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Abstract

We introduce and study natural derivatives for Chifigioand finite standard words, as well as for characteristic
Sturmian words. These derivatives, which are realized &r$e images under suitable morphisms, preserve the
aforementioned classes of words. In the case of Clifeteords, the morphisms involved mayo a“*1b (resp. ab¥)
andb to ab (resp.,abl*1) for a suitablek > 0. As long as derivatives are longer than one letter, higineer
derivatives are naturally obtained. We define the depth ohas@ffel or standard word as the smallest order for
which the derivative is a single letter. We give several covatorial and arithmetic descriptions of the depth, and
(tight) lower and upper bounds for it.
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1. Introduction

Since the first systematic study by M. Morse and G. A. HedI(2&],[Sturmian words have been among the most
studied infinite words in combinatorics as they are the sastphperiodic words in terms édictor complexity and
enjoy many beautiful characterizations and properties, f&e instance, [27, Chap. 2]).

Sturmian words are of interest in several fields of mathereatiich as combinatorics, algebra, number theory,
dynamical systems, andftirential equations. They are also of great importance ioréteal physics as basic
examples of 1-dimensional quasicrystals (cf/ [12] andresfees therein) and in computer science where they are
used in computer graphics as digital approximation of ghidlines (cf. [25]).

A basic tool in the study of Sturmian words is thalindromization mapy, first introduced by the second au-
thor [14]. It maps any finite binary word(calleddirective wordin this context) to a palindromg(v) calledcentral
word. The definition can be naturally extended to infinite dineetvords; wherv spans among all binary words where
both letters occur infinitely ofteny(Vv) gives exactly alcharacteristicSturmian words (or infinite standard Sturmian
words). An infinite word is Sturmian if it has the same set atdas as some characteristic Sturmian word.

Central words are thus all palindromic prefixes of charéstierSturmian words; they can also be defined in a
purely combinatorial way, as words having two coprime p#sig q and lengthp + g — 2. If wis a central word over
the alphabeta, b}, thenawbis a (lower)Christgfel word andwah wbaarestandard words These classes of words,
which also include the lettesandb, represent a finite counterpart to Sturmian words and arksielied in their
own right as they satisfy remarkable and surprising contbiied properties (see for instance [4, 17|, 27]).

In a previous paper [16] the second and third author haveestiah important connection between the combina-
torics of these words and the famous Stern sequence. Ingpi&rpwhich can be considered as a continuation of the
previous one, we consider new combinatorial propertieskvlie mainly related to the notion of derivative of a word.
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Word derivation, meant as inverse image under some ingeatiorphism (also called “desubstitution”, or “inflation”
in [11]), is a known topic in combinatorics on words. A weltdwn instance is the notion aferivated wordof a
recurrent word, introduced by F. Durand|[22] along with thgortant concept akturn words

The main objective of this paper is to study some naturalvetvies for noteworthy classes of finite Sturmian
words, such as Chrisfi@l and standard words. The paper is organized as follows.ettic®[Z.1 we consider the
palindromization map. A well-known result by J. Justin| [2dhown asJustin’s formula links the palindromization
map withpure standard Sturmian morphism®., morphisms of the monoig,, up}* where forx € {a, b}, andy # x,
1x is defined as followsgy @ X - X, Yy > Xxy. Setting forv = vy ---Vp, tty = py, © - -+ 0 fy,, One derives from Justin’s
formula, that every standard wogdv)xy with {X, y} = {a, b} is obtained as the image &f under the morphism,,

YV)XY = pu(Xy) - (1)

In Sectior 2.2, some basic relations existing between agstandard, and Chridtel words are recalled and new
combinatorial properties are proved.

In Sectior B, we discushristgfel morphismsi.e., morphisms preserving Chriffiel words. We provide a simple
combinatorial proof for the known fact [4] that the monoid3ifristatfel morphisms is generated ly andAy,, defined
by

Ada=pua and 3, :a— ab, b b.

Settingd, = Ay, o --- 0 A, for v = vy - - - vy, this gives an analogue of formuld (1) in the case of Chffistevords,

namely

ay(v)b = A(ab).

We also prove that thverseimage of a Christfiel word under a Christéel morphism is a Christéel word; again,
this mirrors a well-known result for standard words and nisms.

With such knowledge about Chrigtel morphisms, in Sectiolnl 4 we define a derivative for properisiiftel
words. In fact, for each such womd there exists some nonnegative integedthe indexof w) such thatw can be
uniquely factored oveXy = {akb, a1b} or Y, = {ab, ab*'}; hencew is the image, under the morphism = A, or
Pk = Apka, Of @ wordow that we call thederivativeof w. Sincegy, andgy are Christéfel morphisms, this derivative is
still a Christdtel word.

Our choice of morphismgy andgy for the definition is motivated by the following argumentstsE the factor-
ization overX, or Y is quite natural and has been used in well-known algoritromsdfcognizing factors of Sturmian
words (ordigital straight segmentsn the computer graphics terminology; ¢f. [25]). Secolfidy i= ay(v)b andv is
not a power of a letter, then

ow = ay(,v)b,

where, v is the longest dfix of vimmediately preceded by a letterfi@irent from the first letter of. The operator
v — v was introduced by the last two authorslin/[16] and appearsnmesinteresting results on Chrisfiel words;
for instance, ifv starts with the lettex and{x,y} = {a, b}, then the lengthay(,v)b| = |ow| equals the number of
occurrences of in ay(v)b. Finally, a Christéfel word is determined by its derivative and the value of itieia

Further results on the derivatives of Chrig&b words are proved. In particular, if a Chriffid wordw is factored
asw = w;w, with wy andw, proper Christéel words, thedw = dw;dw,. Moreover, the length of a Chridfel word
w = ay(vive - --Vp)b with vi € A, 1 < i < n, is equal to 2 plus the sum of the lengths of derivatif#ag(v; - - - viy)b,
i=1,...,n

In Sectiorb, we naturally define higher order derivativgdetting 9w = 9(9'w) wheneved'w is still a proper
Christdfel word (i.e., not just a letter). Thaepthof a Christdfel wordw is then the smallest> 0 such that'w is
a letter. We give several descriptions of the deptlagfv)b as a functions(v) of its directive word. We prove that
6(uv) equals eithed(u) + 6(v) or 6(u) + 6(v) — 1. Tight lower and upper bounds of the depth are given; maeove
characterize the directive words for which such bounds @ieénad. We give also a closed formula for the number
Jk(p) of the wordsv of lengthk such tha®(v) = p.

In Sectior 6 we consider finite and infinite standard Sturmaiards; using the standard morphismg, andgx,
we define a natural derivative in these cases. This allow® @xtend the previous results to standard words; in
particular, the derivative of the standard waer@/)xy with {x,y} = {a, b} is either a letter or the proper standard word
U(+V)xy, where, vis the same directive word found in the derivative of the Stiofiel worday(v)b. Hence, the depths

2



of y(v)ab, y(v)ba, anday(v)b coincide. In the infinite case, the derivatides of a characteristic Sturmian woslis
word isomorphic to a derivated word in the sense of DurandgkdMea proof for the fact that a characteristic Sturmian
word has only finitely many distinct higher order derivatvi€and only if its directive word is ultimately periodic
(see also/[2]). Finally, we prove that there exists a simelation between the derivatiigs of a characteristic word
sand the derivativds, namelyos = bDs

2. Notation and Preliminaries

In the following, A will denote a finite non-empty set, atphabetandA* the free monoidgenerated byA. The
elements ofA are usually calledettersand those oA* words The identity element ofA* is calledempty wordand
denoted by. We setAt = A*\ {g}.

A wordw € A* can be written uniquely as a sequence of letters asw;w, - - - Wy, withw; € A, 1<i<n,n>0.
The integem is called thdengthof w and denotedinv|. The length of is 0. For anyw € A* andx € A, |w|x denotes
the number of occurrences of the letkein w. For any wordy € A*, we letv(P) (resp. M) denote the first (resp., last)
letter ofv.

Letw € A*. The wordu is afactor of w if there exist words ands such thatv = rus. A factoru of wis called
properif u# w. If w = us for some words (resp.,w = ru, for some word), thenu is called aprefix(resp., asyfix)
of w. If uis a prefix ofw, thenuw denotes the word such thatv = w.

Let p be a positive integer. A wordl = wy ---Wn, Wi € A, 1 < i < n, hasperiod pif the following condition is
satisfied: for any integeisandj such that i< i, j < n,

ifi=]j (modp), thenw = w;.

Let us observe that if a wond has a periog, then any non-empty factor @f has also the periog.

We letrr(w) denote the minimal period a@f. Conventionally, we set(s) = 1. A wordw is said to beconstantf
n(w) = 1, i.e.,w = Z with k > 0 andz € A. Two wordsv andw areconjugateif there exist words ands such that
vV =rsandw = sr.

Letw=w;---w,, W € A, 1<i <n. Thereversalof wis the wordw™ = w,---w;. One defines alse™ = . A
word is calledpalindromeif it is equal to its reversal. We let PAL denote the set of alipdromes on the alphabat

In the following, we let the alphabét be totally ordered. We let.x denote the lexicographic order induced on
A*. A word is called d_yndon wordif it is lexicographically less than any of its properxes (cf. [26, Chap. 5]).
As is well-known a Lyndon worav ¢ A can be factoredstandard factorizatiopasw = Im wherel is a Lyndon word
andmis the longest sftix of w which is a Lyndon word.

A right-infinite word x, or simplyinfinite word over the alphabé is just an infinite sequence of letters:

X= XX X--- Wherex; € A, foralli>1.

For any integen > 0, we letx, denote the prefix;x, - - - X, of x of lengthn. A factor of x is either the empty word
or any sequenck - - - X; with i < j. The set of all infinite words ovek is denoted byA“. An infinite wordx is called
ultimately periodidf there exist wordsl € A* andv € A" such thatx = uv’. The wordx is called (purelyperiodicif
u=g, i.e,x=v-v-v---. A periodic word withv € A will be calledconstant The wordx is calledaperiodicif it is
not ultimately periodic.

We say that two finite or infinite words = x3x,--- andy = y1y>--- on the alphabetd andA’ respectively are
word isomorphigcor simplyisomorphig if there exists a bijectiog : A — A’ such thaty = ¢(X1)e(X2) - - - .

We setA® = A" U A“. For anyw € A* we let Fact{) denote the set of all distinct factors of the wavd

In the following, we shall mainly concern with two-lettepalabets. We le#l denote the alphabet whose elements
are the letters andb, totally ordered by setting < b.

We letE denote the automorphism gt* defined byE(a) = b andE(b) = a. For eachw € A%, the wordE(W) is
called thecomplementaryord, or simply thecomplemenof w. We shall often use foE(w) the simpler notatiom.

We say that a word € A%, k > 0, isalternatingif for x,y € Aandx £y, v = (xy)5 if Kis even and/ = (xy)Lng if
kis odd, i.e.yis a single letter or ify] > 1 any non-terminal letter imis immediately followed by its complementary.

