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SUMS OF POWERS OF CATALAN TRIANGLE NUMBERS

PEDRO J. MIANA, HIDEYUKI OHTSUKA, AND NATALIA ROMERO

Abstract. In this paper we consider combinatorial numbers Cm,k for m ≥ 1 and k ≥ 0 which
unifies the entries of the Catalan triangles Bn,k and An,k for appropriate values of parameters
m and k, i.e., Bn,k = C2n,n−k and An,k = C2n+1,n+1−k. In fact, some of these numbers are the
well-known Catalan numbers Cn that is C2n,n−1 = C2n+1,n = Cn.

We present new identities for recurrence relations, linear sums and alternating sum of Cm,k.
After that, we check sums (and alternating sums) of squares and cubes of Cm,k and, conse-
quently, for Bn,k and An,k. In particular, one of these equalities solves an open problem posed
in [8]. We also present some linear identities involving harmonic numbers Hn and Catalan tri-
angles numbers Cm,k. Finally, in the last section new open problems and identities involving
Cn are conjectured.

1. Introduction

The well-known Catalan numbers (Cn)n≥0 given by the formula

Cn =
1

n+ 1

(

2n

n

)

, n ≥ 0,

appear in a wide range of problems. For instance, the Catalan number Cn counts the number of
ways to triangulate a regular polygon with n + 2 sides; or, the number of ways that 2n people
seat around a circular table are simultaneously shaking hands with another person at the table
in such a way that none of the arms cross each other, see for example [17, 21].

The Catalan numbers may be defined recursively by C0 = 1 and Cn =
∑n−1

i=0 CiCn−1−i for
n ≥ 1 and first terms in this sequence are

1, 1, 2, 5, 14, 42, 132, . . .

Catalan numbers have been studied in depth in many papers and monographs (see for exam-
ple [3]-[11], [15]-[21]) and the Catalan sequence is probably the most frequently encountered

sequence. In [17] the generalized k-th Catalan numbers kCn = 1
n

(

nk
n−1

)

, k ≥ 1, are considered to

count the number of ways of subdividing a convex polygon into k disjoint (n + 1)-polygons by
means of non-intersecting diagonals, k ≥ 1, see also for example [2, 9].

In this paper, we consider combinatorial numbers (Cm,k)m≥1,k≥0 given by

(1.1) Cm,k :=
m− 2k

m

(

m

k

)

.
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We collect the first values in the following table

(1.2)

m \ k 0 1 2 3 4 5 6 7 8 9 10 . . .
1 1 -1
2 1 0 -1
3 1 1 -1 -1
4 1 2 0 -2 -1
5 1 3 2 -2 -3 -1
6 1 4 5 0 -5 -4 -1
7 1 5 9 5 -5 -9 -5 -1
8 1 6 14 14 0 -14 -14 -6 -1
9 1 7 20 28 14 -14 -28 -20 -7 -1
10 1 8 27 48 42 0 -42 -48 -27 -8 -1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

These combinatorial numbers (Cm,k)m≥1,k≥0 are closely related to Catalan numbers Cn and
generalized (or higher) Catalan numbers kCn. In fact, it follows that

C2n,n−1 = Cn = C2n+1,n,

Ckn+1,n =
(k − 2)n + 1

kn+ 1

(

kn+ 1

n

)

= ((k − 2)n+ 1) kCn.

These numbers (Cm,k)m≥1,k≥0 appear in several Catalan triangles. For instance, C2n,n−k =
Bn,k, where

Bn,k =
k

n

(

2n

n− k

)

, 0 ≤ k ≤ n,

(see [8, 15]) and also C2n+1,n+1−k = An,k, where

An,k =
2k − 1

2n+ 1

(

2n+ 1

n+ 1− k

)

, 1 ≤ k ≤ n+ 1,

(see [11]).
This paper is organized as follows. In the second section, we present a new recurrence relation

that satisfies numbers (Cm,k)m≥1,k≥0 in Proposition 2.1. Moreover, we establish new identities

in the sum of Cm,k and their alternating, (−1)kCm,k in Theorem 2.2. Next, as consequence in
Corollary 2.3, we obtain the alternating sum of the entries of the two Catalan triangle numbers
(Bn,k)n≥k≥1 and (An,k)n+1≥k≥1.

