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On Christoffel and standard words and their derivatives
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Abstract

We introduce and study natural derivatives for Christoffel and finite standard words, as well as for characteristic
Sturmian words. These derivatives, which are realized as inverse images under suitable morphisms, preserve the
aforementioned classes of words. In the case of Christoffel words, the morphisms involved mapa to ak+1b (resp.,abk)
and b to akb (resp.,abk+1) for a suitablek > 0. As long as derivatives are longer than one letter, higher-order
derivatives are naturally obtained. We define the depth of a Christoffel or standard word as the smallest order for
which the derivative is a single letter. We give several combinatorial and arithmetic descriptions of the depth, and
(tight) lower and upper bounds for it.
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1. Introduction

Since the first systematic study by M. Morse and G. A. Hedlund [28], Sturmian words have been among the most
studied infinite words in combinatorics as they are the simplest aperiodic words in terms offactor complexity, and
enjoy many beautiful characterizations and properties (see, for instance, [27, Chap. 2]).

Sturmian words are of interest in several fields of mathematics such as combinatorics, algebra, number theory,
dynamical systems, and differential equations. They are also of great importance in theoretical physics as basic
examples of 1-dimensional quasicrystals (cf. [12] and references therein) and in computer science where they are
used in computer graphics as digital approximation of straight lines (cf. [25]).

A basic tool in the study of Sturmian words is thepalindromization mapψ, first introduced by the second au-
thor [14]. It maps any finite binary wordv (calleddirective wordin this context) to a palindromeψ(v) calledcentral
word. The definition can be naturally extended to infinite directive words; whenv spans among all binary words where
both letters occur infinitely often,ψ(v) gives exactly allcharacteristicSturmian words (or infinite standard Sturmian
words). An infinite word is Sturmian if it has the same set of factors as some characteristic Sturmian word.

Central words are thus all palindromic prefixes of characteristic Sturmian words; they can also be defined in a
purely combinatorial way, as words having two coprime periodsp, q and lengthp+ q− 2. If w is a central word over
the alphabet{a, b}, thenawb is a (lower)Christoffel wordandwab,wbaarestandard words. These classes of words,
which also include the lettersa andb, represent a finite counterpart to Sturmian words and are well studied in their
own right as they satisfy remarkable and surprising combinatorial properties (see for instance [4, 17, 27]).

In a previous paper [16] the second and third author have studied an important connection between the combina-
torics of these words and the famous Stern sequence. In this paper, which can be considered as a continuation of the
previous one, we consider new combinatorial properties which are mainly related to the notion of derivative of a word.
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Word derivation, meant as inverse image under some injective morphism (also called “desubstitution”, or “inflation”
in [11]), is a known topic in combinatorics on words. A well-known instance is the notion ofderivated wordof a
recurrent word, introduced by F. Durand [22] along with the important concept ofreturn words.

The main objective of this paper is to study some natural derivatives for noteworthy classes of finite Sturmian
words, such as Christoffel and standard words. The paper is organized as follows. In Section 2.1 we consider the
palindromization map. A well-known result by J. Justin [24], known asJustin’s formula, links the palindromization
map withpure standard Sturmian morphisms, i.e., morphisms of the monoid{µa, µb}

∗ where forx ∈ {a, b}, andy , x,
µx is defined as follows:µx : x 7→ x, y 7→ xy. Setting forv = v1 · · · vn, µv = µv1 ◦ · · · ◦ µvn, one derives from Justin’s
formula, that every standard wordψ(v)xywith {x, y} = {a, b} is obtained as the image ofxy under the morphismµv,

ψ(v)xy= µv(xy) . (1)

In Section 2.2, some basic relations existing between central, standard, and Christoffel words are recalled and new
combinatorial properties are proved.

In Section 3, we discussChristoffel morphisms, i.e., morphisms preserving Christoffel words. We provide a simple
combinatorial proof for the known fact [4] that the monoid ofChristoffel morphisms is generated byλa andλb, defined
by

λa = µa and λb : a 7→ ab, b 7→ b.

Settingλv = λv1 ◦ · · · ◦ λvn for v = v1 · · · vn, this gives an analogue of formula (1) in the case of Christoffel words,
namely

aψ(v)b = λv(ab).

We also prove that theinverseimage of a Christoffel word under a Christoffel morphism is a Christoffel word; again,
this mirrors a well-known result for standard words and morphisms.

With such knowledge about Christoffel morphisms, in Section 4 we define a derivative for proper Christoffel
words. In fact, for each such wordw there exists some nonnegative integerk (the indexof w) such thatw can be
uniquely factored overXk = {akb, ak+1b} or Yk = {abk, abk+1}; hence,w is the image, under the morphismϕk = λakb or
ϕ̂k = λbka, of a word∂w that we call thederivativeof w. Sinceϕk andϕ̂k are Christoffel morphisms, this derivative is
still a Christoffel word.

Our choice of morphismsϕk andϕ̂k for the definition is motivated by the following arguments. First, the factor-
ization overXk or Yk is quite natural and has been used in well-known algorithms for recognizing factors of Sturmian
words (ordigital straight segments, in the computer graphics terminology; cf. [25]). Second, if w = aψ(v)b andv is
not a power of a letter, then

∂w = aψ(+v)b,

where+v is the longest suffix of v immediately preceded by a letter different from the first letter ofv. The operator
v 7→ +v was introduced by the last two authors in [16] and appears in some interesting results on Christoffel words;
for instance, ifv starts with the letterx and {x, y} = {a, b}, then the length|aψ(+v)b| = |∂w| equals the number of
occurrences ofy in aψ(v)b. Finally, a Christoffel word is determined by its derivative and the value of its index.

Further results on the derivatives of Christoffel words are proved. In particular, if a Christoffel wordw is factored
asw = w1w2 with w1 andw2 proper Christoffel words, then∂w = ∂w1∂w2. Moreover, the length of a Christoffel word
w = aψ(v1v2 · · · vn)b with vi ∈ A, 1 ≤ i ≤ n, is equal to 2 plus the sum of the lengths of derivatives∂aψ(vi · · · vn)b,
i = 1, . . . , n.

In Section 5, we naturally define higher order derivatives, by letting∂i+1w = ∂(∂iw) whenever∂iw is still a proper
Christoffel word (i.e., not just a letter). Thedepthof a Christoffel wordw is then the smallesti ≥ 0 such that∂iw is
a letter. We give several descriptions of the depth ofaψ(v)b as a functionδ(v) of its directive word. We prove that
δ(uv) equals eitherδ(u) + δ(v) or δ(u) + δ(v) − 1. Tight lower and upper bounds of the depth are given; moreover, we
characterize the directive words for which such bounds are attained. We give also a closed formula for the number
Jk(p) of the wordsv of lengthk such thatδ(v) = p.

In Section 6 we consider finite and infinite standard Sturmianwords; using the standard morphismsµakb andµbka

we define a natural derivative in these cases. This allows us to extend the previous results to standard words; in
particular, the derivative of the standard wordψ(v)xy with {x, y} = {a, b} is either a letter or the proper standard word
ψ(+v)xy, where+v is the same directive word found in the derivative of the Christoffel wordaψ(v)b. Hence, the depths
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of ψ(v)ab, ψ(v)ba, andaψ(v)b coincide. In the infinite case, the derivativeDs of a characteristic Sturmian words is
word isomorphic to a derivated word in the sense of Durand. Wegive a proof for the fact that a characteristic Sturmian
word has only finitely many distinct higher order derivatives if and only if its directive word is ultimately periodic
(see also [2]). Finally, we prove that there exists a simple relation between the derivativeDs of a characteristic word
sand the derivative∂s, namely∂s= bDs.

2. Notation and Preliminaries

In the following,A will denote a finite non-empty set, oralphabetandA∗ the free monoidgenerated byA. The
elements ofA are usually calledlettersand those ofA∗ words. The identity element ofA∗ is calledempty wordand
denoted byε. We setA+ = A∗ \ {ε}.

A word w ∈ A+ can be written uniquely as a sequence of letters asw = w1w2 · · ·wn, with wi ∈ A, 1 ≤ i ≤ n, n > 0.
The integern is called thelengthof w and denoted|w|. The length ofε is 0. For anyw ∈ A∗ andx ∈ A, |w|x denotes
the number of occurrences of the letterx in w. For any wordv ∈ A+, we letv(F) (resp.,v(L)) denote the first (resp., last)
letter ofv.

Let w ∈ A∗. The wordu is a factor of w if there exist wordsr ands such thatw = rus. A factoru of w is called
proper if u , w. If w = us, for some words (resp.,w = ru, for some wordr), thenu is called aprefix(resp., asuffix)
of w. If u is a prefix ofw, thenu−1w denotes the wordv such thatuv= w.

Let p be a positive integer. A wordw = w1 · · ·wn, wi ∈ A, 1 ≤ i ≤ n, hasperiod pif the following condition is
satisfied: for any integersi and j such that 1≤ i, j ≤ n,

if i ≡ j (mod p), thenwi = w j .

Let us observe that if a wordw has a periodp, then any non-empty factor ofw has also the periodp.
We letπ(w) denote the minimal period ofw. Conventionally, we setπ(ε) = 1. A wordw is said to beconstantif

π(w) = 1, i.e.,w = zk with k ≥ 0 andz ∈ A. Two wordsv andw areconjugateif there exist wordsr ands such that
v = rs andw = sr.

Let w = w1 · · ·wn, wi ∈ A, 1 ≤ i ≤ n. Thereversalof w is the wordw∼ = wn · · ·w1. One defines alsoε∼ = ε. A
word is calledpalindromeif it is equal to its reversal. We let PAL denote the set of all palindromes on the alphabetA.

In the following, we let the alphabetA be totally ordered. We let<lex denote the lexicographic order induced on
A∗. A word is called aLyndon wordif it is lexicographically less than any of its proper suffixes (cf. [26, Chap. 5]).
As is well-known a Lyndon wordw < A can be factored (standard factorization) asw = lm wherel is a Lyndon word
andm is the longest suffix of w which is a Lyndon word.

A right-infinite wordx, or simplyinfinite word, over the alphabetA is just an infinite sequence of letters:

x = x1x2 · · · xn · · · wherexi ∈ A, for all i ≥ 1 .

For any integern ≥ 0, we letx[n] denote the prefixx1x2 · · · xn of x of lengthn. A factor of x is either the empty word
or any sequencexi · · · x j with i ≤ j. The set of all infinite words overA is denoted byAω. An infinite wordx is called
ultimately periodicif there exist wordsu ∈ A∗ andv ∈ A+ such thatx = uvω. The wordx is called (purely)periodicif
u = ε, i.e.,x = v · v · v · · · . A periodic word withv ∈ A will be calledconstant. The wordx is calledaperiodicif it is
not ultimately periodic.

We say that two finite or infinite wordsx = x1x2 · · · andy = y1y2 · · · on the alphabetsA andA′ respectively are
word isomorphic, or simplyisomorphic, if there exists a bijectionφ : A→ A′ such thaty = φ(x1)φ(x2) · · · .

We setA∞ = A∗ ∪ Aω. For anyw ∈ A∞ we let Fact(w) denote the set of all distinct factors of the wordw.
In the following, we shall mainly concern with two-letter alphabets. We letA denote the alphabet whose elements

are the lettersa andb, totally ordered by settinga < b.
We letE denote the automorphism ofA∗ defined byE(a) = b andE(b) = a. For eachw ∈ A∞, the wordE(w) is

called thecomplementaryword, or simply thecomplementof w. We shall often use forE(w) the simpler notation ¯w.
We say that a wordv ∈ Ak, k ≥ 0, isalternatingif for x, y ∈ A andx , y, v = (xy)

k
2 if k is even andv = (xy)⌊

k
2 ⌋x if

k is odd, i.e.,v is a single letter or if|v| > 1 any non-terminal letter inv is immediately followed by its complementary.
Theslopeη(w) of a wordw ∈ A+ is the fractionη(w) = |w|b

|w|a
if |w|a > 0. We setη(w) = ∞ if |w|a = 0.
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If we identify the lettersa andb ofA respectively with the digits 0 and 1, for eachw ∈ A∗ we let〈w〉2, or simply
〈w〉, denote thestandard interpretationof w as an integer at base 2. For instance,〈a〉 = 0, 〈b〉 = 1, 〈babba〉 = 22.

We represent a non-empty binary wordv ∈ A+ as

v = xα0

0 · · · x
αn
n ,

whereαi ≥ 1, xi ∈ A, 0 ≤ i ≤ n, andxi+1 = x̄i for 0 ≤ i ≤ n − 1. We call the list (α0, α1, . . . , αn) the integral
representationof the wordv. Hence, the integral representation of a wordv and its first letterv(F)determine uniquely
v. We set ext(v) = |x0 · · · xn| = n+ 1 and call itextensionof v. Moreover, we define ext(ε) = 0.