Theslopen(w) of a wordw € A* is the fractiony(w) = ¥ if jwj, > 0. We sety(w) = oo if [wig = 0.

Wla
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If we identify the lettersa andb of A respectively with the digits 0 and 1, for easte A* we let(w),, or simply
(w), denote thestandard interpretatioof w as an integer at base 2. For instaneg,= 0, (b) = 1, (babbg = 22.
We represent a non-empty binary word A* as

V=Xg0~'~Xﬁ”,

wherea; > 1,x € A, 0<i <n andx;; = X for0 <i < n-1. We call the list &o, a1, . .., an) theintegral
representatiorof the wordv. Hence, the integral representation of a weahd its first letterF) determine uniquely
v. We set extf) = |[Xo- - - Xo| = n+ 1 and call itextensiorof v. Moreover, we define ex] = 0.

For all definitions and notation concerning words not exthigiven in the paper, the reader is referred to the
book of Lothaire|[26]; for Sturmian words see [27, Chap. A §ilh Chap.s 9-10].

2.1. The palindromization map

We consider inA* the operatof”) : A* — PAL which maps any worev € A* into the palindromev*) defined as
the shortest palindrome having the prefiXcf. [14]). The wordw*) is called theright palindromic closureof w. If
Qs the longest palindromic flix of w = vQ, then one has

w = vQv.

Let us now define the map
v A" — PAL,
calledright iterated palindromic closureor simply palindromization mapoverA*, as follows:y/(g) = £ and for all
ue A", xe A,
Y(ux) = (U
For instance, iu = aaba one hasy(a) = a, y(aa) = (y(a)a)*) = aa, y(aab) = (aab)*) = aabag andy(u) =
Yy(aabg = aabaaabaa
The following proposition collects some basic propertiEthe palindromization map (cf., for instance, [14} 21]):

Proposition 2.1. The palindromization map satisfies the following properties:

P1. The palindromization map is injective.

P2. If uis a prefix of v, they/(u) is a palindromic prefix (and gfix) of y(v).

P3. If p is a prefix ofiy(w), then p*) is a prefix ofiy(w).

P4. Every palindromic prefix af(v) is of the formy(u) for some prefix u of v.

P5. [y(u)| = [¢(u)], for any ue A*.

P6. The palindromization map over{a, b}* commutes with the automorphism E, iveg E = E o y.

For anyw e (A") the unique wordi such thaty(u) = wis called thedirective wordof w.
One can extend to A definingy on A® as follows: letx € A be an infinite word

X=X Xo " Xn "+, XEAI>L

Since by property P2 of Propositibn P.1 for ally(x) is a prefix ofy(xn.1;), we can define the infinite worg(x)
as:

Y(x) = lim y(xn)-

The mapy : A — A“ is injective. The wordx is called thedirective wordof y(x). It has been proved in [14] that
if x € {a, b} the wordy(X) is acharacteristic Sturmian wor¢br infinite standard Sturmian word) if and only if both
the lettersa andb occur infinitely often in the directive worsl

Example2.2. Let A = {a,b}. If x = (ab)®, then the characteristic Sturmian wofrd= ¥((ab)*) having the directive
word x is the famoug-ibonacci word
f = abaababaabaab - .

If A={a,b,c}the wordt = y((abg®) is the so-calledribonacci word

t = abacabaabacaba - .
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For anyx € A, we letuy denote the injective endomorphismAif defined by
ux(X) = X, ux(y) = xy, fory e A\ {x}. 2)
If v=X1X-- X, With X € A, i = 1,...,n, then we set:
My = Hx; O+ O Uy,

moreover, ifv = g, u, = id. The following interesting theorem, due to Justin [248larsually referred to adustin’s
formula, relates the palindromization map to the morphigs

Theorem 2.3. Forall v,u e A*
Y(VU) = pay((U))y(v).
An important consequence of Justin’s formula is the follogdiemmal[8], which will be useful in the following.
Lemma 2.4. For each we A* and ve A®, y(WV) = uw((V)).
For instance, if we takey = a, x = (ah)“, then as one easily verifies
y(a(@ab)®) = ua(f) = aabaaabaabaaab - .

The case of a binary alphah@&t = {a, b} deserves a special consideration. The following remaekpimposition
holds (see, for instance |15, Prop. 4.10]).

Proposition 2.5. For any ve A* and xy € A, X+ Y,
Hv(Xy) = g(V)xy.
Corollary 2.6. Forany wv e A*and xy € A, X £,
YWY)XY = (W (V)XY)-

Proof. By the preceding proposition one has:
Y(W)XY = punv(XY) = pw(pv(Xy)) = pw((V)XY). .

Let v be a non-empty word. We let (resp.,”Vv) denote the word obtained fromby deleting the last (resp.,
first) letter. Ifvis not constant, we let, (resp.,.Vv) denote the longest prefix (resp.fi&x) of v which is immediately
followed (resp., preceded) by the complementary of the(tasp., first) letter of.. For instance, i’ = abbababone
hasv- = abbabav, = abbah ~v = bbabab and.v = babab From the definition one has

«(E(W) = EGV), (E(V): = E(v2), (V)" = (V). 3)

As shown in[16], and as we shall see in some details in the septions, the wordg™, v, and.v, “v play an
essential role in the combinatorics of Chri$&b words.

Proposition 2.7. Let ve A* be non-constant. Then
1u(8) = v, (b8) = (v, )ba, py(b) = uy-(ab) = y(v))ab, if v = a

and
(@) = v (ba) = y(v)ba, 1 (b) = py, (ab) = y(v,)ab, if v = b,

Proof. We shall prove the result only wheft) = a. The case/") = bis similarly dealt with. We can write = v, ba
for a suitable > 0. Therefore, by Propositidn 2.5 one has:

(@) = piv.bar (8) = pv,p(@) = py, (b@) = (v, )ba, 4)

and
pv(B) = pyv-a(b) = py-(ab) = y(v)ab, (5)
which proves the assertion. O



Example 2.8. Letv = abbab One hasv, = abb v~ = abba andv”) = b. Hencey(v,) = ababa y(v') =
ababaababguappa@) = ababaabababa (v-)ba, anduaphadb) = ababaab= (v, )ab.

An immediate consequence of Proposifiod 2.7 is the follgwsee alsd [16]):

Corollary 2.9. Let ve A* be non-constant, x the last letter of v, ane x. Then

Y(V) = (v )yxp (V) = Y(v)xpp(vs).

Proof. Sincev is not constanty(V)Xy = uv(Xy) = u(X)uv(y), and by Propositioh 2l 7w (X) = w(v.)yx andu(y) =
Y (v7)xy. The result follows. -

2.2. Central, standard, and Chrigfel words

In the study of combinatorial properties of Sturmian wordsr@acial role is played by the set PER of all finite
wordsw having two periodp andg such that gcdg, g) = 1 andw| = p+q-— 2.

The set PER was introduced in [17] where its main propertierewstudied. It has been proved that PER is equal
to the set of the palindromic prefixes of all standard Stunmiards, i.e.,

PER= y(A").

The words of PER have been calleghtralin [27, Chap.2].
The following structural characterization of central wemdas proved in [14] (see, also [9]).

Proposition 2.10. A word w is central if and only if w is a constant or it satisfiee equation:
w = wiabw, = wobaw

with wq, W, € A*. Moreover, in this latter case,mand w are central words, p= |wi|+2 and g= |w-| + 2 are coprime
periods of w, ananin{p, g} is the minimal period of w.

The following lemma, which will be useful in the followings in [14].

Lemma2.11. For any we PER one hagwa)®), (wb)*) e PER More precisely, if w= wiabw, = wobaw, then
(wa)® = w,bamabws, (wh)™*) = wiabwsbaw .
If w = x" with {x,y} = A, then(wx)®) = x™1 and(wy)™®) = x"yx".

Characteristic Sturmian words can be equivalently defimethé following way. Letco,Cy,...,Cn,... be any
sequence of integers such tleigt> 0 andc; > 0 fori > 0. We define, inductively, the sequence of worgg{o,
where

s=b, ss=a andsyi = 5 s forn> 1.

The sequences{)nso converges to a limis which is a characteristic Sturmian word (c¢f. [27]). Everyacdcteristic
Sturmian word is obtained in this way. The Fibonacci worditgained whert; = 1 fori > 0.

We let Stand denote the set of all the wosdsn > 0 of any sequences()n-o0. Any element of Stand is called
standard Sturmian worar simplystandard word A standard word dierent from a single letter is callgaoper.

The following remarkable relation existing between stad@ad central words has been proved.in [17]:

Stand= A U PERab, ba}.

More precisely, the following holds (see, for instarice [REp. 4.9]):

Proposition 2.12. Any proper standard word can be uniquely expressed, &s)) with {x,y} = {a, b} and ve A*.



Hence, by Propositidn 2.5 one has
Hv(Xy) = g(V)xy.
Let us set for any € A* andx € A,
Px(V) = |uv(X)]. (6)

From Justin’s formula one derives (cf. [18, Prop. 3.6]) thdW) is the minimal period of/(vx) and then a period of
¥(v). Moreover, one has (ct. [19, Lemma 5.1])

Px(V) = 7Y (VX)) = (¥ (V)X) (7)

and gcdpy(v), py(v)) = 1, so that
m(y(v)) = min{px(V), py(V)}.
Moreover, ifv is not constant, ag, is a proper prefix of~, by Propositiol 217 one derives:

n((v)) = puo (V) = [ag(vs)bl. (8)
Sinceluy(Xy)| = |uv(X)| + |uv(y)l, from Proposition 2.12 andl(6) one has
(V) = px(V) + py(V) — 2. 9)

Let us now introduce the important notion Ghristgfel word [10] (see alsol[6]). Lep andqg be non-negative
coprime integers, and= p + q > 0. The (lower) Christfiel wordw of slopeg is defined asv = xq - - - X, with

~_Ja ifipmodn> (i —1)p modn
~ |b otherwise

fori = 1,...,n, wherek modn denotes the remainder of the Euclidean divisiotk by n. Observe that the words
andb are the Christffel words with sIop% andoo = %, respectively.

The Christdrel words of slopeg with p andg coprime positive integers are callptbper Christgfel words The
term slope given to the fractiog1 is due to the circumstance that one easily derives from tfisitien thatp = |wip
andq = W.

We observe that lower Chrigtel words have also an interesting geometric interpretaticerms of suitable paths
in the integer latticeN x N (cf. [4]). It is then natural to introduce the so-called up@éristdfel words, which can
also be defined similarly to lower Chrigfel words, by interchanging andb, as well asp andq, in the previous
definition. We shall not consider these latter words in thegpasince they are simply the reversal of lower Chfisto
words.

Example 2.13. Let p = 3 andq = 8. The Christéfel construction is represented by the following diagram
0535659515457 8105255 %8 %0

Let CH denote the class of Chrigel words. The following important result, proved in [3], st®a basic relation
existing between central and Chrifd words:

CH = aPERb U A.