In the third section, we obtain the value of
∑n

k=0C
2
m,k and

∑n
k=0(−1)kC2

m,k for m,n ≥ 1 in
Theorem 3.1. We also show two identities which allows to decompose squares of combinatorial
numbers as sum of squares of other combinatorial numbers. In particular, the nice identity

(

2n

n

)2

=
n
∑

k=0

3n − 2k

n

(

2n− 1− k

n− 1

)2

, n ≥ 1,

is presented in Theorem 3.3.
The forth section is dedicated to the sum of cubes of numbers (Cm,k)m≥1,k≥0. For m ≥ 1 and

n ≥ 1, we present the identity

n
∑

k=0

C3
m,k = 4

(

m− 1

n

)3

− 3

(

m− 1

n

)m−1
∑

j=0

(

j

n

)(

j

m− n− 1

)

,
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in Theorem 4.1(i). Thus, from this identity we obtain

n
∑

k=1

B3
n,k =

n+ 1

2
Cnb(n),

n+1
∑

k=1

A3
n,k = (n+ 1)Cn

(

(2(n + 1)Cn)
2 − 3a(n)

)

, n ∈ N,

in Theorem 4.3 and Corollary 4.2 respectively, where integer sequences (a(n))n≥0 and (b(n))n≥1

are defined by

a(n) :=

n
∑

k=0

(

n+ k

n

)2

and b(n) :=

n
∑

k=0

n− k

n

(

n− 1 + k

n− 1

)2

.

This first sum solves the third open problem posed in [8, Section 3]. These sequences (a(n))n≥0

and (b(n))n≥1 appear in the On-Line Encyclopedia of Integer Sequences ([18]). We also present
the value of the alternating sum

∑n
k=0(−1)kC3

m,k in Theorem 4.1(ii).

Identities which involved harmonic numbers (Hn)n≥1 where

(1.3) Hn =

n
∑

k=1

1

k
, n ∈ N,

have received a notable attention in last decades. We only mention shortly papers [4, 13, 19],
the monograph [1, Chapter 7] and the reference therein.

In the fifth section we present a new identity which involves harmonic numbers (Hn)n≥1 and
Catalan triangle numbers (Cm,k)m≥1,k≥0 in Theorem 5.1 (and then for Bn,k and An,k in Corollary
5.2). This identity includes, as particular case, a known equality proved in [13].

In the last section we conjecture some identities which involves numbers Bn,k and An,k.
Although the WZ-theory (see for example [10, 14, 13, 22]) allows to give computer proofs, authors
can not find an analytic proof of these equalities. Note that analytic proofs give additional
information about the nature of these sequences which remains hidden in computer proofs.

Notation. We follow the usual convention that
(

u
v

)

is zero if u < v (in particular
(

u
−1

)

for u ≥ 0)
and a sum is zero if its range of summation is empty.

2. Recurrence relation and sums of Catalan triangle numbers

One of the main aim of this section is to prove a recurrence relation (Proposition 2.1) that
satisfies combinatorial numbers (Cm,k)m≥1,k≥0 given in (1.1). Moreover, for m ≥ 2 and n ≥ 1,
we obtain the sum of combinatorial numbers (Cm,k)m≥1,k≥0 and the alternating sum, that is,
∑n

k=0(−1)kCm,k in Theorem 2.2 which includes some known identities for Catalan triangle
numbers (Bn,k)n≥k≥1 and (An,k)n+1≥k≥1.

These numbers also are related to the entries Bn,k and An,k of the two particular Catalan
triangles. In fact, the combinatorial numbers Bn,k are the entries of the following Catalan
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triangle introduced in [15]:

(2.4)

n \ k 1 2 3 4 5 6 . . .
1 1
2 2 1
3 5 4 1
4 14 14 6 1
5 42 48 27 8 1
6 132 165 110 44 10 1
. . . . . . . . . . . . . . . . . . . . . . . .

which are given by

(2.5) Bn,k :=
k

n

(

2n

n− k

)

, n, k ∈ N, k ≤ n.

Notice that Bn,1 = Cn and C2n,n−k = Bn,k for k ≤ n.
Although numbers Bn,k are not as well known as Catalan numbers, they have also several

applications, for example, Bn,k is the number of walks of n steps, each in direction N , S, W or
E, starting at the origin, remaining in the upper half-plane and ending at height k; see more
details in [5, 15, 18] for more information.

