error. Therefore, we re-

strict the applicability of the matrix P(α,β )
N (xcheb

N )ASY to the region in the n-θ plane where the remainder
is guaranteed to be below a tolerance ε and we use recurrence relations to stably fill in1 the remaining
entries of the matrix P(α,β )

N (xcheb
N ).

2.2 Partitioning the matrix P(α,β )
N (xcheb

N )

For (α,β ) ∈ (− 1
2 ,

1
2 ]

2 and for n> 2, the remainder in (2.1) is bounded by:

|Rα,β
n,M(θ)|< 2Cα,β

n,M | fM(θ)|. (2.12)

For large n, the following leading order asymptotics are valid:

2Cα,β
n,M =

22n−M+α+β+2

π

Γ (n+α +1)Γ (n+β +1)
Γ (2n+α +β +M+2)

, (2.13)

∼ 22n−M+α+β+2

π

√
2π
√

n+α( n+α

e )n+α
√

2π
√

n+β ( n+β

e )n+β

√
2π
√

2n+α +β +M+1( 2n+α+β+M+1
e )2n+α+β+M+1

, (2.14)

∼ 1

22M−1
√

πnM+ 1
2
, as n→ ∞. (2.15)

Therefore, if we set the remainder to ε , this will define a curve in the n-θ plane for every M given by:

n≈

(ε22M−1√π

| fM(θ)|

)− 1
M+ 1

2

 . (2.16)

For θ ∈ (0,π), | fm(θ)| is bounded by its envelope:

gm(θ) =
m

∑
l=0

( 1
2 +α)l(

1
2 −α)l(

1
2 +β )m−l(

1
2 −β )m−l

l!(m− l)!
cosl−m−β− 1

2
(

θ

2

)
sinl+α+ 1

2
(

θ

2

) , (2.17)

and since gm(θ) ∈ C (0,π) and:

lim
θ→0+

gm(θ) = lim
θ→π−

gm(θ) = +∞, (2.18)

the Weierstrass extreme value theorem ensures the existence of a global minimizer:

θ̂ = argmin
θ∈(0,π)

gm(θ). (2.19)

1N.B. the Clenshaw–Smith algorithm Clenshaw (1955); Smith (1965) for evaluation of polynomials in orthogonal polynomial
bases is used rather than explicitly filling in the matrix.
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Therefore, we find the discrete global minimizer:

θ̄ = argmin
θ∈θθθ

cheb
N

gm(θ)≈ θ̂ , (2.20)

and collect contiguous angles such that the error in evaluating the asymptotic expansion is guaranteed
to be below ε .

Following Hale & Townsend (2014), we define nM ∈ N0:

nM :=

(ε22M−1√π

| fM(π/2)|

)− 1
M+ 1

2

 , (2.21)

and we set:

αN := min
(

1
log(N/nM)

,1/2
)
, and K :=

⌈
log(N/nM)

log(1/αN)

⌉
. (2.22)

For k = 0, . . . ,K, while jk := αk
NN > nM , we compute the indices i1k , i

2
k within which the remainder falls

below the tolerance ε and whose angles bracket the discrete global minimizer θ̄ :[
Rα,β

jk,M
(θθθ cheb

N )
]

i
< ε ∀i ∈ {i1k , . . . , i2k}, [θθθ cheb

N ]i1k
< θ̄ < [θθθ cheb

N ]i2k
. (2.23)

We require the following lemma.

LEMMA 2.1 Let (α,β ) ∈ (− 1
2 ,

1
2 ]

2. Then for every M > 2:

Cα,β
n+1,M 6Cα,β

n,M . (2.24)

Proof. We have:

inf
(α,β )∈(− 1

2 ,
1
2 ]

2
(α +β ) =−1, max

α∈(− 1
2 ,

1
2 ]

α =
1
2
, max

β∈(− 1
2 ,

1
2 ]

β =
1
2
. (2.25)

Using (2.2):

Cα,β
n+1,M =

(2n+2α +2)(2n+2β +2)Cα,β
n,M

(2n+α +β +M+3)(2n+α +β +M+2)
6

(2n+3)2Cα,β
n,M

(2n+M+2)(2n+M+1)
6Cα,β

n,M . (2.26)

�
Lemma 2.1 guarantees that if M > 2, the remainder Rα,β

n,M(θ) is a non-increasing function of n.
Therefore, the determination of the indices ensures the accuracy of the asymptotic formula within the
rectangles [[θθθ cheb

N ]i1k
, [θθθ cheb

N ]i2k
]× [ jk, jk−1], for k = 1, . . . ,K, as depicted in Figure 1.

