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ENUMERATION OF COLORED DYCK PATHS VIA

PARTIAL BELL POLYNOMIALS

DANIEL BIRMAJER, JUAN B. GIL, PETER R.W. MCNAMARA, AND MICHAEL D. WEINER

Abstract. We consider a class of lattice paths with certain restrictions on their ascents
and down steps and use them as building blocks to construct various families of Dyck paths.
We let every building block Pj take on cj colors and count all of the resulting colored Dyck
paths of a given semilength. Our approach is to prove a recurrence relation of convolution
type, which yields a representation in terms of partial Bell polynomials that simplifies the
handling of different colorings. This allows us to recover multiple known formulas for Dyck
paths and related lattice paths in an unified manner.

1. Introduction

A Dyck path of semilength n is a lattice path in the first quadrant, which begins at the
origin (0, 0), ends at (2n, 0), and consists of steps (1, 1) and (1,−1). It is customary to
encode an up-step (1, 1) with the letter u and a down-step (1,−1) with the letter d. Thus
every Dyck path can be encoded by a corresponding Dyck word of u’s and d’s. We will
freely pass from paths to words and vice versa.

Much is known about Dyck paths and their connection to other combinatorial structures
like rooted trees, noncrossing partitions, polygon dissections, Young tableaux, as well as
other lattice paths. While there is a vast literature on the enumeration of Dyck paths and
related combinatorial objects according to various statistics, for the scope of the present
work, we only refer to the closely related papers [1, 7, 11]. For more information, the reader
is referred to the general overview on lattice path enumeration written by C. Krattenthaler
in [4, Chapter 10].

For a, b ∈ N0 = N ∪ {0} with a+ b 6= 0 and c = (c1, c2, . . . ) with cj ∈ N0, we define

D
c

n(a, b) as the set of Dyck words of semilength (a+b)n created from strings

of the form P0 = “d ” and Pj = “u(a+b)jdb(j−1)+1” for j = 1, . . . , n, such that

each maximal (a+b)j-ascent substring u(a+b)j may be colored in cj different
ways. We use cj = 0 if (a + b)j-ascents are to be avoided. We will refer to
the elements of Dc

n(a, b) as colored Dyck paths.

Note that if a = 1, b = 0, and c is the sequence of ones c = 1 = (1, 1, . . . ), then the
building blocks take the form P0 = “d ”, Pj = “ujd ” for j = 1, . . . , n, and D

1

n(1, 0) is just
the set of regular Dyck words of semilength n.

In this paper, we are interested in counting the number of elements in D
c

n(a, b). For the
sequence given by yn = |Dc

n(a, b)|, we prove a recurrence relation of convolution type (see
Theorem 2.1) and give a representation of yn in terms of partial Bell polynomials in the
elements of the sequence c = (c1, c2, . . . ) (see Theorem 3.5).
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We conclude with several examples that illustrate the use of our formulas for various
values of the parameters a and b as well as some interesting coloring choices.

2. Enumeration of colored Dyck words

Our technique for enumerating D
c

n(a, b) will be to show in Theorem 2.1 and Proposi-
tion 3.3 that the sequence yn = |Dc

n(a, b)| satisfies the same initial condition and recurrence
relation as a sequence (zn) involving Bell polynomials. As a direct consequence, we get the
promised enumeration of Dc

n(a, b) in terms of partial Bell polynomials (Theorem 3.5).

Theorem 2.1. For a, b ∈ N0 with a+b 6= 0 and c = (c1, c2, . . . ) with cj ∈ N0, let (yn) be the

sequence defined by y0 = 1 and yn = |Dc

n(a, b)| for n ≥ 1. Then yn satisfies the recurrence

yn =

n
∑

ℓ=1

cℓ
∑

i1+···+iaℓ+b=n−ℓ

yi1 · · · yiaℓ+b
, (2.2)

where each ij is a nonnegative integer.

Proof. We will prove (2.2) by showing that there is a bijection between the sets of objects
counted by each side of the equation. The left-hand side counts colored Dyck words of
semilength (a+ b)n. The right-hand side counts tuples of the form

(ℓ, C;D1,D2, . . . ,Daℓ+b),

where

◦ 1 ≤ ℓ ≤ n,
◦ C is a color from a choice of cℓ colors,
◦ Dj is a colored Dyck word of semilength (a+ b)ij , and
◦ i1 + · · ·+ iaℓ+b = n− ℓ.