In the last years, Catalan triangle (2.4) has been studied in detail. For instance, the formula

(2.6)

i
∑

k=1

Bn,kBn,n+k−i(n+ 2k − i) = (n+ 1)Cn

(

2(n− 1)

i− 1

)

, i ≤ n,

which appears in a problem related with the dynamical behavior of a family of iterative processes
has been proved in [8, Theorem 5]. These numbers (Bn,k)n≥k≥1 have been analyzed in many
ways. For instance, symmetric functions have been used in [3], recurrence relations in [16], or
in [7] the Newton interpolation formula, which is applied to conclude divisibility properties of
sums of products of binomial coefficients.

Other combinatorial numbers An,k defined as follows

(2.7) An,k :=
2k − 1

2n+ 1

(

2n+ 1

n+ 1− k

)

, n, k ∈ N, k ≤ n+ 1,

appear as the entries of this second Catalan triangle,

(2.8)

n \ k 1 2 3 4 5 6 . . .
1 1 1
2 2 3 1
3 5 9 5 1
4 14 28 20 7 1
5 42 90 75 35 9 1
6 132 297 275 154 54 11 1
. . . . . . . . . . . . . . . . . . . . . . . .

which is considered in [11]. Notice that An,1 = Cn and C2n+1,n−k+1 = An,k for k ≤ n+ 1.
The entries Bn,k and An,k of the above two particular Catalan triangles satisfy the recurrence

relations

(2.9) Bn,k = Bn−1,k−1 + 2Bn−1,k +Bn−1,k+1, k ≥ 2,
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and

(2.10) An,k = An−1,k−1 + 2An−1,k +An−1,k+1, k ≥ 2.

Now, we show that numbers (Cm,k)m≥1,k≥0 also satisfy a recurrence relation which extends
recurrence relations (2.9) and (2.10).

Proposition 2.1. For m ≥ 1 and k ≥ 2, the following identity holds:

Cm+2,k = Cm,k + 2Cm,k−1 + Cm,k−2.

Proof. Note that

Cm,k + 2Cm,k−1 + Cm,k−2 =
(m− 1)!

k!(m− k + 2)!
P (m,k),

where

P (m,k) = (m− 2k)(m− k + 2)(m− k + 1) + 2(m− 2k + 2)k(m− k + 2)

+(m− 2k + 4)k(k − 1)

= m(m+ 1)(m + 2− 2k).

Finally we conclude that

Cm,k + 2Cm,k−1 + Cm,k−2 =
m+ 2− 2k

m+ 2

(

m+ 2

k

)

= Cm+2,k,

and the proof is finished. �

As it was shown in [15], the values of the sums of Bn,k and An,k in terms of Catalan numbers
is given by:

(2.11)

n
∑

k=1

Bn,k =
n+ 1

2
Cn and

n+1
∑

k=1

An,k = (n+ 1)Cn,

and the sums of its squares by

(2.12)
n
∑

k=1

B2
n,k = C2n−1 and

n+1
∑

k=1

A2
n,k = C2n, n ∈ N.

However the sums of its cubes
∑n

k=1B
3
n,k (posed in [8, Section 3]) and

∑n+1
k=1 A

3
n,k in terms of

Catalan numbers were unknown until now. This and other questions are studied in the in the
next two sections.

To conclude this section we give the sum of numbers (Cm,k)m≥1,k≥0 and for their alternating
sum in the following theorem.

Theorem 2.2. For m ≥ 2 and n ≥ 1, we obtain the following identities:

(i)

n
∑

k=0

Cm,k =

(

m− 1

n

)

,

(ii)

n
∑

k=0

(−1)kCm,k = (−1)nCm−1,n.
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Proof. Note that it is enough to check by induction process the identities. We only prove item
(ii). For n = 1, we directly check the identity. Now suppose that the identity holds for n. Then

n+1
∑

k=0

(−1)kCm,k = (−1)nCm−1,n + (−1)n+1Cm,n+1

= (−1)n
m− 2n − 1

m− 1

(

m− 1

n

)

+ (−1)n+1m− 2n− 2

n+ 1

(

m− 1

n

)

= (−1)n+1 (m− 2n− 3)(m− n− 1)

(m− 1)(n + 1)

(

m− 1

n

)

= (−1)n+1m− 2n − 3

m− 1

(

m− 1

n+ 1

)

= (−1)n+1Cm−1,n+1.

�

Notice that item (i) in Theorem 2.2 includes the identities given in (2.11). On the other hand,
item (i) in the next corollary was proved in [6] and we present an alternative proof.