For all definitions and notation concerning words not explicitly given in the paper, the reader is referred to the
book of Lothaire [26]; for Sturmian words see [27, Chap. 2] and [1, Chap.s 9-10].

2.1. The palindromization map
We consider inA∗ the operator(+) : A∗ → PAL which maps any wordw ∈ A∗ into the palindromew(+) defined as

the shortest palindrome having the prefixw (cf. [14]). The wordw(+) is called theright palindromic closureof w. If
Q is the longest palindromic suffix of w = vQ, then one has

w(+)
= vQv∼ .

Let us now define the map
ψ : A∗ → PAL,

calledright iterated palindromic closure, or simplypalindromization map, overA∗, as follows:ψ(ε) = ε and for all
u ∈ A∗, x ∈ A,

ψ(ux) = (ψ(u)x)(+) .

For instance, ifu = aaba, one hasψ(a) = a, ψ(aa) = (ψ(a)a)(+)
= aa, ψ(aab) = (aab)(+)

= aabaa, andψ(u) =
ψ(aaba) = aabaaabaa.

The following proposition collects some basic properties of the palindromization map (cf., for instance, [14, 21]):

Proposition 2.1. The palindromization mapψ satisfies the following properties:

P1. The palindromization map is injective.
P2. If u is a prefix of v, thenψ(u) is a palindromic prefix (and suffix) ofψ(v).
P3. If p is a prefix ofψ(w), then p(+) is a prefix ofψ(w).
P4. Every palindromic prefix ofψ(v) is of the formψ(u) for some prefix u of v.
P5. |ψ(u∼)| = |ψ(u)|, for any u∈ A∗.
P6. The palindromization mapψ over{a, b}∗ commutes with the automorphism E, i.e.,ψ ◦ E = E ◦ ψ.

For anyw ∈ ψ(A∗) the unique wordu such thatψ(u) = w is called thedirective wordof w.
One can extendψ to A∞ definingψ on Aω as follows: letx ∈ Aω be an infinite word

x = x1x2 · · · xn · · · , xi ∈ A, i ≥ 1.

Since by property P2 of Proposition 2.1 for alln, ψ(x[n]) is a prefix ofψ(x[n+1]), we can define the infinite wordψ(x)
as:

ψ(x) = lim
n→∞

ψ(x[n]).

The mapψ : Aω → Aω is injective. The wordx is called thedirective wordof ψ(x). It has been proved in [14] that
if x ∈ {a, b}ω the wordψ(x) is acharacteristic Sturmian word(or infinite standard Sturmian word) if and only if both
the lettersa andb occur infinitely often in the directive wordx.

Example 2.2. LetA = {a, b}. If x = (ab)ω, then the characteristic Sturmian wordf = ψ((ab)ω) having the directive
word x is the famousFibonacci word

f = abaababaabaab· · · .

If A = {a, b, c} the wordt = ψ((abc)ω) is the so-calledTribonacci word:

t = abacabaabacaba· · · .
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For anyx ∈ A, we letµx denote the injective endomorphism ofA∗ defined by

µx(x) = x, µx(y) = xy, for y ∈ A \ {x}. (2)

If v = x1x2 · · · xn, with xi ∈ A, i = 1, . . . , n, then we set:

µv = µx1 ◦ · · · ◦ µxn;

moreover, ifv = ε, µε = id. The following interesting theorem, due to Justin [24] and usually referred to asJustin’s
formula, relates the palindromization map to the morphismsµv.

Theorem 2.3. For all v, u ∈ A∗

ψ(vu) = µv(ψ(u))ψ(v).

An important consequence of Justin’s formula is the following lemma [8], which will be useful in the following.

Lemma 2.4. For each w∈ A∗ and v∈ Aω, ψ(wv) = µw(ψ(v)).

For instance, if we takew = a, x = (ab)ω, then as one easily verifies

ψ(a(ab)ω) = µa( f ) = aabaaabaabaaab· · · .

The case of a binary alphabetA = {a, b} deserves a special consideration. The following remarkable proposition
holds (see, for instance [15, Prop. 4.10]).

Proposition 2.5. For any v∈ A∗ and x, y ∈ A, x , y,

µv(xy) = ψ(v)xy.

Corollary 2.6. For any w, v ∈ A∗ and x, y ∈ A, x , y,

ψ(wv)xy= µw(ψ(v)xy).

Proof. By the preceding proposition one has:

ψ(wv)xy= µwv(xy) = µw(µv(xy)) = µw(ψ(v)xy).

Let v be a non-empty word. We letv− (resp.,−v) denote the word obtained fromv by deleting the last (resp.,
first) letter. Ifv is not constant, we letv+ (resp.,+v) denote the longest prefix (resp., suffix) of v which is immediately
followed (resp., preceded) by the complementary of the last(resp., first) letter ofv. For instance, ifv = abbabab, one
hasv− = abbaba, v+ = abbab, −v = bbabab, and+v = babab. From the definition one has

+(E(v)) = E(+v), (E(v))+ = E(v+), (+v)∼ = (v∼)+ . (3)

As shown in [16], and as we shall see in some details in the nextsections, the wordsv−, v+ and+v, −v play an
essential role in the combinatorics of Christoffel words.

Proposition 2.7. Let v∈ A∗ be non-constant. Then

µv(a) = µv+ (ba) = ψ(v+)ba, µv(b) = µv− (ab) = ψ(v−)ab, if v(L)
= a

and
µv(a) = µv− (ba) = ψ(v−)ba, µv(b) = µv+(ab) = ψ(v+)ab, if v(L)

= b.

Proof. We shall prove the result only whenv(L)
= a. The casev(L)

= b is similarly dealt with. We can writev = v+bar

for a suitabler > 0. Therefore, by Proposition 2.5 one has:

µv(a) = µv+bar (a) = µv+b(a) = µv+ (ba) = ψ(v+)ba, (4)

and
µv(b) = µv−a(b) = µv− (ab) = ψ(v−)ab, (5)

which proves the assertion.
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Example 2.8. Let v = abbab. One hasv+ = abb, v− = abba, andv(L)
= b. Hence,ψ(v+) = ababa, ψ(v−) =

ababaababa,µabbab(a) = ababaabababa= ψ(v−)ba, andµabbab(b) = ababaab= ψ(v+)ab.

An immediate consequence of Proposition 2.7 is the following (see also [16]):

Corollary 2.9. Let v∈ A∗ be non-constant, x the last letter of v, and y= x̄. Then

ψ(v) = ψ(v+)yxψ(v−) = ψ(v−)xyψ(v+).

Proof. Sincev is not constant,ψ(v)xy = µv(xy) = µv(x)µv(y), and by Proposition 2.7,µv(x) = ψ(v+)yx andµv(y) =
ψ(v−)xy. The result follows.

2.2. Central, standard, and Christoffel words

In the study of combinatorial properties of Sturmian words acrucial role is played by the set PER of all finite
wordsw having two periodsp andq such that gcd(p, q) = 1 and|w| = p+ q− 2.

The set PER was introduced in [17] where its main properties were studied. It has been proved that PER is equal
to the set of the palindromic prefixes of all standard Sturmian words, i.e.,

PER= ψ(A∗).

The words of PER have been calledcentral in [27, Chap.2].
The following structural characterization of central words was proved in [14] (see, also [9]).

Proposition 2.10. A word w is central if and only if w is a constant or it satisfies the equation:

w = w1abw2 = w2baw1

with w1,w2 ∈ A
∗. Moreover, in this latter case, w1 and w2 are central words, p= |w1|+2 and q= |w2|+2 are coprime

periods of w, andmin{p, q} is the minimal period of w.

The following lemma, which will be useful in the following, is in [14].

Lemma 2.11. For any w∈ PER, one has(wa)(+), (wb)(+) ∈ PER. More precisely, if w= w1abw2 = w2baw1, then

(wa)(+)
= w2baw1abw2 , (wb)(+)

= w1abw2baw1 .

If w = xn with {x, y} = A, then(wx)(+)
= xn+1 and(wy)(+)

= xnyxn.

Characteristic Sturmian words can be equivalently defined in the following way. Letc0, c1, . . . , cn, . . . be any
sequence of integers such thatc0 ≥ 0 andci > 0 for i > 0. We define, inductively, the sequence of words (sn)n≥0,
where

s0 = b, s1 = a, andsn+1 = scn−1
n sn−1 for n ≥ 1 .

The sequence (sn)n≥0 converges to a limits which is a characteristic Sturmian word (cf. [27]). Every characteristic
Sturmian word is obtained in this way. The Fibonacci word is obtained whenci = 1 for i ≥ 0.

We let Stand denote the set of all the wordssn, n ≥ 0 of any sequence (sn)n≥0. Any element of Stand is called
standard Sturmian word, or simplystandard word. A standard word different from a single letter is calledproper.

The following remarkable relation existing between standard and central words has been proved in [17]:

Stand= A∪ PER{ab, ba}.

More precisely, the following holds (see, for instance [15,Prop. 4.9]):

Proposition 2.12. Any proper standard word can be uniquely expressed asµv(xy) with {x, y} = {a, b} and v∈ A∗.

6



Hence, by Proposition 2.5 one has
µv(xy) = ψ(v)xy.

Let us set for anyv ∈ A∗ andx ∈ A,
px(v) = |µv(x)|. (6)

From Justin’s formula one derives (cf. [18, Prop. 3.6]) thatpx(v) is the minimal period ofψ(vx) and then a period of
ψ(v). Moreover, one has (cf. [19, Lemma 5.1])

px(v) = π(ψ(vx)) = π(ψ(v)x) (7)

and gcd(px(v), py(v)) = 1, so that
π(ψ(v)) = min{px(v), py(v)}.

Moreover, ifv is not constant, asv+ is a proper prefix ofv−, by Proposition 2.7 one derives:

π(ψ(v)) = pv(L)(v) = |aψ(v+)b|. (8)

Since|µv(xy)| = |µv(x)| + |µv(y)|, from Proposition 2.12 and (6) one has

|ψ(v)| = px(v) + py(v) − 2. (9)

Let us now introduce the important notion ofChristoffel word [10] (see also [6]). Letp andq be non-negative
coprime integers, andn = p+ q > 0. The (lower) Christoffel wordw of slope p

q is defined asw = x1 · · · xn with

xi =















a if ip modn > (i − 1)p modn

b otherwise

for i = 1, . . . , n, wherek modn denotes the remainder of the Euclidean division ofk by n. Observe that the wordsa
andb are the Christoffel words with slope0

1 and∞ = 1
0, respectively.

The Christoffel words of slopep
q with p andq coprime positive integers are calledproper Christoffel words. The

term slope given to the fractionpq is due to the circumstance that one easily derives from the definition that p = |w|b
andq = |w|a.

We observe that lower Christoffel words have also an interesting geometric interpretationin terms of suitable paths
in the integer latticeN × N (cf. [4]). It is then natural to introduce the so-called upper Christoffel words, which can
also be defined similarly to lower Christoffel words, by interchanginga andb, as well asp andq, in the previous
definition. We shall not consider these latter words in the paper, since they are simply the reversal of lower Christoffel
words.

Example 2.13. Let p = 3 andq = 8. The Christoffel construction is represented by the following diagram

0
a
−→ 3

a
−→ 6

a
−→ 9

b
−→ 1

a
−→ 4

a
−→ 7

a
−→ 10

b
−→ 2

a
−→ 5

a
−→ 8

b
−→ 0

Let CH denote the class of Christoffel words. The following important result, proved in [3], shows a basic relation
existing between central and Christoffel words:

CH = aPERb∪A.

Moreover, one has [3, 7]
CH = St∩ Lynd,

where Lynd denotes the set of Lyndon words and St the set of (finite) factors of all Sturmian words. Thus CH equals
the set of all factors of Sturmian words which are Lyndon words. The following theorem summarizes some results on
Christoffel words proved in [3, 6, 7].

Theorem 2.14. Let w be a proper Christoffel word. Then the following hold:
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1. There exist and are unique two Christoffel words w1 and w2 such that w= w1w2. Moreover, w1 <lex w2, and
(w1,w2) is the standard factorization of w in Lyndon words.

2. If w has the slopepq , then|w1| = p′, |w2| = q′, where p′ and q′ are the respective multiplicative inverse of p and q,
modulo|w|.

