A FAST COMPUTATION OF DENSITY OF EXPONENTIALLY S-NUMBERS

VLADIMIR SHEVELEV

Abstract

The author [4] proved that, for every set S of positive integers containing 1 (finite or infinite) there exists the density $h=h(E(S))$ of the set $E(S)$ of numbers whose prime factorizations contain exponents only from S, and gave an explicit formula for $h(E(S))$. In this paper we give an equivalent polynomial formula for $\log h(E(S))$ which allows to get a fast calculation of $h(E(S))$.

1. Introduction

Let \mathbf{G} be the set of all finite or infinite increasing sequences of positive integers beginning with 1 . For a sequence $S=\{s(n)\}, n \geq 1$, from G, a positive number N is called an exponentially S-number $(N \in E(S)$), if all exponents in its prime power factorization are in S. The author [4] proved that, for every sequence $S \in \mathbf{G}$, the sequence of exponentially S-numbers has a density $h=h(E(S)) \in\left[\frac{6}{\pi^{2}}, 1\right]$. More exactly, the following theorem was proved in [4]:

Theorem 1. For every sequence $S \in \mathbf{G}$ the sequence of exponentially S numbers has a density $h=h(E(S))$ such that

$$
\begin{equation*}
\sum_{i \leq x,} 1=h(E(S)) x+O\left(\sqrt{x} \log x e^{c \frac{\sqrt{\log x}}{\log \log x}}\right) \tag{1}
\end{equation*}
$$

with $c=4 \sqrt{\frac{2.4}{\log 2}}=7.443083 \ldots$ and

$$
\begin{equation*}
h(E(S))=\prod_{p}\left(1+\sum_{i \geq 2} \frac{u(i)-u(i-1)}{p^{i}}\right) \tag{2}
\end{equation*}
$$

where the product is over all primes, $u(n)$ is the characteristic function of sequence $S: u(n)=1$, if $n \in S$ and $u(n)=0$ otherwise.

In case when S is the sequence of square-free numbers (see Toth [6]) Arias de Reyna [5,A262276], using the Wrench method of fast calculation [7], did the calculation of h with a very high degree of accuracy. In this paper, using Wrench's method for formula (2), we find a general representation of $h(E(S))$ based on a special polynomial over partitions of n which allows to get a fast calculation of $h(E(S))$ for every $S \in \mathbf{G}$. Note also that Wrench's
method was successfully realized in a special case by Arias de Reyna, Brent and van de Lune in [2].

Everywhere below we write $\{h(E(S))\}$, understanding $\left.\{h(E(S))\}\right|_{S \in \mathbf{G}}$.

2. A computing idea in Wrench's style

Consider function given by power series

$$
\begin{equation*}
F_{S}(x)=1+\sum_{i \geq 2}(u(i)-u(i-1)) x^{i}, \quad x \in\left(0, \frac{1}{2}\right] . \tag{3}
\end{equation*}
$$

Since $u(n)-u(n-1) \geq-1$, then $F_{S}(x) \geq 1-\frac{x^{2}}{1-x}>0$. By (2), we have

$$
\begin{equation*}
h(E(S))=\prod_{p} F_{S}\left(\frac{1}{p}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\log h(E(S))=\left.\sum_{p} \log F_{S}(x)\right|_{x=\frac{1}{p}} . \tag{5}
\end{equation*}
$$

Let

$$
\begin{equation*}
\log F_{S}(x)=\sum_{i \geq 2} \frac{f_{i}^{(S)}}{i} x^{i} \tag{6}
\end{equation*}
$$

Since $|u(n)-u(n-1)| \leq 1$, then by (3), $F_{S}(x) \leq 1+\frac{x^{2}}{1-x}$ and $0<$ $\log F_{S}(x) \leq 2 x^{2}, x \in\left(0, \frac{1}{2}\right]$. Thus the series (5) is absolutely convergent. Now, according to (5) - (6), we have

$$
\begin{equation*}
\log h(E(S))=\sum_{n=2}^{\infty} \frac{f_{n}^{(S)}}{n} P(n), \tag{7}
\end{equation*}
$$

where $P(n)=\sum_{p} \frac{1}{p^{n}}$ is the prime zeta function. The series (7) is fast convergent and very suitable for the calculation of $h(E(S))$.