Corollary 2.3. For n ≥ 1, we have

(i)
n
∑

k=1

(−1)kBn,k = −Cn−1,

(ii)

n+1
∑

k=1

(−1)kAn,k = 0.

Proof. By Theorem 2.2, we have
n
∑

k=1

(−1)kBn,k =
n
∑

k=0

(−1)kC2n,n−k =
n
∑

k=0

(−1)n−kC2n,k = C2n−1,n = −Cn−1,

and
n+1
∑

k=1

(−1)kAn,k =
n+1
∑

k=1

(−1)kC2n+1,n−k+1 =
n
∑

k=0

(−1)n−k+1C2n+1,k = −C2n,n = 0.

�

3. Sums of squares of Catalan triangle numbers

In the section, our main objective is twofold. Firstly, we check
∑n

k=0C
2
m,k and

∑n
k=0(−1)kC2

m,k

in Theorem 3.1. As a consequence of this result, the identities presented in (2.12) are proved in
Corollary 3.2.

Secondly, a key result of this paper is to decompose the binomial number
(

2n
n

)2
in sum of

squares of other combinatorial numbers, i.e.
(

2n

n

)2

=

n
∑

k=0

3n − 2k

n

(

2n− 1− k

n− 1

)2

, n ≥ 1.

To do that we present a straightforward proof as a consequence of a more general identity in
combinatorial numbers in Theorem 3.3 (i). This equality is essential to check

∑n
k=1B

3
n,k in

Theorem 4.3.
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Theorem 3.1. For n ≥ 1 and m ≥ 1, we have

(i)
n
∑

k=0

C2
m,k =

m− 2n

m

(

m− 1

n

)2

+
2

m

n−1
∑

k=0

(

m− 1

k

)2

,

(ii)
n
∑

k=0

(−1)kC2
m,k = 2(−1)n

(

m− 1

n

)2

−
n
∑

k=0

(−1)k
(

m

k

)2

.

Proof. We prove the identities by invoking an inductive process for n.
(i) For n = 1, we directly check it. Now we assume that the desired identity holds for n. For

n+ 1, we have

n+1
∑

k=0

C2
m,k =

m− 2n

m

(

m− 1

n

)2

+
2

m

n−1
∑

k=0

(

m− 1

k

)2

+

(

m− 2n− 2

m

(

m

n+ 1

))2

.

On the other hand, observe that
(

m− 2n − 2

m

(

m

n+ 1

))2

=
m− 2n − 2

m

(

m− 1

n+ 1

)2

−
m− 2n

m

(

m− 1

n

)2

+
2

m

(

m− 1

n

)2

.

Therefore, we obtain the identity

n+1
∑

k=0

C2
m,k =

m− 2(n + 1)

m

(

m− 1

n+ 1

)2

+
2

m

n
∑

k=0

(

m− 1

k

)2

.

(ii) For n = 1, we directly check it. Now we assume that the desired identity holds for n. For
n+ 1, we have

n+1
∑

k=0

(−1)kC2
m,k = 2(−1)n

(

m− 1

n

)2

−
n
∑

k=0

(−1)k
(

m

k

)2

+ (−1)n+1

(

m− 2n− 2

m

(

m

n+ 1

))2

.

On the other hand, observe that
(

m− 2n− 2

m

(

m

n+ 1

))2

= 2

(

m− 1

n+ 1

)2

+ 2

(

m− 1

n

)2

−

(

m

n+ 1

)2

.

Therefore, we obtain the identity

n+1
∑

k=0

(−1)kC2
m,k = 2(−1)n+1

(

m− 1

n+ 1

)2

−
n+1
∑

k=0

(−1)k
(

m

k

)2

.

�

Now, taking into account the well-known Vandermonde identity
∑n

k=0

(

n
k

)2
=
(

2n
n

)

and identity
∑2n

k=0(−1)k
(

2n
k

)2
= (−1)n

(

2n
n

)

for n ≥ 0, the following corollary is obtained. Note that the
Corollary 3.2 (iv) was proved in [23, Theorem 2.2].

