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Hwang’s quasi-power theorem asserts that a sequence of random variables whose moment generating functions are
approximately given by powers of some analytic function is asymptotically normally distributed. This theorem is
generalised to higher dimensional random variables. To obtain this result, a higher dimensional analogue of the
Berry–Esseen inequality is proved, generalising a two-dimensional version by Sadikova.
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1 Introduction
Asymptotic normality is a frequently occurring phenomenon in combinatorics, the classical central limit
theorem being the very first example. The first step in the proof is the observation that the moment gener-
ating function of the sum of n identically independently distributed random variables is the n-th power of
the moment generating function of the distribution underlying the summands. As similar moment generat-
ing functions occur in many examples in combinatorics, a general theorem to prove asymptotic normality
is desirable. Such a theorem was proved by Hwang [16], usually called the “quasi-power theorem”.

Theorem (Hwang [16]). Let {Ωn}n≥1 be a sequence of integral random variables. Suppose that the
moment generating function satisfies the asymptotic expression

Mn(s) := E(eΩns) = eWn(s)(1 +O(κ−1
n )), (1.1)

the O-term being uniform for |s| ≤ τ , s ∈ C, τ > 0, where

1. Wn(s) = u(s)φn + v(s), with u(s) and v(s) analytic for |s| ≤ τ and independent of n; and
u′′(0) 6= 0;

2. limn→∞ φn =∞;

3. limn→∞ κn =∞.

†The authors are supported by the Austrian Science Fund (FWF): P 24644-N26.
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Then the distribution of Ωn is asymptotically normal, i.e.,

sup
x∈R

∣∣∣∣∣P
(

Ωn − u′(0)φn√
u′′(0)φn

< x

)
− Φ(x)

∣∣∣∣∣ = O

(
1√
φn

+
1

κn

)
,

where Φ denotes the standard normal distribution

Φ(x) =
1√
2π

∫ x

−∞
exp

(
−1

2
y2

)
dy.

See Hwang’s article [16] as well as Flajolet-Sedgewick [8, Sec. IX.5] for many applications of this
theorem. A generalisation of the quasi-power theorem to dimension 2 has been provided in [12]. It has
been used in [14], [15], [6], [13] and [17]. In [5, Thm. 2.22], an m-dimensional version of the quasi-
power theorem is stated without speed of convergence. Also in [2], such an m-dimensional theorem
without speed of convergence is proved. There, several multidimensional applications are given, too.

In contrast to many results about the speed of convergence in classical probability theory (see, e.g., [11]),
the sequence of random variables is not assumed to be independent. The only assumption is that the mo-
ment generating function behaves asymptotically like a large power. This mirrors the fact that the moment
generating function of the sum of independent, identically distributed random variables is exactly a large
power. The advantage is that the asymptotic expression (1.1) arises naturally in combinatorics by using
techniques such as singularity analysis or saddle point approximation (see [8]).

The purpose of this article is to generalise the quasi-power theorem including the speed of convergence
to arbitrary dimension m. We first state this main result in Theorem 1 in this section. In Section 2, a new
Berry–Esseen inequality (Theorem 2) is presented, which we use to prove them-dimensional quasi-power
theorem. We give sketches of the proofs of these two theorems in Section 4. All details of these proofs
can be found in the full version of this extended abstract. In Section 3, we give some applications of the
multidimensional quasi-power theorem.

We use the following conventions: vectors are denoted by boldface letters such as s, their components
are then denoted by regular letters with indices such as sj . For a vector s, ‖s‖ denotes the maximum norm
max{|sj |}. All implicit constants of O-terms may depend on the dimension m as well as on τ which is
introduced in Theorem 1.

Our first main result is the following m-dimensional version of Hwang’s theorem.

Theorem 1. Let {Ωn}n≥1 be a sequence of m-dimensional real random vectors. Suppose that the mo-
ment generating function satisfies the asymptotic expression

Mn(s) := E(e〈Ωn,s〉) = eWn(s)(1 +O(κ−1
n )), (1.2)

the O-term being uniform for ‖s‖ ≤ τ , s ∈ Cm, τ > 0, where

1. Wn(s) = u(s)φn + v(s), with u(s) and v(s) analytic for ‖s‖ ≤ τ and independent of n; and the
Hessian Hu(0) of u at the origin is non-singular;

2. limn→∞ φn =∞;

