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1 Introduction

Let σ(x) denote the sum of divisors ofx. If σ(y) = 2y − 1, we say thaty is almost perfect.
In [3], Dris gives the following criterion for almost perfect numbers in terms of the abundancy

indexI(x) = σ(x)/x:

Theorem 1.1.Letm be a positive integer. Thenm is almost perfect if and only if

2m

m+ 1
≤ I(m) <

2m+ 1

m+ 1
.

Dris also obtains the following result [3]:

Theorem 1.2.LetM be a positive integer. ThenM is deficient if and only if

2M

M +D(M)
≤ I(M) <

2M +D(M)

M +D(M)
,

whereD(M) = 2M − σ(M) is the deficiency ofM .

It is currently an open problem to determine if the only even almost perfect numbers are those

of the form2k, wherek ≥ 1. (Note that1 is the single currently known odd almost perfect
number, asσ(1) = 2 · 1− 1 = 1.)

Antalan and Tagle showed in [2] that, ifM 6= 2k is an even almost perfect number, thenM

takes the formM = 2rb2, whereb is an odd composite integer. Antalan also proved in [1] that
3 ∤ M .
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2 Main Results

Our penultimate goal is, of course, to show that ifn is an even almost perfect number, thenn = 2k

for some positive integerk.

Assume to the contrary that there exists an even almost perfect numberM 6= 2k. By [2], M

then takes the formM = 2rb2, wherer ≥ 1 andb is an odd composite integer. Note thatb2 is
deficient, as it is a factor of the deficient numberM = 2rb2.

(The following proof for the assertion thatb2 is not almost perfect, is from [6].)

SinceM is almost perfect, we have

(2r+1 − 1)σ(b2) = σ(2r)σ(b2) = σ(2rb2) = σ(M) = 2M − 1 = 2r+1b2 − 1.

So we have

σ(b2) =
2r+1b2 − 1

2r+1 − 1
= b2 +

b2 − 1

2r+1 − 1
.

Now,

2b2 − σ(b2) = b2 −
b2 − 1

2r+1 − 1
.

If b2 is also almost perfect, then we have

1 = 2b2 − σ(b2) = b2 −
b2 − 1

2r+1 − 1
,

which, sinceb > 1, gives
2r+1 − 1 = 1 ⇐⇒ r = 0.

This contradictsr ≥ 1. Consequently, sinceb2 is deficient, we can writeσ(b2) = 2b2 − c,
wherec > 1.

Note that we have proved the following propositions:

Lemma 2.1. LetM = 2rb2 be an even almost perfect number, withσ(b2) = 2b2 − c. Then

c = b2 −
b2 − 1

2r+1 − 1
.

Lemma 2.2. LetM = 2rb2 be an even almost perfect number, withσ(b2) = 2b2 − c. Then

c ≥
2b2 + 1

3
.
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Notice that, sinceb is an odd composite, and since3 ∤ M (see [1]), thenb ≥ 5 · 7 = 35, so
that we have the estimatec ≥ 2·352+1

3
= 817.333, which implies thatc ≥ 819 sincec is an odd

integer.

Recall that the abundancy index ofx is defined to be the ratioI(x) = σ(x)
x

. We call a number

S solitary if the equationI(S) = I(d) has exactly one solutiond = S. A sufficient (but not
necessary) condition forT to be solitary isgcd(T, σ(T )) = 1, wheregcd is the greatest common

divisor function.

The following result was communicated to the second author by Dagal last October 4, 2015.

Lemma 2.3. If 2rb2 is an almost perfect number withgcd(2, b) = 1 andb > 1, thenb2 is solitary.

(Note: The proof that follows is different from that of Dagal’s [4].)

Proof. Since2rb2 is almost perfect, we have

(2r+1 − 1)σ(b2) = σ(2r)σ(b2) = σ(2rb2) = 2r+1b2 − 1.

We want to show that
gcd(b2, σ(b2)) = 1.

It suffices to find a linear combination ofb2 andσ(b2) that is equal to1. Such a linear combination

is given by the equation
1 = (1− 2r+1)σ(b2) + 2r+1b2.

From the equation
1 = (1− 2r+1)σ(b2) + 2r+1b2

we obtain
2r+1

(

σ(b2)− b2
)

= σ(b2)− 1

so that

2r+1 =
σ(b2)− 1

σ(b2)− b2
= 1 +

b2 − 1

σ(b2)− b2
.

This last equation gives the divisibility constraint in thefollowing result:

Lemma 2.4. If 2rb2 is an almost perfect number withgcd(2, b) = 1 andb > 1, then

(

σ(b2)− b2
)

|
(

b2 − 1
)

.
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Numbersn such thatσ(n) − n dividesn − 1 are listed in OEIS sequence A059046 [7], the
first 62 terms of which are given below:

2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 77, 79,

81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173,

179, 181, 191, 193, 197, 199, 211.

Remark 2.1. Does OEIS sequence A059046 contain any odd squaresu2, with ω(u) ≥ 2? MSE

user Charles (http://math.stackexchange.com/users/1778) checked and found

that ”‘there are no such squares withu2 < 1022.”’ [5]

Suppose thatM = 2rb2 is an almost perfect number withgcd(2, b) = 1 andb > 1. Let us call

b2 theodd partof M .