Moreover, one has|[3| 7]
CH = Stn Lynd,

where Lynd denotes the set of Lyndon words and St the set @g{fifiactors of all Sturmian words. Thus CH equals
the set of all factors of Sturmian words which are Lyndon vgorthe following theorem summarizes some results on
Christdfel words proved in [3,/6, 7].

Theorem 2.14. Let w be a proper Chrisjffel word. Then the following hold:
7



1. There exist and are unique two Chrigtd words w and w, such that w= wyw,. Moreover, W <jex W, and
(w1, W») is the standard factorization of w in Lyndon words.

2. If w has the sIop%, thenjwy| = p/, IW2| = @', where p and d are the respective multiplicative inverse of p and q,
modulojw.

3. Letw= ay(v)b have the slopg. Then p= pa(v™), = pp(v7) and g = pa(v), d = pu(v).

Example 2.15. The Christdfel wordw of the Exampl&2.13 having slogeis
w = aaabaaabaab- auh,

whereu = aabaaabaa= y(a’ba) is the central word of length 9 having the two coprime pesipg(v) = 4 and
Po(V) = 7 with v = a’ba. The wordw can be uniquely factored ag = w;w», wherew; andw, are the Lyndon
wordsw; = aaabandw, = aaabaab One hasv; <iex We With [wy| = 4 = pa(v) and|w;| = 7 = py(v). Moreover,
W, is the proper sfiix of w of maximal length which is a Lyndon word. Finally(v") = y(ab&) = abaabaaba
Pa(V7) = 3 = Wb, Po(V") = 8 = [Wla, and|WlpPa(V) = 3- 4 = 12= [Wlapp(v) =8-7 =56=1 (mod 11).

The following proposition is an immediate consequenceeshifl. of Theorerh 2.14 and of Corolldry P.9 (see also

[26]).
Proposition 2.16. For any non-constant word & A*, the standard factorization ofygv)b in Lyndon words is
(ay(v,)b, ap(v)b) if vIO =aand(ay(v )b, ay(v,)b) if v = b.
By Propositio 2,16 we have thatifis not constant, then for anye A

lay(V)blx = [a(v7)blx + [ag (v, )blx. (10)

The following proposition is a direct consequencelofl (1@)gives a remarkable interpretation of the pair of words
v, andv~ in the combinatorics of Chrisffel words. Recall that thmediantof the two fractionsa/b andc/d is the
fraction @+ c)/(b + d).

Proposition 2.17. If v e A* is not constant, then the slope of the Chrigbword a(v)b is the mediant of the slopes
of ay(v,)b and ay(v-)b.

Remark 2.18. Recall [16] that the slope of the Chrisfel worday (V)b is equal to the reduced fraction SB(abeling
the node (wordy in the Stern-Brocot tree. From the construction of this ®&#) = SB(v;) & SB(v,), wheres
denotes the mediant operation, andandv, are the nearest ancestorsvaibove and to the right, and above and to
the left respectively. It is readily verified thaw, vo} = {v,, v~} so that in any case SB(= SB(v,) ® SB(").

The following Propositions 2,19, 2.0, and 2.21 have beewqat in [16].
Proposition 2.19. For any ve A", n(y(v™)) = |ay(V)blz .

Proposition 2.20. If v e A* is not constant, then

lay(V)bl = ay(v7)bl + [ay(v,)bl = [ay("V)bl + lay (. v)bl.
Moreover,ay(;V)b| = |ay(v)blgzs .

Proposition 2.21. For any word v= vy -- -V, Withn> 0, v, € A, i =1,...,n, one has

n

W)= > wlwv-vi)) = >l (i Vo).
i=1

i=1

or anyv € A" let Ra enote the ratio Raf = . We recall [16] that the reduced fraction @bels the
F * let Rag) d he ratio Ra) = 2. W Il [15] that the reduced fraction Rpfabels th

node (word) in the Raney tree. The following remarkable propositionigllis readily derived from Propositiohs 2.7
and2Z.20, holds:



Proposition 2.22. Let v be a non-constant word ovét. If v(© = a (resp., ¥V = b), then

_ lay(v,)bl _ lag(v)bl
Rat) = (0 [respRa = ()
If v(F) = a (resp., ¥ = b), then
_ layp(v)bl _ lay(Cv)bl
SB() = (Wb’ (resp.,SB(v) = |a¢(+v)b|)'

An interesting interpretation of the extension &xigf a directive wordv of the central wordi(v) is given by the
following:

Proposition 2.23. Letv=VviVo---Vm, Vi € A, i = 1,...,m, be aword ofA*. Let w= (V) = Wy - - - Wi With kK = [y(V)|
andw e A, i=1,...,k. Then one has

extl) = cardz(y(vi---v)) |1 <i<m}=carda(wi---w)|1<i<Kkh

Proof. Leti = 1,...,mand seu = v; - --v;. Forx € A one has by[{7x(4(ux) = px(u). If x = u® = v;, then by [B),
Py, (U) = m(y(u)) and the minimal period is unchangedxl& U™ = v;, thenpg (u) > m(¥(u)). Hence, ifv = PASETED i
the set of distinct minimal periods @f(v1 - --vi),i = 1,..., m, is formed by the minimal periods of the words

Y(X0), ¥ (Xg™Xa), -, (X - X1 Xn)

whose number ig + 1 = ext(V).
Now letw;ws; - - - w; with r < k be a non-empty prefix of. There exists kK i < msuch that

Y(Ve- - Vi)Vier <p WiW2 - - Wr <p (V1 - - Visa),
where we lek, denote the prefixal ordering. Henegy(vs - - - Vi)Viz1) < m(waws - - - W) < (Vs - - - Visa)). By (@),
m((Ve - Vi)Vier) = m(@(Ve - - - Vie1)) = m(WaW3 - - - Wh).
Thus betweenr(y(vy - - - vi)) andr((vy - - - Vi+1)) there are no new minimal periods. From this the resulbfed. O

Corollary 2.24. For each k> 0 and ve A the word w= y(v) has the maximum number of distinct minimal periods
of its prefixes if and only if v is alternating, i.e., w is a padiromic prefix of f or of Ef).

Proof. By the previous proposition the number of distinct minimatipds ofw = y(v) is given by ext¢). A word
v € AX attains the maximum valueof ext() if and only if v is alternating. O

If v=x3-- X" we set
mi(V) = (X - X1x)), 0<i<n.
Moreover, we letr denote the arithmetic mean of the distinct minimal periad® <i < n.
Corollary 2.25. Forv e A* one has:
o)l -
extl) —
where the equality holds if and only if v is alternating.

Proof. Letn + 1 = ext(v). By Propositioh 2.21 one has

V| n n

W) = D A )) = Y am = ) m,
i=0 i=0

i=1

so that dividing fom + 1 we have

|¢(V)| > Z:in:Oﬂ'i — 7?
n+1 n+1
The equality holds if and only i&; = 1,i = 0,...,n. From this the result follows. O

9



3. Christoffel morphisms

Let x € A andy = X, we consider the injective endomorphiggnof A* defined byu;(X) = x andu;(y) = yx In
the following, we shall set
/la = Ha and/lb = IL[E,

and foranw = viVo - - -V, Vi € A, 1 < i < n, we define:
/lvz/lvlo/lvzo"'o/lvn.

If v=g¢, we setl, =id. Thus{das, Ap}* = {Ay | V€ A*}.
The following lemma shows that the morphigiis right conjugate27, Sect. 2.3.4] tqu,.

Lemma3.1. Forany ve A*, bip(Vv) = up(v)b.

Proof. By induction on the length of. The result is trivially verified ifv| < 1. Let us then suppos$g > 1 and write
v = uxwith x € A. If x = athen, by using the inductive hypothesis,

bap(ua) = bap(U)An(a) = up(U)bab = up(ua)b.

If x =D, one has:
bAp(ub) = bapy(u)b = py(u)bb = up(ub)b. O

Proposition 3.2. For all v € A*,
Av(ab) = ay(v)b.

Proof. By induction on the length of. If |v| < 1, the result is trivially verified. Suppo$g > 1 and writev = xwwith
x € A andw € A*. By induction one has:

Axw(@b) = Ax(Aw(@h)) = Ax(ay(w)b).
Let us first suppose that= a. In such a casg, = u,. By Justin’s formula
Aaw(ab) = pa(ay(W)b) = aua(y(w))ab = ay(aw)b.
Let nowx = b, so thatly = y;. By Lemmé 3.1l and Justin’s formula one has:
Apw(@b) = abip(y(W))b = aun(y(w))bb = ay(bw)b. .
Corollary 3.3. Foranywv e A*,
ay(Wwv)b = Aw(ay(v)b).
Proof. By the preceding proposition one has:
ay(Wy)b = Ayy(ab) = Aw(4v(ab)) = Aw(@y(v)b). O
Proposition 3.4. Let ve A* be non-constant. The following holds:
(@) = v, (ab) = ay(v.)b, Au(b) = A-(ab) = ay(v)b, if v = a

and
(@) = A-(ab) = ay(v )b, A,(b) = Ay, (ab) = ay(v,)b, if v = b

Proof. We shall prove the result only wheft) = a. The case/" = bis similarly dealt with. We can write = v, bal
for a suitabler > 0. Therefore, by Propositidn 3.2 one has:

/lv(a) = /lv+ba’ (a) = /lv+b(a) = /lv+ (ab) = a‘W(V+)b» (11)

and
A(b) = A-a(b) = A-(ab) = ay(v')b, 12)
which proves the assertion. O
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It is worth noting the similarity existing between Propasif2.5, Corollarf 2.6, and Propositibn 2.7 concerning
standard words and the morphismsv € A*, which preserve standard words|[13], and Propodfifidn 3o2oiary(3.3,
and Propositio 314 concerning Chri§a words and the morphismy, v € A*, which, as we shall see soon (cf.
Propositio 3.5), preserve Chrisfiel words.

Let Mcy denote the monoid of all endomorphisiinef A* which preserve Chrisftel words, i.e., ifw € CH, then
f(w) € CH. Such a morphisnh will be calledChristgfel morphism The following proposition was proved in [4] by
a different (geometrical) technicﬁle

Proposition 3.5. Mcy = {1a, Ap}*.

Proof. Let A, € {15, Ap}* andw € CH. We prove thafl,(w) € CH. Let us first suppose thatis a proper Christibel
word. We can writav = ay/(u)b for a suitableu € A*. Thus by Proposition 3.2

(W) = A(ag(u)b) = A,(1u(ab)) = Avw(ab) = ay(vu)b e CH.

Let us now suppose that e A. Letw = a. If vis not constant, then the result follows from Proposifich 3.et us
suppose that is constant. The result is trivial if = £. If v = a“ with k > 0, we havelx(a) = ae CH. If v = bX one
hasy(a) = ab¢ € CH. In a similar way one proves the resultif= b.