3. Let w= aψ(v)b have the slopepq . Then p= pa(v∼), q = pb(v∼) and p′ = pa(v), q′ = pb(v).

Example 2.15. The Christoffel wordw of the Example 2.13 having slope38 is

w = aaabaaabaab= aub,

whereu = aabaaabaa= ψ(a2ba) is the central word of length 9 having the two coprime periods pa(v) = 4 and
pb(v) = 7 with v = a2ba. The wordw can be uniquely factored asw = w1w2, wherew1 andw2 are the Lyndon
wordsw1 = aaabandw2 = aaabaab. One hasw1 <lex w2 with |w1| = 4 = pa(v) and |w2| = 7 = pb(v). Moreover,
w2 is the proper suffix of w of maximal length which is a Lyndon word. Finally,ψ(v∼) = ψ(aba2) = abaabaaba,
pa(v∼) = 3 = |w|b, pb(v∼) = 8 = |w|a, and|w|bpa(v) = 3 · 4 = 12≡ |w|apb(v) = 8 · 7 = 56≡ 1 (mod 11).

The following proposition is an immediate consequence of item 1 of Theorem 2.14 and of Corollary 2.9 (see also
[16]).

Proposition 2.16. For any non-constant word v∈ A∗, the standard factorization of aψ(v)b in Lyndon words is

(aψ(v+)b, aψ(v−)b) if v(L)
= a and(aψ(v−)b, aψ(v+)b) if v(L)

= b.

By Proposition 2.16 we have that ifv is not constant, then for anyx ∈ A

|aψ(v)b|x = |aψ(v−)b|x + |aψ(v+)b|x. (10)

The following proposition is a direct consequence of (10). It gives a remarkable interpretation of the pair of words
v+ andv− in the combinatorics of Christoffel words. Recall that themediantof the two fractionsa/b andc/d is the
fraction (a+ c)/(b+ d).

Proposition 2.17. If v ∈ A∗ is not constant, then the slope of the Christoffel word aψ(v)b is the mediant of the slopes
of aψ(v+)b and aψ(v−)b.

Remark 2.18. Recall [16] that the slope of the Christoffel wordaψ(v)b is equal to the reduced fraction SB(v) labeling
the node (word)v in the Stern-Brocot tree. From the construction of this treeSB(v) = SB(v1) ⊕ SB(v2), where⊕
denotes the mediant operation, andv1 andv2 are the nearest ancestors ofv above and to the right, and above and to
the left respectively. It is readily verified that{v1, v2} = {v+, v−} so that in any case SB(v) = SB(v+) ⊕ SB(v−).

The following Propositions 2.19, 2.20, and 2.21 have been proved in [16].

Proposition 2.19. For any v∈ A+, π(ψ(v∼)) = |aψ(v)b|v̄(F) .

Proposition 2.20. If v ∈ A∗ is not constant, then

|aψ(v)b| = |aψ(v−)b| + |aψ(v+)b| = |aψ(−v)b| + |aψ(+v)b|.

Moreover,|aψ(+v)b| = |aψ(v)b|v̄(F) .

Proposition 2.21. For any word v= v1 · · · vn, with n> 0, vi ∈ A, i = 1, . . . , n, one has

|ψ(v)| =
n

∑

i=1

π(ψ(v1 · · · vi)) =
n

∑

i=1

|aψ(vi · · · vn)b|v̄i .

For anyv ∈ A∗ let Ra(v) denote the ratio Ra(v) = pa(v)
pb(v) . We recall [16] that the reduced fraction Ra(v) labels the

node (word)v in the Raney tree. The following remarkable proposition, which is readily derived from Propositions 2.7
and 2.20, holds:
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Proposition 2.22. Let v be a non-constant word overA. If v(L)
= a (resp., v(L)

= b), then

Ra(v) =
|aψ(v+)b|
|aψ(v−)b|

,

(

resp.,Ra(v) =
|aψ(v−)b|
|aψ(v+)b|

)

.

If v(F)
= a (resp., v(F)

= b), then

SB(v) =
|aψ(+v)b|
|aψ(−v)b|

,

(

resp.,SB(v) =
|aψ(−v)b|
|aψ(+v)b|

)

.

An interesting interpretation of the extension ext(v) of a directive wordv of the central wordψ(v) is given by the
following:

Proposition 2.23. Let v= v1v2 · · · vm, vi ∈ A, i = 1, . . . ,m, be a word ofA+. Let w= ψ(v) = w1 · · ·wk with k = |ψ(v)|
and wi ∈ A, i = 1, . . . , k. Then one has

ext(v) = card{π(ψ(v1 · · · vi)) | 1 ≤ i ≤ m} = card{π(w1 · · ·wi) | 1 ≤ i ≤ k}.

Proof. Let i = 1, . . . ,m and setu = v1 · · · vi . For x ∈ A one has by (7)π(ψ(ux)) = px(u). If x = u(L)
= vi , then by (8),

pvi (u) = π(ψ(u)) and the minimal period is unchanged. Ifx = ū(L)
= v̄i , thenpv̄i (u) > π(ψ(u)). Hence, ifv = xα0

0 · · · x
αn
n ,

the set of distinct minimal periods ofψ(v1 · · · vi), i = 1, . . . ,m, is formed by the minimal periods of the words

ψ(x0), ψ(xα0

0 x1), . . . , ψ(xα0

0 · · · x
αn−1
n−1 xn)

whose number isn+ 1 = ext(v).
Now let w1w2 · · ·wr with r ≤ k be a non-empty prefix ofw. There exists 1≤ i < m such that

ψ(v1 · · · vi)vi+1 ≤p w1w2 · · ·wr ≤p ψ(v1 · · · vi+1),

where we let≤p denote the prefixal ordering. Hence,π(ψ(v1 · · ·vi)vi+1) ≤ π(w1w2 · · ·wr ) ≤ π(ψ(v1 · · · vi+1)). By (7),

π(ψ(v1 · · ·vi)vi+1) = π(ψ(v1 · · · vi+1)) = π(w1w2 · · ·wr ).

Thus betweenπ(ψ(v1 · · ·vi)) andπ(ψ(v1 · · · vi+1)) there are no new minimal periods. From this the result follows.

Corollary 2.24. For each k> 0 and v∈ Ak the word w= ψ(v) has the maximum number of distinct minimal periods
of its prefixes if and only if v is alternating, i.e., w is a palindromic prefix of f or of E( f ).

Proof. By the previous proposition the number of distinct minimal periods ofw = ψ(v) is given by ext(v). A word
v ∈ Ak attains the maximum valuek of ext(v) if and only if v is alternating.

If v = xα0

0 · · · x
αn
n we set

πi(v) = π(ψ(xα0
0 · · · x

αi−1
i−1 xi)), 0 ≤ i ≤ n.

Moreover, we let ¯π denote the arithmetic mean of the distinct minimal periodsπi, 0 ≤ i ≤ n.

Corollary 2.25. For v ∈ A+ one has:
|ψ(v)|
ext(v)

≥ π̄,

where the equality holds if and only if v is alternating.

Proof. Let n+ 1 = ext(v). By Proposition 2.21 one has

|ψ(v)| =
|v|
∑

i=1

π(ψ(v1 · · · vi)) =
n

∑

i=0

αiπi ≥

n
∑

i=0

πi ,

so that dividing forn+ 1 we have
|ψ(v)|
n+ 1

≥

∑n
i=0 πi

n+ 1
= π̄.

The equality holds if and only ifαi = 1, i = 0, . . . , n. From this the result follows.
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3. Christoffel morphisms

Let x ∈ A andy = x̄, we consider the injective endomorphismµ∼x ofA∗ defined byµ∼x (x) = x andµ∼x (y) = yx. In
the following, we shall set

λa = µa andλb = µ
∼
b ,

and for anyv = v1v2 · · · vn, vi ∈ A, 1≤ i ≤ n, we define:

λv = λv1 ◦ λv2 ◦ · · · ◦ λvn.

If v = ε, we setλε = id. Thus{λa, λb}
∗
= {λv | v ∈ A∗}.

The following lemma shows that the morphismλb is right conjugate[27, Sect. 2.3.4] toµb.

Lemma 3.1. For any v∈ A∗, bλb(v) = µb(v)b.

Proof. By induction on the length ofv. The result is trivially verified if|v| ≤ 1. Let us then suppose|v| > 1 and write
v = ux with x ∈ A. If x = a then, by using the inductive hypothesis,

bλb(ua) = bλb(u)λb(a) = µb(u)bab= µb(ua)b.

If x = b, one has:
bλb(ub) = bλb(u)b = µb(u)bb= µb(ub)b.

Proposition 3.2. For all v ∈ A∗,
λv(ab) = aψ(v)b.

Proof. By induction on the length ofv. If |v| ≤ 1, the result is trivially verified. Suppose|v| > 1 and writev = xwwith
x ∈ A andw ∈ A∗. By induction one has:

λxw(ab) = λx(λw(ab)) = λx(aψ(w)b).

Let us first suppose thatx = a. In such a caseλa = µa. By Justin’s formula

λaw(ab) = µa(aψ(w)b) = aµa(ψ(w))ab= aψ(aw)b.

Let nowx = b, so thatλb = µ
∼
b . By Lemma 3.1 and Justin’s formula one has:

λbw(ab) = abλb(ψ(w))b = aµb(ψ(w))bb= aψ(bw)b.

Corollary 3.3. For any w, v ∈ A∗,
aψ(wv)b = λw(aψ(v)b).

Proof. By the preceding proposition one has:

aψ(wv)b = λwv(ab) = λw(λv(ab)) = λw(aψ(v)b).

Proposition 3.4. Let v∈ A∗ be non-constant. The following holds:

λv(a) = λv+ (ab) = aψ(v+)b, λv(b) = λv− (ab) = aψ(v−)b, if v(L)
= a

and
λv(a) = λv−(ab) = aψ(v−)b, λv(b) = λv+ (ab) = aψ(v+)b, if v(L)

= b.

Proof. We shall prove the result only whenv(L)
= a. The casev(L)

= b is similarly dealt with. We can writev = v+bar

for a suitabler > 0. Therefore, by Proposition 3.2 one has:

λv(a) = λv+bar (a) = λv+b(a) = λv+(ab) = aψ(v+)b, (11)

and
λv(b) = λv−a(b) = λv−(ab) = aψ(v−)b, (12)

which proves the assertion.
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It is worth noting the similarity existing between Proposition 2.5, Corollary 2.6, and Proposition 2.7 concerning
standard words and the morphismsµv, v ∈ A∗, which preserve standard words [13], and Proposition 3.2, Corollary 3.3,
and Proposition 3.4 concerning Christoffel words and the morphismsλv, v ∈ A∗, which, as we shall see soon (cf.
Proposition 3.5), preserve Christoffel words.

LetMCH denote the monoid of all endomorphismsf ofA∗ which preserve Christoffel words, i.e., ifw ∈ CH, then
f (w) ∈ CH. Such a morphismf will be calledChristoffel morphism. The following proposition was proved in [4] by
a different (geometrical) technique3.

Proposition 3.5. MCH = {λa, λb}
∗.

Proof. Let λv ∈ {λa, λb}
∗ andw ∈ CH. We prove thatλv(w) ∈ CH. Let us first suppose thatw is a proper Christoffel

word. We can writew = aψ(u)b for a suitableu ∈ A∗. Thus by Proposition 3.2

λv(w) = λv(aψ(u)b) = λv(λu(ab)) = λvu(ab) = aψ(vu)b ∈ CH.

Let us now suppose thatw ∈ A. Let w = a. If v is not constant, then the result follows from Proposition 3.4. Let us
suppose thatv is constant. The result is trivial ifv = ε. If v = ak with k > 0, we haveλak(a) = a ∈ CH. If v = bk one
hasλbk(a) = abk ∈ CH. In a similar way one proves the result ifw = b.

Let now f be any Christoffel morphism. Since

f (a), f (b), f (ab) = f (a) f (b) ∈ CH,

one has that (f (a), f (b)) is the standard factorization off (ab) in Christoffel (Lyndon) words. Asf (ab) is a proper
Christoffel word we can writef (ab) = aψ(v)b. Let us suppose thatv is not constant. Ifv(L)

= a, by Proposition 2.16
one has that the standard factorization ofaψ(v)b in Lyndon words is (aψ(v+)b, aψ(v−)b). This implies, in view of (11)
and (12),

f (a) = aψ(v+)b = λv+(ab) = λv(a), f (b) = aψ(v−)b = λv− (ab) = λv(b).

Hence, in this casef = λv and the result follows. The casev(L)
= b is similarly dealt with.

Let us now suppose thatv is constant. We suppose thatv = ak. One hasf (ab) = aψ(ak)b = λak(ab) = aakb. In
this casef (a) = a = λak(a) and f (b) = akb = λak(b). Hence,f = λak. In a similar way ifv = bk one obtainsf = λbk.
Thus the result is completely proved.

Proposition 3.6. Let v,w ∈ A∗. If λv(w) ∈ CH, then w∈ CH.