The following result shows that distinct even almost perfect numbers (other than the powers
of 2) cannot share the same odd part.

Lemma 2.5. Suppose that there exist at least two distinct even almost perfect numbers

M1 = 2r1b1
2

and

M2 = 2r2b2
2,

with gcd(2, b1) = gcd(2, b2) = 1, b1 > 1, b2 > 1, andr1 6= r2. Thenb1 6= b2.

Proof. Assume to the contrary that1 < b1 = b2 = b. This implies that1 < b1
2 = b2

2 = b2, so
that

2r1+1b2 − 1

2r2+1b2 − 1
=

2M1 − 1

2M2 − 1
=

σ(M1)

σ(M2)
=

(2r1+1 − 1)σ(b2)

(2r2+1 − 1)σ(b2)
=

2r1+1 − 1

2r2+1 − 1
.

Solving forb2 gives

(2r2+1 − 1)(2r1+1b2 − 1) = (2r1+1 − 1)(2r2+1b2 − 1)

2r1+r2+2b2 − 2r1+1b2 − 2r2+1 + 1 = 2r1+r2+2b2 − 2r2+1b2 − 2r1+1 + 1

(2r1+1 − 2r2+1)b2 = 2r1+1b2 − 2r2+1b2 = 2r1+1 − 2r2+1.

By assumption, we haver1 6= r2, so that2r1+1 − 2r2+1 6= 0. Finally, we get

b2 = 1,

which is a contradiction.
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Sinceb2 is composite,σ(b2) > b2 + b+ 1. In particular, we obtain

b2 − b− 1 > 2b2 − σ(b2).

From the equation

2r+1 = 1 +
b2 − 1

σ(b2)− b2

and the inequality
b2 + b+ 1 < σ(b2),

we obtain the following result:

Theorem 2.1. If 2rb2 is an almost perfect number withgcd(2, b) = 1 andb > 1, then

r < log2 b− 1.

This last inequality implies that

2r < 2r+1 < b < σ(b)

and

σ(2r) = 2r+1 − 1 < b− 1 < b

so that we have
σ(2r)

b
< 1 < 2 <

σ(b)

2r
.

Additionally, sinceb2 is deficient, we can writeσ(b2) = 2b2 − c, where we computec to be

c = b2 −
b2 − 1

σ(2r)

from which we obtain the upper bound

σ(b)

b
<

σ(b2)

b2
<

4

3
.

(Note thatI(b2) < 4/3 implies3 ∤ b. For suppose to the contrary thatI(b2) < 4/3 and3 | b.
Then32 | b2, so that13/9 = I(32) ≤ I(b2) < 4/3, which is a contradiction. This approach

provides an alternative to Antalan’s proof [1].)
Lastly, sincer ≥ 1 and2 | 2r, then

3

2
=

σ(2)

2
≤

σ(2r)

2r
,

so that we have the following series of inequalities:

Theorem 2.2. If 2rb2 is an almost perfect number withgcd(2, b) = 1 andb > 1, then

σ(2r)

b
< 1 <

σ(b)

b
<

4

3
<

3

2
≤

σ(2r)

2r
< 2 <

σ(b)

2r
.
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We can obtain a tighter lower bound forσ(b2)/b2 via the following method (using the result
from Dris [3] cited earlier):

Theorem 2.3. If 2rb2 is an almost perfect number withgcd(2, b) = 1 andb > 1, then

2b− 1

2b− 2
< I(b2).

In particular,
√

2b− 1

2b− 2
< I(b).

Proof. We start with
2b2 + 1

3
≤ D(b2) < b2 − b− 1.

SinceD(b2) ≥ 819, we can use the following bounds from [3]:

2b2

b2 +D(b2)
< I(b2) <

2b2 +D(b2)

b2 +D(b2)
.

This simplifies to
2b2

2b2 − b− 1
< I(b2) <

9b2 − 3b− 3

5b2 + 1
,

from which it follows that

2b2

2b2 − b− 1
=

2b2 − b− 1

2b2 − b− 1
+

b+ 1

2b2 − b− 1
= 1 +

b+ 1

2b2 − b− 1
= 1 +

b+ 1

(2b+ 1)(b− 1)
,

of which the last quantity is bounded below by

1 +
b+ 1

(2b+ 1)(b− 1)
> 1 +

b+ 1

2(b+ 1)(b− 1)
=

2b− 1

2b− 2
.

The last assertion in the theorem follows from

(I(b))2 > I(b2).

Proceeding similarly as before, we can prove the following result.

Theorem 2.4. If 2rb2 is an almost perfect number withgcd(2, b) = 1 andb > 1, then

• r = 1 =⇒ 8/7 < I(b2) < 4/3 =⇒ 3 ∤ b; and

• r > 1 =⇒ I(b2) < 8/7 =⇒ 7 ∤ b.

Proof. The details of the proof (as well as other relevant hyperlinks) are in the following Math-

Overflow post:http://mathoverflow.net/q/238824.
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