From this tuple, we will construct a colored Dyck word w of semilength (a + b)n in the
following fashion.

Due to the ℓ and C appearing at the start of the tuple, we begin with w = u(a+b)ℓdb(ℓ−1)+1

and color the substring u(a+b)ℓ with the color C. We then append D1, D2, . . . , Daℓ+b to w,
separating each adjacent pair (Di,Di+1) by an additional copy of the letter d. We need to
check that this map is well-defined, meaning that w is a colored Dyck word of semilength
(a+ b)n.

Let us first check that w contains equal numbers of the letters u and d. Since the Di

already satisfy this condition, we need

(a+ b)ℓ = (b(ℓ− 1) + 1) + (aℓ+ b− 1),

which is true. Similar reasoning shows the “Dyck” property, i.e., that any prefix of w has
at least as many appearances of u as of d. To determine the semilength of w, we count the
number of appearances of u as

(a+ b)ℓ+ (a+ b)(n− ℓ) = (a+ b)n,

as desired. By construction, each maximal (a+ b)j-ascent has an appropriate color and we
conclude that w is a colored Dyck word of semilength (a+ b)n.

To show that this map f from the tuple to w is a bijection, we argue that it has a well-
defined inverse g. Thus let w be a colored Dyck path of semilength (a + b)n, and recall



ENUMERATION OF COLORED DYCK PATHS VIA PARTIAL BELL POLYNOMIALS 3

that a and b are fixed. The length L and color of the ascent sequence at the beginning of w
determines ℓ = L

a+b and C at the start of the tuple g(w). Let w1 denote the word obtained

from w by removing this prefix u(a+b)ℓdb(ℓ−1)+1 from w. See Figure 1 for a schematic
example. We next wish to determine D1, . . . ,Daℓ+b from w1. Let us say that w1 has excess
aℓ+ b−1, meaning that it has this many more copies of d than of u. Notice that this excess
is nonnegative.

D1 D2

D3
D4 D5

r

w1
w2

Figure 1. A schematic example of determining (ℓ, C;D1,D2, . . . ,Daℓ+b)
from w as in the proof of Theorem 2.1, where the semicircles represent
colored Dyck paths. We have L = 5, a = 5, b = 0, ℓ = 1, and D3 is an
empty word. For i = 1, 2, we see that wi is the portion of w to the right of
the corresponding dashed line.

In short, we proceed by finding the smallest r such that the suffix of w1 corresponding
to those letters strictly after position r has excess one less than that of w1. Then we let
w2 be that suffix of w and we let D1 be the prefix of w1 corresponding to those letters
strictly before position r. In more detail, if the first letter of w1 is d then we get that D1

is the empty word, and we let w2 be the word obtained from w1 by deleting this 1-letter
prefix. Note that any extra copies of d, including the type just mentioned, correspond to
the letters we used to separate adjacent pairs (Di,Di+1) in the forward map f . If the first
letter of w1 is u, then D1 will be nonempty. We read off D1 by following w1 until we first
reach a position r where the number of appearances of d in these first r letters exceeds the
number of appearances of u. If no such position r exists, then it must be the case that w1

has excess 0 and we let D1 = w1. Otherwise, we let w2 be the word obtained from w1 by
deleting the first r letters of w1 and we let D1 be the word (with colors) corresponding to
the first r − 1 letters of w1.

By the definition of r, D1 has equal numbers of u’s and d’s, and it satisfies the Dyck
property. Moreover, every maximal (a + b)j-ascent sequence is immediately followed by a
(b(j−1)+1)-descent sequence because w has this property and because these ascent lengths
(a + b)j are at least as large as their partnering descent lengths (b(j − 1) + 1). In other
words, D1 is a colored Dyck word. We continue in this exact manner to determine the full
sequences w3, . . . , ws and D1, . . . ,Ds for some s. Since each wi has excess one less than
wi−1, we deduce that s− 1 = aℓ+ b− 1, and so s = aℓ+ b, as desired.