Let now f be any Christfiel morphism. Since

f(a), f(b), f(ab) = f(a)f(b) € CH,

one has thatf((a), f (b)) is the standard factorization dfab) in Christdfel (Lyndon) words. Asf(ab) is a proper
Christdfel word we can writef (ab) = ay(v)b. Let us suppose thatis not constant. I¥{) = a, by Propositiof 2.16
one has that the standard factorizatiomgv)b in Lyndon words is &4 (v, )b, a(v-)b). This implies, in view of[(Tl1)
and [12),

f(a) = ay(vs)b = 4y, (ab) = A(a), f(b) = ay(v )b = A-(ab) = Ay(b).

Hence, in this casé = A, and the result follows. The cas®) = bis similarly dealt with.

Let us now suppose thatis constant. We suppose that a“. One hasf(ab) = ay(a“)b = 1x(ab) = adb. In
this casef (a) = a = 14(a) and f(b) = a*b = 14(b). Hence,f = 4. In a similar way ifv = b one obtaing = A.
Thus the result is completely proved. O

Proposition 3.6. Let vy w € A*. If A,(w) € CH, then we CH.

Proof. Let us first prove that fok € A, if Ax(w) € CH thenw € CH. If Ax«(W) = y € A, then the only possibility is
x = yandw = x € CH. Let us then suppose that(w) is a proper Christtiel worday(v)b for a suitablev € A*. We
can write in view of Proposition 3.2

Ax(W) = ay(v)b = A(ab). (13)

If v = &, then one obtainsy(w) = abandw € CH. Let us then suppogg > 0. We wish to prove that™) = x. To
this end we show that = aif and only if VF) = a. Indeed, asly(w) € {a, ab}* andA,(W) € {b, ab}* if VF) = a, asy(v)
begins witha, it follows thatx = a. Conversely, suppose that a; one has thatv has to terminate with. Moreover,
if w=b", withn > 1 one would haval,(b") = (ab)" ¢ CH. If n = 1, theni,(b) = abandv = &, a contradiction.
Hence, inw there must be at least one occurrence of the lettep that we can writev = wab” withr > 0. Thus
ab € Fact(v). This implies thatab e Fact(la(w)), so thatF) = a. We have then proved that?) = x. Writing
v = xVv from (I3) we have
Ax(W) = ay(V)b = Axv (ab) = Ax(Av(ab)).

As Ay is injective, it followsw = A, (ab) € CH.

The remaining part of the proof is obtained by induction anléngth ofv. If |v| > 1, setv = xv and suppose that
Ay(w) € CH. We can writel,(w) = Ax(4y (w)) € CH. It follows from we have previously proved thai(w) € CH and
by inductionw € CH. O

3In [4] any Sturmian morphism, i.e., any endomorphisn#fwhich preserves Sturmian words, is called Chfigiamnorphism.
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The following lemma relates the morphistg, andga,, k > 0.

Lemma3.7. For each k> 0 and ve A",
Aap(bV) = prap(Vh),  Aap(@v) = auam(Vh).

Proof. By Lemmal3.]l one hagsy(bv) = 2x(bAp(V)) = pa(un(V)b) = pap(vb) and the first equation is proved. By
using again Lemmla_3.1 one hagy(av) = Ax(abip(Vv)) = Ax(aup(V)b)) = ua(aup(vh)) = auap(vb). O

Lemma3.8. Forallv e A* and xe A,
[Av(X)] = (X = px(V).

Proof. Let us first suppose thatis constant. Ifv = a¢ with k > 0, then sincely = g, in view of () the result
trivially follows. If v = b¥, then|1(a)| = |ab¥| = |b¥a] = |uy(a)] and|A(b)] = |u(b)| = 1 and the result is achieved.
If vis not constant the result follows from Propositiong 3.42AM O

4, Derivative of a Christoffel word

Letp : A* — A* be an injective morphism. As is well-known (cf! [5]) the s€t= ¢(A) is a code over the
alphabetd, i.e., any word ofX* can be uniquely factored by the elementsofThus there exists an isomorphism,
that we still denote by, of A* andX*. Lety ! be the inverse morphism gf

If we X*, ¢~1(w) is a uniquely determined word over the alphafethat we callderivativeof w with respect to
¢. We shall denote1(w) by d,w, or simplydw, when there is no ambiguity.

Example 4.1. Let X = {ab, ba} andy the Thue-Morse morphism defined bya) = ab andg(b) = ba. One has that
dabbabaab= abba

Let w be the finite Sturmian wordi = aababaaba The wordw can be decoded by the morphigi: {a, b})* —
{a, ab}* or by the morphismy; : {a,b}* — {a, ba}*. In the first case one obtains the derivative= abbabawhich
is still a finite Sturmian word, whereas in the second casegetethe derivativer, = aabbabwhich is not a finite
Sturmian word.

In the study of derivatives of finite words oveét belonging to a given class, we require that the seM of
injective endomorphisms oft* satisfies the two following basic conditions:

1. If ¢ € M, then for anyw € C, (W) € C.
2. If p(v) = wandw € C, thenv e C.

Moreover, one can restrict the clad$ of endomorphisms to some subcla‘é(sassuring that the obtained derivatives
satisfy suitable combinatorial properties.

In this section we shall consider the clad®f Christdfel words. We define a derivative of a proper Chrikgb
word by referring to a suitable Chrigtel morphism. A derivative in the case of finite (and infinitgralard Sturmian
words and its relation with the previous one will be given acon6.

Letu = y(v) be a central word. We defiriedexof the central wordi the integer O ifv = ¢ or, otherwise, the first
element in the integral representatian,(az, . . ., @y) of v, i.e.,ag. We let ind(1) denote the index af. If w = aubis
a proper Christfiel word we definendex(resp.,directive worg of w the index (resp., directive word) of the central
wordu.

In the following, forx € A, we set PER= PERN XxA* and for anyk > 0 we define the prefix codé and the
sufix codeY:

Xy = {ab, @b} and Y, = {ab¥, ab*1}. (14)

Lemma 4.2. Let w = aub be a proper Chrisjel word with u# & and k be the index of u. If & PER,, then
w e a“1bX:. If u € PER,, then we abkY;.
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Proof. We shall prove the lemma only in the case PER,. The casal € PER, is dealt with in a similar way. We
shall denote by the seta"*lbﬁ. The proofis by induction on the length of the directive waraf the central word
u = ¥(v) of indexk. If v = a thenu = ak andw = aub = a*1b. If v = akb, thenu = a*ba andw = a“*'bakb and we

are done. Let us then suppose that the result is true for etidizavordv € akbA* and prove it for the directive word
vxwith x € A. Sincey(v) begins withakbak, we can write from Propositidn 2,110

u = ¢(v) = usbaw, = uxabu, = aba, (15)
wherel € A* anduy, u, € PER,. Moreover, from LemmB2.11 one has:
Y(va) = utbawabw and y(vb) = upabybaw.
Letz; andz be the Christffel wordsz = ay(va)b andz = ay(vb)b. One has that
7 = auibawabuyb = aubay(v)b = ambwandz, = wawb. (16)

From [I%) one has that;| > k. This implies that the index af; = y(vy) is k. Sinceau,b is a Christdfel word and
[v1| < |v|, one has by inductioawb € Z. Also by inductionw € Z. Hence, by[(16) one has € Z..

As regards, from (I3) one has eithéu,| > k or |uz| = k — 1. In the first case since ing{) = k, in a way similar
as above one derives by induction that the Chfistavordawb € Z, that implies by[(16), aw € Z, thatz € Z. In
the second casaupb = akb € Xy, so that, asv € Z, it follows z € Z and this concludes the proof. O

If wis a proper Christel word, we can introduce a derivative wfas follows. Ifw = aub, whereu € PER, is a
central word of indeX, we consider the prefix cod§ and the injective endomorphisp of A* defined by

(@) = &b, g(b) = ab. 17)

By the previous lemmw € X; and the derivative ofv with respect tapy is dkw = ¢ }(w). Let us observe that from
the definition for allk > 0 one hag)a“*'b = a whereasiy,1a“"*b = b.
In the casal € PER,, one can consider the injective endomorphignof A* defined by

o(@) = ab, (o) = ab+h, (18)

By the previous lemmav € Y, and the derivative ofv with respect tapg is W = g”o;l(w). Observe that for ak > 0

one hasiab*! = b whereasi,1abk! = a.

If w = aubis a proper Christfiel word of indexk > 0 thederivativeof w is the wordow = dw if u € PER, and
ow = dwif u € PER,. Finally, if k = 0, i.e.,w = ab, we setdab = a.

Let us observe that from the definition one has for daet0:

ok = Aap and @y = Aga,
so that by Proposition 3.5« andgy are Christdfel morphisms.

Example4.3. Letv = ab’a’b andw be the Christéiel worday(v)b wherey (V) is a central word of index 1. One has:
w = aababaababaabababaababaababab

In this case one ha%; = {a’b, ab} andéw = 9;w = abababbababb R
If w= ay(b®a?)b, thenw = abbabbabbbThe index ofw is 2 andY, = {ak?, ab®} andow = d,w = aab,

Remark 4.4. Let us explicitly observe that two fierent Christéel words can have the same derivative. For instance,
the Christdfel wordsw = ay(a’b?a)b andw = ay(b’aba)b have both the derivativababb= ay(ba)b. Moreover,
from the definition it follows that all proper Chridfel words having directive words which are equal up to their
index have the same derivative, i.e., forlat- 0, x € A and¢ € XA*, one hag)(ay(x)b) = d(ay(x)b). A proper
Christdfel wordw is determined by its derivativ@wv and the value of its index.
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Theorem 4.5. The derivative of a proper Chrisfi@l word is a Christgfel word.

Proof. Letw = aubbe a proper Christéel word of indexk. If k = 0, i.e.,w = ab, dab = a and in this case the
result is trivially verified. Let us suppose> 0. The derivative ofv is ow = cpEl(W) if ue PER, andow = g”o;l(w) if
u € PER,. Inthe first casex(dw) = wand in the second cagg(ow) = w. Sinceyx andgg are Christéfel morphisms,
by Propositio 36 it follows that in both casés € CH. O

Corollary 4.6. Let w= ay(v)b be a Christgfel word of index k, with v non-constant. Ifaw;w, with wy, w, € CH
is the standard factorization of w in Lyndon words, thenwg € X; or wi,w, € Yy and ow = dwiow, with
0wy, 0w, € CH, is the standard factorization @éfv in Lyndon words.

Proof. By Theoreni 4569w is a Christdfel word. Sinceris not constant, by Propositién 2110 one l#ég = u;baw, =
upabu with ug, u, € PER. Hencew = wyw, wherew; = awb andw, = awb are two proper Christéel words. In
view of Theoreni Z. T4 w is the standard factorization ofin Lyndon words.