Corollary 3.2. For n ≥ 1, we have

(i)
n
∑

k=0

C2
n,k = 2Cn−1,

(ii)
n
∑

k=1

B2
n,k = C2n−1,
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(iii)
n+1
∑

k=1

A2
n,k = C2n,

(iv)
n
∑

k=1

(−1)kB2
n,k = −

n+ 1

2
Cn.

Proof. From Theorem 3.1 (i), we have

n
∑

k=1

C2
n,k =

2

n

n−1
∑

k=0

(

n− 1

k

)2

= 2Cn−1,

n
∑

k=0

B2
n,k =

n
∑

k=0

C2
2n,k =

2

2n

n−1
∑

k=0

(

2n − 1

k

)2

=
1

2n

2n−1
∑

k=0

(

2n− 1

k

)2

= C2n−1,

and
n+1
∑

k=1

A2
n,k =

n
∑

k=0

C2
2n+1,k =

1

2n+ 1

(

(

2n

n

)2

+ 2
n−1
∑

k=0

(

2n

k

)2
)

=
1

2n+ 1

2n
∑

k=0

(

2n

k

)2

= C2n.

As a consequence of Theorem 3.1 (ii), item (iv) is obtained
n
∑

k=0

(−1)kB2
n,k =

n
∑

k=0

(−1)n+kC2
2n,k = 2

(

2n− 1

n

)2

−

n
∑

k=0

(−1)n+k

(

2n

k

)2

=
−1

2

2n
∑

k=0

(−1)n+k

(

2n

k

)2

=
−1

2

(

2n

n

)

= −
n+ 1

2
Cn.

�

Theorem 3.3. For m ≥ n ≥ 1, we have

(i)

(

m

n

)2

=

m
∑

j=n

2j − n

n

(

j − 1

n− 1

)2

,

(ii)

(

2n

n

)2

=
n
∑

k=0

3n− 2k

n

(

2n− 1− k

n− 1

)2

.

Proof. To prove item (i) we invoke an inductive process for m. For m = n, we check directly
the identity. Now we assume that the identity holds for m and we prove it for m+ 1. Thus, it
follows that

m+1
∑

j=n

2j − n

n

(

j − 1

n− 1

)2

=

(

m

n

)2

+
2m+ 2− n

n

(

m

n− 1

)2

=

(

m− n+ 1

m+ 1

(

m+ 1

n

))2

+
2m+ 2− n

n

(

n

m+ 1

(

m+ 1

n

))2

=

(

m+ 1

n

)2

.

Then we conclude the identity holds for m ≥ n ≥ 1.
To show item (ii) observe that

n
∑

k=0

2(2n − k)− n

n

(

2n− k − 1

n− 1

)2

=
2n
∑

j=n

2j − n

n

(

j − 1

n− 1

)2

=

(

2n

n

)2

,
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where we have applied item (i). �

Remark. Notice that item (ii) in Theorem 3.3 gives a decomposition of sum of squares of
(

2n
n

)2

for n ≥ 1, that can be written in this form
(

2n

n

)2

=

n
∑

j=0

n+ 2j

n

(

n− 1 + j

n− 1

)2

.

4. Sums of cubes of Catalan triangle numbers

In this section we check the sum of cubes and alternating cubes of numbers (Cm,k)m≥1,k≥0 in
Theorem 4.1. For m ≥ 1 and n ≥ 1, we use the identity

(4.1)

n
∑

k=0

(m− 2k)

(

m

k

)3

= (m− n)

(

m

n

)m−1
∑

j=0

(

j

n

)(

j

m− n− 1

)

,

which is proven in [12]. We also present some expressions of
∑n

k=1B
3
n,k,

∑n+1
k=1 A

3
n,k and

∑n+1
k=1(−1)kA3

n,k in Corollary 4.2. The equality presented in Theorem 4.3 solves the third open

problem posed in [8, Section 3].

Theorem 4.1. For m ≥ 1 and n ≥ 1,we have

(i)

n
∑

k=0

C3
m,k = 4

(

m− 1

n

)3

− 3

(

m− 1

n

)m−1
∑

j=0

(

j

n

)(

j

m− n− 1

)

,

(ii)

n
∑

k=0

(−1)kC3
m,k =

m− 3n

m
(−1)n

(

m− 1

n

)3

−
m− 3

m

n−1
∑

k=0

(−1)k
(

m− 1

k

)3

.

