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A FAST COMPUTATION OF DENSITY OF

EXPONENTIALLY S-NUMBERS

VLADIMIR SHEVELEV

Abstract. The author [4] proved that, for every set S of positive inte-
gers containing 1 (finite or infinite) there exists the density h = h(E(S))
of the set E(S) of numbers whose prime factorizations contain exponents
only from S, and gave an explicit formula for h(E(S)). In this paper we
give an equivalent polynomial formula for log h(E(S)) which allows to
get a fast calculation of h(E(S)).

1. Introduction

Let G be the set of all finite or infinite increasing sequences of positive

integers beginning with 1. For a sequence S = {s(n)}, n ≥ 1, from G, a

positive number N is called an exponentially S-number (N ∈ E(S)), if all

exponents in its prime power factorization are in S. The author [4] proved

that, for every sequence S ∈ G, the sequence of exponentially S-numbers

has a density h = h(E(S)) ∈ [ 6
π2 , 1]. More exactly, the following theorem

was proved in [4]:

Theorem 1. For every sequence S ∈ G the sequence of exponentially S-

numbers has a density h = h(E(S)) such that

(1)
∑

i≤x, i∈E(S)

1 = h(E(S))x+O(
√
x log xec

√
log x

log log x ),

with c = 4
√

2.4
log 2

= 7.443083... and

(2) h(E(S)) =
∏

p

(

1 +
∑

i≥2

u(i)− u(i− 1)

pi

)

,

where the product is over all primes, u(n) is the characteristic function of

sequence S : u(n) = 1, if n ∈ S and u(n) = 0 otherwise.

In case when S is the sequence of square-free numbers (see Toth [6]) Arias

de Reyna [5,A262276], using the Wrench method of fast calculation [7], did

the calculation of h with a very high degree of accuracy. In this paper,

using Wrench’s method for formula (2), we find a general representation of

h(E(S)) based on a special polynomial over partitions of n which allows to

get a fast calculation of h(E(S)) for every S ∈ G. Note also that Wrench’s
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method was successfully realized in a special case by Arias de Reyna, Brent

and van de Lune in [2].

Everywhere below we write {h(E(S))}, understanding {h(E(S))}|S∈G.

2. A computing idea in Wrench’s style

Consider function given by power series

(3) FS(x) = 1 +
∑

i≥2

(u(i)− u(i− 1))xi, x ∈ (0,
1

2
].

Since u(n)− u(n− 1) ≥ −1, then FS(x) ≥ 1− x2

1−x
> 0. By (2), we have

(4) h(E(S)) =
∏

p

FS

(

1

p

)

.

and

(5) log h(E(S)) =
∑

p

logFS(x)|x= 1
p
.

Let

(6) logFS(x) =
∑

i≥2

f
(S)
i

i
xi.

Since |u(n) − u(n − 1)| ≤ 1, then by (3), FS(x) ≤ 1 + x2

1−x
and 0 <

logFS(x) ≤ 2x2, x ∈ (0, 1
2
]. Thus the series (5) is absolutely convergent.

Now, according to (5) - (6), we have

(7) log h(E(S)) =

∞
∑

n=2

f
(S)
n

n
P (n),

where P (n) =
∑

p
1
pn

is the prime zeta function. The series (7) is fast

convergent and very suitable for the calculation of h(E(S)).

3. A recursion for coefficients

Denoting

(8) vn = u(n)− u(n− 1), n ≥ 2,

by (3) and (6), we have

(9) FS(x) = 1 +
∑

n≥2

vnx
n,

(10) log(1 +
∑

n≥2

vnx
n) =

∑

i≥2

f
(S)
i

i
xi.

Lemma 1. Coefficients {f (S)
n } satisfy the recurrence
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(11) f
(S)
n+1 = (n + 1)vn+1 −

n−2
∑

i=1

vn−if
(S)
i+1, n ≥ 1.

Proof. Differentiating (10), we have
∑

n≥2 nvnx
n−1

FS(x)
=
∑

j>=1

f
(S)
j+1x

j .

Hence,
∑

n≥2

nvnx
n−1 = (1 +

∑

n≥2

vnx
n)(
∑

j>=1

f
(S)
j+1x

j).