3. limn→∞ κn =∞.
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Then, the distribution of Ωn is asymptotically normal with speed of convergence O(φ
−1/2
n ), i.e.,

sup
x∈Rm

∣∣∣∣P(Ωn − gradu(0)φn√
φn

≤ x

)
− ΦHu(0)(x)

∣∣∣∣ = O

(
1√
φn

)
, (1.3)

where ΦΣ denotes the distribution function of the non-degeneratem-dimensional normal distribution with
mean 0 and variance-covariance matrix Σ, i.e.,

ΦΣ(x) =
1

(2π)m/2
√

det Σ

∫
y≤x

exp

(
−1

2
y>Σ−1y

)
dy,

where y ≤ x means y` ≤ x` for 1 ≤ ` ≤ m.
If Hu(0) is singular, the random variables

Ωn − gradu(0)φn√
φn

converge in distribution to a degenerate normal distribution with mean 0 and variance-covariance matrix
Hu(0).

Note that in the case of the singular Hu(0), a uniform speed of convergence cannot be guaranteed.
To see this, consider the (constant) sequence of random variables Ωn which takes values ±1 each with
probability 1/2. Then the moment generating function is (et + e−t)/2, which is of the form (1.2) with
φn = n, u(s) = 0, v(s) = log(et + e−t)/2 and κn arbitrary. However, the distribution function of
Ωn/
√
n is given by

P
(

Ωn√
n
≤ x

)
=


0 if x < −1/

√
n,

1/2 if − 1/
√
n ≤ x < 1/

√
n,

1 if 1/
√
n ≤ x,

which does not converge uniformly.
In contrast to the original quasi-power theorem, the error term in our result does not contain the sum-

mand O(1/κn). In fact, this summand could also be omitted in the original proof of the quasi-power
theorem by using a better estimate for the error En(s) = Mn(s)e−Wn(s) − 1.

The proof of Theorem 1 relies on an m-dimensional Berry–Esseen inequality (Theorem 2). It is a
generalisation of Sadikova’s result [22, 23] in dimension 2. The main challenge is to provide a version
which leads to bounded integrands around the origin, but still allows to use excellent bounds for the tails
of the characteristic functions. To achieve this, linear combinations involving all partitions of the set
{1, . . . ,m} are used.

Note that there are several generalisations of the one-dimensional Berry–Esseen inequality [3, 7] to
arbitrary dimension, see, e.g., Gamkrelidze [9, 10] and Prakasa Rao [20]. However, using these results
would lead to the less precise error term in (1.3), see the end of Section 2 for more details. For that reason
we generalise Sadikova’s result, which was already successfully used by the first author in [12] to prove a
2-dimensional quasi-power theorem. Also note that our theorem can deal with discrete random variables,
in contrast to [21], where density functions are considered.

For the sake of completeness, we also state the following result about the moments of Ωn.
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Proposition 1.1. The cross-moments of Ωn satisfy

1∏m
`=1 k`!

E
( m∏
`=1

Ωk`n,`

)
= pk(φn) +O

(
κ−1
n φk1+···+km

n

)
,

for k` nonnegative integers, where pk is a polynomial of degree
∑m
`=1 k` defined by

pk(X) = [sk11 · · · skmm ]eu(s)X+v(s).

In particular, the mean and the variance-covariance matrix are

E(Ωn) = gradu(0)φn + grad v(0) +O(κ−1
n ),

Cov(Ωn) = Hu(0)φn +Hv(0) +O(κ−1
n ),

respectively.

2 A Berry–Esseen Inequality
This section is devoted to a generalisation of Sadikova’s Berry–Esseen inequality [22, 23] in dimension 2
to dimension m. Before stating the theorem, we introduce our notation.

Let L = {1, . . . ,m}. For K ⊆ L, we write sK = (sk)k∈K for the projection of s ∈ CL to CK .
For J ⊆ K ⊆ L, let χJ,K : CJ → CK , (sj)j∈J 7→ (sk[k ∈ J ])k∈K be an injection from CJ into CK .
Similarly, let ψJ,K : CK → CK , (sk)k∈K 7→ (sk[k ∈ J ])k∈K be the projection which sets all coordinates
corresponding to K \ J to 0.

We denote the set of all partitions of K by ΠK . We consider a partition as a set α = {J1, . . . , Jk}.
Thus |α| denotes the number of parts of the partition α. Furthermore, J ∈ α means that J is a part of the
partition α.

Now, we can define an operator which we later use to state our Berry–Esseen inequality. The motivation
behind this definition is explained at the end of this section.