Proof. Let us first prove that forx ∈ A, if λx(w) ∈ CH thenw ∈ CH. If λx(w) = y ∈ A, then the only possibility is
x = y andw = x ∈ CH. Let us then suppose thatλx(w) is a proper Christoffel wordaψ(v)b for a suitablev ∈ A∗. We
can write in view of Proposition 3.2

λx(w) = aψ(v)b = λv(ab). (13)

If v = ε, then one obtainsλx(w) = ab andw ∈ CH. Let us then suppose|v| > 0. We wish to prove thatv(F)
= x. To

this end we show thatx = a if and only if v(F)
= a. Indeed, asλa(w) ∈ {a, ab}∗ andλb(w) ∈ {b, ab}∗ if v(F)

= a, asψ(v)
begins witha, it follows thatx = a. Conversely, suppose thatx = a; one has thatw has to terminate withb. Moreover,
if w = bn, with n > 1 one would haveλa(bn) = (ab)n

< CH. If n = 1, thenλa(b) = ab andv = ε, a contradiction.
Hence, inw there must be at least one occurrence of the lettera, so that we can writew = w′abr with r > 0. Thus
ab ∈ Fact(w). This implies thataab ∈ Fact(λa(w)), so thatv(F)

= a. We have then proved thatv(F)
= x. Writing

v = xv′ from (13) we have
λx(w) = aψ(v)b = λxv′(ab) = λx(λv′(ab)).

As λx is injective, it followsw = λv′(ab) ∈ CH.
The remaining part of the proof is obtained by induction on the length ofv. If |v| > 1, setv = xv′ and suppose that

λv(w) ∈ CH. We can writeλv(w) = λx(λv′(w)) ∈ CH. It follows from we have previously proved thatλv′(w) ∈ CH and
by inductionw ∈ CH.

3In [4] any Sturmian morphism, i.e., any endomorphism ofA∗ which preserves Sturmian words, is called Christoffel morphism.
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The following lemma relates the morphismsλakb andµakb, k ≥ 0.

Lemma 3.7. For each k≥ 0 and v∈ A∗,

λakb(bv) = µakb(vb), λakb(av) = aµakb(vb).

Proof. By Lemma 3.1 one hasλakb(bv) = λak(bλb(v)) = µak(µb(v)b) = µakb(vb) and the first equation is proved. By
using again Lemma 3.1 one hasλakb(av) = λak(abλb(v)) = λak(aµb(v)b)) = µak(aµb(vb)) = aµakb(vb).

Lemma 3.8. For all v ∈ A∗ and x∈ A,
|λv(x)| = |µv(x)| = px(v).

Proof. Let us first suppose thatv is constant. Ifv = ak with k ≥ 0, then sinceλak = µak , in view of (6) the result
trivially follows. If v = bk, then|λbk(a)| = |abk| = |bka| = |µbk(a)| and|λbk(b)| = |µbk(b)| = 1 and the result is achieved.
If v is not constant the result follows from Propositions 3.4 and2.7.

4. Derivative of a Christoffel word

Let ϕ : A∗ → A∗ be an injective morphism. As is well-known (cf. [5]) the setX = ϕ(A) is a code over the
alphabetA, i.e., any word ofX+ can be uniquely factored by the elements ofX. Thus there exists an isomorphism,
that we still denote byϕ, ofA∗ andX∗. Letϕ−1 be the inverse morphism ofϕ.

If w ∈ X+, ϕ−1(w) is a uniquely determined word over the alphabetA, that we callderivativeof w with respect to
ϕ. We shall denoteϕ−1(w) by ∂ϕw, or simply∂w, when there is no ambiguity.

Example 4.1. Let X = {ab, ba} andϕ the Thue-Morse morphism defined byϕ(a) = ab andϕ(b) = ba. One has that
∂abbabaab= abba.

Let w be the finite Sturmian wordw = aababaaba. The wordw can be decoded by the morphismµa : {a, b}∗ →
{a, ab}∗ or by the morphismµ∼a : {a, b}∗ → {a, ba}∗. In the first case one obtains the derivativew1 = abbabawhich
is still a finite Sturmian word, whereas in the second case onegets the derivativew2 = aabbabwhich is not a finite
Sturmian word.

In the study of derivatives of finite words overA belonging to a given classC, we require that the setM of
injective endomorphisms ofA∗ satisfies the two following basic conditions:

1. If ϕ ∈ M, then for anyw ∈ C, ϕ(w) ∈ C.
2. If ϕ(v) = w andw ∈ C, thenv ∈ C.

Moreover, one can restrict the classM of endomorphisms to some subclassM̂ assuring that the obtained derivatives
satisfy suitable combinatorial properties.

In this section we shall consider the classC of Christoffel words. We define a derivative of a proper Christoffel
word by referring to a suitable Christoffel morphism. A derivative in the case of finite (and infinite) standard Sturmian
words and its relation with the previous one will be given in Section 6.

Let u = ψ(v) be a central word. We defineindexof the central wordu the integer 0 ifv = ε or, otherwise, the first
element in the integral representation (α0, α1, . . . , αn) of v, i.e.,α0. We let ind(u) denote the index ofu. If w = aub is
a proper Christoffel word we defineindex(resp.,directive word) of w the index (resp., directive word) of the central
wordu.

In the following, forx ∈ A, we set PERx = PER∩ xA∗ and for anyk ≥ 0 we define the prefix codeXk and the
suffix codeYk:

Xk = {a
kb, ak+1b} and Yk = {abk, abk+1}. (14)

Lemma 4.2. Let w = aub be a proper Christoffel word with u , ε and k be the index of u. If u∈ PERa, then
w ∈ ak+1bX∗k. If u ∈ PERb, then w∈ abkY∗k .
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Proof. We shall prove the lemma only in the caseu ∈ PERa. The caseu ∈ PERb is dealt with in a similar way. We
shall denote byZk the setak+1bX∗k. The proof is by induction on the length of the directive wordv of the central word
u = ψ(v) of indexk. If v = ak thenu = ak andw = aub= ak+1b. If v = akb, thenu = akbak andw = ak+1bakb and we
are done. Let us then suppose that the result is true for a directive wordv ∈ akbA∗ and prove it for the directive word
vxwith x ∈ A. Sinceψ(v) begins withakbak, we can write from Proposition 2.10

u = ψ(v) = u1bau2 = u2abu1 = akbakζ, (15)

whereζ ∈ A∗ andu1, u2 ∈ PERa. Moreover, from Lemma 2.11 one has:

ψ(va) = u1bau2abu1 and ψ(vb) = u2abu1bau2.

Let z1 andz2 be the Christoffel wordsz1 = aψ(va)b andz2 = aψ(vb)b. One has that

z1 = au1bau2abu1b = au1baψ(v)b = au1bwandz2 = wau2b. (16)

From (15) one has that|u1| ≥ k. This implies that the index ofu1 = ψ(v1) is k. Sinceau1b is a Christoffel word and
|v1| < |v|, one has by inductionau1b ∈ Zk. Also by inductionw ∈ Zk. Hence, by (16) one hasz1 ∈ Zk.

As regardsz2 from (15) one has either|u2| ≥ k or |u2| = k− 1. In the first case since ind(u2) = k, in a way similar
as above one derives by induction that the Christoffel wordau2b ∈ Zk, that implies by (16), asw ∈ Zk, thatz2 ∈ Zk. In
the second caseau2b = akb ∈ Xk, so that, asw ∈ Zk, it follows z2 ∈ Zk and this concludes the proof.

If w is a proper Christoffel word, we can introduce a derivative ofw as follows. Ifw = aub, whereu ∈ PERa is a
central word of indexk, we consider the prefix codeXk and the injective endomorphismϕk ofA∗ defined by

ϕk(a) = ak+1b, ϕk(b) = akb. (17)

By the previous lemmaw ∈ X∗k and the derivative ofw with respect toϕk is ∂kw = ϕ−1
k (w). Let us observe that from

the definition for allk ≥ 0 one has∂kak+1b = a whereas∂k+1ak+1b = b.
In the caseu ∈ PERb, one can consider the injective endomorphism ˆϕk ofA∗ defined by

ϕ̂k(a) = abk, ϕ̂k(b) = abk+1. (18)

By the previous lemmaw ∈ Y∗k and the derivative ofw with respect to ˆϕk is ∂̂kw = ϕ̂−1
k (w). Observe that for allk ≥ 0

one haŝ∂kabk+1
= b whereaŝ∂k+1abk+1

= a.
If w = aub is a proper Christoffel word of indexk > 0 thederivativeof w is the word∂w = ∂kw if u ∈ PERa and

∂w = ∂̂kw if u ∈ PERb. Finally, if k = 0, i.e.,w = ab, we set∂ab= a.
Let us observe that from the definition one has for eachk ≥ 0:

ϕk = λakb and ϕ̂k = λbka,

so that by Proposition 3.5,ϕk andϕ̂k are Christoffel morphisms.

Example 4.3. Let v = ab2a2b andw be the Christoffel wordaψ(v)b whereψ(v) is a central word of index 1. One has:

w = aababaababaabababaababaababab.

In this case one hasX1 = {a2b, ab} and∂w = ∂1w = abababbababb.
If w = aψ(b2a2)b, thenw = abbabbabbb. The index ofw is 2 andY2 = {ab2, ab3} and∂w = ∂̂2w = aab.

Remark 4.4. Let us explicitly observe that two different Christoffel words can have the same derivative. For instance,
the Christoffel wordsw = aψ(a2b2a)b andw′ = aψ(b2aba)b have both the derivativeababb= aψ(ba)b. Moreover,
from the definition it follows that all proper Christoffel words having directive words which are equal up to their
index have the same derivative, i.e., for allk > 0, x ∈ A andξ ∈ x̄A∗, one has∂(aψ(xkξ)b) = ∂(aψ(xξ)b). A proper
Christoffel wordw is determined by its derivative∂w and the value of its index.
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Theorem 4.5. The derivative of a proper Christoffel word is a Christoffel word.

Proof. Let w = aubbe a proper Christoffel word of indexk. If k = 0, i.e.,w = ab, ∂ab = a and in this case the
result is trivially verified. Let us supposek > 0. The derivative ofw is ∂w = ϕ−1

k (w) if u ∈ PERa and∂w = ϕ̂−1
k (w) if

u ∈ PERb. In the first caseϕk(∂w) = w and in the second case ˆϕk(∂w) = w. Sinceϕk andϕ̂k are Christoffel morphisms,
by Proposition 3.6 it follows that in both cases∂w ∈ CH.

Corollary 4.6. Let w= aψ(v)b be a Christoffel word of index k, with v non-constant. If w= w1w2 with w1,w2 ∈ CH
is the standard factorization of w in Lyndon words, then w1,w2 ∈ X∗k or w1,w2 ∈ Y∗k and ∂w = ∂w1∂w2 with
∂w1, ∂w2 ∈ CH, is the standard factorization of∂w in Lyndon words.

Proof. By Theorem 4.5,∂w is a Christoffel word. Sincev is not constant, by Proposition 2.10 one hasψ(v) = u1bau2 =

u2abu1 with u1, u2 ∈ PER. Hence,w = w1w2 wherew1 = au1b andw2 = au2b are two proper Christoffel words. In
view of Theorem 2.14,w1w2 is the standard factorization ofw in Lyndon words.

Let us suppose thatv ∈ aA∗. One hasψ(v) = akbakξ, with ξ ∈ A∗ from which, as we have seen in the proof of
Lemma 4.2, one derives thatw1,w2 ∈ X∗k. Thus∂w = ∂kw = ∂kw1∂kw2 with ∂kw1, ∂kw2 ∈ CH. By Theorem 2.14 the
result follows. The casev ∈ bA∗ is similarly dealt with.

Theorem 4.7. Let k≥ 1 and w∈ X∗k ∪ Y∗k . If ∂w is a Christoffel word, then w is a proper Christoffel word.

Proof. We shall suppose thatw ∈ X∗k. A similar proof can be done whenw ∈ Y∗k . One has thatw = ϕk(∂w). Since
ϕk is a Christoffel morphism, it follows thatw ∈ CH. Moreover, it is readily verified thatw is a proper Christoffel
word.

From Theorems 4.5 and 4.7 it follows:

Corollary 4.8. Let k> 0 and w∈ X∗k ∪Y∗k . Then w is a proper Christoffel word if and only if∂w is a Christoffel word.

Proposition 4.9. If w = aψ(v)b, then
|∂w| = π(ψ(v∼)) = |aψ(v)b|v̄(F) .

Proof. From the definition of derivative ofw one has|∂w| = |aψ(v)b|v̄(F) , so that the result follows from Proposi-
tion 2.19.

Corollary 4.10. A proper Christoffel word w= aψ(v)b is uniquely determined by v(F), |w|, and|∂w|.

Proof. Let w = aψ(v)b. By Proposition 4.9,|∂w| = |aψ(v)b|v̄(F) , so that|aψ(v)b|v(F) = |w| − |∂w|. The Christoffel word
w is uniquely determined by its slopeη(w) = |w|b/|w|a. If v(F)

= a, thenη(w) = |∂w|/(|w| − |∂w|). If v(F)
= b, then

η(w) = (|w| − |∂w|)/|∂w|. From this the result follows.