Equating the coefficients of xn in both sides, we get

(n+ 1)vn+1 = f
(S)
n+1 +

n−2
∑

j=1

vn−jf
(S)
j+1

and the lemma follows. �

Corollary 1. All {f (S)
n } are integers.

Proof. For n=1,2,3, by the recurrence (11), we have

f
(S)
2 = 2v2, f

(S)
3 = 3v3, f

(S)
4 = 4v4 − 2v22;

now the corollary follows by induction. �

4. Explicit polynomial formula

To apply (10) we need a fast way to generate the coefficients f
(S)
i . Since,

for x ∈ (0, 1
2
],
∑

n≥2 vnx
n ≤ x2

1−x
≤ 1

2
, then

(12) log(1 +
∑

n≥2

vnx
n) =

∑

m≥1

(−1)m−1

m
(
∑

n≥2

vnx
n)m.

Expanding these powers, we get a great sum of terms of type

(13) tλ1,s1(vλ1
xλ1)s1...tλr ,sr(vλr

xλr)sr , si ≥ 1, λi ≥ 2.

When we collect all the terms with a fixed sum of exponents of x, say, n,

we get a sum of terms (13) with λ1s1 + ...+ λrsr = n, i.e., we have si parts

λi in partition of n. Therefore, the considered expansion has the form

log(1 +
∑

n≥2

vnx
n) =

∑

n≥2

(
∑

σ∈Σn

tσvσ)
xn

n
=
∑

n≥2

f
(S)
n

n
xn,

where Σn is the set of the partitions {σ} of n with parts λi ≥ 2 and tσ, vσ

are functions of partitions σ defined by (13) such that with every partition

σ of n we associate the monomial
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(14) vσ =
r
∏

i=1

vsiλi
(λ1s1 + ... + λrsr = n, λi ≥ 2).

So

(15) f (S)
n =

∑

σ∈Σn

tσvσ.

Substituting (15) in equation (11), we get

∑

σ∈Σn+1

tσvσ = (n+ 1)vn+1 −
n−2
∑

i=1

vn−i

∑

σ∈Σi+1

tσvσ =

(16) (n+ 1)vn+1 −
n−1
∑

j=2

vj
∑

σ∈Σn+1−j

tσvσ.

Note that, using (16), one can proved that all coefficients tσ are integer

numbers. Let partition σ = (b2, ..., bn+1) ∈ Σn+1 contains b2 elements 2, ...,

bn+1 elements n + 1 such that 2b2 + ... + (n + 1)bn+1 = n + 1, bi ≥ 0. In

particular, evidently, bn+1 = 0 or 1 and in the latter case all other bi = 0.

We shall write vσ = vb22 ...v
bn+1

n+1 and tσ = t(vb22 ...v
bn+1

n+1 ). According to (16),

the coefficient of the monomial v02...v
0
nv

1
n+1 equals n + 1, i. e., for partition

of n + 1 with only part we have t(σ) = n+ 1. We agree that 00 = 1.

Denote by Σ′
n+1 the set of partitions of n + 1 with parts ≥ 2 and ≤ n.

Then, by (16), we have

(17)
∑

σ∈Σ′
n+1

tσvσ = −
n−1
∑

j=2

vj
∑

σ∈Σ′
n+1−j

tσvσ.

For every partition (b2, ..., bn+1) ∈ Σ′
n+1 we have bn+1 = 0 and bn = 0 (the

latter since all parts ≥ 2). Then (17) leads to the formula:

t(vb22 ...v
bn−1

n−1 v
0
nv

0
n+1) = −t(vb2−1

2 vb33 ...v
bn−1

n−1 v
0
nv

0
n+1)−

(18) t(vb22 vb3−1
3 ...v

bn−1

n−1 v
0
nv

0
n+1)− ...− t(vb22 vb33 ...v

bn−1−1
n−1 v0nv

0
n+1).

Using (18), we find an explicit formula for f
(S)
n .

Lemma 2. Let, for n ≥ 3, (b2, ..., bn−1, 0, 0) ∈ Σ′
n+1. Then

(19) t(vb22 ...v
bn−1

n−1 v
0
nv

0
n+1) = (−1)Bn−1−1 (Bn−1 − 1)!

b2!...bn−1!
(n + 1),

where Bn−1 = b2 + ... + bn−1.