Let us suppose thate aA*. One hasy(v) = aba¢, with &£ € A* from which, as we have seen in the proof of
Lemmd4.p, one derives that, w, € X;. Thusow = kW = dxW19kW2 With dgws, kW, € CH. By Theoreni 2,14 the
result follows. The case e bA* is similarly dealt with. O

Theorem 4.7. Letk> 1and we X; U Y;. If ow is a Christgfel word, then w is a proper Chris@l word.

Proof. We shall suppose that € X;. A similar proof can be done whem € Y. One has thatv = ¢(6w). Since
¢k is a Christdfel morphism, it follows thatv € CH. Moreover, it is readily verified that is a proper Christibel
word. O

From Theoremis 415 and 4.7 it follows:
Corollary 4.8. Letk> 0and we X; UY;. Then wis a proper Chrisffel word if and only ifow is a Christgfel word.

Proposition 4.9. If w = ay(v)b, then
low = w((v7)) = lay(V)blge.

Proof. From the definition of derivative ofv one hagow| = |ay(V)blz», so that the result follows from Proposi-
tion[2.19. O

Corollary 4.10. A proper Christgfel word w= ay(V)b is uniquely determined by, |w|, and|w].

Proof. Letw = ay(v)b. By Propositiod 280w = |ay(v)blze, so thatay(v)blys = W — |6w]. The Christéfel word
w is uniquely determined by its slopgw) = Wlp/IWla. If V) = a, thennp(w) = [dwl/(IW] — |ow]). If VF) = b, then
n(w) = (Iw] — |ow])/|dw|. From this the result follows. O

From Propositions Z.21 ahd #.9 one derives:

Corollary 4.11. Foranyword v= V3 ---Vy, Withn> 0, Vv, € A,i =1,...,n, one has

n
W)l = ) l6au(v - - vo)bl.
i=1
Example 4.12. Letw = ay(v)b with v = a’b?a. One has
w = a*ba?ba’ba’ba’b.

Moreover,day(ab’a)b = ow = ababh day(b’a)b = day(ba)b = ab, andday(a)b = a. Hence,|y (V)| = 15 =
2-5+2-2+1.

The following noteworthy theorem relates, through theiediive words, the central word of a proper Chriitb
word and the central word of its derivative.
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Theorem 4.13. If w = ayy(v)b and v is not constant, then
ow = ay(,v)b.

Proof. Letv = x;°---X3" with n > 1 asv is not constant. We can write, setting = k anda; = h, v = x§x¢. We
shall first suppose that(v) € PER,, so thatv = akb"¢. One hasy(v)b € X;. Sincegy = 244, and @b)~tv = b1,
by Corollary(3.3 one obtains

ay(v)b = g(day(v)b) = p(ay(b™*é)b).

From the injectivity ofyy it follows day(v)b = ay(b"1¢)b = ay(,v)b.
Let us now suppose that(v) € PER,. We can writev = b*a"¢. One hasay(v)b Y¢. Sincegy = Ay, and
(bka)~lv = a"1£, by Corollany[3.8 one obtains

ap(V)b = Pu(day(v)b) = Gu(ay (@™ 'é)b).
From the injectivity ofg it follows day(v)b = ay(a™¢)b = ay(,.v)b. O
A different proof of Theorein 4.13 based on continued fractiorseigiven at the end of the section.
Example 4.14. Letw = aubwith u = y(a’b%a). One has
w = aaabaabaaabaabaab

.V = ba, anddw = ababb= ay(ba)b. If w = ay(ba?b?a)b, one hasv = ab’aandow = ay(ab?a)b. If w = ay(ababb,
then,v = abandow = ay(ab)b.

Corollary 4.15. Let w be a Christgel word ay(v)b having the derivativéw = ay(,v)b. Thenday(E(v))b =
ay(E(+Vv))b andday(v-)b = ay((v.))b.

Proof. The wordv is not constant so that by the previous theorem &nhd (3), osdddE(v))b = ay(,E(v))b =
ay(E(,v))b andday(v)b = ay(.(v-))b = ay((v:))b. O]

Proposition 4.16. Letv= X;°--- X,". One has:
n-1
(bl = ) ailap (X5 XZ - X)bl 4+ an + 2.
i=0
Proof. Letm = |v|. By Corollary{4.11,
m
W)l = ) 168 - Vin)bl.
i=1

Forany O<i <n-1,

dap (XK1 Xb = day(X" X Xn)b =
= dap(XXy - Xan)b.

i+1

Moreoverday(x2")b = day (X2 )b = - - - = day(x,)b and|day(x.)b| = 1. Hence, one has:
n-1
W) = > aildap(xxE X3 - Xl + .
i=0

By Theoreni 4T3 forall & i<n-1,
aaw(xi Xla:fxloiaz . Xﬁn)b - al/’(xi?lrlxi?zz .. Xﬁn)b’
from which the result follows. O
15



Proposition 4.17. Let k> 0 and f be the function which maps any vA¥ into day(v)b. For v, v’ € AKX with v # V' if
f(v) = f(V), then v and Vare not constant,v = .V, and v= X'y(,V),V = ¥ x(,v) withr > 0and{x,y} = {a,b}. As
a consequence the restrictions of f t@'a® and to kA are injective.

Proof. Supposef(v) = f(v) with v # V. If vis a constant, say = a, thenf(v) = da“*'b = a. As it is readily
verified for no other word’ of A one can havé(v') = f(v) = awhich is a contradiction. Since bottandv’ are not
constant, one has:

day (V)b = ay(,v)b = day (V)b = ay(,V)b.
Hencew(,v) = ¥(,V). Sincey is injective, it follows,v = ,V. Sincev andVv have the same length and# Vv,
v =Xy(V),V =y x(,v) with r > 0 and{x,y} = {a, b}. The remaining part of the proof trivially follows. O
The following important and well-known theorem concernting slope of a proper Chridtel word holds (cfl[3]):

Theorem 4.18. Let w= aub be a proper Chrisjel word with u= y(v) and(ao, a1, . . ., a,) be the integral represen-
tation of v. Then the slope of w is given by the continuedifsact

[ao; @1, ..., @n-1.an + 1] if VP = b

and
[0; a0, a1, ..., an-1, an + 1] if viF) = a,

Example 4.19. Letv = a?b*a. One hasw = a’ba’ba’balba?b andn(w) = [0;2,2,2]=2. If v = bafb, then

w = abababbabablandn(w) = [1;2, 2]={.
As a consequence of Theorelms 4.13[andl4.18 one obtains:

Corollary 4.20. Let w= aub be a proper Chrisjfel word with u= y(v) and(wo, a1, . . ., an) the integral representa-

tion of v. The slope afw is given by the continued fraction

[a1 - 1;a,...,an+1]ifVP) =a
and
[0;01 -1, 0, ..., a0 + 1] if VP = b,

We remark that the slope of a Chriffeel wordw = ay/(v)b determines uniquely the directive wovaf (V) and
thenw. Now we can give a dierent proof of Theorein 4.13 by using continued fractionsEmebreni 4.78.

Second proof of Theordm 4]118Ve shall suppose thg{v) € PER, andag = ind(v). The case&/(v) € PER, is similarly
dealt with. From the construction of the derivativewbne has:

[OWla(ao + 1) + [OWlbao = [Wla,
and
[OWlh + [OWlg = [Wp.

From these relations one easily obtains:
1

—— =gt ————.
n(w) 1+ n(ow)
Letp(w) = [0; ao, . . ., @n + 1]. One derives from the previous equation:

1

yQL, .. 1= ———
[0,(1]_, »a’n + ] 1+77((9W)’

from which one obtains:
now) = [a1 — 1;az,...,an + 1].

Therefore, one hadw = aiy (V)b wherev' has the integral representatian - 1, a, . . ., an) and therefore is equal to
+V, which proves the assertion. O
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5. Depth of a Christoffel word

From Theoreni_4]5 any proper Chriffid word w has a derivativav’ = dw which is still a Christéfel word.
Therefore, ifw is proper one can considéw e CH that we shall denoté’w. In general, for anyp > 1, Pw will
denote the derivative of ord@rof w. SinceldPw| > |3P*1w], there exists an integersuch thatw € A; we calld the
depthof w.

Example5.1. Letw be the Christfiel wordw = ay(ab’a’b)b of Exampld4.B. One has
ow = abababbababp

which is the Christffel word ay(,v)b where,v = ba?b. The central wordy(,V) is of order 1 and?w = aabab=
ay(ab)b. Moreover, one hag3w = abandd*w = a, so that the depth of is 4.

As we have previously seen\ife A* is not constant, v is the longest dffix of v which is immediately preceded
by the complementary of the first letter ef If v is not constant one can considgrv) and so on. Thus for any
v € A" we can define inductively;y = v and, ifv(, is not constantand > 1,

Vine1) = +(V(ny)-

Sincelvpn.p)l < v, there exists an integdr = h(v) calledheightof v, such thatv is constant. For instance, if
v = a?b?a, one has/yy = a?b?a, Vp) = ba, andv) = &. Henceh(a?b?a) = 3.

Proposition 5.2. Let w= a(v)b be a proper Christgiel word. The depth of w is equal to the height of v.

Proof. If vis constant, theh = h(v) = 1 andow € A, so that the depth ofis 1. Let us then suppose thais not a
constant. This implieb(v) > 1. From Theoreri 4,13 one derives thatfiot h— 1

"W = ay(Vn+1))b.
Sincev, is constant, it follows thad"w € A, so that the depth of is h. O
Letv=Xy°---X". Fori € {0, ..., n} we define a map
6i(v):{0,...,n} > {0,1}

as follows:6p(V) = 6n(v) = 1. For O< i < n, if ¢ > 1 we set5j(v) = 1. Leta; = 1. If aj_1 > 1 we setsi(v) = 0. If
ai—1 = 1, then we sefj(v) = 1 if and only if6i_1(v) = 0. Let us define for any € A*

5(v) = Z Si(v).
i=0

Moreover, we sef(e) = 1.

Example 5.3. Letv = a’bak’aba In this casen = 6. Denotings;(v) simply byd;, the sequencéyd; - - - 5y, is given
by 1011011 and(v) = 5.

Proposition 5.4. Let ve A*. Then kfv) = §(v).

Proof. If v = ¢ the result is trivially true. Lev # &. We can writev = x°X;* --- X", @; = 1, 0<'i < n. We proceed
by induction onn. If n = 0 thenh(v) = §(v) = 1. If n = 1 thenh(v) = §(v) = 2. Letn = 2, thenv = X3°X]*X3* = v(y).
There are two cases:
(1) a1 = 1. One has/z) = x3? andh(v) = 6(v) = 2;
(2) a1 > 1. One hasy) = X%, vz = X2~ andh(v) = 6(v) = 3.