Lastly, for k = 1, . . . ,K, define:

P(α,β )
N (xcheb

N )ASY,k = diag(00:i1k−1,1i1k :i2k
,0i2k+1:N)P

(α,β )
N (xcheb

N )ASY diag(00: jk−1,1 jk: jk−1 ,0 jk−1+1:N),

(2.27)
to be matrices of the asymptotic formula (2.11) within [[θθθ cheb

N ]i1k
, [θθθ cheb

N ]i2k
]× [ jk, jk−1], and:

[P(α,β )
N (xcheb

N )REC]i, j =


P(α,β )

N (xcheb
N )i, j, i < i1k or i > i2k , j < jk−1, k = 1, . . . ,K,

P(α,β )
N (xcheb

N )i, j, i1K 6 i6 i2K , j < jK ,
0, otherwise,

(2.28)
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which is computed via recurrence relations. Then, the numerically stable formula:

P(α,β )
N (xcheb

N ) = P(α,β )
N (xcheb

N )REC +
K

∑
k=1

P(α,β )
N (xcheb

N )ASY,k, (2.29)

can be computed in O(N log2 N/ log logN) operations. For detailed leading order estimates, see Ap-
pendix A.

FIG. 1. The absolute error in P(1/8,3/8)
N (xcheb

N ) using the asymptotic formula (2.1) with M = 7, left, and M = 13, right. In both
plots: the colour denotes the absolute error on a logarithmic scale; the curves represent the approximate region of accuracy of the
asymptotic formula to ε ≈ 2.2204×10−16 determined by (2.16); whereas, the boxes denote the numerically determined indices
i1k , i

2
k , jk for k = 0,1,2, left, and k = 0,1,2,3, right, such that the remainder is certainly below ε .

2.3 Error analysis for model coefficients

Consider a set of coefficients satisfying [cjac
N ]n =O(n−r), for some r ∈R. We can estimate the sup-norm

of the error in the forward transform (1.6) by estimating the error in applying the matrix P(α,β )
N (xcheb

N ).
Define Dr

N := diag(1,1r, . . . ,Nr), then:∥∥∥P(α,β )
N (xcheb

N )cjac
N

∥∥∥
∞

6
∥∥∥P(α,β )

N (xcheb
N )D−r

N

∥∥∥
∞

‖Dr
ncjac

N ‖∞. (2.30)

Since:

max
x∈xcheb

N

|P(α,β )
n (x)|=max{|P(α,β )

n (1)|, |P(α,β )
n (−1)|}=max

{(
n+α

n

)
,

(
n+β

n

)}
=

(
n+max{α,β}

n

)
,

(2.31)
we can estimate the first term in (2.30) as follows:∥∥∥P(α,β )

N (xcheb
N )D−r

N

∥∥∥
∞

= O

(
1+

N

∑
n=1

(
n+max{α,β}

n

)
n−r

)
, as N→ ∞, (2.32)

= O
(
HN,r−max{α,β}

)
, as N→ ∞, (2.33)



THE CHEBYSHEV–JACOBI TRANSFORM 9 of 21

where HN,r are the generalized harmonic numbers Graham et al. (1989). Using their asymptotics:

∥∥∥P(α,β )
N (xcheb

N )cjac
N

∥∥∥
∞

=

 O(N1+max{α,β}−r), r < 1+max{α,β},
O(logN), r = 1+max{α,β},

O(1), r > 1+max{α,β}.
(2.34)

3. The inverse transform: Chebyshev to Jacobi

It is impractical to compute the inverse transform (1.7):

cjac
N = P(α,β )

N (xcheb
N )−1TN(xcheb

N )ccheb
N ,

directly due to the occurrence of the inverse of the matrix P(α,β )
N (xcheb

N ). Instead, following Hale &
Townsend (2014), we use the transpose of the asymptotic formula (2.11) in conjunction with the integral
definition of the Jacobi coefficients:

[cjac
N ]n =

1

A α,β
n

∫ 1

−1
pN(x)P

(α,β )
n (x)w(α,β )(x)dx, n = 0, . . . ,N, (3.1)

where pN(x) is defined by (1.1), and where A α,β
n , defined by (Olver et al., 2010, §18.3.1), are the

orthonormalization constants of the Jacobi polynomials:

A α,β
n =

∫ 1

−1
P(α,β )

n (x)2w(α,β )(x)dx =
2α+β+1Γ (n+α +1)Γ (n+β +1)
(2n+α +β +1)Γ (n+α +β +1)n!

. (3.2)

Since deg(pN(x))6N, its product with P(α,β )
N (x) will be integrated exactly by the 2N+1-point Clenshaw–

Curtis quadrature rule with the Jacobi weight w(α,β )(x).