From Propositions 2.21 and 4.9 one derives:

Corollary 4.11. For any word v= v1 · · ·vn, with n≥ 0, vi ∈ A, i = 1, . . . , n, one has

|ψ(v)| =
n

∑

i=1

|∂aψ(vi · · · vn)b|.

Example 4.12. Let w = aψ(v)b with v = a2b2a. One has

w = a3ba2ba3ba2ba2b.

Moreover,∂aψ(ab2a)b = ∂w = ababb, ∂aψ(b2a)b = ∂aψ(ba)b = ab, and∂aψ(a)b = a. Hence,|ψ(v)| = 15 =
2 · 5+ 2 · 2+ 1.

The following noteworthy theorem relates, through their directive words, the central word of a proper Christoffel
word and the central word of its derivative.
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Theorem 4.13. If w = aψ(v)b and v is not constant, then

∂w = aψ(+v)b.

Proof. Let v = xα0

0 · · · x
αn
n with n ≥ 1 asv is not constant. We can write, settingα0 = k andα1 = h, v = xk

0xh
1ξ. We

shall first suppose thatψ(v) ∈ PERa, so thatv = akbhξ. One hasaψ(v)b ∈ X∗k. Sinceϕk = λakb and (akb)−1v = bh−1ξ,
by Corollary 3.3 one obtains

aψ(v)b = ϕk(∂aψ(v)b) = ϕk(aψ(bh−1ξ)b).

From the injectivity ofϕk it follows ∂aψ(v)b = aψ(bh−1ξ)b = aψ(+v)b.
Let us now suppose thatψ(v) ∈ PERb. We can write,v = bkahξ. One hasaψ(v)b ∈ Y∗k . Sinceϕ̂k = λbka and

(bka)−1v = ah−1ξ, by Corollary 3.3 one obtains

aψ(v)b = ϕ̂k(∂aψ(v)b) = ϕ̂k(aψ(ah−1ξ)b).

From the injectivity ofϕ̂k it follows ∂aψ(v)b = aψ(ah−1ξ)b = aψ(+v)b.

A different proof of Theorem 4.13 based on continued fractions will be given at the end of the section.

Example 4.14. Let w = aubwith u = ψ(a2b2a). One has

w = aaabaabaaabaabaab,

+v = ba, and∂w = ababb= aψ(ba)b. If w = aψ(ba2b2a)b, one has+v = ab2a and∂w = aψ(ab2a)b. If w = aψ(abab)b,
then+v = aband∂w = aψ(ab)b.

Corollary 4.15. Let w be a Christoffel word aψ(v)b having the derivative∂w = aψ(+v)b. Then∂aψ(E(v))b =
aψ(E(+v))b and∂aψ(v∼)b = aψ((v+)∼)b.

Proof. The wordv is not constant so that by the previous theorem and (3), one has ∂aψ(E(v))b = aψ(+E(v))b =
aψ(E(+v))b and∂aψ(v∼)b = aψ(+(v∼))b = aψ((v+)∼)b.

Proposition 4.16. Let v= xα0

0 · · · x
αn
n . One has:

|aψ(v)b| =
n−1
∑

i=0

αi |aψ(xαi+1−1
i+1 xαi+2

i+2 · · · x
αn
n )b| + αn + 2.

Proof. Let m= |v|. By Corollary 4.11,

|ψ(v)| =
m

∑

i=1

|∂aψ(vi · · ·vm)b|.

For any 0≤ i ≤ n− 1,

∂aψ(xαi
i xαi+1

i+1 · · · x
αn
n )b = ∂aψ(xαi−1

i xαi+1

i+1 · · · x
αn
n )b =

· · · = ∂aψ(xi x
αi+1
i+1 · · · x

αn
n )b.

Moreover,∂aψ(xαn
n )b = ∂aψ(xαn−1

n )b = · · · = ∂aψ(xn)b and|∂aψ(xn)b| = 1. Hence, one has:

|ψ(v)| =
n−1
∑

i=0

αi |∂aψ(xi x
αi+1
i+1 xαi+2

i+2 · · · x
αn
n )b| + αn.

By Theorem 4.13 for all 0≤ i ≤ n− 1,

∂aψ(xi x
αi+1

i+1 xαi+2

i+2 · · · x
αn
n )b = aψ(xαi+1−1

i+1 xαi+2

i+2 · · · x
αn
n )b,

from which the result follows.
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Proposition 4.17. Let k≥ 0 and f be the function which maps any v∈ Ak into ∂aψ(v)b. For v, v′ ∈ Ak with v, v′ if
f (v) = f (v′), then v and v′ are not constant,+v = +v′, and v= xry(+v), v′ = yr x(+v) with r > 0 and{x, y} = {a, b}. As
a consequence the restrictions of f to aAk−1 and to bAk−1 are injective.

Proof. Supposef (v) = f (v′) with v , v′. If v is a constant, sayv = ak, then f (v) = ∂ak+1b = a. As it is readily
verified for no other wordv′ ofAk one can havef (v′) = f (v) = a which is a contradiction. Since bothv andv′ are not
constant, one has:

∂aψ(v)b = aψ(+v)b = ∂aψ(v′)b = aψ(+v
′)b.

Hence,ψ(+v) = ψ(+v′). Sinceψ is injective, it follows+v = +v′. Sincev andv′ have the same length andv , v′,
v = xry(+v), v′ = yr x(+v) with r > 0 and{x, y} = {a, b}. The remaining part of the proof trivially follows.

The following important and well-known theorem concerningthe slope of a proper Christoffel word holds (cf.[3]):

Theorem 4.18. Let w= aub be a proper Christoffel word with u= ψ(v) and(α0, α1, . . . , αn) be the integral represen-
tation of v. Then the slope of w is given by the continued fraction

[α0;α1, . . . , αn−1, αn + 1] if v(F)
= b

and
[0;α0, α1, . . . , αn−1, αn + 1] if v(F)

= a.

Example 4.19. Let v = a2b2a. One hasw = a3ba2ba3ba2ba2b and η(w) = [0; 2, 2, 2]= 5
12. If v = ba2b, then

w = abababbababbandη(w) = [1; 2, 2]= 7
5.

As a consequence of Theorems 4.13 and 4.18 one obtains:

Corollary 4.20. Let w= aub be a proper Christoffel word with u= ψ(v) and(α0, α1, . . . , αn) the integral representa-
tion of v. The slope of∂w is given by the continued fraction

[α1 − 1;α2, . . . , αn + 1] if v(F)
= a

and
[0;α1 − 1, α2, . . . , αn + 1] if v(F)

= b.

We remark that the slope of a Christoffel wordw = aψ(v)b determines uniquely the directive wordv of ψ(v) and
thenw. Now we can give a different proof of Theorem 4.13 by using continued fractions andTheorem 4.18.

Second proof of Theorem 4.13.We shall suppose thatψ(v) ∈ PERa andα0 = ind(v). The caseψ(v) ∈ PERb is similarly
dealt with. From the construction of the derivative ofw one has:

|∂w|a(α0 + 1)+ |∂w|bα0 = |w|a,

and
|∂w|b + |∂w|a = |w|b.

From these relations one easily obtains:
1

η(w)
= α0 +

1
1+ η(∂w)

.

Let η(w) = [0;α0, . . . , αn + 1]. One derives from the previous equation:

[0;α1, . . . , αn + 1] =
1

1+ η(∂w)
,

from which one obtains:
η(∂w) = [α1 − 1;α2, . . . , αn + 1].

Therefore, one has∂w = aψ(v′)b wherev′ has the integral representation (α1 − 1, α2, . . . , αn) and therefore is equal to
+v, which proves the assertion.
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5. Depth of a Christoffel word

From Theorem 4.5 any proper Christoffel word w has a derivativew′ = ∂w which is still a Christoffel word.
Therefore, ifw′ is proper one can consider∂w′ ∈ CH that we shall denote∂2w. In general, for anyp ≥ 1, ∂pw will
denote the derivative of orderp of w. Since|∂pw| > |∂p+1w|, there exists an integerd such that∂dw ∈ A; we calld the
depthof w.

Example 5.1. Let w be the Christoffel wordw = aψ(ab2a2b)b of Example 4.3. One has

∂w = abababbababb,

which is the Christoffel wordaψ(+v)b where+v = ba2b. The central wordψ(+v) is of order 1 and∂2w = aabab=
aψ(ab)b.Moreover, one has∂3w = aband∂4w = a, so that the depth ofw is 4.

As we have previously seen, ifv ∈ A∗ is not constant,+v is the longest suffix of v which is immediately preceded
by the complementary of the first letter ofv. If +v is not constant one can consider+(+v) and so on. Thus for any
v ∈ A∗ we can define inductivelyv(1) = v and, ifv(n) is not constant andn ≥ 1,

v(n+1) = +(v(n)).

Since|v(n+1)| < |v(n)|, there exists an integerh = h(v) calledheightof v, such thatv(h) is constant. For instance, if
v = a2b2a, one hasv(1) = a2b2a, v(2) = ba, andv(3) = ε. Hence,h(a2b2a) = 3.

Proposition 5.2. Let w= aψ(v)b be a proper Christoffel word. The depth of w is equal to the height of v.

Proof. If v is constant, thenh = h(v) = 1 and∂w ∈ A, so that the depth ofw is 1. Let us then suppose thatv is not a
constant. This impliesh(v) > 1. From Theorem 4.13 one derives that forn ≤ h− 1

∂nw = aψ(v(n+1))b.

Sincev(h) is constant, it follows that∂hw ∈ A, so that the depth ofw is h.

Let v = xα0

0 · · · x
αn
n . For i ∈ {0, . . . , n} we define a map

δi(v) : {0, . . . , n} → {0, 1}

as follows:δ0(v) = δn(v) = 1. For 0< i < n, if αi > 1 we setδi(v) = 1. Letαi = 1. If αi−1 > 1 we setδi(v) = 0. If
αi−1 = 1, then we setδi(v) = 1 if and only if δi−1(v) = 0. Let us define for anyv ∈ A+

δ(v) =
n

∑

i=0

δi(v).

Moreover, we setδ(ε) = 1.

Example 5.3. Let v = a2bab2aba. In this casen = 6. Denotingδi(v) simply byδi , the sequenceδ0δ1 · · · δn is given
by 1011011 andδ(v) = 5.

Proposition 5.4. Let v∈ A∗. Then h(v) = δ(v).

Proof. If v = ε the result is trivially true. Letv , ε. We can writev = xα0
0 xα1

1 · · · x
αn
n , αi ≥ 1, 0 ≤ i ≤ n. We proceed

by induction onn. If n = 0 thenh(v) = δ(v) = 1. If n = 1 thenh(v) = δ(v) = 2. Letn = 2, thenv = xα0

0 xα1
1 xα2

2 = v(1).
There are two cases:

(1) α1 = 1. One hasv(2) = xα2
2 andh(v) = δ(v) = 2;

(2) α1 > 1. One hasv(2) = xα1−1
1 xα2

2 , v(3) = xα2−1
2 andh(v) = δ(v) = 3.

Let n > 2, then+v = xα1−1
1 xα2

2 · · · x
αn
n = v(2). Since by the definition of height,h(v) = h(+v) + 1 and, by induction,

h(+v) = δ(+v), it suffices to prove thatδ(v) = δ(+v) + 1. There are two possibilities:
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(1) α1 = 1. In this case+v = xα2
2 · · · x

αn
n andδi(v) = δi−2(+v) if i ≥ 2. Indeed, ifi = 2, asδ1(v) = 0, one has

δ2(v) = 1 = δ0(+v). From the definition ofδ it follows thatδi(v) = δi−2(+v) if i > 2. Hence,

δ(v) = 1+
n

∑

i=2

δi(v) = 1+
n−2
∑

i=0

δi(+v) = 1+ δ(+v).

(2) α1 > 1. In this case+v = xα1−1
1 xα2

2 · · · x
αn
n andδi(v) = δi−1(+v) for i ≥ 1. Indeed, ifi = 1 asα1 > 1 one has

δ1(v) = 1 = δ0(+v). For i = 2 if α2 > 1 thenδ2(v) = δ1(+v) = 1. If α2 = 1, thenδ2(v) = 0 = δ1(+v) because
δ1(v) = δ0(+v) = 1. From the definition ofδ it follows thatδi(v) = δi−1(+v) for i > 2. Hence,

δ(v) =
n

∑

i=0

δi(v) = 1+
n

∑

i=1

δi(v) = 1+
n−1
∑

i=0

δi(+v) = 1+ δ(+v).

Example 5.5. Let v = a3bab2aba. One hash(v) = 5 andδ0δ1δ2δ3δ4δ5δ6 = 1011011, so thatδ(v) = 5.