Proof. (i) We apply (4.1) to get that

m3

n
∑

k=0

C3
m,k + 3m3

(

m− 1

n

)m−1
∑

j=0

(

j

n

)(

j

m− n− 1

)

= m3

n
∑

k=0

C3
m,k + 3m2

n
∑

k=0

(m− 2k)

(

m

k

)3

=

n
∑

k=0

(

(m− 2k)3 + 3m2(m− 2k)
)

(

m

k

)3

=

n
∑

k=0

4
(

(m− k)3 − k3
)

(

m

k

)3

= 4

n
∑

k=0

(

(m− k)3
(

m

m− k

)3

− k3
(

m

k

)3
)

= 4
n
∑

k=0

(

m3

(

m− 1

m− k − 1

)3

−m3

(

m− 1

k − 1

)3
)

= 4m3

n
∑

k=0

(

(

m− 1

k

)3

−

(

m− 1

k − 1

)3
)

= 4m3

(

(

m− 1

n

)3

−

(

m− 1

−1

)3
)

= 4m3

(

m− 1

n

)3

.

Therefore, we obtain the desired identity.
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(ii) We prove the identity by invoking an inductive process for n. For n = 1, we directly check
it. Now we assume that the desired identity holds for n. For n+ 1, we have

n+1
∑

k=0

(−1)kC3
m,k =

m− 3n

m
(−1)n

(

m− 1

n

)3

−
m− 3

m

n−1
∑

k=0

(−1)k
(

m− 1

k

)3

+(−1)n+1

(

m− 2n− 2

m

(

m

n+ 1

))3

.

On the other hand, observe that
(

m− 2n− 2

m

(

m

n+ 1

))3

=
m− 3n− 3

m

(

m− 1

n+ 1

)3

+
2m− 3n− 3

m

(

m− 1

n

)3

.

Therefore, we obtain the identity

n+1
∑

k=0

(−1)kC3
m,k =

m− 3(n+ 1)

m
(−1)n+1

(

m− 1

n+ 1

)3

−
m− 3

m

n
∑

k=0

(−1)k
(

m− 1

k

)3

.

�

As a nice consequence of Theorem 4.1, we obtain expressions of
∑n

k=1B
3
n,k,

∑n+1
k=1 A

3
n,k and

∑n+1
k=1(−1)kA3

n,k in the next corollary. To check this last sum, we use Dixon’s identity,

2n
∑

k=0

(−1)k
(

2n

k

)3

= (−1)n
(

2n

n

)(

3n

n

)

, n ≥ 1.

Corollary 4.2. For n ≥ 1, we have

(i)
n
∑

k=0

B3
n,k =

1

2

(

2n

n

)3

−
3

2

(

2n

n

) 2n−1
∑

j=n

(

j

n

)(

j

n− 1

)

,

(ii)
n+1
∑

k=1

A3
n,k =

(

2n

n

)3

− 3

(

2n

n

) 2n−1
∑

j=n

(

j

n

)2

,

(iii)
n+1
∑

k=1

(−1)kA3
n,k =

n− 1

2n+ 1

(

2n

n

)(

3n

n

)

.

Proof. From Theorem 4.1(i), we have

n
∑

k=0

B3
n,k =

n
∑

k=0

C3
2n,k = 4

(

2n− 1

n

)3

− 3

(

2n− 1

n

) 2n−1
∑

j=0

(

j

n

)(

j

n− 1

)

=
1

2

(

2n

n

)3

−
3

2

(

2n

n

) 2n−1
∑

j=n

(

j

n

)(

j

n− 1

)

,

and

n+1
∑

k=1

A3
n,k =

n
∑

k=0

C3
2n+1,k = 4

(

2n

n

)3

− 3

(

2n

n

) 2n
∑

j=0

(

j

n

)(

j

n

)

=

(

2n

n

)3

− 3

(

2n

n

) 2n−1
∑

j=n

(

j

n

)2

.
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Now, from Theorem 4.1(ii), we have

n+1
∑

k=1

(−1)kA3
n,k =

n
∑

k=0

(−1)n+1−kC3
2n+1,k =

n− 1

2n+ 1

(

(

2n

n

)3

+ 2

n−1
∑

k=0

(−1)n+k

(

2n

k

)3
)

=
n− 1

2n+ 1

2n
∑

k=0

(−1)n+k

(

2n

k

)3

=
n− 1

2n + 1

(

2n

n

)(

3n

n

)

.

�

Remark. Note that the part (ii) of Corollary 4.2 may be written as

n+1
∑

k=1

A3
n,k = (n+ 1)Cn

(

(2(n + 1)Cn)
2 − 3a(n)

)

, n ≥ 1,

where the integer sequence of numbers (a(n))n≥0 is defined by

a(n) :=
n
∑

k=0

(

n+ k

n

)2

, n ∈ N ∪ {0}.