3.1 Clenshaw–Curtis quadrature

Clenshaw–Curtis quadrature is a quadrature rule (see Waldvogel (2003); Sommariva (2013)) whose
nodes are the N + 1 Chebyshev–Lobatto points xcheb

N . Given a continuous weight function w(x) ∈
C (−1,1) and PN , the space of algebraic polynomials of degree at most N, the weight vector wN is
designed by the equality: ∫ 1

−1
f (x)w(x)dx = w>N f (xcheb

N ), ∀ f ∈ PN . (3.3)

With the modified Chebyshev moments of the weight function w(x):

µn =
∫ 1

−1
Tn(x)w(x)dx, n = 0, . . . ,N, (3.4)

the weights wN can be determined via the formula:

[wN ]n =
1− 1

2 (δ0,n +δN,n)

N

{
µ0 +(−1)n

µN +2
N−1

∑
k=1

µk cos[πkn/N]

}
. (3.5)
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Due to this representation, the O(N logN) computation of the weights from modified Chebyshev mo-
ments is achieved via a diagonally scaled DCT-I.

For the Jacobi weight, the modified Chebyshev moments are known explicitly (see Piessens (1987)):

µ
(α,β )
n =

∫ 1

−1
Tn(x)w(α,β )(x)dx = 2α+β+1B(α +1,β +1)3F2

(
n,−n,α +1
1
2 ,α +β +2

;1
)
, (3.6)

where 3F2 is a generalized hypergeometric function (Olver et al., 2010, §16.2.1). Using Sister Celine’s
technique (Rainville, 1960, §127) or induction (see Xiang et al. (2014)), a recurrence relation can be
derived for the modified moments:

µ
(α,β )
0 = 2α+β+1B(α +1,β +1), µ

(α,β )
1 =

α−β

α +β +2
µ
(α,β )
0 , (3.7)

(α +β +n+2)µ(α,β )
n+1 +2(α−β )µ

(α,β )
n +(α +β −n+2)µ(α,β )

n−1 = 0, for n > 0. (3.8)

It is known that for α > β and α = − 1
2 +N0 or for α < β and β = − 1

2 +N0, neither forward nor
backward recurrence is stable. This has been addressed by Xiang et al. (2014) by transforming the
initial value problem into a boundary value problem with a sufficiently accurate asymptotic expansion
for µ

(α,β )
N and subsequent use of Oliver’s algorithm (see Oliver (1968)), i.e. the LU decomposition of a

tridiagonal matrix. However, the recurrence relation is stable in the forward direction in the half-open
square (α,β ) ∈ (− 1

2 ,
1
2 ]

2, and in light of the linear complexity of integer-valued decrements, Oliver’s

algorithm is not required in the present context. Once the modified Chebyshev moments µ
(α,β )
n are

computed, the Clenshaw–Curtis weights w(α,β )
N follow via a diagonally scaled DCT-I.

3.2 The transpose of the asymptotic formula

Since deg(pN(x)P
(α,β )
n (x))6 2N, the 2N +1-point Clenshaw–Curtis quadrature rule yields:

[cjac
N ]n =

1

A α,β
n

(w(α,β )
2N )>(pN(xcheb

2N )P(α,β )
n (xcheb

2N )), n = 0, . . . ,N, (3.9)

where pN(x) is defined by (1.1), and where A α,β
n is given by (3.2). If we let the vector [s2N ]n =

(A α,β
n )−1 for n = 0, . . . ,2N, then we can rewrite this in matrix form:

cjac
N = [IN+1 |0N ]Ds2N P(α,β )

2N (xcheb
2N )>D

w(α,β )
2N

T2N(xcheb
2N )>

[
IN+1
0N

]
ccheb

N , (3.10)

where Ds2N and D
w(α,β )

2N
denote diagonal matrices whose entries correspond to s2N and w(α,β )

2N , respec-

tively. Clenshaw–Curtis quadrature allows us to express the Jacobi coefficients in terms of transposed
matrices rather than inverse matrices.

In order to complete our formulation, we use the transpose of (2.11), given by:

P(α,β )
2N (xcheb

2N )ASY,>=
M−1

∑
m=0

D
Cα,β

n,m

(
T2N(xcheb

2N )>Dum(θθθ
cheb
2N )+ sin(θθθ cheb

2N [0, . . . ,2N]>)>Dvm(θθθ
cheb
2N )

)
+Rα,β

M (θθθ cheb
2N )>.