Let v = xα0
0 · · · x

αn
n . If αi > 1 for all 0 < i < n, then from the definition ofδ one hasδ(v) = ext(v) = n + 1. Let

us suppose on the contrary thatαi = 1 for all 0 < i < n. We can writev = xα0

0 uxαn
n whereu is an alternating word

u = x1x2 · · · xn−1. In this case it is easy derive that

δ(v) = 2+

⌊

n− 1
2

⌋

= ext(v) −

⌈

|u|
2

⌉

.

In general, by grouping together consecutivexi , 0< i < n, havingαi = 1 we can rewritev uniquely as

v = v0u1v2u3 · · ·uk−1vk, (19)

where all terms of the integral representation ofui (resp.,vi), 1 ≤ i ≤ k− 1 are equal to 1 (resp.,> 1) and all terms of
the integral representation ofv0 (resp.,vk) are> 1, with the possible exception of the first (resp., last).

We call theui , i = 1, 3, . . . , k− 1, thealternating componentsof v. For example, ifv = a3b2abab2aba2ba, then we
can factore it asv = (a3b2)(aba)(b2)(ab)(a2)(b)(a). In this case the alternating components ofv areu1 = aba, u3 = ab,
andu5 = b.

Proposition 5.6. Let v∈ A+ and ui , i = 1, 3, . . . , k− 1, be the alternating components of v. Then one has:

δ(v) = ext(v) −

k−2
2

∑

i=0

⌈

|u2i+1|

2

⌉

.

Proof. Let v = v0u1v2u3 · · ·uk−1vk. Sinceδ(v2i) = ext(v2i), 0 ≤ i ≤ k/2 and|u2i+1| = ext(u2i+1), 0 ≤ i ≤ k/2− 1, one
has

δ(v) =

k
2

∑

i=0

δ(v2i) +

k−2
2

∑

i=0

⌊

|u2i+1|

2

⌋

=

k
2

∑

i=0

ext(v2i) +

k−2
2

∑

i=0

(

ext(u2i+1) −

⌈

|u2i+1|

2

⌉)

= ext(v) −

k−2
2

∑

i=0

⌈

|u2i+1|

2

⌉

.

Example 5.7. If v = (a3b2)(aba)(b2)(ab)(a2)(b)(a), we have ext(v) = 11,⌈|aba|/2⌉ = 2, ⌈|ab|/2⌉ = 1 = ⌈|b|/2⌉, so that
δ(v) = 11− 4 = 7.

In the following, for each wordv ∈ A∗ we let [v] denote the set [v] = {v, v∼, v̄, v̄∼}. From Proposition 2.1 all
Christoffel wordsaψ(z)b with a directive wordz ∈ [v] have the same length. The next proposition shows that they
have the same depth.
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Proposition 5.8. Let v∈ A∗. All Christoffel words aψ(z)b with z∈ [v] have the same depth.

Proof. The result is trivially true ifv is constant. Let us then suppose thatv is not constant. From Propositions 5.2
and 5.4 it is sufficient to prove thatδ(z) = δ(v) for all z ∈ [v]. It is readily verified thatδ(v̄) = δ(v) as ext(v̄) = ext(v) = n
and for each 0≤ i ≤ n, δi(v̄) = δi(v). Let us now prove thatδ(v∼) = δ(v). Let us writev as in Eq. (19), so that

v∼ = v∼k u∼k−1 · · ·u
∼
1v∼0 .

Since allu∼i , i = k − 1, k− 3, . . . , 3, 1 are thealternating componentsof v∼, by the fact that ext(v∼) = ext(v) = n and
|ui | = |u∼i | in view of Proposition 5.6 it follows thatδ(v∼) = δ(v). From the previous results it follows immediately that
δ(v̄∼) = δ(v).

Let u = xα0

0 xα1
1 · · · x

αn
n . We defineu1 as:u1 = ε if α0 > 1 or n = 0, and, otherwise,u1 is the longest proper prefix

of u such thatu = u1u′, u1 is alternating, andu′(F)
, u(L)

1 , i.e., the longest prefixxα0

0 xα1
1 · · · x

αi
i of u with i < n and

α0 = α1 = . . . = αi = 1.
Similarly, we defineu2 asu2 = ε if αn > 1 or n = 0 and, otherwise,u2 is the longest proper suffix of u such that

u = u′u2, u2 is alternating, andu′(L)
, u(F)

2 . For instance, ifu = ab2aba, thenu1 = a andu2 = aba; if u = a2b, then
u1 = ε andv2 = b.

Proposition 5.9. Let u= xα0
0 xα1

1 · · · x
αn
n and v= yβ0

0 yβ1

1 · · · y
βm
m . Then

δ(u) + δ(v) − 1 ≤ δ(uv) ≤ δ(u) + δ(v).

Moreover,δ(uv) = δ(u) + δ(v) if and only if u(L)
, v(F) and |u2|, |v1| are both even.

Proof. If u(L)
= v(F), thenuv= xα0

0 xα1

1 · · · x
αn−1

n−1 xαn+β0
n yβ1

1 . . . yβm
m and triviallyδ(uv) = δ(u)+δ(v)−1. Let us then suppose

u(L)
, v(F). We consider two cases:|u2| even and|u2| odd.
If |u2| is even, thenδi(u) = δi(uv), i = 0, . . . , n. If |v1| = 0, thenδi(v) = δn+i+1(uv), i = 0, . . . ,m so that

δ(uv) = δ(u) + δ(v). Let then |v1| = r ≥ 1. For eachi = 0, . . . , r − 1, one has (δi(v), δn+i+1(uv)) = (1, 0) if i is
even and (δi(v), δn+i+1(uv)) = (0, 1) if i is odd. Moreover,δi(v) = δn+i+1(uv) for eachi = r, . . . ,m.

It follows that if r is even, then the number of pairs (1, 0) is equal to the number of pairs (0, 1) that implies
δ(uv) = δ(u) + δ(v). If r is odd, then the number of pairs (1, 0) is equal to the number of pairs (0, 1) plus 1, so that
δ(uv) = δ(u) + δ(v) − 1.

Let |u2| be odd. In this caseδi(u) = δi(uv) if i = 0, . . . , n − 1, δn(u) = 1, andδn(uv) = 0, δi(v) = δn+i+1(uv), if
i = 0, . . . ,m. It follows δ(uv) = δ(u) + δ(v) − 1 and then the assertion.

Example 5.10. Let u = a3b2aba, w = a3b2a2ba, andv = babab2. One hasu2 = aba, w2 = ba, andv1 = baba. One
hasδ(u) = δ(w) = 4, andδ(v) = 3. One verifies thatδ(uv) = 6 andδ(wv) = 7.

From Proposition 5.9 one readily derives:

Corollary 5.11. Let u= xα0

0 xα1
1 · · · x

αn
n and v= x ∈ A. Then

δ(u) ≤ δ(ux) ≤ δ(u) + 1.

Moreover,δ(ux) = δ(u) if and only if u(L)
= x or ū(L)

= x and|u2| is odd.

Lemma 5.12. If v is a non-constant word, then h(v) = h(v+) + 1.

Proof. By the definition of height, we haveh(v) = h(+v) + 1. Moreover, Proposition 5.8 implies thath(u) = h(u∼) for
anyu ∈ A∗. Hence, to obtain the assertion it suffices to observe by (3) thatv+ = (+(v∼))∼.

We shall now give another equivalent definition for the function h = δ. Let H : N+ → N be the sequence defined
by H(1) = 0 and, for alln > 0,

H(2n) = H(n) and H(4n± 1) = H(n) + 1 .
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The first few values ofH(n) are
0, 0, 1, 0, 1, 1, 1, 0, 1,1,2,1,2, 1, 1, 0, 1, . . . .

As an immediate consequence of the definition, for anyk ≥ 1 we have

H(2k+1n± 1) = H(n) + 1 . (20)

Note that the sequencêH given byĤ(n) = H(n) + 1 is the sequence A007302 in [29].

Proposition 5.13. For all v ∈ A∗, h(v) = H (〈bvb〉).

Proof. We proceed by induction onh(v). If h(v) = 1, thenv is constant, so that〈bvb〉 = 2k+1 ± 1 for somek ≥ 1.
From (20),H (〈bvb〉) = H(1)+ 1 = 1 follows.

Let nowh(v) > 1, so thatv contains botha andb as letters. By Lemma 5.12 and the induction hypothesis, we have
h(v) = H (〈b(v+)b〉) + 1.

Now, if v(L)
= a, then there existsk ≥ 1 such thatv = (v+)bak, so that

〈bvb〉 = 〈b(v+)b · a
kb〉 = 2k+1〈b(v+)b〉 + 1 .

On the other hand, ifv(L)
= b, then there existsk ≥ 1 with v = (v+)abk, so that

〈bvb〉 = 〈b(v+)abk+1〉 = 2k+1〈b(v+)b〉 − 1 .

In both cases, by (20) it followsH (〈bvb〉) = H (〈b(v+)b〉) + 1 = h(v), as desired.

Example 5.14. Let v = a2bab. One has〈ba2bab2〉 = 75 andH(75)= H(19)+ 1 = H(5)+ 2 = H(1)+ 3 = 3. Hence,
h(v) = 3.

Proposition 5.15. For all v ∈ A∗,
⌊

ext(v)
2

⌋

+ 1 ≤ h(v) ≤

⌊

|v|
2

⌋

+ 1 .

The set of words v overA = {a, b} = {x, y} for which the lower bound is attained is Y= x+(yx+)∗ if ext(v) is
odd and Y= {ε} ∪ x+(yx+)∗(y+x)∗y+ if ext(v) is even. The set of words for which the upper bound is attainedis
X = {ab, ba}∗{ε, a, b}{ab, ba}∗.

Proof. Let us first prove the lower bound. Let ext(v) = n + 1. One has thath(v) = δ(v) = ext(v) − card{0 < i <
n | δi(v) = 0}. Since by the definition ofδ in the sequence∆v = δ0(v) · · · δn(v) one cannot have two consecutive 0, it
follows that the maximal value of card{0 < i < n | δi(v) = 0} is attained if and only if∆v ∈ 1(01)∗ if ext(v) is odd and
∆v ∈ 1(01)∗(10)∗1 if ext(v) is even. In both the cases the previous maximal value is equal to

⌈

n−1
2

⌉

. From this one has

δ(v) ≥ n+ 1−
⌈

n−1
2

⌉

=

⌊

ext(v)
2

⌋

+ 1.
To complete the first part of the proof it is sufficient to observe that∆v ∈ 1(01)∗ if and only if v ∈ x+(yx+)∗, and

∆v ∈ 1(01)∗(10)∗1 if and only ifv ∈ x+(yx+)∗(y+x)∗y+.
Let us now prove the upper bound. Ifv is constant, thenh(v) = 1 and the result is trivially true. Let us then

suppose thatv is not constant. Letn = h(v) > 1. By the definition of height, there existv(1),. . ., v(n) such thatv(1) = v,
v(n) is constant, andv(i+1) = +(v(i)) for i = 1, . . . , n − 1. Since for any non-constant wordu one has|u| ≥ |+u| + 2, it
follows |v(i)| ≥ |v(i+1)| + 2, i = 1, . . . , n− 1, so that

|v| ≥ |v(n)| + 2n− 2 ≥ 2n− 2; (21)

hencen = h(v) ≤ ⌊|v|/2⌋ + 1.
Let us now prove thath(v) = ⌊|v|/2⌋ + 1 if and only if v ∈ X. Suppose first that|v| is even. The set of words of

even length withinX is {ab, ba}∗. Clearly, from (21),n = 1 + |v|/2 if and onlyv(n) = ε and |v(i)| − |v(i+1)| = 2 for
i = 1, . . . , n− 1. Now, |u| − |+u| = 2 if and only ifu = ab(+u) or u = ba(+u). It follows thath(v) = 1+ |v|/2 if and only
if v ∈ {ab, ba}∗.
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Let now|v| be odd. The subset ofX made by words of odd length is

X′ = X \ {ab, ba}∗ = {ab, ba}∗{a, b}{ab, ba}∗.

It is not difficult to see thatX′ = X′1 ∪ X′2 where

X′1 = {ab, ba}∗{a, b} and X′2 = {ab, ba}∗{aab, bba}{ab, ba}∗ .

One has|u| − |+u| = 3 if and only if u = aab(+u) or u = bba(+u). It follows that if v ∈ X′1, thenv(n) ∈ {a, b} and
|v(i)| − |v(i+1)| = 2 for i = 1, . . . , n− 1. If v ∈ X′2, thenv(n) = ε and|v(i)| − |v(i+1)| = 2 for all i in {1, . . . , n− 1} except
exactly onej for which |v( j)| − |v( j+1)| = 3. From (21) one has that in both casesn = (|v| + 1)/2 = ⌊|v|/2⌋ + 1.