3. A RECURSION FOR COEFFICIENTS

Denoting

$$
\begin{equation*}
v_{n}=u(n)-u(n-1), \quad n \geq 2 \tag{8}
\end{equation*}
$$

by (3) and (6), we have

$$
\begin{gather*}
F_{S}(x)=1+\sum_{n \geq 2} v_{n} x^{n}, \tag{9}\\
\log \left(1+\sum_{n \geq 2} v_{n} x^{n}\right)=\sum_{i \geq 2} \frac{f_{i}^{(S)}}{i} x^{i} . \tag{10}
\end{gather*}
$$

Lemma 1. Coefficients $\left\{f_{n}^{(S)}\right\}$ satisfy the recurrence

$$
\begin{equation*}
f_{n+1}^{(S)}=(n+1) v_{n+1}-\sum_{i=1}^{n-2} v_{n-i} f_{i+1}^{(S)}, \quad n \geq 1 \tag{11}
\end{equation*}
$$

Proof. Differentiating (10), we have

$$
\frac{\sum_{n \geq 2} n v_{n} x^{n-1}}{F_{S}(x)}=\sum_{j>=1} f_{j+1}^{(S)} x^{j}
$$

Hence,

$$
\sum_{n \geq 2} n v_{n} x^{n-1}=\left(1+\sum_{n \geq 2} v_{n} x^{n}\right)\left(\sum_{j>=1} f_{j+1}^{(S)} x^{j}\right) .
$$

Equating the coefficients of x^{n} in both sides, we get

$$
(n+1) v_{n+1}=f_{n+1}^{(S)}+\sum_{j=1}^{n-2} v_{n-j} f_{j+1}^{(S)}
$$

and the lemma follows.
Corollary 1. All $\left\{f_{n}^{(S)}\right\}$ are integers.
Proof. For $\mathrm{n}=1,2,3$, by the recurrence (11), we have

$$
f_{2}^{(S)}=2 v_{2}, f_{3}^{(S)}=3 v_{3}, f_{4}^{(S)}=4 v_{4}-2 v_{2}^{2}
$$

now the corollary follows by induction.

4. Explicit polynomial formula

To apply (10) we need a fast way to generate the coefficients $f_{i}^{(S)}$. Since, for $x \in\left(0, \frac{1}{2}\right], \sum_{n \geq 2} v_{n} x^{n} \leq \frac{x^{2}}{1-x} \leq \frac{1}{2}$, then

$$
\begin{equation*}
\log \left(1+\sum_{n \geq 2} v_{n} x^{n}\right)=\sum_{m \geq 1} \frac{(-1)^{m-1}}{m}\left(\sum_{n \geq 2} v_{n} x^{n}\right)^{m} \tag{12}
\end{equation*}
$$

Expanding these powers, we get a great sum of terms of type

$$
\begin{equation*}
t_{\lambda_{1}, s_{1}}\left(v_{\lambda_{1}} x^{\lambda_{1}}\right)^{s_{1}} \ldots t_{\lambda_{r}, s_{r}}\left(v_{\lambda_{r}} x^{\lambda_{r}}\right)^{s_{r}}, \quad s_{i} \geq 1, \lambda_{i} \geq 2 \tag{13}
\end{equation*}
$$

When we collect all the terms with a fixed sum of exponents of x, say, n, we get a sum of terms (13) with $\lambda_{1} s_{1}+\ldots+\lambda_{r} s_{r}=n$, i.e., we have s_{i} parts λ_{i} in partition of n. Therefore, the considered expansion has the form

$$
\log \left(1+\sum_{n \geq 2} v_{n} x^{n}\right)=\sum_{n \geq 2}\left(\sum_{\sigma \in \Sigma_{n}} t_{\sigma} v_{\sigma}\right) \frac{x^{n}}{n}=\sum_{n \geq 2} \frac{f_{n}^{(S)}}{n} x^{n}
$$

where Σ_{n} is the set of the partitions $\{\sigma\}$ of n with parts $\lambda_{i} \geq 2$ and t_{σ}, v_{σ} are functions of partitions σ defined by (13) such that with every partition σ of n we associate the monomial

$$
\begin{equation*}
v_{\sigma}=\prod_{i=1}^{r} v_{\lambda_{i}}^{s_{i}}\left(\lambda_{1} s_{1}+\ldots+\lambda_{r} s_{r}=n, \quad \lambda_{i} \geq 2\right) \tag{14}
\end{equation*}
$$