(3.11)
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Given the ordering of the points xcheb
2N , the transposed DCT-I T2N(xcheb

2N )> and the transposed DST-I
bordered by zeros sin(θθθ cheb

2N [0, . . . ,2N]>) are symmetric, allowing for the same implementation as the
forward Chebyshev–Jacobi transform. Similarly, the constants nM , αN , K, and the indices i1k , i2k , and jk
can be computed as in the forward transform, with the substitution N → 2N. Therefore, the transpose
of the asymptotic formula, combined with recurrence relations, can be used for a numerically stable
partition and evaluation of the inverse transform.

3.3 Error analysis for model coefficients

Consider a set of coefficients satisfying [ccheb
N ]n = O(n−r), for some r ∈ R. We can estimate the sup-

norm of the error in the inverse transform (1.7) by estimating the error in the transpose formula (3.10).
Using Dr

N := diag(1,1r, . . . ,Nr) again, then:∥∥∥cjac
N

∥∥∥
∞

=

∥∥∥∥[IN+1 |0N ]Ds2N P(α,β )
2N (xcheb

2N )>D
w(α,β )

2N
T2N(xcheb

2N )>
[

IN+1
0N

]
ccheb

N

∥∥∥∥
∞

(3.12)

6
∥∥∥Ds2N P(α,β )

2N (xcheb
2N )>

∥∥∥
∞

∥∥∥∥D
w(α,β )

2N

∥∥∥∥
∞

∥∥∥∥T2N(xcheb
2N )>

[
D−r

N
0N

]∥∥∥∥
∞

‖Dr
Nccheb

N ‖∞. (3.13)

Using the bound on the Jacobi polynomials (2.31), we can formulate asymptotics of the sup-norm in-
volving the transposed matrix P(α,β )

2N (xcheb
2N )> and its diagonal scaling. Since the inverse squares of the

orthonormality constants are asymptotically O(N), as can be seen from (3.2), we have:∥∥∥Ds2N P(α,β )
2N (xcheb

2N )>
∥∥∥

∞

6C
∥∥∥D1

2NP(α,β )
2N (xcheb

2N )>
∥∥∥

∞

, for some C > 0, (3.14)

6C max
n∈{0,...,2N}

∑
x∈xcheb

2N

(δn,0 +n)|P(α,β )
n (x)|, (3.15)

6C max
n∈{0,...,2N}

2N(δn,0 +n)
(

n+max{α,β}
n

)
, (3.16)

= O
(

N2+max{α,β}
)
, as N→ ∞. (3.17)

For the Clenshaw–Curtis quadrature weights:∥∥∥∥D
w(α,β )

2N

∥∥∥∥
∞

= O(N−1), as N→ ∞, (3.18)

as can be seen by (3.5)2. Due to the symmetry of T2N(xcheb
2N ), we can conclude:∥∥∥∥T2N(xcheb

2N )>
[

D−r
N

0N

]∥∥∥∥
∞

= 1+HN,r, (3.19)

or: ∥∥∥cjac
N

∥∥∥
∞

=


O(N2+max{α,β}−r), r < 1,

O(N1+max{α,β} logN), r = 1,
O(N1+max{α,β}), r > 1.

(3.20)

2Intuitively, since the Clenshaw–Curtis weights must sum to a constant, and not one weight is of paramount importance, this
can only occur if they all decay uniformly with O(N−1).
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This growth rate appears larger than our numerical experiments suggest, and this can be attributed
to the overestimation of

∥∥∥Ds2N P(α,β )
2N (xcheb

2N )>
∥∥∥

∞

: the Jacobi polynomials are significantly smaller than

the maximum of their endpoints for the majority of the interior of [−1,1]. However, without a useful
envelope function, we report what can only be an overestimate.

4. Design and implementation

As Hale & Townsend (2014) remark, the partitioning implies the algorithm is trivially parallelized.
However, of more immediate concern is the application of the same transform to multiple sets of ex-
pansion coefficients. Analogous to Fastest Fourier Transform in the West (FFTW) of Frigo & Johnson
(2005), we divide the computation into part 1. Planification and part 2. Execution:

1. Planification

(a) Allocation of temporary arrays;

(b) Computation of the partitioning indices;

(c) Computation of the recurrence coefficients;

(d) Planification of the in-place DCT-I and DST-I;

(e) Computation of the modified weights and orthonormality constants (inverse only);

2. Execution

(a) Computation of the diagonal matrices Dum(θθθ
cheb
N ), Dvm(θθθ

cheb
N ), and D

Cα,β
n,m

;

(b) Application of the DCT-I and DST-I; and,

(c) Execution of the recurrence relations.

