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1. Introduction

In last decades, the q-calculus has been received a lot of attentions. The field
has expanded explosively due to the fact that applications of basic hypergeometric
series to the diverse different branches of mathematics and applied mathematics are
constantly being covered (for example, see [11] and references therein).

Recall [6, 9–11] some notation and definitions concerning q-calculus. The obser-

vation limq→1−
1−qx

1−q = x plays as a basic step for the theory of q-analogues, where

x, q ∈ C. We define [x] = 1−qx

1−q , is called the q number of x, which it is introduced by

Heine. Clearly, limq→1− [x] = x. Throughout this paper we assume that q satisfies

0 < q < 1. The q-Pochhammer symbol is given by [x]k =
∏k−1

j=0 [x+ j] with [x]0 = 1.

The q-factorial of n is given by [1]n = [1][2] · · · [n] = [n]! and the q-Gauss binomial

coefficients are defined by
[

n
k

]

q
= [n]!

[k]![n−k]!. For the exponential function has given

two analogues (see [9, 11]) as eq(x) =
∑

n≥0
xn

[n]! and Eq(x) =
∑

n≥0 q
(n2) xn

[n]! , where

the series converges for |x| < 1
1−q and x ∈ C respectively. Clearly, Eq(x) = e1/q(x)

and we define Ex
q = (Eq(1))

x. The q-derivative (for example, see [6, 9–11]) of an
arbitrary function f(x) is defined by

Dq(f(x)) =
f(qx)− f(x)

x(q − 1)
,

where x 6= 0. Obviously, if the function f is differentiable then limq→1− Dq(f(x)) =
d
dxf(x). Clearly, Dq(eq(ax)) = aeq(ax) and Dq(Eq(ax)) = aEq(aqx) for |ax| <

1
1−q

and a, x ∈ C respectively. By simple induction on n, we obtain Dn
q (eq(ax)) =

aneq(ax) and D
n
q (Eq(ax)) = anq(

n

2)Eq(aq
nx) for n ≥ 0.

In [8] it has been introduced the definition of q-completely monotonic func-
tion. A positive function f is said to be q-completely monotonic (respectively,
q-log-completely monotonic), if it an infinitely q-differentiable function such that
(−1)nDn

q f(z) ≥ 0 for n ≥ 0 (respectively, (−1)nDn
qLogqf(z) ≥ 0 for n ≥ 1 )

and z ∈ R
+, where we define Logq(f(x)) = logEq

(f(x)). When q → 1−, we ob-
tain the classical case: a positive function f is said to be completely monotonic
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(respectively, log-completely monotonic), if it an infinitely differentiable function

such that (−1)n(f(z))(n) ≥ 0 for n ≥ 0 (respectively, (−1)n(log f(z))(n) ≥ 0 for
n ≥ 1 ) for and z ∈ R

+. For instance, let Γ be the Euler gamma function de-
fined on R

+ by Γ(x) =
∫∞

0 tx−1e−tdt and the digamma (or psi) function is given by

ψ = d
dx log Γ(x) = Γ′(x)

Γ(x) . Then It is well known that ψ′ is strictly completely mono-

tonic on R
+, see [1, Page 260]. The q-gamma function has the following integral

representation, Γq(x) =
∫∞

0 xt−1Eq(−qx)dqx, and the q-analogue of the psi function
is defined for 0 < q < 1 as the logarithmic derivative of the q-gamma function, that
is, ψq(x) =

d
dx log Γq(x) (see [3]). It is well known that ψ′

q(x) is strictly completely

monotonic on R
+, see last section for further properties of the q-gamma and q-psi

functions.
In [16], Kim investigated some properties on the weighted q-Bernstein polyno-

mials. Moreover, he derived some new identities between the weighted q-Bernstein
polynomials and the twisted q-Bernoulli numbers (also, see [7, 17]). Here, we in-
terest on a general concept, namely, q-Bernstein function. A positive function f

on [0,+∞) is said to be q-Bernstein function if it is infinity q-differentiable and
(−1)n−1Dn

q f(z) ≥ 0 for n ≥ 1. Clearly, a function f non-negative and infin-
itely q-differentiable on [0,+∞) is q-Bernstein function if and only if Dq(f(z)) is
q-completely monotonic function.