Notice that the resulting tuple g(w) = (ℓ, C;D1,D2, . . . ,Daℓ+b) satisfies the properties
in the four bullet points given at the beginning of this proof. In particular, since w has
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semilength (a+ b)n, the total number of u’s in D1,D2, . . . ,Daℓ+b equals (a+ b)n− ℓ(a+ b),
and so i1 + · · ·+ iaℓ+b = n− ℓ. We conclude that g maps colored Dyck words of semilength
(a+ b)n to tuples of the desired type. Finally, one can readily observe that g ◦ f and f ◦ g
both equal the identity map. �

3. Representation in terms of partial Bell polynomials

Our goal for this section is to use the result of Theorem 2.1 to give a formula for yn =
|Dc

n(a, b)| in terms of partial Bell polynomials.
For a, b ∈ R (not both = 0) and c = (c1, c2, . . . ), consider the sequence (zn) defined by

z0 = 1, zn =

n
∑

k=1

(

an+ bk

k − 1

)

(k − 1)!

n!
Bn,k(1!c1, 2!c2, . . . ) for n ≥ 1, (3.1)

where Bn,k denotes the (n, k)-th partial Bell polynomial defined as

Bn,k(x1, . . . , xn−k+1) =
∑

α∈π(n,k)

n!

α1! · · ·αn−k+1!

(x1

1!

)α1

· · ·

(

xn−k+1

(n− k + 1)!

)αn−k+1

with π(n, k) denoting the set of multi-indices α ∈ N
n−k+1
0 such that α1 + · · ·+ αn−k+1 = k

and α1+2α2+· · ·+(n−k+1)αn−k+1 = n. For more information on partial Bell polynomials,
see [6, Section 3.3].

The sequence (3.1) satisfies the following convolution formula:

Lemma 3.2 (cf. [3, Theorem 2.1]). For r, n ≥ 1, we have

z(r)n
def
=

∑

m1+···+mr=n

zm1
· · · zmr = r

n
∑

k=1

(

an+ bk + r − 1

k − 1

)

(k − 1)!

n!
Bn,k(1!c1, 2!c2, . . . ).

Proposition 3.3. Suppose a, b ∈ N0. For n ≥ 1, the sequence (zn) defined by (3.1) satisfies
the recurrence

zn =

n
∑

ℓ=1

cℓ
∑

i1+···+iaℓ+b=n−ℓ

zi1 . . . ziaℓ+b
=

n
∑

ℓ=1

cℓ z
(aℓ+b)
n−ℓ , (3.4)

where each ij is a nonnegative integer and z
(an+b)
0 = 1.

Proof. By the previous lemma, omitting the argument of the Bell polynomials,

n−1
∑

ℓ=1

cℓ z
(aℓ+b)
n−ℓ =

n−1
∑

ℓ=1

cℓ(aℓ+ b)

n−ℓ
∑

k=1

(an+b(k+1)−1
k−1

) (k−1)!
(n−ℓ)!Bn−ℓ,k

=

n−1
∑

ℓ=1

cn−ℓ

(

a(n − ℓ) + b
)

ℓ
∑

k=1

(an+b(k+1)−1
k−1

) (k−1)!
ℓ! Bℓ,k

=
n−1
∑

k=1

(an+b(k+1)−1
k−1

)

(k − 1)!
n−1
∑

ℓ=k

cn−ℓ(a(n−ℓ)+b)
ℓ! Bℓ,k
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=
n
∑

k=2

(an+bk−1
k−2

) (k−2)!
n!

n−1
∑

ℓ=k−1

n!
ℓ! cn−ℓ(a(n− ℓ) + b)Bℓ,k−1

=
n
∑

k=2

(an+bk−1
k−2

) (k−2)!
n!

n−1
∑

ℓ=k−1

(

an
(n−1

ℓ

)

+ b
(n
ℓ

)

)

(n− ℓ)!cn−ℓBℓ,k−1.

Now, using equations (11.11) and (11.12) in [5, Theorem 11.12], one can easily verify the
identities

n−1
∑

ℓ=k−1

an
(n−1

ℓ

)

(n− ℓ)!cn−ℓBℓ,k−1 = anBn,k,

n−1
∑

ℓ=k−1

b
(

n
ℓ

)

(n− ℓ)!cn−ℓBℓ,k−1 = bkBn,k,

which imply

n−1
∑

ℓ=1

cℓ z
(aℓ+b)
n−ℓ =

n
∑

k=2

(

an+bk−1
k−2

) (k−2)!
n! (an+ bk)Bn,k =

n
∑

k=2

(

an+bk
k−1

) (k−1)!
n! Bn,k.

Finally, by adding cn to each of these sums, we arrive at (3.4). �

We now arrive at our main result.