Letn > 2, then,v = )(1’1‘1%2’2 -+ Xp" = V(2). Since by the definition of heighit(v) = h(,Vv) + 1 and, by induction,
h(,v) = 6(,v), it suffices to prove thai(v) = §(,Vv) + 1. There are two possibilities:
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(1) a1 = 1. Inthis casev = x3*--- X" and&i(v) = 6i2(.v) if i > 2. Indeed, ifi = 2, asdi(v) = 0, one has
02(v) = 1 = p(+v). From the definition o8 it follows thatdi(v) = 6i_2(,V) if i > 2. Hence,

n n-2
SV =1+ Y 6 =1+ Y () =1+6(.v).
i=2 i=0

(2) a1 > 1. In this casevVv = x(l’l‘lxgz---xﬁ” andéi(v) = 6i-1(;v) fori > 1. Indeed, ifi = 1 asa; > 1 one has

01(v) = 1 = 6o(+V). Fori = 2if az > 1 thenda(v) = 61(+Vv) = 1. If ez = 1, thendz(v) = 0 = §1(+V) because
61(v) = do(+V) = 1. From the definition of it follows thatd;(v) = di_1(,V) fori > 2. Hence,

n n n-1
(5(V)=Z§i(V)=1+Z(5i(V):1+2(5i(+v):1+(5(+V)' n
i=0 i-1 i=0

Example5.5. Letv = a’bat’aba One hasi(v) = 5 anddgd16.6304956 = 1011011, so thai(v) = 5.

Letv = x3°---x3". If @y > 1 forall 0 <i < n, then from the definition of one hasi(v) = ext(v) = n+ 1. Let
us suppose on the contrary that= 1 for all 0 < i < n. We can writev = x;’ux;" whereu is an alternating word
U= X1X2---Xp-1. IN this case it is easy derive that

n%lJ = ext(v) — P_ﬂ

In general, by grouping together consecutiyed < i < n, havinge; = 1 we can rewriter uniquely as

o(v) =2+

V = VU1VoUsz - - - Uk—1Vk, (19)

where all terms of the integral representatiomniofresp.,vi), 1 <i < k-1 are equal to 1 (respx, 1) and all terms of
the integral representation af (resp.,vi) are> 1, with the possible exception of the first (resp., last).

We call theu;, i = 1,3, ...,k - 1, thealternating componentsf v. For example, i’ = a*b’abalfaba’ba, then we
can factore it ag = (a®b?)(aba)(b?)(ab)(a)(b)(a). In this case the alternating components afeu; = aba, uz = ab,
andus = b.

Proposition 5.6. Letve A" anduy,i=13,...,k—-1, be the alternating components of v. Then one has:

~

-2

6(v) = ext(v) — ZT: {@}

i=0

Proof. Letv = vpuiVoUs - - - Uk_1Vk. Sinced(vy) = extvzi), 0 < i < k/2 and|ugi,1| = ext(uziz1), 0 <i < k/2-1, one
has

k2
2

5(v) = Z 5(va) + )
i=0

i=0

[Ugi41
2

k2
2

; ext(va) + Z (ext(uan) - Puzi;llD = ext(v) - 2 {@} ‘ -

i=0

NIx

Example5.7. If v = (a®b?)(aba)(b?)(ab)(a?)(b)(a), we have extf) = 11,[|abd/2] = 2, |abl/2] = 1 = [|b|/2], so that
o(V)=11-4=7.

In the following, for each word/ € A* we let [v] denote the set = {v,v",v,v"}. From Propositiol 2]1 all
Christdfel wordsay(2)b with a directive wordz € [v] have the same length. The next proposition shows that they
have the same depth.
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Proposition 5.8. Let ve A*. All Christgfel words a/(z)b with ze [v] have the same depth.

Proof. The result is trivially true ifv is constant. Let us then suppose thas not constant. From Propositions]s.2
and5.4 itis sfficient to prove thaé(2) = 6(v) for all z€ [v]. Itis readily verified that(v) = 5(v) as ext¢) = ext(v) = n
and for each & i < n, §;(V) = 6;(v). Let us now prove thaf(v") = §(v). Let us writev as in Eq.[(IB), so that

V= VU g Up VG-

Since allu7, i = k-1,k-3,...,3,1 are thealternating componentsf v~, by the fact that exy(") = ext(v) = nand
|ui| = |u~|in view of Proposition 56 it follows tha¥(v~) = §(v). From the previous results it follows immediately that
(V) = 6(v). O

Letu = xg"xi1 -+ X", We defineu; as:u; = ¢ if ag > 1 orn = 0, and, otherwisay; is the longest proper prefix
of u such thatu = uiu, uy is alternating, anar'®) # u(lL), i.e., the longest prefix;°x]* - - - X" of uwith i < nand
ap=ai1=...=qj = 1.

Similarly, we defineu, asu, = ¢ if @y > 1 orn = 0 and, otherwiseay, is the longest proper §iix of u such that
U = Uy, Uy is alternating, andr® u(ZF). For instance, il = ab?aba, thenu; = aandu, = abg if u = a?b, then
u; = gandv, = h.

Proposition 5.9. Letu= x3°X]*--- X;" and v= y‘g"y‘j1 -yEm Then
S(U) + (V) — 1 < 6(uv) < 6(U) + 6(V).
Moreoverg(uv) = 6(u) + 6(v) if and only if U = V) and|uy|, |v4| are both even.

Proof. If Ut = v®), thenuv = X°X¢* - - xerdxarPoyf | yim and trivially 6(uv) = 6(u) +8(v) — 1. Let us then suppose
u® = VP, We consider two casehl,| even andu,| odd.

If |ug| is even, thersi(u) = &i(uv), i = O,...,n. If vy| = 0, thendi(v) = bnyiza(uv), i = 0,...,mso that
o(uv) = 6(u) + 6(v). Let then|va| = r > 1. Foreach = 0,...,r — 1, one hasd;(v), dnsi+1(uv)) = (1,0) if i is
even anddj(v), on+i+1(uv)) = (0, 1) if i is odd. Moreovers;(v) = dn+iz1(uv) foreachi =r,...,m.

It follows that if r is even, then the number of pairs, () is equal to the number of pairs,( that implies
6(uv) = 8(u) + 8(v). If r is odd, then the number of pairs, () is equal to the number of pairs, @ plus 1, so that
6(uv) = 6(u) +6(v) — 1.

Let |up| be odd. In this caséi(u) = 6i(uv) if i = 0,...,n—1,6,(u) = 1, anddy(uv) = 0, 6i(V) = Snri+2(UV), if
i=0,....,m Itfollows §(uv) = 6(u) + 6(v) — 1 and then the assertion. O

Example 5.10. Letu = a’b?aba, w = a®b’a’ba, andv = babalf. One hasi, = aba w, = ba, andv; = baba One
hasé(u) = 6(w) = 4, ands(v) = 3. One verifies thai(uv) = 6 ands(wv) = 7.

From Proposition 5]9 one readily derives:
Corollary 5.11. Letu= x°X* --- X" and v= x € A. Then
o(u) < 6(ux) < 6(u) + 1.
Moreoverg(ux) = §(u) if and only if U2 = x or t™ = x and|u,| is odd.
Lemma5.12. If v is a non-constant word, ther(y) = h(v,) + 1.

Proof. By the definition of height, we hav&v) = h(,v) + 1. Moreover, Propositidn 3.8 implies tha(u) = h(u~) for
anyu € A*. Hence, to obtain the assertion itfces to observe by{3) that = (. (v*))". O

We shall now give another equivalent definition for the fimeh = 6. LetH : N, — N be the sequence defined
by H(1) = 0 and, for alln > O,

H(2n)=H(M) and H@nz1)=H(n)+1.
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The first few values oH(n) are
0,0,1,0,1,1,1,0,1,1,2,1,2,1,1,0,1,.. ...

As an immediate consequence of the definition, forlaryl we have

HE*Mn+1)=H(n)+1. (20)
Note that the sequené€ given byH(n) = H(n) + 1 is the sequence A007302 in [29].
Proposition 5.13. For all v € A*, h(v) = H ((bvh).

Proof. We proceed by induction oh(v). If h(v) = 1, thenv is constant, so thabvb) = 21 + 1 for somek > 1.
From [20),H ((bvby) = H(1) + 1 = 1 follows.

Let nowh(v) > 1, so thaw contains botla andb as letters. By Lemna5.l12 and the induction hypothesis, we ha
h(v) = H ((b(v.)b)) + 1.

Now, if © = a, then there existk > 1 such thav = (v, )ba, so that

(bvb) = (b(v,)b - aby = 2¥L(b(v, )by + 1.
On the other hand, Y = b, then there existk > 1 with v = (v,)ab¥, so that
(bvby = (b(v,)abty = 2¢(b(v,)b)y — 1.
In both cases, by (20) it followid ((bvby) = H ({b(v,)b)) + 1 = h(v), as desired. O

Example5.14. Letv = a’bah One hagba?bat?) = 75 andH(75) = H(19)+ 1 = H(5) + 2 = H(1) + 3 = 3. Hence,
h(v) = 3.

Proposition 5.15. For all v € A*,
VI

{%(V)J+1sh(v)s 5
The set of words v oveAl = {a,b} = {x,y} for which the lower bound is attained is ¥ x*(yx")* if ext(v) is
odd and Y= {&} U Xt (yx")*(y"x)*y* if ext(v) is even. The set of words for which the upper bound is attaised
X = {ab, ba}*{e, a, b}{ab, ba}*.

+1.

Proof. Let us first prove the lower bound. Let eXt(= n+ 1. One has thali(v) = 6(v) = ext(v) — card0 < i <
n| éi(v) = 0}. Since by the definition of in the sequenca, = §o(V) - - - 5n(v) one cannot have two consecutive 0, it
follows that the maximal value of ca@i< i < n| 6j(v) = 0} is attained if and only ifA, € 1(01) if ext(v) is odd and
Ay € 1(01)(10) 1 if ext(v) is even. In both the cases the previous maximal value isleq\ﬂég—lw. From this one has
sV)zn+1-[o2] =2+ 1.

To complete the first part of the proof it isfigient to observe that, € 1(01) if and only if v e x"(yx")*, and
Ay € 1(01)(10)1 if and only ifv e x* (yx")*(y*x)*y*.

Let us now prove the upper bound. fis constant, theim(v) = 1 and the result is trivially true. Let us then
suppose that is not constant. Let = h(v) > 1. By the definition of height, there exigg),. . ., V() such that/) = v,
V() is constant, andki.1) = +(v) fori = 1,...,n— 1. Since for any non-constant woubne hagu| > |.u| + 2, it
follows IViyl = Vi)l + 2, i=1,...,n-1, so that

M > vl +2n-2>2n-2; (21)

hencen = h(v) < [|v{/2] + 1.

Let us now prove tha(v) = [|vi/2] + 1 if and only ifv € X. Suppose first thaV| is even. The set of words of
even length withinX is {ab, ba}*. Clearly, from [Z1),n = 1 + |v|/2 if and onlyv = & andlvypl — [Vl = 2 for
i=1,...,n—1. Now,|u|l - |;u] = 2 if and only ifu = ab(;u) or u = ba(;u). It follows thath(v) = 1+ |v|/2 if and only
if v e {ab, ba}*.
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Let now|v| be odd. The subset &f made by words of odd length is
X' = X\ {ab,ba}* = {ab, ba}*{a, b}{ab, ba}".
It is not difficult to see thak’ = X] U X, where
X; = {ab ba}*{a, b} and X} = {ab, ba}*{aah bba}{ab, ba}*.