In this paper, we show several results on q-completely monotonic functions, q-
log-completely monotonic and q-Bernstein functions. Then we define q-analog of
probability measures (for definitions, see next section) on [0,+∞) converges vaguely
to a measure function v (see [22]). Using this definition, we present a characterization
of the q-Bernstein functions in terms of q-Laplace transform. In last section, we
present applications for our results.

2. Main results

We start by citing [18, Proposition 2.7]:

(*) If f is a positive increasing (decreasing) function for x ∈ [0,+∞), then f is
q-increasing (q-decreasing) function, namely, Dq(f(x)) > 0 (Dq(f(x)) < 0).

Theorem 2.1. If f is a log-completely monotonic function, then f is q-log-compl-
etely monotonic function.

Proof. Let f(q) =
∑

n≥0
q(

n
2)

[n]! . Obviously, limq→0+ f(q) = 2 and limq→1− f(q) = e.

By the fact that f(q) is an increasing function on q we have 2 ≤ Eq ≤ e for all
q ∈ (0, 1).

We have to prove that if (−1)n(Logq(f(x)))
(n) ≥ 0 then

(−1)nDn
q (Logq(f(x))) ≥ 0,

for all n ≥ 1. We proceed the proof by induction on n. For n = 1 it holds, because if
−(Logqf(x))

′ > 0 or (Logqf(x))
′ < 0 then by (*) it follows that −Dq(Logq(f(x))) >

0 or Dq(Logq(f(x))) < 0. We assume the claim holds for all n = 1, 2, . . . , k, that is,

if (−1)n(Logq(f(x)))
(n) ≥ 0 then (−1)nDn

q (Logq(f(x))) ≥ 0, for all n = 1, 2, . . . , k.

We will prove that it holds for n = k + 1, that is, if (−1)k+1(log(f(x)))(k+1) ≥

0 then (−1)k+1Dk+1
q (Logq(f(x))) ≥ 0. Indeed, if (Logq(f(x)))

(k+1) > 0 then

(Logq(f(x)))
(k) is an increasing function, so Dk

q (Logq(f(x))) > 0 and then by using
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(*), we obtain thatDq(D
k
q (Logq(f(x)))) > 0. Similarly, the case (Logq(f(x)))

(k+1) <

0. �

To present our next result, we recall that the q-analogue of the partial Bell poly-
nomials are given by (see [4, 21])

Bn,k,q(x1, x2, . . . , xn−k+1) =
∑

b1+b2+···+bk=n, bi≥1

[n]!
∏k

j=1 xbj
∏k

j=1[b1 + · · ·+ bj ]
∏k

j=1[bj − 1]!
.

The q-analogue of Faá di Bruno’s formula is given by (see [24])

Dn
q g(h(x)) =

n
∑

k=1

Dk
q (g(x)) ◦ h(x)Bn,k,q(hb1,0, hb2,b1 , hb3,b1+b2 , . . .),

for all n ≥ 1, where hi,j = hi,j(x) = Di
q(h(q

jx)). Thus, for n ≥ 1,

Dn
q g(h(x)) =

n
∑

k=1

Dk
q (g(x)) ◦ h(x)

∑

b1+···+bk=n, bi≥1

[n]!
∏k

j=1D
bj
q (h(qb1+···+bj−1x))

∏k
j=1[b1 + · · · + bj]

∏k
j=1[bj − 1]!

.

(1)

Theorem 2.2. Let f(x) be any q-log-completely monotonic function. Then f is a
q-completely monotonic function.