So

$$
\begin{equation*}
f_{n}^{(S)}=\sum_{\sigma \in \Sigma_{n}} t_{\sigma} v_{\sigma} \tag{15}
\end{equation*}
$$

Substituting (15) in equation (11), we get

$$
\begin{gather*}
\sum_{\sigma \in \Sigma_{n+1}} t_{\sigma} v_{\sigma}=(n+1) v_{n+1}-\sum_{i=1}^{n-2} v_{n-i} \sum_{\sigma \in \Sigma_{i+1}} t_{\sigma} v_{\sigma}= \\
(n+1) v_{n+1}-\sum_{j=2}^{n-1} v_{j} \sum_{\sigma \in \Sigma_{n+1-j}} t_{\sigma} v_{\sigma} . \tag{16}
\end{gather*}
$$

Note that, using (16), one can proved that all coefficients t_{σ} are integer numbers. Let partition $\sigma=\left(b_{2}, \ldots, b_{n+1}\right) \in \Sigma_{n+1}$ contains b_{2} elements $2, \ldots$, b_{n+1} elements $n+1$ such that $2 b_{2}+\ldots+(n+1) b_{n+1}=n+1, b_{i} \geq 0$. In particular, evidently, $b_{n+1}=0$ or 1 and in the latter case all other $b_{i}=0$. We shall write $v_{\sigma}=v_{2}^{b_{2}} \ldots v_{n+1}^{b_{n+1}}$ and $t_{\sigma}=t\left(v_{2}^{b_{2}} \ldots v_{n+1}^{b_{n+1}}\right)$. According to (16), the coefficient of the monomial $v_{2}^{0} \ldots v_{n}^{0} v_{n+1}^{1}$ equals $n+1$, i. e., for partition of $n+1$ with only part we have $t(\sigma)=n+1$. We agree that $0^{0}=1$.

Denote by Σ_{n+1}^{\prime} the set of partitions of $n+1$ with parts ≥ 2 and $\leq n$. Then, by (16), we have

$$
\begin{equation*}
\sum_{\sigma \in \Sigma_{n+1}^{\prime}} t_{\sigma} v_{\sigma}=-\sum_{j=2}^{n-1} v_{j} \sum_{\sigma \in \Sigma_{n+1-j}^{\prime}} t_{\sigma} v_{\sigma} \tag{17}
\end{equation*}
$$

For every partition $\left(b_{2}, \ldots, b_{n+1}\right) \in \Sigma_{n+1}^{\prime}$ we have $b_{n+1}=0$ and $b_{n}=0$ (the latter since all parts ≥ 2). Then (17) leads to the formula:

$$
\begin{gather*}
t\left(v_{2}^{b_{2}} \ldots v_{n-1}^{b_{n-1}} v_{n}^{0} v_{n+1}^{0}\right)=-t\left(v_{2}^{b_{2}-1} v_{3}^{b_{3}} \ldots v_{n-1}^{b_{n-1}} v_{n}^{0} v_{n+1}^{0}\right)- \\
t\left(v_{2}^{b_{2}} v_{3}^{b_{3}-1} \ldots v_{n-1}^{b_{n-1}} v_{n}^{0} v_{n+1}^{0}\right)-\ldots-t\left(v_{2}^{b_{2}} v_{3}^{b_{3}} \ldots v_{n-1}^{b_{n-1}-1} v_{n}^{0} v_{n+1}^{0}\right) . \tag{18}
\end{gather*}
$$