One hagu| - |,u| = 3 if and only ifu = aal(,u) or u = bba(,u). It follows that if v € X], thenv(, € {a, b} and
Vol = Vsl = 2fori = 1,...,n= 1. If ve X}, thenvy) = & and|vg)| — [V = 2 foralliin {1,...,n - 1} except
exactly onej for which |v(;)| — Ivj+1)l = 3. From [21) one has that in both cases (V| + 1)/2 = [v/2] + 1.
Conversely, from[(21) i/ is such thah = (Jv| + 1)/2, then we must have eitheg, € {a, b} and|v;)| — Vi1l = 2
fori =1,...,n-1, orvy = ¢ andlvyl — Iviryl = 2 for alli in {1,...,n — 1} except exactly ong for which
Vel = v+l = 3. In the former case, we obtaire X7, and in the lattev € XJ. O

We say that a word € A* is quasi-alternatingf each letter ofv but exactly one, is immediately followed by its
complementary. For instance, the woedgab andab&’babare quasi-alternating.
Corollary 5.16. Letve A*. Then

V) == 2

if and only if v is alternating or v is quasi-alternating widxt(v) equal to an even integer.

i(V)J+1={MJ+1 (22)

Proof. (=) If (B2) is satisfied, theiy| = ext(v) or |v| = ext(v) + 1. In the first case is alternating and in the second
case quasi-alternating. Moreover, in the latter case/elgs to be even, otherwiéﬁ = L%(")J + 1, a contradiction.

(&) If vis alternating or quasi-alternating, then by the precegnogositionv € X so thath(v) = L‘—;‘J + 1. Moreover,
if vis alternating, thetw| = ext(v) and we are done. ¥ is quasi-alternating, them| = ext(v) + 1. If ext(v) is even,
then||v|/2] = %(") and the result is obtained. O

Example5.17. Letv = a’ba’baba’b. One has\, = 10101011, so thdi(v) = §(v) = 5. Since ext() = 8, one has that
v e Y andh(v) = ext()/2 + 1. Letv = abat¥a’b € X; one hash(v) = 5 = |v|/2 + 1. Letv be the quasi-alternating
wordv = abalab; one has(v) = ext()/2+1 =4 = [|V{/2] + 1.

For each paik, p of positive integers we IeXy(p) denote the set of all words of lengthaving a height equal to
p,i.e.,

Xk(p) = (v € A<| h(v) = p}.

Moreover, we setl(p) = cardX(p)). From the definition one ha%(1) = {aX, b¥}. By Propositiori 5.5 one has
Xe(p) = 0if p> 5]+ 1.

In order to give an exact formula fdg(p), we need some notation and preparatory results. We réealfdr any
V= X’X" - X", the wordv, is defined as; = ¢ if an > 1 orn = 0 and, otherwisey; is the longest proper §ix of

v such thaw = V'v,, v is alternating, ang'®) = \/(ZF).
Let E be the set of wordg such that., is of even length, i.eE = {ve A* | [vo| = 0 (mod 2}, and let

e(p) = cardX(p) N E), ok(p) = cardXk(p) \ E),

so thatJ(p) = ex(p) + ok(p).
The following proposition gives a recursive procedurewlia to computingXx(p) and thenJx(p), for all k and

p.
Proposition 5.18. For allk > 0and p> 0,
Xesa(p) N E = (W [ v e Xe(p)h U (WS | v e Xe(p) \ El,
Xir1(P) \ E = (W [ve X(p-1) N E}.
Hence,
&1(P) = J(p) + 0k(p) = &(p) + 204(p), (23)
Ok+1(P) = &(p - 1). (24)
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Proof. By Corollary[5.11, for any € A one hash(vx) = 6(vX) = §(v) = h(v) = pif and only if v = x or v = x
and|va| is odd. IfV®® = x and|v| is even, them(v) = p— 1. Moreover, it is clear from the definition that") € E for
all v, whereasivV) is in E if and only if vis not. From this the result follows. O

Example 5.19. Since ifv € Xi(p) thenv € X(p), we setX/(p) = {v € X(p) | v(F) = a). Fork = 2 one has

X5(1) = {a?} and X4(2) = {ab}. Fork = 3, X4(1) = {a) and X4(2) = {ab? a’b,aba. Fork = 4, X}(1) = {a*,
X,(2) = {ab3, a’b?, abaz} U {azba} {a®b}, X}(3) = 0 U 0 U {ab?a, abah.

Lemma 5.20. For all k > 0, one has g(1) = 0 and for p> 1,
(k=P
= op-1
0u(p) = 2 (p_ )
with the usual convention th ) = 0 whenever rk m.
Proof. Clearlyox(1) = 0 sinceXy(1) = {ak, b} C E. Moreover, from[(24) it followso(2) = e 1(1) = 2 = 2> 1('; g)
Let nowp > 2. The assertion is trivially verified k < 2(p — 1), since this impliep > |k/2] + 1 and then
0= J(p) = o(p). If k =2(p- 1), we havep = |k/2] + 1, so thatXy(p) = {ab, ba}P~! and J«(p) = 2°1. By (23),
&(p) = J-1(P) + 0k-1(P) < 2Jk-1(p) = 2J2p-3(p) = O; hence,
P = (p) =24 = 217 ),

We can now assume, by (double) induction, that the assastieerified for all smaller values dfandp. Substi-
tuting (23) in [24), we obtain
ok(p) = &-1(pP—1) = &2(p—1) + 20c2(p—- 1)
&-3(P — 1) + 20k-3(p — 1) + 20k—2(p - 1)
k-2
=2 Z o(p-1)
i=2(p-2)

where the last equality holds becagsg_»(p — 1) = 0. Therefore, by induction we have
k-2 : k=2(p-1)
Lfi—-p+1 1 i+p- 3
iz%:a p-3 ; p-3
The assertion now follows from the identity (see, for ins&@r{23])

S(em-em) .

i=0

o (57 7)

Proof. If k < 2(p- 1), thenp > |k/2] + 1, so thatlk(p) = 0 as desired.
Let nowk > 2(p—1). The assertion is trivially verified fgr = 1, so let us suppose> 1. Using [24) and Lemma
(.20, we obtain

A R M R Ry G R

The proof is completed by Pascal’s rule. O

Theorem 5.21. Forall k, p > 0,

From the preceding theorem one derives a simple formulé&@&ntimber of words of lengthfor which the height
reaches its maximal valué | + 1.

k+l

Corollary 5.22. Letk> 0. If k is even, ,J(2+1) 2% and if k is odd, Q(L 1+1)=27(1+ 2L'§<J).
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6. Derivative of a standard word

In this section we shall see that any finite or infinite staddgturmian wordwv has, with respect to a suitable
endomorphism ofA*, a derivative which is still a standard Sturmian word.
For anyk > O we define
X, = {akb, aba} and Y] = {b*a, b*ab}.

The setsx; andY, are codes having a finite deciphering delay [5], so that anglwa X, (resp.,x € Y,*) can
be uniquely factored by the elementsXjf(resp.,Y,).

Letw = uxy, with u € PER andx,y} = {a, b}, be a proper standard Sturmian word. We define index tfe
index of the central word.

Lemma 6.1. Let w be a proper standard Sturmian word of index k. Thea " U (@b} if wF) = aand we
Yy U {bk*iatif wP) = b.

Proof. Letw = y(v)xy be a proper standard Sturmian word of indexXWe suppose thatt® = VF) = a. The case
wF) = VP = bis symmetrically dealt with. I¥ is constant, i.ey = a, thenvab = a“"’b andvba= akbae X, and the
result is achieved. Let us then assume thiatnot constant. By Lemnia 4.2 one has thafv)b € a“**b{akb, a“*1b}*,
so that, ag/(v) is a palindrome,

¥(v) € abfakb, a“"*by*ak.

As is readily verifieca*b{akb, a*b}* c X;*, so thaty(v) € X;*ak. Hencey(v)bae X;"akbac X;*. Asy(v) terminates
with akba¥ it follows thaty(v)ab e X;"akba*'b = X;*(akba)akb € X;*, which concludes the proof. O

If wis a proper standard Sturmian word, we can introduce a divaf w as follows. For eack > 0 if WF) = a
we consider the cod¥, and the injective endomorphism= ., of A* defined by

(@) = aba,  uk(b) = ab. (25)

By the previous lemma ifv € X, we define the derivativBw of w equal to the derivativ®,w with respect tqu,
i.e., Dkw = g 1(w). If w = a*b, we defineDa**1b = Dy.1a*!b = b. Let us observe that from the definition for all
k > 0 one haD,akba = a.

If wtF) = b, we consider the cod¢ and the injective endomorphism = pyx, of A* defined by

fi(a) = ba,  fu(b) = bab. (26)

By the previous lemma v € Y;* we define the derivativBw of w equal to the derivativB,w with respect tqu, i.e.,
Diw = i 1(w). If w = b¥"*a we defineDb¥*!a = Dy.1b***a = a. Observe that for ak > 0 one hadyb*ab = b.
Finally, observe that ik = 0, i.e.,w = baorw = ab, from the previous definition one h&a = aandDab = b.

Example6.2. Letv = ab’a’b andw be the standard worng(v)bawherey(v) is a central word of index 1. One has:
w = ababaababaabababaababaabababa

In this case one ha¥; = {aba ab} andDw = D;w = (bababbabajba = y(ba?b)ba. Similarly, one haDy(v)ab =
y(bab)ab. A

If w = y(b?a®)ba, thenw = (bbabbabhba The index ofw is 2 andY; = {b%*a, b*ab} andDw = D,w = aba
Similarly, one haPy(b’a®)ab = aah.

Let us recall (cf. [13,.27]) that an endomorphignof A* is called astandard Sturmian morphisifithe image
f(s) of any finite or infinite standard Sturmian wosds a standard Sturmian word. This implies that if the im&(=
of a binary words € A® is a standard Sturmian word sodsAs is well-known standard Sturmian morphisms form
a monoid generated by the morphismsuy,, andE. Hence, for eack > 0, uy, fix € {ua, up}* are standard Sturmian
morphisms calleghure

Theorem 6.3. Letk> 0and we X" U Y;* U {a*1b} U {b**1a}. Then w is a proper standard Sturmian word if and
only if Dw is a standard Sturmian word.
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Proof. (=) We shall suppose without loss of generality thét! = a, so that, asv is a proper standard Sturmian
word, w € X" U (@b} Ifwe X', thenDw = p;l(w). Sinceyy is a standard Sturmian morphism, it follows that
Dw e Stand . Similarly, ifw = a*b, thenDw = 1, (a¥*1b) = b € Stand.