Proof. By applying (1) with g(x) = Ex
q and h(x) = Loqq(f(x)), we obtain

Dn
q g(h(x))

=

n
∑

k=1

Dk
q (g(x)) ◦ h(x)

∑

b1+b2+···+bk=n, bi≥1

[n]!
∏k

j=1D
bj
q (Loqqf(q

b1+···+bj−1x))
∏k

j=1[b1 + · · ·+ bj]
∏k

j=1[bj − 1]!
.

which implies

(−1)nDn
q g(h(x))

=

n
∑

k=1

Dk
q (E

x
q ) ◦ Loqq(f(x))

∑

b1+···+bk=n, bi≥1

[n]!
∏k

j=1D
bj
q (Loqqf(q

b1+···+bj−1x))
∏k

j=1[b1 + · · ·+ bj ]
∏k

j=1[bj − 1]!
.

Since f is a q-log-completely monotonic function, we have

(−1)bjD
bj
q (Loqqf(q

b1+···+bj−1x)) ≥ 0,

for any bj ≥ 0, and
dk(Ex

q )

dxk = (logEq)
k · Ex

q > 0, by Theorem 2.8 see [18] we have
dkq (E

x
q )

dqxk > 0, thenDk
q (E

x
q )◦Loqq(f(x)) > 0.Hence, (−1)nDn

q f(x) = (−1)nDn
q g(h(x)) ≥

0, for all n ≥ 0, which completes the proof. �

Theorem 2.3. Let f : R+ → R
+. Then, f is a q-Bernstein function if and only if

E
−tf
q , t > 0 is a q-completely monotonic function.

Proof. Let f be any q-Bernstein function on R
+, and we define g(x) = E−xt

q , t > 0,
to be a q-completely monotonic function. By [18, Proposition 2.12 ] we have that

g ◦ f = E
−tf
q is a q-completely monotonic function. Conversely, suppose that E−tf

q

is a q-completely monotonic, then 1−E
−tf
q is a q-Bernstein function. Now, we find

that f = limt→0+
1−E−tf

q

t·logEq
is a q-Bernstein function. �
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Theorem 2.4. Let g be any q-completely monotonic function. Then, g ◦ f is a

q-completely monotonic if and only if E−f
q is a q-log-completely monotonic.

Proof. Let g be any q-completely monotonic function and suppose that g ◦ f is
a q-completely monotonic function. Now, we define g(x) = E−x

q , since the func-

tion g(x) = E−x
q is a q-completely monotonic, then g ◦ f = E

−f
q is a q-completely

monotonic. Conversely, suppose that E−f
q is a q-log-completely monotonic func-

tion, which implies that Logq(E
−f
q ) = −f , in other words (−1)nDn

q (Logq(E
−f
q )) =

(−1)n−1Dn
q f > 0, then we have f is a q-Bernstein function, since g ◦ f ≥ 0, by using

q-analogue of Faá di Bruno’s formula (or [18, Proposition 2.12 ]), we have that g ◦ f
is a q-completely monotonic function .

�

Theorem 2.5. Let f, g be any q-Bernstein functions. Then g ◦ f is a q-Bernstein
function.

Proof. Suppose that f, g are q-Bernstein functions. For any h, q-completely mono-
tonic function, we use [18, Proposition 2.12] to get that h ◦ f is a q-completely
monotonic function, and then h ◦ (g ◦ f) = (h ◦ g) ◦ f is a q-completely monotonic
function. Now, since h◦ (g ◦ f) is a q-completely monotonic function, by [18, Propo-
sition 2.12 ] we have that g ◦ f is a q-Bernstein function. �

Theorem 2.6. (i) Let f(x) ≥ 0 be any q-completely monotonic function on R
+

and let a > 0. Then f(x)− f(x+ a) is a q-completely monotonic function on R
+.

(ii) Let f(x) ≥ 0 and let f(x) − f(x+ a) be a q-completely monotonic function on
R
+ for each a in some right-hand neighborhood of 0. Then f(x) is a q-completely

monotonic function on R
+.

Proof. (i) Let f(x) be a q-completely monotonic on R
+ and let a > 0, by [18,

Theorem 1.2] we have f(x) =
∫∞

0 Eq(−xt)dq(µ(t)), where µ(t) is a positive measure
on R

+. Hence,

(−1)nDn
q (f(x)− f(x+ a))

= q(
n

2)
∫ ∞

0

(

Eq(−q
nxt)− Eq(−q

n(x+ a)t)
)

tndq(µ(t)) ≥ 0.