Definition 2.1. Let K ⊆ L and h : CK → C. We define the non-linear operator

ΛK(h) :=
∑
α∈ΠK

µα
∏
J∈α

h ◦ ψJ,K

where
µα = (−1)|α|−1(|α| − 1)! .

We denote ΛL briefly by Λ.

For any random variable Z, we denote its cumulative distribution function by FZ and its characteristic
function by ϕZ.

With these definitions, we are able to state our second main result, an m-dimensional version of the
Berry–Esseen inequality.

Theorem 2. Let m ≥ 1 and X and Y be m-dimensional random variables. Assume that FY is differen-
tiable.
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Let

Aj = sup
y∈Rm

∂FY(y)

∂yj
,

Bj =

j∑
k=1

{
j

k

}
k! ,

C1 = 3

√
32

π
(
1−

(
3
4

)1/m) ,
C2 =

12

π

for 1 ≤ j ≤ m where
{
j
k

}
denotes a Stirling partition number (Stirling number of the second kind).

Let T > 0 be fixed. Then

sup
z∈Rm

|FX(z)− FY(z)| ≤ 2

(2π)m

∫
‖t‖≤T

∣∣∣Λ(ϕX)(t)− Λ(ϕY)(t)∏
`∈L t`

∣∣∣ dt
+ 2

∑
∅6=J(L

Bm−|J| sup
zJ∈RJ

∣∣FXJ
(zJ)− FYJ

(zJ)
∣∣

+
2
∑m
j=1Aj

T
(C1 + C2).

(2.1)

Existence of E(X) and E(Y) is sufficient for the finiteness of the integral in (2.1).

Let us give two remarks on the distribution functions occurring in this theorem: The distribution func-
tion FY is non-decreasing in every variable, thus Aj > 0 for all j. Furthermore, our general notations
imply that FXJ

is a marginal distribution of X.
The numbers Bj are known as “Fubini numbers” or “ordered Bell numbers”. They form the sequence

A000670 in [18].
Recursive application of (2.1) leads to the following corollary, where we no longer explicitly state the

constants depending on the dimension.

Corollary 2.2. Let m ≥ 1 and X and Y be m-dimensional random variables. Assume that FY is
differentiable and let

Aj = sup
y∈Rm

∂FY(y)

∂yj
, 1 ≤ j ≤ m.

Then

sup
z∈Rm

|FX(z)− FY(z)|

= O

( ∑
∅6=K⊆L

∫
‖tK‖≤T

∣∣∣ΛK(ϕX ◦ χK,L)(tK)− ΛK(ϕY ◦ χK,L)(tK)∏
k∈K tk

∣∣∣ dtK +

∑m
j=1Aj

T

)
(2.2)

where the O-constants only depend on the dimension m.
Existence of E(X) and E(Y) is sufficient for the finiteness of the integrals in (2.2).

http://oeis.org/A000670
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In order to explain the choice of the operator Λ, we first state it in dimension 2:

Λ(h)(s1, s2) = h(s1, s2)− h(s1, 0)h(0, s2). (2.3)

This coincides with Sadikova’s definition. This also shows that our operator is non-linear as, e.g., Λ(s1 +
s2)(s1, s2) 6= Λ(s1)(s1, s2) + Λ(s2)(s1, s2).

In Theorem 2, we apply Λ to characteristic functions; so we may restrict our attention to functions h
with h(0) = 1. From (2.3), we see that Λ(h)(s1, 0) = Λ(h)(0, s2) = 0, so that Λ(h)(s1, s2)/(s1s2) is
bounded around the origin. This is essential for the boundedness of the integral in Theorem 2. In general,
this property will be guaranteed by our particular choice of coefficients. It is no coincidence that for
α ∈ ΠL, the coefficient µα equals the value µ(α, {L}) of the Möbius function in the lattice of partitions:
Weisner’s theorem (see Stanley [24, Corollary 3.9.3]) is crucial in the proof that Λ(h)(s)/(s1 · · · sm) is
bounded around the origin.

The second property is that our proof of the quasi-power theorem needs estimates for the tails of the
integral in Theorem 2. These estimates have to be exponentially small in every variable, which means
that every variable has to occur in every summand. This is trivially fulfilled as every summand in the
definition of Λ is formulated in terms of a partition.

Note that Gamkrelidze [10] (and also Prakasa Rao [20]) use a linear operator L mapping h to

(s1, s2) 7→ h(s1, s2)− h(s1, 0)− h(0, s2). (2.4)

When taking the difference of two characteristic functions, we may assume that h(0, 0) = 0 so that the first
crucial property as defined above still holds. However, the tails are no longer exponentially small in every
variable: The last summand h(0, s2) in (2.4) is not exponentially small in s1 because it is independent
of s1 and nonzero in general. However, the first two summands are exponentially small in s1 by our
assumption (1.2).