Note that a(0) = 1, a(1) = 5, a(2) = 46, a(3) = 517, a(4) = 6376... . This sequence appears
indexed in the On-Line Encyclopedia of Integer Sequences by N.J.A. Sloane ([18]) with the
reference A112029.

The sequence
((

2n
n

)(

3n
n

))

n≥0
is known as De Bruijn’s S(3, n) and appears in the Sloane’s

On-Line Encyclopedia with the reference A006480.

Theorem 4.3. For n ≥ 1, the following identity holds:
n
∑

k=1

B3
n,k =

1

2n

(

2n

n

) n
∑

k=1

k

(

2n− k − 1

n− 1

)2

.

Proof. By Corollary 4.2 (i), we have

n
∑

k=1

B3
n,k =

1

2

(

2n

n

)





(

2n

n

)2

− 3

2n−1
∑

j=n

(

j

n

)(

j

n− 1

)





and we claim that
(

2n

n

)2

− 3
2n−1
∑

j=n

(

j

n

)(

j

n− 1

)

=
n
∑

k=1

k

n

(

2n− k − 1

n− 1

)2

.

Note that
2n−1
∑

j=n

(

j

n

)(

j

n− 1

)

=
2n−1
∑

j=n−1

j − n+ 1

n

(

j

n− 1

)2

=
n
∑

k=0

n− k

n

(

2n− k − 1

n− 1

)2

,

and then we obtain

3
2n−1
∑

j=n

(

j

n

)(

j

n− 1

)

+
n
∑

k=0

k

n

(

2n− k − 1

n− 1

)2

=
n
∑

k=0

3n− 2k

n

(

2n− k − 1

n− 1

)2

=

(

2n

n

)2

,

where we have applied Theorem 3.3 (ii). �
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Remark. Note that the identity of Theorem 4.3 may be written as
n
∑

k=1

B3
n,k =

n+ 1

2
Cnb(n),

where the integer sequence of numbers (b(n))n≥1 is defined by

b(n) :=
n
∑

k=0

k

n

(

2n − k − 1

n− 1

)2

=
n
∑

k=0

n− k

n

(

n− 1 + k

n− 1

)2

, n ∈ N.

Note that b(1) = 1, b(2) = 3, b(3) = 19, b(4) = 163, b(5) = 1625, . . .. This sequence also
appears indexed in the On-Line Encyclopedia of Integer Sequences by N.J.A. Sloane ([18]) with
the reference A183069.

5. Identities involving harmonic numbers and Catalan triangle numbers

A large number of identities which included harmonic numbers (Hn)n≥1, defined by (1.3),
have appeared in several papers: a systematic study of explicit formulas for sums of the form
∑n

k=1 akHk are given in [19]; some other finite summation identities involving harmonic numbers
are considered in [13] and proved by the WZ-theory; infinite series involving harmonic numbers
are presented in [4]. See other approaches in [1, Chapter 7] and reference therein.

However, the next nice relation between Catalan triangle numbers (Cm,k)m≥1,k≥0 and har-
monic numbers (Hn)n≥1 seems to be new. We also present the particular case of Bn,k and An,k

in Corollary 5.2.

Theorem 5.1. For m ≥ 1 and n ≥ 1, we have

(5.1)

n
∑

k=1

Cm,kHk =

(

m− 1

n

)

Hn −
1

m

n
∑

k=1

(

m

k

)

.

Proof. We prove the identities by invoking an induction process for n. For n = 1, we directly
check it. Now we assume that the identity (5.1) holds for n. For n+ 1, we have

n+1
∑

k=1

Cm,kHk =

(

m− 1

n

)

Hn −
1

m

n
∑

k=1

(

m

k

)

+
m− 2n− 2

m

(

m

n+ 1

)

Hn+1.

On the other hand, observe that
(

m− 1

n

)

Hn −
n+ 1

m

(

m

n+ 1

)

Hn+1 = −
1

m

(

m

n+ 1

)

.

Therefore, we obtain the identity

n+1
∑

k=1

Cm,kHk =
m− n− 1

m

(

m

n+ 1

)

Hn+1 −
1

m

n+1
∑

k=1

(

m

k

)

=

(

m− 1

n+ 1

)

Hn+1 −
1

m

n+1
∑

k=1

(

m

k

)

.

�

Using Theorem 5.1, we will show the relationship of the harmonic numbers and the Catalan
triangle numbers.