(ii) Let f(x) ≥ 0 and let f(x) − f(x + a) be a q-completely monotonic on R
+ for

each a in some right-hand neighborhood of 0. Since Dq(h(0)) = h′(0), we have that

−(Dqf(x)) = lima→0+
f(x)−f(x+a)

a is a q-completely monotonic on R
+. Then, we

have f(x) is a q-completely monotonic on R
+. �

For our next step, we define Rq,+ = {qn | n ∈ Z} and

Lq,λ(Rq,+, µ(t)) =

{

f |

∫ ∞

0
Eq(−λf(t))dq(µ(t)) <∞

}

,

where µ(t) is any positive measure. We consider the q-Wiener algebra

Aq,λ = {f ∈ Lq,λ(Rq,+) | Lq,λ(f) ∈ Lq,λ(Rq,+)}.

Let M+
q be the set of positives and bounded measures on Rq,+. The q-convolution

semigroup (see [8]) of probability measures is a family (πt)t>0 of probability measures
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in M+
q such that

Lq,λ(πt) ∈ Aq,λ, πt ∗q πs = πt+s, for x, t > 0.(2)

We define the q-convolution product of two measures ν, µ ∈ M+
q is given by

∫ ∞

0
f(t)(µ ∗q ν)dqt =

∫ ∞

0

∫ ∞

0
f(t+ s)µ(dqt)ν(dqs).

Theorem 2.7. Let (µt)t>0 be a q-convolution semigroup of probability measures on
Rq,+. Then there exists a q-Bernstein function f such that the q-Laplace transform

of µt is given by Lqµt = E
−tf
q , for all t ≥ 0. Conversely, if f is a q-Bernstein

function, there exists a q-convolution semigroup of probability measures (µt)t>0 on

Rq,+ such that Lqµt = E
−tf
q , for all t ≥ 0.

Proof. Suppose that (µt)t>0 be a q-convolution semigroup of probability measures
on Rq,+. Set t ≥ 0. Since Lqµt > 0, we define a function ft : [0,+∞) → R by
ft(λ) = −LoqqLq,λ(µt). By (2) we have ft+s(λ) = ft(λ)+ fs(λ), for all t, s ≥ 0, that
is, t→ ft(λ) satisfies the Cauchy’s functional equation. By the continuous of ft, we
obtain that there is a unique solution ft(λ) = t·f(λ), where f(λ) = f1(λ). Therefore,

Logq(Lq,λ(µt)) = −ft(λ), which implies that Lq,λ(µt) = E
−t·f(λ)
q , in particular, E−tf

q

is a q-completely monotonic function for all t > 0. By Theorem 2.3, f is q-Bernstein
function.

Conversely, suppose that f is a q-Bernstein function, by Theorem 2.3, we have

E
−tf
q is a q-completely monotonic function. Therefore, for every t ≥ 0 there exists

a measure µt on Rq,+ such that Lqµt = E
−tf
q . (Note that by definition this family

is a q-convolution semigroup of probability measures (µt)t>0 on Rq,+.) �

In order to state our next results, we need the following definition. A q-completely
monotonic function f is said to be q-infinitely divisible if for every t > 0 the function
f t is again a q-completely monotonic function.

Theorem 2.8. Let g : R+ → R
+ be any function. Then, g is a q-infinitely divisible

if and only if g = E
−f
q where f is a q-Bernstein function.

Proof. Suppose that g is a q-infinitely divisible. Since gt is a q-completely monotonic
function, we obtain, by [18, Theorem 1.4], that there exists a measure µt on [0,+∞)
such that gt(λ) = Lq(µt, λ). By Theorem 2.7, there exists q-Bernstein function f

such that Lq(µt, λ) = E
−tf(λ)
q . Hence, gt = E

−tf
q , which implies that g = E

−f
q .

Now, suppose that g = E
−f
q where f is a q-Bernstein function. Then, by Theorem

2.3, we have, gt = E
−tf
q is a q-completely monotonic function, which completes the

proof. �

Theorem 2.9. Let g : R+ → R
+ be any function. Then, g is a q-infinitely divisible

if and only if g is a q-log completely monotonic.