For that reason, using the Berry–Esseen inequality by Gamkrelidze [10] to prove a quasi-power theorem
leads to a less precise error term O(φ

−1/2
n logm−1 φn) in (1.3). It can be shown that the less precise error

term necessarily appears when using Gamkrelidze’s result by considering the example of Ωn being the
2-dimensional vector consisting of a normal distribution with mean −1 and variance n and a normal
distribution with mean 0 and variance n. This is a consequence of the linearity of the operator L in
Gamkrelidze’s result.

3 Examples of Multidimensional Central Limit Theorems
In this section, we give two examples from combinatorics where we can apply Theorem 1. Asymptotic
normality was already shown in earlier publications [4, 2], but we additionally provide an estimate for the
speed of convergence.

3.1 Context-Free Languages
Consider the following example of a context-free grammar G with non-terminal symbols S and T , termi-
nal symbols {a, b, c}, starting symbol S and the rules

P = {S → aSbS, S → bT, T → bS, T → cT, T → a}.
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The corresponding context-free language L(G) consists of all words which can be generated starting with
S using the rules in P to replace all non-terminal symbols. For example, abcabababba ∈ L(G) because it
can be derived as

S → aSbS → abTbaSbS → abcTbabTbbT → abcabababba.

Let P(Ωn = x) be the probability that a word of length n in L(G) consists of x1 and x2 terminal
symbols a and b, respectively. Thus there are n−x1−x2 terminal symbols c. For simplicity, this random
variable is only 2-dimensional. But it can be easily extended to higher dimensions.

Following Drmota [4, Sec. 3.2], we obtain that the moment generating function is

E(e〈Ωn,s〉) =
yn(es)

yn(1)

with yn(z) defined in [4]. Using [4, Equ. (4.9)], this moment generating function has an asymptotic
expansion as in (1.2) with φn = n. Thus Ωn is asymptotically normally distributed after standardisation
(as was shown in [4]) and additionally the speed of convergence is O(n−1/2).

Other context-free languages can be analysed in the same way, either by directly using the results in
[4] (if the underlying system is strongly connected) or by similar methods. This has applications, for
example, in genetics (see [19]).

3.2 Dissections of Labelled Convex Polygons
Let S1 ·∪ · · · ·∪ St+1 = {3, 4, . . .} be a partition. We dissect a labelled convex n-gon into smaller convex
polygons by choosing some non-intersecting diagonals. Each small polygon should be a k-gon with
k 6∈ St+1. Define an(r) to be the number of dissections of an n-gon such that it consists of exactly ri small
polygons whose number of vertices is in Si, for i = 1, . . . , t. For convenience, we use a2(r) = [r = 0].
Asymptotic normality was proved in [2, Sec. 3], see also [1, Ex. 7.1] for a one-dimensional version. We
additionally provide an estimate for the speed of convergence.

Let
f(z,x) =

∑
n≥2
r≥0

an(r)xrzn−1.

Then choosing a k-gon with k ∈ S1 ·∪· · · ·∪St and gluing dissected polygons to k−1 of its sides translates
into the equation

f = z +

t∑
i=1

xi
∑
k∈Si

fk−1.

Following [1], this equation can be used to obtain an asymptotic expression for the moment generating
function as in (1.2) with φn = n. The asymptotic normal distribution follows after suitable standardisation
with speed of convergence O(n−1/2).

4 Sketch of the Proofs
We now sketch the main ideas of the proofs of Theorems 2 and 1. All details can be found in the full
version of this extended abstract.
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Sketch of the proof of Theorem 2: As in [23, 10, 20], our proof of the Berry–Esseen inequality proceeds
via adding a continuous random variable Q to our random variables X and Y. The characteristic function
of Q vanishes outside [−T, T ]m. The error resulting from replacing the difference of the distribution
functions |FX − FY| by |FX+Q − FY+Q| can be estimated by the final summand in (2.1). In principle,
Lévy’s theorem then allows to bound the difference of the distribution functions by the difference of
the characteristic functions. Instead of only using the difference of the characteristic functions, we use
the difference |Λ(ϕX) − Λ(ϕY)|, which ensures boundedness of the integral in (2.1) at least if the first
moments exist. However, we have to compensate Λ by the sum over the differences of the marginal
distribution functions, which yields the second summand in (2.1).