Conversely, from (21) ifv is such thatn = (|v| + 1)/2, then we must have eitherv(n) ∈ {a, b} and|v(i)| − |v(i+1)| = 2
for i = 1, . . . , n − 1, or v(n) = ε and |v(i)| − |v(i+1)| = 2 for all i in {1, . . . , n − 1} except exactly onej for which
|v( j)| − |v( j+1)| = 3. In the former case, we obtainv ∈ X′1, and in the latterv ∈ X′2.

We say that a wordv ∈ A+ is quasi-alternatingif each letter ofv but exactly one, is immediately followed by its
complementary. For instance, the wordsab2abandaba2babare quasi-alternating.

Corollary 5.16. Let v∈ A+. Then

h(v) =

⌊

ext(v)
2

⌋

+ 1 =

⌊

|v|
2

⌋

+ 1 (22)

if and only if v is alternating or v is quasi-alternating withext(v) equal to an even integer.

Proof. (⇒) If (22) is satisfied, then|v| = ext(v) or |v| = ext(v) + 1. In the first casev is alternating and in the second
case quasi-alternating. Moreover, in the latter case ext(v) has to be even, otherwise|v|2 = ⌊

ext(v)
2 ⌋ + 1, a contradiction.

(⇐) If v is alternating or quasi-alternating, then by the precedingpropositionv ∈ X so thath(v) = ⌊ |v|2 ⌋ + 1. Moreover,
if v is alternating, then|v| = ext(v) and we are done. Ifv is quasi-alternating, then|v| = ext(v) + 1. If ext(v) is even,
then⌊|v|/2⌋ = ext(v)

2 and the result is obtained.

Example 5.17. Let v = a2ba3baba3b. One has∆v = 10101011, so thath(v) = δ(v) = 5. Since ext(v) = 8, one has that
v ∈ Y andh(v) = ext(v)/2+ 1. Let v = abab2a2b ∈ X; one hash(v) = 5 = |v|/2+ 1. Let v be the quasi-alternating
wordv = abab2ab; one hash(v) = ext(v)/2+ 1 = 4 = ⌊|v|/2⌋ + 1.

For each pairk, p of positive integers we letXk(p) denote the set of all words of lengthk having a height equal to
p, i.e.,

Xk(p) = {v ∈ Ak | h(v) = p}.

Moreover, we setJk(p) = card(Xk(p)). From the definition one hasXk(1) = {ak, bk}. By Proposition 5.15 one has
Xk(p) = ∅ if p > ⌊ k

2⌋ + 1.
In order to give an exact formula forJk(p), we need some notation and preparatory results. We recall that for any

v = xα0

0 xα1

1 · · · x
αn
n , the wordv2 is defined asv2 = ε if αn > 1 orn = 0 and, otherwise,v2 is the longest proper suffix of

v such thatv = v′v2, v2 is alternating, andv′(L)
, v(F)

2 .
Let E be the set of wordsv such thatv2 is of even length, i.e.,E = {v ∈ A∗ | |v2| ≡ 0 (mod 2)}, and let

ek(p) = card(Xk(p) ∩ E), ok(p) = card(Xk(p) \ E),

so thatJk(p) = ek(p) + ok(p).
The following proposition gives a recursive procedure allowing to computingXk(p) and thenJk(p), for all k and

p.

Proposition 5.18. For all k > 0 and p> 0,

Xk+1(p) ∩ E = {vv(L) | v ∈ Xk(p)} ∪ {vv̄(L) | v ∈ Xk(p) \ E},

Xk+1(p) \ E = {vv̄(L) | v ∈ Xk(p− 1)∩ E}.

Hence,

ek+1(p) = Jk(p) + ok(p) = ek(p) + 2ok(p), (23)

ok+1(p) = ek(p− 1). (24)
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Proof. By Corollary 5.11, for anyx ∈ A one hash(vx) = δ(vx) = δ(v) = h(v) = p if and only if v(L)
= x or v̄(L)

= x
and|v2| is odd. If v̄(L)

= x and|v2| is even, thenh(v) = p− 1. Moreover, it is clear from the definition thatvv(L) ∈ E for
all v, whereasvv̄(L) is in E if and only if v is not. From this the result follows.

Example 5.19. Since if v ∈ Xk(p) then v̄ ∈ Xk(p), we setX′k(p) = {v ∈ Xk(p) | v(F)
= a}. For k = 2 one has

X′2(1) = {a2} and X′2(2) = {ab}. For k = 3, X′3(1) = {a3} and X′3(2) = {ab2, a2b, aba}. For k = 4, X′4(1) = {a4},
X′4(2) = {ab3, a2b2, aba2} ∪ {a2ba} ∪ {a3b}, X′4(3) = ∅ ∪ ∅ ∪ {ab2a, abab}.

Lemma 5.20. For all k > 0, one has ok(1) = 0 and for p> 1,

ok(p) = 2p−1

(

k− p
p− 2

)

with the usual convention that
(

n
m

)

= 0 whenever n< m.

Proof. Clearlyok(1) = 0 sinceXk(1) = {ak, bk} ⊆ E. Moreover, from (24) it followsok(2) = ek−1(1) = 2 = 22−1
(

k−2
2−2

)

.
Let now p > 2. The assertion is trivially verified ifk < 2(p − 1), since this impliesp > ⌊k/2⌋ + 1 and then

0 = Jk(p) ≥ ok(p). If k = 2(p− 1), we havep = ⌊k/2⌋ + 1, so thatXk(p) = {ab, ba}p−1 andJk(p) = 2p−1. By (23),
ek(p) = Jk−1(p) + ok−1(p) ≤ 2Jk−1(p) = 2J2p−3(p) = 0; hence,

ok(p) = Jk(p) = 2p−1
= 2p−1

(

k− p
p− 2

)

.

We can now assume, by (double) induction, that the assertionis verified for all smaller values ofk andp. Substi-
tuting (23) in (24), we obtain

ok(p) = ek−1(p− 1) = ek−2(p− 1)+ 2ok−2(p− 1)

= ek−3(p− 1)+ 2ok−3(p− 1)+ 2ok−2(p− 1)

= · · · = 2
k−2
∑

i=2(p−2)

oi(p− 1),

where the last equality holds becausee2(p−2)(p− 1) = 0. Therefore, by induction we have

ok(p) = 2
k−2
∑

i=2(p−2)

2p−2

(

i − p+ 1
p− 3

)

= 2p−1
k−2(p−1)
∑

i=0

(

i + p− 3
p− 3

)

.

The assertion now follows from the identity (see, for instance, [23])

n−1
∑

j=0

(

j +m
m

)

=

(

n+m
m+ 1

)

.

Theorem 5.21. For all k, p > 0,

Jk(p) = 2p−1

((

k− p+ 1
p− 1

)

+

(

k− p
p− 1

))

.

Proof. If k < 2(p− 1), thenp > ⌊k/2⌋ + 1, so thatJk(p) = 0 as desired.
Let nowk ≥ 2(p− 1). The assertion is trivially verified forp = 1, so let us supposep > 1. Using (24) and Lemma

5.20, we obtain

Jk(p) = ek(p) + ok(p) = ok+1(p+ 1)+ ok(p) = 2p

(

k− p
p− 1

)

+ 2p−1

(

k− p
p− 2

)

= 2p−1

(

2

(

k− p
p− 1

)

+

(

k− p
p− 2

))

.

The proof is completed by Pascal’s rule.

From the preceding theorem one derives a simple formula for the number of words of lengthk for which the height
reaches its maximal value⌊ k

2⌋ + 1.

Corollary 5.22. Let k> 0. If k is even, Jk( k
2 + 1) = 2

k
2 and if k is odd, Jk(⌊ k

2⌋ + 1) = 2
k+1
2 (1+ 1

2⌊
k
2⌋).
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6. Derivative of a standard word

In this section we shall see that any finite or infinite standard Sturmian wordw has, with respect to a suitable
endomorphism ofA∗, a derivative which is still a standard Sturmian word.

For anyk ≥ 0 we define
X′k = {a

kb, akba} and Y′k = {b
ka, bkab}.

The setsX′k andY′k are codes having a finite deciphering delay [5], so that any word x ∈ X′∞k (resp.,x ∈ Y′∞k ) can
be uniquely factored by the elements ofX′k (resp.,Y′k).

Let w = uxy, with u ∈ PER and{x, y} = {a, b}, be a proper standard Sturmian word. We define index ofw the
index of the central wordu.

Lemma 6.1. Let w be a proper standard Sturmian word of index k. Then w∈ X′∗k ∪ {a
k+1b} if w(F)

= a and w∈
Y′∗k ∪ {b

k+1a} if w(F)
= b.

Proof. Let w = ψ(v)xy be a proper standard Sturmian word of indexk. We suppose thatw(F)
= v(F)

= a. The case
w(F)
= v(F)

= b is symmetrically dealt with. Ifv is constant, i.e.,v = ak, thenvab= ak+1b andvba= akba∈ X′k and the
result is achieved. Let us then assume thatv is not constant. By Lemma 4.2 one has thataψ(v)b ∈ ak+1b{akb, ak+1b}∗,
so that, asψ(v) is a palindrome,

ψ(v) ∈ akb{akb, ak+1b}∗ak.

As is readily verifiedakb{akb, ak+1b}∗ ⊆ X′∗k , so thatψ(v) ∈ X′∗k ak. Hence,ψ(v)ba∈ X′∗k akba⊆ X′∗k . Asψ(v) terminates
with akbak it follows thatψ(v)ab∈ X′∗k akbak+1b = X′∗k (akba)akb ⊆ X′∗k , which concludes the proof.

If w is a proper standard Sturmian word, we can introduce a derivative of w as follows. For eachk ≥ 0 if w(F)
= a

we consider the codeX′k and the injective endomorphismµk= µakb ofA∗ defined by

µk(a) = akba, µk(b) = akb. (25)

By the previous lemma ifw ∈ X′∗k , we define the derivativeDw of w equal to the derivativeDkw with respect toµk,
i.e., Dkw = µ−1

k (w). If w = ak+1b, we defineDak+1b = Dk+1ak+1b = b. Let us observe that from the definition for all
k ≥ 0 one hasDkakba= a.

If w(F)
= b, we consider the codeY′k and the injective endomorphism ˆµk = µbka ofA∗ defined by

µ̂k(a) = bka, µ̂k(b) = bkab. (26)

By the previous lemma ifw ∈ Y′∗k we define the derivativeDw of w equal to the derivativêDkw with respect to ˆµk, i.e.,
D̂kw = µ̂−1

k (w). If w = bk+1a we defineDbk+1a = D̂k+1bk+1a = a. Observe that for allk ≥ 0 one hasD̂kbkab= b.
Finally, observe that ifk = 0, i.e.,w = baor w = ab, from the previous definition one hasDba= a andDab= b.

Example 6.2. Let v = ab2a2b andw be the standard wordψ(v)bawhereψ(v) is a central word of index 1. One has:

w = ababaababaabababaababaabababa.

In this case one hasX′1 = {aba, ab} andDw = D1w = (bababbabab)ba= ψ(ba2b)ba. Similarly, one hasDψ(v)ab =
ψ(ba2b)ab.

If w = ψ(b2a2)ba, thenw = (bbabbabb)ba. The index ofw is 2 andY′2 = {b
2a, b2ab} andDw = D̂2w = aba.

Similarly, one hasDψ(b2a2)ab= aab.

Let us recall (cf. [13, 27]) that an endomorphismf of A∗ is called astandard Sturmian morphismif the image
f (s) of any finite or infinite standard Sturmian words is a standard Sturmian word. This implies that if the imagef (s)
of a binary words ∈ A∞ is a standard Sturmian word so iss. As is well-known standard Sturmian morphisms form
a monoid generated by the morphismsµa, µb, andE. Hence, for eachk ≥ 0, µk, µ̂k ∈ {µa, µb}

∗ are standard Sturmian
morphisms calledpure.

Theorem 6.3. Let k > 0 and w∈ X′∗k ∪ Y′∗k ∪ {a
k+1b} ∪ {bk+1a}. Then w is a proper standard Sturmian word if and

only if Dw is a standard Sturmian word.
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Proof. (⇒) We shall suppose without loss of generality thatw(F)
= a, so that, asw is a proper standard Sturmian

word, w ∈ X′∗k ∪ {a
k+1b}. If w ∈ X′∗k , thenDw = µ−1

k (w). Sinceµk is a standard Sturmian morphism, it follows that
Dw ∈ Stand . Similarly, ifw = ak+1b, thenDw = µ−1

k+1(ak+1b) = b ∈ Stand.
(⇐) Let us now suppose thatDw ∈ Stand. Ifw ∈ X′∗k , then, asµk is a standard Sturmian morphism,µk(Dw) = w

is a standard and proper Sturmian word. Similarly, ifw = ak+1b one hasµk+1(Dw) = µk+1(b) = w which is a proper
standard Sturmian word.