Proof. Suppose that g is a q-infinitely divisible. So gt is a q-completely monotonic.

By Theorem 2.8, there exits a q-Bernstein function f such that g = E
−f
q , which

implies that Logq(g) = −f , in other words

(−1)nDn
q (Logqg) = (−1)n−1Dn

q f > 0.
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Conversely, if g is a q-log completely monotonic function, then the function g is a
q-completely monotonic. By Theorem 2.8, there exits a q-Bernstein function f such
that

gt = E−t·f
q

is a q-completely monotonic function, for all t > 0, as required. �

3. Applications

In this section we present applications for our results. In order to do that, we recall
q-analogue of several known functions. Jackson (for example, see [3, 9, 13, 14, 17])
defined the q-analogue of the gamma function as

(3) Γq(x) =
(q; q)∞
(qx; q)∞

(1− q)1−x, 0 < q < 1,

and

(4) Γq(x) =
(q−1; q−1)∞
(q−x; q−1)∞

(q − 1)1−xq(
x
2), q > 1,

where (a; q)∞ =
∏

j≥0(1− aqj).
The q-analogue of the psi function is defined for 0 < q < 1 as the logarithmic

derivative of the q-gamma function, namely, ψq(x) =
d
dx log Γq(x). Askey [3] consid-

ered several properties of the q-gamma function. It is well known that Γq(x) → Γ(x)
and ψq(x) → ψ(x) as q → 1−. For 0 < q < 1 and x > 0, by (3) we obtain that

(5) ψq(x) = − log(1− q) + log(q)
∑

n≥0

qn+x

1− qn+x
= − log(1− q) + log(q)

∑

n≥1

qnx

1− qn

and for q > 1 and x > 0, by (4) we have that

(6)

ψq(x) = − log(q − 1) + log(q)

(

x− 1
2 −

∑

n≥0

q−n−x

1−q−n−x

)

= − log(q − 1) + log(q)

(

x− 1
2 −

∑

n≥1

q−nx

1−q−n

)

.

We set ψ1 = ψ. A Stieltjes integral representation for ψq(x) with 0 < q < 1 is given
in [12]. It is well-known that ψ′ is strictly completely monotonic function on (0,∞)
(see [1, Page 260]). From (5) and (6) we conclude that ψ′

q has the same property for

any q > 0, namely, (−1)n(ψ′
q(x))

(n) > 0, for x > 0 and n ≥ 0. If q ∈ (0, 1), then by
(5), we have that

(7) ψ(k)
q (x) = logk+1 q

∑

n≥1

nk · qnx

1− qn
.

If q > 1, then by (6) we obtain that

(8) ψ′
q = log q

(

1 + n log q
∑

n≥1

q−nx

1− q−nx

)

,

and for k ≥ 2

(9) ψ(k)
q = (−1)knk logk+1 q

∑

n≥1

q−nx

1− q−nx
.
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The polylogarithm is a special function that is defined by the infinite sum, or power
series:

Lis(z) =
∞
∑

k=1

zk

ks
= z +

z2

2s
+
z3

3s
+ · · · .

Let α ∈ R and β ≥ 0 be real numbers, we define

(10) fα,β,q(x) = (1− q)x
eh(x)Γq(x+ β)

[x]x+β−α
,

where h(x) = −Li2(qx)+x log(q) log(1−qx)
log(q) .

Now we ready to present applications of the previous results.

Theorem 3.1. Let 2α ≤ 1 ≤ β and 0 < q < 1. Then the function fα,β,q(x) is a
q-log-completely monotonic function on (0,∞).

Proof. It is clear that

ln fα,β,q(x) = x log(1− q) + h(x) + ln Γq(x+ β)− (x+ β − α) ln[x],

which implies

[ln fα,β,q(x)]
′

= log(1− q) + h′(x) + ψq(x+ β)− ln[x]−
qx(β − α) log(q)

1− qx
−
xqx log(q)

1− qx
.