Since part 1 is only dependent on the degree and the Jacobi parameters, it is reusable. Therefore,
results of part 1 are stored in an object called a ChebyshevJacobiPlan. Analogous to FFTW,
applying the ChebyshevJacobiPlan to a vector results in execution of part 2. While it is beneficial
to divide the computation like so, the construction of a ChebyshevJacobiPlan is not orders of
magnitude larger than the execution, as is the case for other schemes using hierarchical or other complex
data structures; our numerical experiments suggest an approximate gain on the order of 10%. However,
the reduction of memory allocation alone could be important in memory-sensitive applications.

4.1 Computational issues

Consider the Stirling series for the gamma function (Olver et al., 2010, §5.11.10) on z ∈ R+:

Γ (z) =
√

2πzz− 1
2 e−z (SN(z)+RN(z)) , SN(z) =

N−1

∑
n=0

an

zn , RN(z)6
(1+ζ (N))Γ (N)

(2π)N+1zN . (4.1)

The sequence {an}n>0 is defined by the ratio of sequences A001163 and A001164 of Sloane (2016),
and ζ is the Riemann zeta function (Olver et al., 2010, §25). Table 1 shows the necessary and sufficient
number of terms required of the Stirling series such that RN(z)

SN(z)
< ε

20 ≈ 1.1102×10−17. Taking rounding

errors into account, the effect is a relative error below machine precision ε ≈ 2.2204×10−16 in double
precision arithmetic.
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Table 1. Number of terms such that RN (z)
SN (z) <

ε

20 ≈ 1.1102×10−17 in double precision arithmetic.

z> 3275 591 196 92 53 35 26
N 4 5 6 7 8 9 10

z> 20 17 14 12 11 10 9
N 11 12 13 14 15 16 17

Define Sε(z) : [9,∞)→ R by the truncated Stirling series SN(z) with necessary and sufficient N for
relative error below ε , as determined by Table 1.

The coefficients Cα,β
n,m of (2.2) can be stably computed by forward recurrence in n and m:

Cα,β
n,m =

(n+α)(n+β )Cα,β
n−1,m

(n+ α+β+m+1
2 )(n+ α+β+m

2 )
, and Cα,β

n,m =
Cα,β

n,m−1

2(2n+α +β +m+1)
. (4.2)

However, to determine the indices i1k and i2k for the partitioning of the matrix P(α,β )
N (xcheb

N ), use of an
asymptotic formula is more efficient. Here, we adapt the approach of (Hale & Townsend, 2013, §3.3.1)
with suitable modifications. In terms of Sε(z) defined above, the coefficients Cα,β

n,m can be expressed as:

Cα,β
n,m =

22n−m+α+β+1
√

2π(n+α +1)n+α+ 1
2 e−n−α−1(n+β +1)n+β+ 1

2 e−n−β−1

π(2n+m+α +β +2)2n+m+α+β+ 3
2 e−2n−m−α−β−2

× Sε(n+α +1)Sε(n+β +1)
Sε(2n+m+α +β +2)

, (4.3)

=
em

4m
√

π

(
1+

α−β −m
2n+α +β +m+2

)n+α+ 1
2
(

1+
β −α−m

2n+α +β +m+2

)n+β+ 1
2

× 1

nm+ 1
2 (1+ α+β+m+2

2n )m+ 1
2

Sε(n+α +1)Sε(n+β +1)
Sε(2n+m+α +β +2)

. (4.4)

In (4.4), the terms resembling (1+ x)y can be computed stably and efficiently by exp(y log1px), where
log1p calls the natural logarithm log(1+x) for large arguments and its Taylor series for small arguments.
So long as n+min{α,β} > 8, the asymptotic formula (4.4) for the coefficients Cα,β

n,m can be used for a
fast and stable numerical evaluation, and the downward recurrence of (4.2) supplies Cα,β

n,m for the handful
of remaining values.

To compute the orthonormality constants A α,β
n of (3.2), the asymptotic expansion derived by Bühring

(2000) can be used. However, a remainder estimate is not reported and instead we use the same tech-
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nique as for the computation of the coefficients Cα,β
n,m :

A α,β
n =

2α+β+1

2n+α +β +1
(n+α +1)n+α+ 1

2 (n+β +1)n+β+ 1
2

(n+α +β +1)n+α+β+ 1
2 (n+1)n+ 1

2

Sε(n+α +1)Sε(n+β +1)
Sε(n+α +β +1)Sε(n+1)

, (4.5)

=
2α+β+1

2n+α +β +1

(
1− β

n+α +β +1

) n
2+α+ 1

4
(

1− α

n+α +β +1

) n
2+β+ 1

4

×
(

1+
α

n+1

) n
2+

1
4
(

1+
β

n+1

) n
2+

1
4 Sε(n+α +1)Sε(n+β +1)

Sε(n+α +β +1)Sε(n+1)
. (4.6)

Similar to (4.4), (4.6) can be computed stably and efficiently for n+min{α,β ,α +β ,0} > 8. Note as
well the symmetry in both (4.4) and (4.6) upon the substitution α ↔ β .