Theorem 3.5. For a, b ∈ N0 with a+b 6= 0 and c = (c1, c2, . . . ), the sequence yn = |Dc

n(a, b)|
can be written as

yn =

n
∑

k=1

(

an+ bk

k − 1

)

(k − 1)!

n!
Bn,k(1!c1, 2!c2, . . . ) for n ≥ 1. (3.6)

Moreover, the quantity
(an+bk

k−1

) (k−1)!
n! Bn,k(1!c1, 2!c2, . . . ) counts the number of Dyck paths in

D
c

n(a, b) having exactly k peaks.

Proof. Equation (3.6) is a direct consequence of Theorem 2.1 and Proposition 3.3. The
second assertion follows by considering both sides of (3.6) as polynomials in the ci’s and
by equating the terms of degree k. Indeed, note that Bn,k(1!c1, 2!c2, . . . ) contains as many
monomials as there are partitions of n into k parts, and each such monomial has degree k

in the ci’s. On the other hand, each appearance of a ci in a monomial of yn corresponds to
a coloring of a maximal ascent substring and therefore to a peak. �

4. Examples

In this section we proceed to illustrate the use and versatility of the representation (3.6).
The goal is to take advantage of the partial Bell polynomials to derive combinatorial for-
mulas for the given enumerating sequence.

First of all, as we mentioned in the introduction, D1

n(1, 0) is nothing but the set of Dyck
paths of semilength n. Recall that we are using the symbol 1 to denote the sequence of
ones c = (1, 1, . . . ).
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Example 4.1. (Narayana numbers) By [6, Sec. 3.3, eqn. (3h)] for example,

Bn,k(1!, 2!, 3!, . . . ) =
n!

k!

(

n− 1

k − 1

)

=
(n− 1)!

(k − 1)!

(

n

k

)

for n, k ≥ 1,

so Theorem 3.5 gives the known fact that the number of Dyck paths of semilength n with
exactly k peaks is given by

(

n

k − 1

)

(k − 1)!

n!
Bn,k(1!, 2!, . . . ) =

1

n

(

n

k − 1

)(

n

k

)

,

the Narayana number N(n, k).
In general, for any given parameters a and b, and coloring sequence c, the expressions

Nc

a,b(n, k) =

(

an+ bk

k − 1

)

(k − 1)!

n!
Bn,k(1!c1, 2!c2, . . . )

provide the appropriate analog of the Narayana numbers.

Example 4.2. (Colored Motzkin paths) It is known that the number of Motzkin paths of
length n is the same as the number of Dyck words of semilength n that avoid uuu (via the
bijection u2d→ u, d→ d, and ud→ h, where h denotes a horizontal step (1,0)). Thus, for
n ≥ 1, the number of Motzkin n-paths whose horizontal steps admit c1 colors and whose
up steps admit c2 colors is given by

yn =

n
∑

k=1

(

n

k − 1

)

(k − 1)!

n!
Bn,k(1!c1, 2!c2, 0, . . . )

=

n
∑

k=⌈n
2
⌉

(

n

k − 1

)

(k − 1)!

n!

n!

k!

(

k

n− k

)

c2k−n
1 cn−k

2

=
n
∑

k=⌈n
2
⌉

1

n+ 1

(

n+ 1

k

)(

k

n− k

)

c2k−n
1 cn−k

2

=

⌊n
2
⌋

∑

k=0

1

n+ 1

(

n+ 1

n− k

)(

n− k

k

)

cn−2k
1 ck2

=

⌊n
2
⌋

∑

k=0

(

n

2k

)

Ck c
n−2k
1 ck2 ,

where Ck denotes the Catalan number 1
k+1

(2k
k

)

. Letting c1 = c2 = 1 gives one of the
better-known expressions for the Motzkin numbers.

Example 4.3. (Schröder numbers) The numbers in the sequence [12, A001003] are called
little Schröder numbers and are known to count (among other things) Dyck paths in which
the interior vertices of the ascents admit two colors, that is, Dyck paths in which a maximal
j-ascent may be colored in 2j−1 different ways. The number yn of such colored paths of



ENUMERATION OF COLORED DYCK PATHS VIA PARTIAL BELL POLYNOMIALS 7

semilength n can be obtained from (3.6) with a = 1, b = 0, and c = (1, 2, 22, . . . ). Thus

yn =

n
∑

k=1

(

n

k − 1

)

(k − 1)!

n!
Bn,k(1! · 1, 2! · 2, 3! · 22, . . . )

=

n
∑

k=1

(

n

k − 1

)

(k − 1)!

n!
2n−kBn,k(1!, 2!, . . . )

=

n
∑

k=1

1

n

(

n

k − 1

)(

n

k

)

2n−k =

n
∑

k=1

N(n, k) 2n−k.