Using (18), we find an explicit formula for $f_{n}^{(S)}$.
Lemma 2. Let, for $n \geq 3,\left(b_{2}, \ldots, b_{n-1}, 0,0\right) \in \Sigma_{n+1}^{\prime}$. Then

$$
\begin{equation*}
t\left(v_{2}^{b_{2}} \ldots v_{n-1}^{b_{n-1}} v_{n}^{0} v_{n+1}^{0}\right)=(-1)^{B_{n-1}-1} \frac{\left(B_{n-1}-1\right)!}{b_{2}!\ldots b_{n-1}!}(n+1), \tag{19}
\end{equation*}
$$

where $B_{n-1}=b_{2}+\ldots+b_{n-1}$.
Proof. Let $n=3$. We saw that $f_{4}^{(S)}=4 v_{4}-2 v_{2}^{2}$. So, $t\left(v_{2}^{b_{2}}\right)=-2$ with
$b_{2}=2$ and, by (19), we also obtain $t\left(v_{2}^{b_{2}}\right)=-2$. Let the lemma holds for $t\left(v_{2}^{c_{2}} \ldots v_{n-1}^{c_{n-1}}\right), n \geq 3$, where all $c_{i} \leq b_{i}$ such that not all equalities hold. Then, by the relaion (18) and the induction supposition, we have

$$
\begin{gathered}
t\left(v_{2}^{b_{2}} \ldots v_{n-1}^{b_{n-1}}\right)=-(-1)^{B_{n-1}-2}\left(\frac{\left(B_{n-1}-2\right)!}{\left(b_{2}-1\right)!b_{3}!\ldots b_{n-1}!}(n+1-2)+\right. \\
\frac{\left(B_{n-1}-2\right)!}{b_{2}!\left(b_{3}-1\right)!\ldots b_{n-1}!}(n+1-3)+\ldots+\frac{\left(B_{n-1}-1\right)!}{b_{2}!b_{3}!\ldots\left(b_{n-1}-1\right)!}(n+1-(n-1))= \\
(-1)^{B_{n-1}-1} \frac{\left(B_{n-1}-2\right)!}{b_{2}!\ldots b_{n-1}!}\left(b_{2}(n+1-2)+b_{3}(n+1-3)+\ldots+\right. \\
b_{n-1}(n+1-(n-1))=(-1)^{B_{n-1}-1} \frac{\left(B_{n-1}-2\right)!}{b_{2}!\ldots b_{n-1}!}\left(B_{n-1}(n+1)-\right. \\
\left(2 b_{2}+3 b_{3}+\ldots+(n-1) b_{n-1}\right)
\end{gathered}
$$

and, since $2 b_{2}+3 b_{3}+\ldots+(n-1) b_{n-1}=n+1$, the lemma follows.
Corollary 2. Let, for $n \geq 3,\left(b_{2}, \ldots, b_{n+1}\right) \in \Sigma_{n+1}$. Then

$$
\begin{equation*}
t\left(v_{2}^{b_{2}} \ldots v_{n+1}^{b_{n+1}}\right)=\left(\delta\left(b_{n+1,1}\right)+(-1)^{B_{n-1}-1} \frac{\left(B_{n-1}-1\right)!}{b_{2}!\ldots b_{n-1}!}\right)(n+1), \tag{20}
\end{equation*}
$$

where $B_{n+1}=b_{2}+\ldots+b_{n-1}$.
Proof. The statement follows from Lemma 2 and addition of the coefficient $n+1$ of v_{n+1} in equation (16) in case when $\delta\left(b_{n+1,1}\right)=1$.

Now, using (7), (15), Corollary 2 and the initial values of the coefficients $f_{2}^{(S)}=2 v_{2}, f_{3}^{(S)}=3 v_{3}$, and changing n by $n-1$, we get a suitable formula to compute $\log h(E(S))$.