4.2 Reinsch’s modification of forward orthogonal polynomial recurrence and the Clenshaw–Smith
algorithm

In order to evaluate P(α,β )
N (xcheb

N )REC and its transpose, recurrence relations are required. Here, we
review recurrence relations for orthogonal polynomials and derive new relations for stabilized evaluation
near the boundary of the interval of orthogonality for Jacobi polynomials.

Let an orthogonal polynomial sequence πn(x) be defined by the three-term recurrence relation (Olver
et al., 2010, §18.9.1):

πn+1(x) = (Anx+Bn)πn(x)−Cnπn−1(x), π−1(x) = 0, π0(x) = 1. (4.7)

The Clenshaw–Smith algorithm writes the sum:

pN(x) =
N

∑
n=0

cnπn(x), (4.8)

via an inhomogeneous recurrence relation involving the adjoint of (4.7) as follows:

Algorithm 4.1 (Clenshaw (1955); Smith (1965))

1. Set:
uN+1(x) = uN+2(x) = 0. (4.9)

2. For n = N,N−1, . . . ,0:

un(x) = (Anx+Bn)un+1(x)−Cn+1un+2(x)+ cn. (4.10)

3. Then:
pN(x) = u0(x). (4.11)

After Clenshaw’s original error analysis, it was Gentleman (1969) who first drew attention to the sus-
ceptibility of larger rounding errors near the ends of the interval [−1,1]. In Gentleman’s paper, Reinsch
proposed (unpublished) a stabilizing modification, with the error analysis of the modification performed
by Oliver (1977). Levrie & Piessens (1985) derive Reinsch’s modification of the Clenshaw–Smith algo-
rithm for Legendre, ultraspherical, and Laguerre polynomials. They also derive Reinsch’s modification
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to the forward orthogonal polynomial recurrence (4.7) for Chebyshev, Legendre, ultraspherical, Jacobi,
and Laguerre polynomials. Here, we review Reinsch’s modification with more general notation than
that of Levrie & Piessens (1985) and extend Reinsch’s modified Clenshaw–Smith algorithm to Jacobi
polynomials.

Formally, we define the ratio:

r f
n (x) :=

πn+1(x)
πn(x)

, for n> 0, (4.12)

such that at the point x0:
r f

n (x0) = Anx0 +Bn−Cnr f
n−1(x0)

−1, (4.13)

or isolating for Bn:
Bn = r f

n (x0)+Cnr f
n−1(x0)

−1−Anx0. (4.14)

Substituting this relationship for Bn into the forward recurrence (4.7), we obtain the modified version:

Algorithm 4.2

1. Set:
π0(x) = 1, d0(x) = 0. (4.15)

2. For n> 0:

dn+1(x) = (An(x− x0)πn(x)+Cndn(x))r f
n (x0)

−1, (4.16)

πn+1(x) = (πn(x)+dn+1(x))r f
n (x0). (4.17)

Consider the homogeneous adjoint three-term recurrence:

vn(x) = (Anx+Bn)vn+1(x)−Cn+1vn+2(x), v0(x) = 0, v1(x) = 1. (4.18)

Formally, we define the ratio:

rb
n(x) :=

vn+1(x)
vn(x)

, for n > 0, (4.19)

such that at the point x0:
rb

n(x0)
−1 = Anx0 +Bn−Cn+1rb

n+1(x0), (4.20)

or isolating for Bn:
Bn = rb

n(x0)
−1 +Cn+1rb

n+1(x0)−Anx0. (4.21)

Substituting this relationship for Bn into the Clenshaw–Smith algorithm, we obtain the modified version:

Algorithm 4.3

1. Set:
uN+1(x) = dN+1(x) = 0. (4.22)

2. For n = N,N−1, . . . ,1:

dn(x) = (An(x− x0)un+1(x)+Cn+1dn+1(x)+ cn)rb
n(x0), (4.23)

un(x) = (un+1(x)+dn(x))rb
n(x0)

−1. (4.24)
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3. Then:
pN(x) = A0(x− x0)u1(x)+C1d1(x)+ c0. (4.25)

The stability of the modified forward recurrence and the modified Clenshaw–Smith algorithm near
x0 is derived from the geometric damping induced by x− x0 and the avoidance of cancellation errors.
However, the naı̈ve implementation of the two-term recurrence relations for the ratios (4.13) and (4.20)
contains precisely the cancellation errors we were hoping to avoid. Therefore, to complete the stable
implementation of the scheme, we require stable evaluation of the ratios r f (x0) and rb(x0).