Since h′(x) = xqx log(q)
1−qx , we have that

[ln fα,β,q(x)]
′

= log(1− q) + ψq(x+ β)− ln[x]−
qx(β − α) log(q)

1− qx
.

On the other hand, Lemma 2.3 (see [19]) gives

(11)
(−qx log q

1− qx

)(n)
= (−1)n

∞
∫

0

tne−xtdγq(t), n ≥ 0,

Hence,

(−1)n[ln fα,β,p(x)]
(n)

= (−1)n
[

ψ(n−1)
q (x+ β)−

(−qx log q

1− qx

)(n−1)
+ (β − α)

(−qx log q

1− qx

)(n)]

=

∞
∫

0

tn−1e−(x+β)t

1− e−t
dγq(t)−

∞
∫

0

tn−2e−xtdγq(t) + (β − α)

∞
∫

0

tn−1e−xtdγq(t)

=

∞
∫

0

gα,β(t)
tn−2e−xt

1− e−t
dγq(t),(12)

where gα,β(t) = t+ [(β − α)t− 1][eβt − e(β−1)t]. Note that gα,β(t) > 0 (see [5]). So,
by (12), we see that when n ≥ 2

(−1)n[ln fα,β,p(x)]
(n) > 0

on (0,∞) for 2α ≤ 1 ≤ β. Thus, by Theorem 2.1 we have

(−1)nDn
q (Logqfα,β,p(x)) > 0
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on (0,∞) for 2α ≤ 1 ≤ β and n ≥ 2.

For n = 1, since [ln fα,β,q(x)]
′

is an increasing function, we have that

[ln fα,β,q(x)]
′

< lim
x→∞

[

log(1− q) + ψq(x+ β)− ln[x]−
qx(β − α) log(q)

1− qx

]

= log(1− q) < 0,

which implies that Dq(Logqfα,β,p(x)) < 0.
Hence, for 2α ≤ 1 ≤ β and n ∈ N, (−1)nDn

q (Logq(fα,β,p(x))) > 0 in (0,∞), as
required. �

Theorem 3.2. Let ai, bi ∈ R such that 0 < a1 ≦ · · · ≦ an, 0 < b1 ≦ b2 ≦ · · · ≦ bn

and
∑k

i=1 ai ≦
∑k

i=1 bi for all k = 1, 2, . . . , n. Then the function Gp,q

(13) Gp,q(x) = Gq(x; a1, b1, · · · , an, bn) =

n
∏

i=1

Γq(x+ ai)

Γq(x+ bi)
(0 < q < 1)

is a q-completely monotonic on (0,∞).

Proof. First, we define

h(x) =

n
∑

i=1

[log Γq(x+ bi)− log Γq(x+ ai)] .

Then, for k ∈ N0, we have

(−1)k
(

h′ (x)
)(k)

= (−1)k
n
∑

i=1

[

ψ(k)
q (x+ bi)− ψ(k)

q (x+ ai)
]

= (−1)k
n
∑

i=1

(−1)k+1

∫ ∞

0

tk e−xt

1− e−t
·
(

e−bi − e−ai
)

dγq(t)

= (−1)2k+1

∫ ∞

0

tk e−xt

1− e−t
·

n
∑

i=1

(

e−bi − e−ai
)

dγq(t).

Alzer [2] showed that, if f is a decreasing and convex function on R, then

(14)
n
∑

i=1

f(bi) ≦
n
∑

i=1

f(ai).

Thus, since the function z 7→ e−z (z > 0) is a decreasing and convex on R, we have
n
∑

i=1

(

e−ai − e−bi
)

≧ 0,

so that
(−1)k

[

G′
q(x)

](k)
≧ 0 (k ∈ N0).

Hence h′ is a completely monotonic function on (0,∞), Using the fact that if h′

is a completely monotonic function on (0,∞), then exp(−h) is also a completely
monotonic function on (0,∞) (see [2]), by [18, Theorem 2.8 ] we have exp(−h) is
also a q-completely monotonic function on (0,∞), which completes the proof. �

Remark 3.3. This is a corrected version of paper (see [20]).
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