Theorem 2. We have

$$
\begin{equation*}
\log h(E(S))=P(2) v_{2}+P(3) v_{3}+\sum_{n=4}^{\infty} P(n)\left(v_{n}+M\left(v_{2}, \ldots, v_{n-2}\right)\right) \tag{21}
\end{equation*}
$$

where $P(n)$ is the prime zeta function, M is the polynomial defined as

$$
M\left(v_{2}, \ldots, v_{n-2}\right)=\sum_{2 b_{2}+\ldots+(n-2) b_{n-2}=n}(-1)^{B_{n-2}-1} \frac{\left(B_{n-2}-1\right)!}{b_{2}!\ldots b_{n-2}!} v_{2}^{b_{2}} \ldots v_{n-2}^{b_{n-2}}
$$

where $B_{n-2}=b_{2}+\ldots+b_{n-2}, \quad b_{i} \geq 0, \quad i=2, \ldots, n-2, \quad n \geq 4$.
In particular, for $n=4,5,6, \ldots$, we have

$$
M\left(v_{2}\right)=-\frac{v_{2}^{2}}{2}, M\left(v_{2}, v_{3}\right)=-v_{2} v_{3}, M\left(v_{2}, v_{3}, v_{4}\right)=-v_{2} v_{4}-\frac{v_{3}^{2}}{2}+\frac{v_{2}^{3}}{3}, \ldots
$$

For example, in case $n=6$ the diophantine equation $2 b_{2}+3 b_{3}+4 b_{4}=6$ has 3 solutions
a) $b_{2}=1, b_{3}=0, b_{4}=1$ with $B_{4}=2$;
b) $b_{2}=0, b_{3}=2, b_{4}=0$ with $B_{4}=2$;
c) $b_{2}=3, b_{3}=0, b_{4}=0$ with $B_{4}=3$.

Besides, using (11), for $M_{n}=M_{n}\left(v_{2}, \ldots, v_{n-2}\right)$ we have the recursion

$$
\begin{equation*}
M_{2}=0, M_{3}=0, M_{n}=-\frac{1}{n} \sum_{j=2}^{n-2} j v_{n-j}\left(v_{j}+M_{j}\right), n \geq 4 \tag{22}
\end{equation*}
$$

which, possibly, more suitable for fast calculations by Theorem 2.

5. Examples

1) As we already mentioned, in case when S is the sequence of square-free numbers, Arias de Reyna [5,A262276] obtained

$$
h=\prod_{p}\left(1+\sum_{i \geq 4} \frac{\mu(i)^{2}-\mu(i-1)^{2}}{p^{i}}\right)=0.95592301586190237688 \ldots
$$

By the results of [1], the coefficients $f_{n}^{(S)}$ (15) in this case (see A262400 [5]) have very interesting congruence properties.
2) The case of $S=2^{n}$ was essentially considered by the author [3]. He found that $h=0.872497 \ldots$ The author asked Arias de Reyna to get more digits. Using Theorem 2, he obtained

$$
h=0.87249717935391281355 \ldots
$$

3) Among the other several calculations by Arias de Reyna, we give the following one. Let S be 1 and the primes (A008578 [5]). Then

$$
h=0.94671933735527801046 \ldots
$$

6. Acknowledgement

The author is very grateful to Juan Arias de Reyna for an information of Wrench's method, useful discussions and his calculations by the formula of Theorem 2,

References

[1] J. Arias de Reyna, Dynamical zeta functions and Kummer congruences, Acta Arith. 119, (2005), 39-52.
[2] J. Arias de Reyna, and R. P. Brent, and J. van de Lune, A note on the real part of the Riemann Zeta-Function, in book: Leven met getallen : liber amicorum ter gelegenheid van de pensionering van Herman te Riele, ed. J. A. J. van Vonderen, CWI 2012, pp. 30-36.
[3] V. Shevelev, Compact integers and factorials, Acta Arith. 126, no. 3 (2007), 195-236.
[4] V. Shevelev, Exponentially S-numbers, arXiv:1510.05914 [math.NT], 2015.
[5] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences http://oeis.org.
[6] L. Toth, On certain arithmetic functions involving exponential divisors, II., Annales Univ. Sci. Budapest., Sect. Comp., 27 (2007), 155-166.
[7] J. W. Wrench, Evaluation of Artin's constant and the twin prime constant, Math. Comp. 15 (1961), 396-398.

Department of Mathematics, Ben-Gurion University of the Negev, BeerSheva 84105, Israel. E-MAIL:SHEVELEV@bGU.AC.IL