For Jacobi polynomials, due to (1.14) and the two-term recurrence of binomials, the ratios r f
n (±1)

defined by (4.12) are trivial:

r f
n (1) =

n+α +1
n+1

, and r f
n (−1) =−n+β +1

n+1
. (4.26)

Fortunately, we can also prove the following:

LEMMA 4.1 For Jacobi polynomials, the ratios rb
n(±1) defined by (4.19) are:

rb
n(1) =

n+1
n

(α +β +n+1)(α +β +2n)
(n+β )(α +β +2n+2)

, and rb
n(−1) =−n+1

n
(α +β +n+1)(α +β +2n)
(n+α)(α +β +2n+2)

.

(4.27)

Proof. One need only insert the ratios into the relationship (4.20). �

Figure 2 shows the relative error in evaluating P(0,0)
10,000(cosθ) at 10,001 equally spaced angles using

the six described algorithms. In Figure 2, the terms x±1 are computed accurately with the trigonometric
identities x+1 = 2cos2( θ

2 ) and x−1 =−2sin2( θ

2 ). While variations in α and β will change the accu-
racy of all six recurrence relations, practically, we take the unmodified algorithms to be more accurate in
π

4 < θ < 3π

4 , and the modifications otherwise as the perturbations in the breakpoints are asymptotically
of lower order as N→ ∞.

5. Numerical discussion & outlook

In principle the connection coefficients are able to provide reference solutions for the maximum absolute
error. But in practice, the naı̈ve algorithm’s quadratic complexity limits the applicability to below about
N = 104. Therefore, in Figure 3, we plot the maximum absolute error in transforming Chebyshev
expansion coefficients to Jacobi expansion coefficients and back for coefficients simulating an irregular
function and for coefficients simulating a continuous function. Error is similar for the forward–inverse
composition. Figure 4 shows the execution time of the forward and inverse transforms in line with
the predicted asymptotic complexity O(N log2 N/ log logN). Our implementation (Slevinsky, 2016,
FastTransforms.jl) in the JULIA programming language is freely available online.

Composition of the forward and inverse transforms allows for the transform between expansions in
Jacobi polynomials of differing parameters. As well, use of a Nonuniform Discrete Cosine Transform
(NDCT) (e.g. Hale & Townsend (2016)) could allow for fast evaluation at the Gauss–Jacobi nodes.
However, an efficient NDCT requires points to be close to the Chebyshev points of the first kind, and the
inequalities on the zeros of the Jacobi polynomials (Olver et al., 2010, §18.16) seem to be overestimates.
The performance of an NDCT may be better in practice than can be currently estimated theoretically.

One potential area of application is the extension of the fast and well-conditioned spectral method
for solving singular integral equations of Slevinsky & Olver (2015) to polygonal boundaries. Elliptic
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FIG. 2. The relative error in evaluating P(0,0)
10,000(cosθ) at 10,001 equally spaced angles using: left, the three-term recurrence relation

and Reinsch’s modification for the ends of the interval [0,π]; right, the Clenshaw–Smith algorithm and Reinsch’s modification for
the ends of the interval [0,π].

partial differential equations have angle-dependent algebraic singularities in the densities on polygonal
boundaries. It is conjectured that working in the more exotic bases of Jacobi polynomials and Jacobi
functions of the second kind can lead to banded representations of singular integral operators defined on
polygonal boundaries.

Since the integer-valued increments are required for Jacobi parameters beyond (α,β ) ∈ (− 1
2 ,

1
2 ]

2,
the method proposed and analyzed here cannot be used for exceedingly large parameters. This is con-
sistent with nonuniformity of Hahn’s asymptotics (2.1) in α and β . Therefore, this Chebyshev–Jacobi
transform cannot be used for a fast spherical harmonics transform. There are certain parameter régimes
where the complexity can be reduced. These are detailed in Appendix B.
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FIG. 3. Absolute error of the inverse Chebyshev–Jacobi transform of the forward Chebyshev–Jacobi transform. Left: for co-
efficients simulating an irregular function [cN ]n ∼ U(0,1). Right: for coefficients simulating a continuous function [cN ]n ∼
U(−1,1)n−2. In both plots, the numbers labeling the solid lines refer to different Jacobi parameters and the dashed black lines
are asymptotic estimates on the error based on the error analyses. The results are an average over 10 executions.
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line is the same, showing that the inverse transform takes about twice the time. The results are an average over 10 executions
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A. Complexity of P(α,β )
N (xcheb

N )REC

In this section, we derive refined estimates on the complexity of applying the matrix P(α,β )
N (xcheb

N )REC.
By artificially partitioning the matrix into rectangular regions, we need to estimate (Hale & Townsend,
2014, §3.3):