(&) Let us now suppose th&tw € Stand. Ifw € X", then, agy is a standard Sturmian morphispy(Dw) = w
is a standard and proper Sturmian word. Similarlyyi& a*b one hag,1(DwW) = ux.1(b) = w which is a proper
standard Sturmian word. O

The following theorem relates, through their directive d&rthe central word of a proper standard word and the
central word of its derivative.

Theorem 6.4. Let w= y(V)xy, with{x, y} = {a, b} and v a non-constant word. Then

Dy (v)xy = ¢(:V)xy.

Proof. Letv = x;°--- X3" with n > 1 asv is not constant. We can write, setting = k anda; = h, v = x§x¢. We
shall first suppose that(v) € PER,, so thatv = akb'¢. Since,v = b™1¢, by using the Justin formula we can write:
(V) = P(@0"8) = pan(W(B" ')y (ED) = pan(Y(:V))aba,

sothatifx =bandy = a
w1 = Y(V)ba = pan(y(:V))(@b)(dba),

andifx=aandy="b
W, = Y(V)ab = pan(y((:V))(@ba)(@b).

Hence,
Dw; = y(,Vv)ba,
and
Dw, = y(+V))ab.
which concludes the proof in the cagés) € PER,. The case&/(v) € PER, can be proved in a similar way. O

Example 6.5. Letw = ubawith u = y(a’b’a). One has
w = aabaabaaabaabaaba

andDw = babba= y(ba)ba. If w = y(ba’b’a)ab, one easily obtainBw = y(ab’a)ab. If w = y(ababba, one derives
Dw = y(ab)ba.

Corollary 6.6. Let w be the standard word w y(v)ba where v is not constant and ve the Christgel word
w = ay(v)b. Then
Dw = Dy(v)ba= a td(ay(v)b)a = a L(ow)a.

Proof. By the preceding theoremy(v)ba = y(,v)ba. By Theoreni 4.3 one hasy(v)b = ay(,v)b. From this the
result follows. O

Remark 6.7. The preceding corollary holds true also for the constantiwaf, k > 0. IndeedDa*ba = a = da**b.
However, it is not more true fd¥, k > 0. IndeedDb**!a = a whereaglab** = b.

From Theoren 613 any proper standard Sturmian wetths a derivativev = Dw € Stand. Therefore, v
is proper one can consid®w’ e Stand that we shall deno@?w. In general, for anyp > 1, DPw will denote the
derivative of ordemp of w. Since|DPw| > |DP*1wj, there exists an integersuch thaD% e A; we calld the depthof
the standard word.

Example 6.8. Let w be the standard wordl = y(a?b?a)ba of Example[6.5. One haBw = babba= y(ba)ba,
D?w = ba, andD?w = a. Thus the depth oivisd = 3.
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Proposition 6.9. The depth of a standard word wy(V)xy with{x,y} = {a, b} is equal to the depth of the Chrigfel
word ay(v)b.

Proof. Let n = h(v) be the height of. The result is trivially true ifs is constant or, equivalently, if = 1. Let us then
suppose that is not constant. From Corollafy 6.4 one derives that fopail n

D1y (V)xy = ¢(Vip)Xy.

Hence D™ 1y (v)Xy = (V) XY. Sincev(, is constant, one hagV(n) = V(n andDvmxy € A. Thus, the depth ok is
equal ton = h(v) and by Proposition 512 is equal to the depttag{v)b. O

Let sbe now a characteristic, or infinite standard, Sturmian wAsiwe have seen in Sefl. 2,
s = y(v) with ve A\ A (@ U b®).
Any wordv € A \ A*(a® U b*”) can be uniquely represented as:
V=X G X (27)

where fori > 0,a; > 1, X € A, andx,1 = X.
We defineindexof the characteristic word = y/(v) the first exponent in the representatibn] (27yofe., ap. We
let ind(s) denote the index .

Lemma6.10. Let s be a characteristic Sturmian word of index k. Then§® if s = a and se Y} if s = b.

Proof. Let s = y(v). We first suppose thatF) = a. Sinces has index, we can writev = akbv with v/ € A“. By
LemmdZ% one has:

s = Y(@DV) = pap(Y(V)).
From [25), it follows that € X/. In a similar way one proves thate Y,* if s§F) = . O

We can now define the derivatii®s of a characteristic Sturmian wosbf indexk as follows:
Ds =i (9) if S = a, Ds=(g)if P = h.

Remark 6.11. As one easily verifiesDs is word isomorphic to the derived word efin the sense of Durand [22]
constructed by factoringin terms of thefirst returnsto the prefix of lengttk + 1 of s. If ) = a (resp.,sF) = b) the

set of first returns to the prefekb (resp.bka) of sis {akb, aba} (resp. {ba, bkab}). We mention that a further notion

of derivative for infinite words admitting a prefixal facteaition, such as the characteristic Sturmian words, has been
recently given inl[20].

Theorem 6.12. Let s= Dt with te X/ U Y;“. Then s is a characteristic Sturmian word if and only if sa is t

Proof. The result is an immediate consequence of the fact that tmphisonsuy and,ix are standard Sturmian mor-
phisms. O

Recall that an infinite word € A* is constantif v = x¥ with x € A. If vis not constant one can consider the
greatest sflix , v of v with respect to the gtixal ordering, which is immediately preceded by a letté¢fedent from

V),

Theorem 6.13. Let w= (V) be a characteristic Sturmian word. Then

Dy(v) = ¥(+v).
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Proof. Let us writev asv = x‘ROX‘fg and setkk = o andh = a;. We first suppose that™ = a. We can write
v = akb"¢. Hencey(v) = y(akb"¢). By Lemméd 2.4 we can write:

(V) = Y(@DE"E) = (P (0" €)) = u(w(b"8)).
Hence Dy/(v) = y(b"1¢) = y(,v). If WP = b one haw = ba"¢. We can write:

(V) = y(ba"¢) = y(bad""é) = ya(w (@) = (@)
Hence Dy(v) = y(@" %) = y(+V). [

Let s = (V) be a characteristic Sturmian word. From Theorémsl6.12 af®l Bs = ¥(,V) is a characteristic
Sturmian word, so thatv is not constant. We can consider the infinite sequeB€s)(( of successive derivatives of
swhere

D% = s andDPs= D(DP1s), for p > 0.

Similarly to the finite case, one can introduce a sequenaefioite words ¥(n))n-0, Wherev(yy = v, and for alln > 1,
Vet = (V). If s = ¥(v), then by the preceding theorem one has for gach0, DPs = y(v(p.1)) having for all
k> 0,v = uvg with ug € A* and|uy| < U1l

We say that a characteristic Sturmian wari stableif there existm,n > 0, m # n, such thaD™s = D"s, i.e.,
cardD™s| m> 0} < co.

Theorem 6.14. A characteristic Sturmian word s is stable if and only if iteedtive word is ultimately periodic.

Proof. (=) Let m be the first integer 0 such that there exists > m for which D™!s = D"1s. Hencey (V) =
Y(Vmy). Sincey is injective, it followsvim = Vi and therefore = UnVm = UnVn) = UnV(m)- AS |uml < |un| One has
Un = Und With ¢ € A andv(m) = {V(m), SO thatvy is the periodic wordyy = £ andv = umd®.

(&) Suppose thas = ¥(v) with v = pg®, p,q € A*, andq # . There exists an integérsuch that for allj > k,
Dits = y(v(;) with v, suffix of gq“. Hencey(j = af, whereq; is a conjugate of. By the pigeonhole principle
it follows that there exist two distinct integeng n > k such thaig, = qm and therefore/m = vm). This implies
D"1s=D™!s O

Example 6.15. Let f = y((ab)*) be the Fibonacci word. One has that forplk 1, DPf = f, so thatf is stable. Let
s = y(ak(ab)“) wherek is a fixed integer 1. One ha®s = y((ab)*) = f. ThusDs = DPs = f forall p > 1 andsis
stable. Lets = y(abafba®b---ba'b---). For anyp > 0 one hadDPs = y(aP*'baP*?baP*3. - -), so thatsis not stable.

Letv = x°X{" 57 - -- X" ' X" - - - ands = y(Vv) be the characteristic Sturmian word with the directiveadvarThe
slope ofs is the limit limp_,« :—;U]}—Z As is well-known (cf. [3, 27]), sinces is Sturmian, this limit exists and is an
irrational number equal to the continued fraction

[ao; a1, ..., an, .. ].

One can easily prove that the directive wards periodic if and only if there exist integers> 0 andq > 0 such
thata, = an,r for all n > g, or, equivalently, the previous continued fraction is pdit. From Theorem 6.14 and [2,
Theorem 20], one derives thatcharacteristic Sturmian word s is stable if and only if tle¢ sf all derivated words
in the sense of Durand (with respect to prefixes of s) is finite.

For eachk > 0, let X, and Yy be the sets defined by (14).
Lemma6.16. Let s be a characteristic Sturmian word of index k. Then¥’ if s© = a and se Y2 if s) = b.

Proof. Letus suppose®) = a. As one readily verifies, for eadt®> 0 one ha¥“ = {akba, ab}* = akb{akb, a*1b} =
abX?. By Lemmd6.1D, one hase X/, so thats € X?. The cases™) = bis dealt with in a similar way. O

We can define the derivativis of a characteristic Sturmian wosbf indexk by

ds= g (9 if P =a andds= g (9 if P =h.
26



Lemma6.17. Let Xx= X1Xo-- - X, - - - be an infinite word oveA. Then for each ke 0

O (X)) = bx
Proof. By Lemmd3.Y, one has for all> 1

e (4 0) = e (k(xm)ab) = o (u(X)b = bXy.

Thus,
O (X)) = bxgyb™
and
@i () = im @i () = lim bxb™ = bx O

Theorem 6.18. Let s be a characteristic Sturmian word. Then
ds=bDs
Proof. If sis a characteristic Sturmian word of indiexthen by the preceding lemma one has:

O(uk(D9)) = ds=bDs O

7. Concluding remarks

We have studied new combinatorial properties of Chfiistpcentral, and standard words, which are related to a
suitable notion of derivative of a word. In this analysi felindromization map that allows to construct all central
words, as well as all infinite standard words, plays an egdente. Indeed, it allows one to give a unified treatment
for the previous classes of words. Moreover, one can makefuse important combinatorial tool represented by
Justin’s formula which links the palindromization map withre standard morphisms. By this palindromization map,
from one side one can obtain a very simple formula giving thevdtive of a Christffel word. From the other one
can extend the previous results to the case of standard weisly, new interesting combinatorial problems arose
from considering higher order derivatives and the depth Ghastdtel word and of a standard word. This gives a
new insight on these noteworthy classes of words.

An interesting open problem is to try to extend some of theiptes results to the case of alphabets with more
than two letters, i.e., to the case of standard episturmianasv This extension seems to be quite hard since some
basic combinatorial properties hold only for a binary alpéia
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