Example 4.4. (m-ary paths) For m ∈ N we consider the set D
1

n(m, 0) of Dyck words of
semilength mn created from strings of the form P0 = d and Pj = umjd for j = 1, . . . , n.

The elements of D1

n(m, 0) are in one-to-one correspondence with the elements of the set
Ln(m) of m-ary paths of length (m+1)n, i.e., lattice paths in the first quadrant from (0, 0)
to ((m+ 1)n, 0) with steps (1,m) or (1,−1). Here is an example for m = 2:

D ∈ D
1

5
(2, 0)

←→

D′ ∈ L5(2)

By equation (3.6), the sequence yn = |Ln(m)| =
∣

∣D
1

n(m, 0)
∣

∣ is given by

yn =

n
∑

k=1

(

mn

k − 1

)

(k − 1)!

n!
Bn,k(1!, 2!, . . . )

=
n
∑

k=1

1

k

(

mn

k − 1

)(

n− 1

k − 1

)

=
n
∑

k=1

1

mn+ 1

(

mn+ 1

k

)(

n− 1

n− k

)

,

which by Vandermonde’s identity becomes

yn =
1

mn+ 1

(

(m+ 1)n

n

)

.

Moreover, the number of such paths with exactly k peaks is given by the expression

N1

m,0(n, k) =
1

k

(

mn

k − 1

)(

n− 1

k − 1

)

=
1

n

(

mn

k − 1

)(

n

k

)

.

These formulas are consistent with [8, Corollary 4.12]. Clearly, Theorem 3.5 also provides
formulas for other choices of the coloring sequence c.

The next three examples illustrate simple connections with other types of lattice paths.

Example 4.5. ([12, A052709]) If a = 0, b = 2, and c = (1, 1, 0, 0, . . . ), the set D
c

n(0, 2)
consists of Dyck words of semilength 2n created from strings of the form P0 = d, P1 = u2d,
and P2 = u4d3. With the simple map d→ (1,−1), u2d→ (1, 1), and u4d3 → (3, 1), we get
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a one-to-one correspondence between D
c

n(0, 2) and the set Ln(0, 2) of lattice paths in the
first quadrant from (0, 0) to (2n, 0) with steps (1, 1), (1,−1), or (3, 1).

D ∈ D
1

5
(0, 2)

←→

D′ ∈ L5(0, 2)

By means of (3.6), we then get that yn = |Ln(0, 2)| = |D
c

n(0, 2)| satisfies

yn =

n
∑

k=1

(

2k

k − 1

)

(k − 1)!

n!
Bn,k(1!, 2!, 0, . . . ) =

n
∑

k=⌈n
2
⌉

1

k

(

2k

k − 1

)(

k

n− k

)

.

Example 4.6. ([12, A186997]) If a = 1, b = 2, and c = (1, 1, 0, 0, . . . ), the set D
c

n(1, 2)
consists of Dyck words of semilength 3n created from strings of the form P0 = d, P1 = u3d,
and P2 = u6d3. With the simple map d→ (1,−1), u3d→ (1, 2), and u6d3 → (3, 3), we get
a one-to-one correspondence between Dc

n(1, 2) and the set Ln(1, 2) of lattice paths in the
first quadrant from (0, 0) to (3n, 0) with steps (1, 2), (1,−1), or (3, 3).

D ∈ D
1

3
(1, 2)

←→

D′ ∈ L3(1, 2)

Again, by means of (3.6), we get that yn = |Ln(1, 2)| = |D
c

n(1, 2)| satisfies

yn =

n
∑

k=1

(

n+ 2k

k − 1

)

(k − 1)!

n!
Bn,k(1!, 2!, 0, . . . ) =

n
∑

k=⌈n
2
⌉

1

k

(

n+ 2k

k − 1

)(

k

n− k

)

.