K−1

∑
k=1

α
k
NN(i1k+1− i1k + i2k− i2k+1), (A.1)

to leading order. Fortunately, as θ → 0 or θ → π , gM(θ) is its own asymptotic expansion. For brevity,
we derive the leading order asymptotics of i1k , and deduce those of i2k by symmetry. To leading order:

gM(θ)∼ g1
M(θ) =

( 1
2 +α)M( 1

2 −α)M

M!
1

sinM+α+ 1
2 θ

2

, as θ → 0. (A.2)

Then, to determine the leading order estimate of i1k :

ε ∼ 2Cα,β
jk,M

g1
M

(
i1kπ

N +1

)
, (A.3)

or isolating for i1k :

i1k ∼

2(N +1)
π

sin−1


 ( 1

2 +α)M( 1
2 −α)M

εM!22M−1
√

π j
M+ 1

2
k

 1
M+α+ 1

2


 , as N→ ∞. (A.4)

Using the fact that sin−1 x∼ x as x→ 0, we find:

i1k = O

N× j
−

M+ 1
2

M+α+ 1
2

k

= O

N
α

M+α+ 1
2 ×α

−k
M+ 1

2
M+α+ 1

2
N

 , as N→ ∞. (A.5)

Therefore, the sum involving i1k+1 and i1k is, to leading order:

K−1

∑
k=1

α
k
NN(i1k+1− i1k) = O

N
M+2α+ 1

2
M+α+ 1

2

K−1

∑
k=1

α

−
M+ 1

2
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2
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k α

M+α+ 1
2

N

 , (A.6)

= O

KN
M+2α+ 1

2
M+α+ 1

2

α

M−α+ 1
2

M+α+ 1
2

N

 , as N→ ∞. (A.7)

By the symmetry in α ↔ β and θ ↔ π−θ , we have:

K−1

∑
k=1

α
k
NN(i2k− i2k+1) = O

KN
M+2β+ 1

2
M+β+ 1

2

α

M−β+ 1
2

M+β+ 1
2

N

 , as N→ ∞. (A.8)
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Therefore, the simplified estimate O(N log2 N/ log logN) is a local expansion near (α,β )≈ (0,0), and
we observe in Figure 4 that it holds over (α,β ) ∈ (− 1

2 ,
1
2 ]

2 in practice, so long as M > 5.

B. Jacobi parameters resulting in reduced complexity

B.1 α = β = λ − 1
2

In the case that α = β = λ − 1
2 , we are a normalization away from the ultraspherical or Gegenbauer

polynomials. These asymptotics are given by (Olver et al., 2010, §18.15):

P
(λ− 1

2 ,λ−
1
2 )

n (cosθ) =
M−1

∑
m=0

Cλ
n,m

cosθ λ
n,m

sinm+λ
θ
+Rλ

n,M(θ). (A.1)

Here, we have:

Cλ
n,m =

2λ Γ (n+λ + 1
2 )√

πΓ (n+λ +1)
(λ )m(1−λ )m

2mm!(n+λ +1)m
, (A.2)

θ
λ
n,m = (n+m+λ )θ − (m+λ )π

2 = nθ − (m+λ )(π

2 −θ). (A.3)

and x = cosθ . The coefficients Cλ
n,m can be computed by the recurrence:

Cλ
n,m =

(λ +m−1)(m−λ )

2m(n+λ +m)
Cλ

n,m−1, Cλ
n,0 =

2λ Γ (n+λ + 1
2 )√

πΓ (n+λ +1)
. (A.4)

So long as λ ∈ (0,1), the error is bounded by twice the magnitude of the first neglected term in the
summation:

|Rλ
n,M(θ)|<

2Cλ
n,M

sinM+λ
θ
. (A.5)

Therefore, if we set the error to ε , this will define a curve in the n-θ plane for every M and λ given by:

n≈ nλ
M

sin
M+λ

M+ 1
2 θ

, nλ
M =

( ε
√

π2MM!
2λ+1(λ )M(1−λ )M

)− 1
M+ 1

2

 . (A.6)

B.2 α = 1
2

If α = 1
2 , then the summations in the functions fm(θ) collapse:

fm(θ) =
( 1

2 +β )m(
1
2 −β )m

m!
cosθn,m,0

sin
(

θ

2

)
cosm+β+ 1

2
(

θ

2

) . (A.7)

B.3 β = 1
2

If β = 1
2 , then the summations in the functions fm(θ) collapse:

fm(θ) =
( 1

2 +α)m(
1
2 −α)m

m!
cosθn,m,m

sinm+α+ 1
2
(

θ

2

)
cos
(

θ
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) . (A.8)