Sketch of the proof of Theorem 1: First, the characteristic function of the standardised random variable
X = (Ωn − gradu(0)φn)/

√
φn is

ϕX(s) = exp
(
−1

2
s>Σs +O

(‖s‖3 + ‖s‖√
φn

))
for ‖s‖ < τ

√
φn/2. Thus, we obtain convergence in distribution as stated in the theorem.

To obtain a bound for the speed of convergence, we use the Berry–Esseen inequality given in Theorem 2
for Y an m-dimensional normal distribution. We bound the difference of Λ evaluated at the characteristic
function of X and the one of the normal distribution by the exponentially decreasing function

|Λ(ϕX)(s)− Λ(ϕY)(s)| ≤ exp
(
−σ

4
‖s‖2 +O(‖s‖)

)
O
(‖s‖3 + ‖s‖√

φn

)
for suitable s where σ is the smallest eigenvalue of Σ.

We then estimate the integral in (2.1). For the variables in a neighbourhood of zero, we get rid of the
denominator by Taylor expansion using the zero of Λ(ϕX) − Λ(ϕY) at 0. The error term of the Taylor
expansion can be estimated by the difference of the characteristic functions using Cauchy’s formula. The
exponentially small tails are used to bound the contribution of the large variables in the integral in (2.1).

The second summand in (2.1) can be estimated inductively.

References
[1] Edward A. Bender, Asymptotic methods in enumeration, SIAM Rev. 16 (1974), no. 4, 485–515.

[2] Edward A. Bender and L. Bruce Richmond, Central and local limit theorems applied to asymptotic
enumeration II: Multivariate generating functions, J. Combin. Theory Ser. A 34 (1983), 255–265.

[3] Andrew C. Berry, The accuracy of the Gaussian approximation to the sum of independent variates,
Trans. Amer. Math. Soc. 49 (1941), 122–136.

[4] Michael Drmota, Systems of functional equations, Random Structures Algorithms 10 (1997), no. 1–
2, 103–124.

[5] , Random trees, SpringerWienNewYork, 2009.



On the Higher Dimensional Quasi-Power Theorem and a Berry–Esseen Inequality 9

[6] Christopher Eagle, Zhicheng Gao, Mohamed Omar, Daniel Panario, and Bruce Richmond, Distribu-
tion of the number of encryptions in revocation schemes for stateless receivers, Fifth Colloquium on
Mathematics and Computer Science, Discrete Math. Theor. Comput. Sci. Proc., AI, 2008, pp. 195–
206.

[7] Carl-Gustav Esseen, Fourier analysis of distribution functions. A mathematical study of the Laplace-
Gaussian law, Acta Math. 77 (1945), 1–125.

[8] Philippe Flajolet and Robert Sedgewick, Analytic combinatorics, Cambridge University Press, Cam-
bridge, 2009.

[9] Nicko G. Gamkrelidze, A multidimensional generalization of Esseen’s inequality for distribution
functions, Teor. Verojatnost. i Primenen. 22 (1977), no. 4, 897–900.

[10] , A multidimensional generalization of Esseen’s inequality for distribution functions, Theory
Probab. Appl. 22 (1977), 877–880, English Translation of the paper in Teor. Verojatnost. i Primenen.

[11] Allan Gut, Probability: A graduate course, Springer Texts in Statistics, Springer-Verlag New York,
2005.

[12] Clemens Heuberger, Hwang’s quasi-power-theorem in dimension two, Quaest. Math. 30 (2007),
507–512.

[13] Clemens Heuberger, Sara Kropf, and Stephan Wagner, Variances and covariances in the central
limit theorem for the output of a transducer, European J. Combin. 49 (2015), 167–187.

[14] Clemens Heuberger and Helmut Prodinger, Analysis of alternative digit sets for nonadjacent repre-
sentations, Monatsh. Math. 147 (2006), 219–248.

[15] , The Hamming weight of the non-adjacent-form under various input statistics, Period. Math.
Hungar. 55 (2007), 81–96.

[16] Hsien-Kuei Hwang, On convergence rates in the central limit theorems for combinatorial structures,
European J. Combin. 19 (1998), 329–343.

[17] Sara Kropf, Variance and covariance of several simultaneous outputs of a Markov chain,
arXiv:1508.05754 [math.CO], 2015.

[18] The On-Line Encyclopedia of Integer Sequences, http://oeis.org, 2015.
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