Corollary 5.2. For n ≥ 1, we have
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(i)

n
∑

k=1

Cn,kHk =
1− 2n

n
,

(ii)
n−1
∑

k=0

Bn,kHn−k =
2nHn − 1

4n

(

2n

n

)

−
22n−1 − 1

2n
,

(iii)
n
∑

k=1

An,kHn−k+1 = Hn

(

2n

n

)

−
22n − 1

2n+ 1
.

Proof. On the one hand, we have

n
∑

k=1

Cn,kHk =
−1

n

n
∑

k=1

(

n

k

)

=
1− 2n

n
.

On the other hand, taking into account identities

2
n
∑

k=0

(

2n

k

)

−

(

2n

n

)

=
2n
∑

k=0

(

2n

k

)

= 22n and 2
n
∑

k=0

(

2n+ 1

k

)

=
2n+1
∑

k=0

(

2n+ 1

k

)

= 22n+1,

we have

n−1
∑

k=0

Bn,kHn−k =

n
∑

k=1

C2n,kHk = Hn

(

2n− 1

n

)

−
1

2n

n
∑

k=1

(

2n

k

)

=
2nHn − 1

4n

(

2n

n

)

−
22n−1 − 1

2n
,

and
n
∑

k=1

An,kHn−k+1 =
n
∑

k=1

C2n+1,kHk = Hn

(

2n

n

)

−
1

2n+ 1

n
∑

k=1

(

2n+ 1

k

)

= Hn

(

2n

n

)

−
22n − 1

2n+ 1
.

�

Remark. By Corollary 5.2 (i), we have

n
∑

k=1

(n− 2k)Hk

(

n

k

)

= 1− 2n,

which was shown in [13, Formula (13)].

6. New conjectures, final comments and conclusions

In this last section, we present two conjectures about new identities in Catalan triangle
numbers. We have directly checked that these identities hold for first values of n and m.
Although analytic proofs are not yet available, alternative proofs as to applyWZ-theory ([13, 22])
or some mathematical software, indicate us that these equalities hold. Note that an analytic
proof will give us some extra information about these nature of the sums. To conclude the
paper, we present some final comments and conclusions.

Conjecture 6.1. For m > n ≥ 1 and an odd integer p, the factor
(

m−1
n

)

divides
∑n

k=0C
p
m,k.

Note that the conjecture holds for p = 1 and p = 3, see Theorem 2.2 (i) and Theorem 4.1
respectively. Now we present two important cases of this conjecture.
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(i) Taking into count that Bn,k = C2n,n−k, a positive answer of the conjecture 6.1 would

imply that the factor n+1
2

Cn divides
∑n

k=1B
p
n,k

for n ≥ 1 and an odd integer p. In the

case that p = 1 and p = 3 the sums are explicitly given in (2.11) and Corollary 4.2(i)
respectively. We have directly checked that the factor n+1

2
Cn divides

∑n
k=1B

5
n,k for first

values of n.
(ii) Now we considerer that An,k = C2n+1,n+1−k. A positive answer of the conjecture 6.1

would imply that the factor (n + 1)Cn divides
∑n+1

k=1 A
p
n,k

for n ≥ 1 and an odd integer

p. For p = 1 and p = 3 these sums are given in (2.11) and Corollary 4.2 (ii) respectively.

We have also checked that (n+ 1)Cn divide
∑n+1

k=1 A
5
n,k for first values of n.

Conjecture 6.2. For n,m ∈ N, the identity

r
∑

k=1

B2
n,kBm,k =

1

2

(

2n

n

)2(2m

m

)[

1−
n+ 2m

r

(

n+m

n

)−1(
n+ r

n

)−1 r−1
∑

j=0

(

s+ j

s

)(

n+ j

n− 1

)]

,

holds where r = min(n,m) and s = max(n,m). In the particular case, m = n, we recover the
identity given in Corollary 4.2 (i). Note that the nature of this formula is different than the
formula (2.6).

Final comments and conclusions. In this paper we have presented a unified study of two
families of Catalan triangle numbers. We have considered finite sums of powers (linear, squares
and cubes) of these numbers to show original (and nice) identities involving Catalan numbers
(section 2-4). Some of these equalities solve some open problems and connect Catalan sequences
with other some known sequences, see for example Theorem 4.3. Note that we have not con-
sidered moments on these sums of powers as in other papers in the literature, see for example
[3, 11, 23]. We have also presented a natural connection between harmonic numbers and Catalan
triangle numbers which seems to be new and may be completed in later studies. Finally some
conjectures about other sums of Catalan triangle numbers are posed.
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