Example 4.7. (32 -Dyck paths) In the context of generalized Dyck languages with only two
letters, Duchon [9] studied rational Dyck paths and suggests the need for colored Dyck
words. In particular, he considered the set of Dyck words with slope 3

2 and length 5n,
which can be visualized as generalized Dyck paths starting at (0, 0) and ending at (2n, 3n),
without crossing the line y = 3

2x. For example, for n = 2,

ababbaabbb ←→
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We denote this set by D3/2(5n). In op. cit. Duchon proved that the number of factor-

free elements of D3/2(5n) is given by Cn−1 + Cn, where Cn is the n-th Catalan number.1

Moreover, for dn =
∣

∣D3/2(5n)
∣

∣, he gives the formula

dn =
n
∑

j=0

1

5n + j + 1

(

5n+ 1

n− j

)(

5n+ 2j

j

)

.

This is sequence A060941 in [12].
It turns out that these numbers may also be generated by counting the elements of

D
c

n(5, 0) with coloring sequence c = (Cj−1 + Cj)j≥1. In other words, there is a bijection
between D3/2(5n) and the set of Dyck words of semilength 5n created from strings of the

form P0 = “d ” and Pj = “u5jd” for j = 1, . . . , n, such that each maximal ascent u5j is

colored by a factor-free Dyck word with slope 3
2 and length 5j.

Consequently, since dn = yn = |Dc

n(5, 0)|, Theorem 3.5 gives the alternative formula

dn =
n
∑

k=1

(

5n

k − 1

)

(k − 1)!

n!
Bn,k(1!(C0 + C1), 2!(C1 + C2), . . . ).

Finally, since j!(Cj−1 + Cj) = (2j − 2)j−1 + (2j)j−1, we can use the second identity in [13,
Example 3.2] with a = 2, b = −1, and c = 2 to obtain

dn =

n
∑

k=1

(

5n

k − 1

) k
∑

j=0

(−1)k−j

k

(

k

j

)

(2j − k)
(2j − k + 2n− 1)n−1

n!

=

n
∑

k=1

(

5n

k − 1

) k
∑

j=0

(−1)k−j

nk

(

k

j

)

(2j − k)

(

2j − k + 2n − 1

n− 1

)

=

n
∑

k=1

(

5n

k − 1

) k
∑

j=0

(−1)j

n

[(

k − 1

j

)

−

(

k − 1

j − 1

)](

2n+ k − 2j − 1

n− 1

)

.
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[4] M. Bóna, Handbook of enumerative combinatorics, Discrete Mathematics and its Applications, CRC

Press, Boca Raton, FL, 2015.
[5] C. A. Charalambides, Enumerative Combinatorics, Chapman and Hall/CRC, Boca Raton, 2002.
[6] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, D. Reidel Publishing

Co., Dordrecht, 1974.
[7] E. Deutsch, Dyck path enumeration, Discrete Math. 204 (1999), 167–202.
[8] R. R. Du, Y. Nie, and X. Sun, Enumerations of humps and peaks in (k, a)-paths and (n,m)-Dyck paths

via bijective proofs, Discrete Appl. Math. 190/191 (2015), 42–49.
[9] P. Duchon, On the enumeration and generation of generalized Dyck words, Discrete Math. 225 (2000),

no. 1-3, 121–135.

1A word in a language L is said to be factor-free if it has no proper factor in L.



10 DANIEL BIRMAJER, JUAN B. GIL, PETER R.W. MCNAMARA, AND MICHAEL D. WEINER

[10] S. Heubach, N. Y. Li, and T. Mansour, Staircase tilings and k-Catalan structures, Discrete Math. 308
(2008), 5954–5964.

[11] T. Mansour and Y. Sun, Dyck paths and partial Bell polynomials, Australas. J. Combin. 42 (2008),
285–297.

[12] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org/.
[13] W. Wang and T. Wang, General identities on Bell polynomials, Comput. Math. Appl. 58 (2009), no. 1,

104–118.

Department of Mathematics, Nazareth College, 4245 East Ave., Rochester, NY 14618

Penn State Altoona, 3000 Ivyside Park, Altoona, PA 16601

Department of Mathematics, Bucknell University, 1 Dent Drive, Lewisburg, PA 17837

Penn State Altoona, 3000 Ivyside Park, Altoona, PA 16601


	1. Introduction
	2. Enumeration of colored Dyck words
	3. Representation in terms of partial Bell polynomials
	4. Examples
	References