Proof. Let n = 3. We saw that f
(S)
4 = 4v4 − 2v22. So, t(v

b2
2 ) = −2 with
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b2 = 2 and, by (19), we also obtain t(vb22 ) = −2. Let the lemma holds

for t(vc22 ...v
cn−1

n−1 ), n ≥ 3, where all ci ≤ bi such that not all equalities hold.

Then, by the relaion (18) and the induction supposition, we have

t(vb22 ...v
bn−1

n−1 ) = −(−1)Bn−1−2(
(Bn−1 − 2)!

(b2 − 1)!b3!...bn−1!
(n + 1− 2)+

(Bn−1 − 2)!

b2!(b3 − 1)!...bn−1!
(n+ 1− 3) + ...+

(Bn−1 − 1)!

b2!b3!...(bn−1 − 1)!
(n + 1− (n− 1)) =

(−1)Bn−1−1 (Bn−1 − 2)!

b2!...bn−1!
(b2(n+ 1− 2) + b3(n+ 1− 3) + ...+

bn−1(n + 1− (n− 1)) = (−1)Bn−1−1 (Bn−1 − 2)!

b2!...bn−1!
(Bn−1(n + 1)−

(2b2 + 3b3 + ... + (n− 1)bn−1)

and, since 2b2 + 3b3 + ...+ (n− 1)bn−1 = n+ 1, the lemma follows. �

Corollary 2. Let, for n ≥ 3, (b2, ..., bn+1) ∈ Σn+1. Then

(20) t(vb22 ...v
bn+1

n+1 ) = (δ(bn+1,1) + (−1)Bn−1−1 (Bn−1 − 1)!

b2!...bn−1!
)(n + 1),

where Bn+1 = b2 + ... + bn−1.

Proof. The statement follows from Lemma 2 and addition of the coefficient

n + 1 of vn+1 in equation (16) in case when δ(bn+1,1) = 1. �

Now, using (7), (15), Corollary 2 and the initial values of the coefficients

f
(S)
2 = 2v2, f

(S)
3 = 3v3, and changing n by n− 1, we get a suitable formula

to compute log h(E(S)).

Theorem 2. We have

(21) log h(E(S)) = P (2)v2 + P (3)v3 +
∞
∑

n=4

P (n)(vn +M(v2, ..., vn−2)),

where P (n) is the prime zeta function, M is the polynomial defined as

M(v2, ..., vn−2) =
∑

2b2+...+(n−2)bn−2=n

(−1)Bn−2−1 (Bn−2 − 1)!

b2!...bn−2!
vb22 ...v

bn−2

n−2 ,

where Bn−2 = b2 + ... + bn−2, bi ≥ 0, i = 2, ..., n− 2, n ≥ 4.

In particular, for n = 4, 5, 6, ..., we have

M(v2) = −v22
2
,M(v2, v3) = −v2v3,M(v2, v3, v4) = −v2v4 −

v23
2

+
v32
3
, ...

For example, in case n = 6 the diophantine equation 2b2+3b3+4b4 = 6 has

3 solutions
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a) b2 = 1, b3 = 0, b4 = 1 with B4 = 2;

b) b2 = 0, b3 = 2, b4 = 0 with B4 = 2;

c) b2 = 3, b3 = 0, b4 = 0 with B4 = 3.

Besides, using (11), for Mn = Mn(v2, ..., vn−2) we have the recursion

(22) M2 = 0,M3 = 0,Mn = −1

n

n−2
∑

j=2

jvn−j(vj +Mj), n ≥ 4

which, possibly, more suitable for fast calculations by Theorem 2.

5. Examples

1) As we already mentioned, in case when S is the sequence of square-free

numbers, Arias de Reyna [5,A262276] obtained

h =
∏

p

(

1 +
∑

i≥4

µ(i)2 − µ(i− 1)2

pi

)

= 0.95592301586190237688...

By the results of [1], the coefficients f
(S)
n (15) in this case (see A262400 [5])

have very interesting congruence properties.

2) The case of S = 2n was essentially considered by the author [3]. He

found that h = 0.872497... The author asked Arias de Reyna to get more

digits. Using Theorem 2, he obtained

h = 0.87249717935391281355...

3) Among the other several calculations by Arias de Reyna, we give the

following one. Let S be 1 and the primes (A008578 [5]). Then

h = 0.94671933735527801046...
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