The following theorem relates, through their directive words, the central word of a proper standard word and the
central word of its derivative.

Theorem 6.4. Let w= ψ(v)xy, with{x, y} = {a, b} and v a non-constant word. Then

Dψ(v)xy= ψ(+v)xy.

Proof. Let v = xα0

0 · · · x
αn
n with n ≥ 1 asv is not constant. We can write, settingα0 = k andα1 = h, v = xk

0xh
1ξ. We

shall first suppose thatψ(v) ∈ PERa, so thatv = akbhξ. Since+v = bh−1ξ, by using the Justin formula we can write:

ψ(v) = ψ(akbhξ) = µakb(ψ(bh−1ξ))ψ(akb) = µakb(ψ(+v))akbak,

so that ifx = b andy = a
w1 = ψ(v)ba= µakb(ψ(+v))(akb)(akba),

and if x = a andy = b
w2 = ψ(v)ab= µakb(ψ((+v))(akba)(akb).

Hence,
Dw1 = ψ(+v)ba,

and
Dw2 = ψ(+v))ab.

which concludes the proof in the caseψ(v) ∈ PERa. The caseψ(v) ∈ PERb can be proved in a similar way.

Example 6.5. Let w = ubawith u = ψ(a2b2a). One has

w = aabaabaaabaabaaba

andDw = babba= ψ(ba)ba. If w = ψ(ba2b2a)ab, one easily obtainsDw = ψ(ab2a)ab. If w = ψ(abab)ba, one derives
Dw = ψ(ab)ba.

Corollary 6.6. Let w be the standard word w= ψ(v)ba where v is not constant and w′ is the Christoffel word
w′ = aψ(v)b. Then

Dw = Dψ(v)ba= a−1∂(aψ(v)b)a= a−1(∂w′)a.

Proof. By the preceding theoremDψ(v)ba = ψ(+v)ba. By Theorem 4.13 one has∂aψ(v)b = aψ(+v)b. From this the
result follows.

Remark 6.7. The preceding corollary holds true also for the constant wordsak, k ≥ 0. Indeed,Dakba= a = ∂ak+1b.
However, it is not more true forbk, k > 0. Indeed,Dbk+1a = a whereas∂abk+1

= b.

From Theorem 6.3 any proper standard Sturmian wordw has a derivativew′ = Dw ∈ Stand. Therefore, ifw′

is proper one can considerDw′ ∈ Stand that we shall denoteD2w. In general, for anyp ≥ 1, Dpw will denote the
derivative of orderp of w. Since|Dpw| > |Dp+1w|, there exists an integerd such thatDdw ∈ A; we calld thedepthof
the standard wordw.

Example 6.8. Let w be the standard wordw = ψ(a2b2a)ba of Example 6.5. One hasDw = babba= ψ(ba)ba,
D2w = ba, andD3w = a. Thus the depth ofw is d = 3.
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Proposition 6.9. The depth of a standard word w= ψ(v)xy with {x, y} = {a, b} is equal to the depth of the Christoffel
word aψ(v)b.

Proof. Let n = h(v) be the height ofv. The result is trivially true ifv is constant or, equivalently, ifn = 1. Let us then
suppose thatv is not constant. From Corollary 6.4 one derives that for allp ≤ n

Dp−1ψ(v)xy= ψ(v(p))xy.

Hence,Dn−1ψ(v)xy= ψ(v(n))xy. Sincev(n) is constant, one hasψ(v(n)) = v(n) andDv(n)xy ∈ A. Thus, the depth ofw is
equal ton = h(v) and by Proposition 5.2 is equal to the depth ofaψ(v)b.

Let sbe now a characteristic, or infinite standard, Sturmian word. As we have seen in Sect. 2,

s= ψ(v) with v ∈ Aω \ A∗(aω ∪ bω).

Any wordv ∈ Aω \ A∗(aω ∪ bω) can be uniquely represented as:

v = xα0
0 xα1

1 xα2
2 · · · x

αn−1
n−1 xαn

n · · · (27)

where fori ≥ 0,αi ≥ 1, xi ∈ A, andxi+1 = x̄i .
We defineindexof the characteristic words = ψ(v) the first exponent in the representation (27) ofv, i.e.,α0. We

let ind(s) denote the index ofs.

Lemma 6.10. Let s be a characteristic Sturmian word of index k. Then s∈ X′ωk if s(F)
= a and s∈ Y′ωk if s(F)

= b.

Proof. Let s = ψ(v). We first suppose thats(F)
= a. Sinces has indexk, we can writev = akbv′ with v′ ∈ Aω. By

Lemma 2.4 one has:
s= ψ(akbv′) = µakb(ψ(v′)).

From (25), it follows thats ∈ X′ωk . In a similar way one proves thats ∈ Y′ωk if s(F)
= b.

We can now define the derivativeDsof a characteristic Sturmian wordsof indexk as follows:

Ds= µ−1
k (s) if s(F)

= a, Ds= µ̂−1
k (s) if s(F)

= b.

Remark 6.11. As one easily verifies,Ds is word isomorphic to the derived word ofs in the sense of Durand [22]
constructed by factorings in terms of thefirst returnsto the prefix of lengthk+ 1 of s. If s(F)

= a (resp.,s(F)
= b) the

set of first returns to the prefixakb (resp.,bka) of s is {akb, akba} (resp.,{bka, bkab}). We mention that a further notion
of derivative for infinite words admitting a prefixal factorization, such as the characteristic Sturmian words, has been
recently given in [20].

Theorem 6.12. Let s= Dt with t ∈ X′ωk ∪ Y′ωk . Then s is a characteristic Sturmian word if and only if so is t.

Proof. The result is an immediate consequence of the fact that the morphismsµk andµ̂k are standard Sturmian mor-
phisms.

Recall that an infinite wordv ∈ Aω is constantif v = xω with x ∈ A. If v is not constant one can consider the
greatest suffix +v of v with respect to the suffixal ordering, which is immediately preceded by a letter different from
v(F).

Theorem 6.13. Let w= ψ(v) be a characteristic Sturmian word. Then

Dψ(v) = ψ(+v).
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Proof. Let us writev asv = xα0

0 xα1
1 ξ and setk = α0 andh = α1. We first suppose thatw(F)

= a. We can write
v = akbhξ. Hence,ψ(v) = ψ(akbhξ). By Lemma 2.4 we can write:

ψ(v) = ψ(akbbh−1ξ) = µakb(ψ(bh−1ξ)) = µk(ψ(bh−1ξ)).

Hence,Dψ(v) = ψ(bh−1ξ) = ψ(+v). If w(F)
= b one hasv = bkahξ. We can write:

ψ(v) = ψ(bkahξ) = ψ(bkaah−1ξ) = µbka(ψ(ah−1ξ)) = µ̂k(ψ(ah−1ξ)).

Hence,Dψ(v) = ψ(ah−1ξ) = ψ(+v).

Let s = ψ(v) be a characteristic Sturmian word. From Theorems 6.12 and 6.13, Ds = ψ(+v) is a characteristic
Sturmian word, so that+v is not constant. We can consider the infinite sequence (Dps)p≥0 of successive derivatives of
swhere

D0s= s andDps= D(Dp−1s), for p > 0.

Similarly to the finite case, one can introduce a sequence of infinite words (v(n))n>0, wherev(1) = v, and for alln ≥ 1,
v(n+1) = +(v(n)). If s = ψ(v), then by the preceding theorem one has for eachp ≥ 0, Dps = ψ(v(p+1)) having for all
k > 0, v = ukv(k) with uk ∈ A

∗ and|uk| < |uk+1|.
We say that a characteristic Sturmian words is stableif there existm, n ≥ 0, m , n, such thatDms = Dns, i.e.,

card{Dms | m≥ 0} < ∞.

Theorem 6.14. A characteristic Sturmian word s is stable if and only if its directive word is ultimately periodic.

Proof. (⇒) Let m be the first integer> 0 such that there existsn > m for which Dm−1s = Dn−1s. Hence,ψ(v(m)) =
ψ(v(n)). Sinceψ is injective, it followsv(m) = v(n) and thereforev = umv(m) = unv(n) = unv(m). As |um| < |un| one has
un = umζ with ζ ∈ A+ andv(m) = ζv(m), so thatv(m) is the periodic wordv(m) = ζ

ω andv = umζ
ω.

(⇐) Suppose thats = ψ(v) with v = pqω, p, q ∈ A∗, andq , ε. There exists an integerk such that for allj > k,
D j−1s = ψ(v( j)) with v( j) suffix of qω. Hence,v( j) = qωj , whereq j is a conjugate ofq. By the pigeonhole principle
it follows that there exist two distinct integersm, n > k such thatqn = qm and thereforev(m) = v(n). This implies
Dn−1s= Dm−1s.

Example 6.15. Let f = ψ((ab)ω) be the Fibonacci word. One has that for allp ≥ 1, Dp f = f , so thatf is stable. Let
s= ψ(ak(ab)ω) wherek is a fixed integer≥ 1. One hasDs= ψ((ab)ω) = f . ThusDs= Dps= f for all p ≥ 1 ands is
stable. Lets= ψ(aba2ba3b · · ·banb · · · ). For anyp > 0 one hasDps= ψ(ap+1bap+2bap+3 · · · ), so thats is not stable.

Let v = xα0

0 xα1
1 xα2

2 · · · x
αn−1

n−1 xαn
n · · · ands = ψ(v) be the characteristic Sturmian word with the directive word v. The

slope ofs is the limit limn→∞
|s[n] |b
|s[n] |a

. As is well-known (cf. [3, 27]), sinces is Sturmian, this limit exists and is an
irrational number equal to the continued fraction

[α0;α1, . . . , αn, . . .].

One can easily prove that the directive wordv is periodic if and only if there exist integersr > 0 andq ≥ 0 such
thatαn = αn+r for all n ≥ q, or, equivalently, the previous continued fraction is periodic. From Theorem 6.14 and [2,
Theorem 20], one derives thata characteristic Sturmian word s is stable if and only if the set of all derivated words
in the sense of Durand (with respect to prefixes of s) is finite.

For eachk ≥ 0, letXk andYk be the sets defined by (14).

Lemma 6.16. Let s be a characteristic Sturmian word of index k. Then s∈ Xω
k if s(F)

= a and s∈ Yω
k if s(F)

= b.

Proof. Let us supposes(F)
= a. As one readily verifies, for eachk ≥ 0 one hasX′ωk = {a

kba, akb}ω = akb{akb, ak+1b}ω =
akbXωk . By Lemma 6.10, one hass ∈ X′ωk , so thats ∈ Xω

k . The cases(F)
= b is dealt with in a similar way.

We can define the derivative∂sof a characteristic Sturmian wordsof indexk by

∂s= ϕ−1
k (s) if s(F)

= a and∂s= ϕ̂−1
k (s) if s(F)

= b.
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Lemma 6.17. Let x= x1x2 · · · xn · · · be an infinite word overA. Then for each k≥ 0

ϕ−1
k (µk(x)) = bx.

Proof. By Lemma 3.7, one has for alln ≥ 1

ϕ−1
k (µk(x[n]b)) = ϕ−1

k (µk(x[n])akb) = ϕ−1
k (µk(x[n])b = bx[n] .

Thus,
ϕ−1

k (µk(x[n]) = bx[n]b
−1

and
ϕ−1

k (µk(x)) = lim
n→∞

ϕ−1
k (µk(x[n]) = lim

n→∞
bx[n]b

−1
= bx.

Theorem 6.18. Let s be a characteristic Sturmian word. Then

∂s= bDs.

Proof. If s is a characteristic Sturmian word of indexk, then by the preceding lemma one has:

∂(µk(Ds)) = ∂s= bDs.

7. Concluding remarks

We have studied new combinatorial properties of Christoffel, central, and standard words, which are related to a
suitable notion of derivative of a word. In this analysis, the palindromization map that allows to construct all central
words, as well as all infinite standard words, plays an essential role. Indeed, it allows one to give a unified treatment
for the previous classes of words. Moreover, one can make useof the important combinatorial tool represented by
Justin’s formula which links the palindromization map withpure standard morphisms. By this palindromization map,
from one side one can obtain a very simple formula giving the derivative of a Christoffel word. From the other one
can extend the previous results to the case of standard words. Finally, new interesting combinatorial problems arose
from considering higher order derivatives and the depth of aChristoffel word and of a standard word. This gives a
new insight on these noteworthy classes of words.

An interesting open problem is to try to extend some of the previous results to the case of alphabets with more
than two letters, i.e., to the case of standard episturmian words. This extension seems to be quite hard since some
basic combinatorial properties hold only for a binary alphabet.
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