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Abstract

The weight distribution of the binary self-dual [128, 64] code being
the extended code C∗ of the code C spanned by the incidence vectors
of the blocks of the polarity design in PG(6, 2) [11] is computed. It is
shown also that R(3, 7) and C∗ have no self-dual [128, 64, d] neighbor
with d ∈ {20, 24}.

1 Introduction

We assume familiarity with basic facts and notions from coding theory and
combinatorial design theory ([1], [12], [18]).

We denote by PGs(m, q) the design having as points and blocks the points
and s-subspaces of the m-dimensional projective geometry PG(m, q) over a
finite field GF (q) of order q, where q = pt is a prime power and 1 ≤ s ≤
m−1. The projective geometry design PGs(m, q) is a 2-(v, k, λ) design with
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parameters

v =
qm+1 − 1

q − 1
, k =

qs+1 − 1

q − 1
, λ =

[

m− 1

s− 1

]

q

, (1)

where
[

m

i

]

q
denotes the Gaussian coefficient given by

[m

i

]

q
=

(qm − 1)(qm−1 − 1) · · · (qm−i+1 − 1)

(qi − 1)(qi−1 − 1) · · · (q − 1)
.

The affine geometry design AGs(m, q), (1 ≤ s ≤ m−1), is a 2-(v, k, λ) design
of the points and s-subspaces of the m-dimensional affine geometry AG(m, q)
over GF (q), where

v = qm, k = qs, λ =

[

m− 1

s− 1

]

q

. (2)

In the special case when q = 2, AGs(m, 2), s ≥ 2, is also a 3-design, with
every three points contained in λ3 blocks, where

λ3 =

[

m− 2

s− 2

]

2

. (3)

A finite geometry code (or geometric code), is a linear code being the null
space of the incidence matrix of a geometric design, AGs(m, q) or PGs(m, q).
The codes based on affine geometry designs, AGs(m, q), are also called Eu-
clidean geometry codes, while the codes based on PGs(m, q) are called pro-
jective geometry codes. The codes over GF (p) thus defined, where q = pt,
correspond to subfield subcodes of generalized Reed-Muller codes [1, Chapter
5], [7]. The binary Euclidean geometry code being the null space of the inci-
dence matrix of AGs(m, 2) is equivalent to the Reed-Muller code R(m−s,m)
of length 2m and order m−s. It is well known that the finite geometry codes
admit majority logic decoding [16], [19], [8].

In [11], Jungnickel and Tonchev used polarities in projective geometry to
find a class of designs which have the same parameters and share some other
properties with a projective geometry design PGs(2s, q), s ≥ 2, but are not
isomorphic to PGs(2s, q). We refer to these designs as polarity designs.
In the cases when q = p is a prime, the p-rank of the incidence matrix of a
polarity design D is equal to that of PGs(2s, p), hence the polarity designs
provide an infinite class of counter-examples to Hamada’s conjecture [9], [10].
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In [5], Clark and Tonchev proved that the code being the null space
of the incidence matrix of a polarity design can correct by majority-logic
decoding the same number of errors as the projective geometry code based
on PGs(2s, q). In the binary case (q = 2), the minimum distance of the
code of the polarity design obtained from PG(2s, 2), is equal to 2s+1, and
the majority-logic algorithm from [5] corrects all errors guaranteed by the
minimum distance. The extended code of the binary code spanned by the
blocks of a polarity design obtained from PG(2s, 2) is a self-dual binary code
of the same length, dimension and minimum distance, and correcting by
majority-logic the same number of errors as the Reed-Muller code R(s, 2s+1)
of length 22s+1 and order s.

In the smallest binary case, s = 2, the extended code of the polarity design
obtained from PG(4, 2), is a doubly-even self-dual [32, 16, 8] code, which not
only has the same parameters and corrects by majority-logic decoding the
same number of errors as the 2nd order Reed-Muller code R(2, 5), but also has
the same weight distribution as R(2, 5). This phenomenon is easily explained
by the fact that both codes are extremal doubly-even self-dual codes, hence
are forced to have the same weight distribution [14] (actually, in this case
there are five inequivalent extremal doubly-even self-dual [32, 16, 8] codes
[6].).

It is the aim of this note to report the computation of the weight distri-
bution of the extended code of the polarity design in the next case s = 3,
i.e. the polarity design obtained from PG(6, 2), and to demonstrate that this
doubly-even self-dual [128, 64, 16] code has the same weight distribution as
the 3rd order Reed-Muller code R(3, 7).

One of the authors, Vladimir Tonchev, conjectures that the extended
code of the polarity design obtained from PG(2s, 2) has the same weight
distribution as the Reed-Muller code R(s, 2s+ 1) for every s ≥ 2.

2 Computing the weight distribution

The polarity design D obtained from PG(6, 2) [11] is a 2-(v, k, λ) design with
parameters

v = 127, k = 15, λ = 155,

that is, D has the same parameters as the projective geometry design PG3(6, 2)
having as blocks the 3-dimensional subspaces of the 6-dimensional projective
geometry PG(6, 2) over the field of order 2. In addition, D has the same
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block intersections as PG3(6, 2), namely 1, 3 and 7, and its incidence matrix
has the same 2-rank 64 as PG3(6, 2) [11], hence provides a counter-example
to Hamada’s conjecture [9], [10].

The parameters and the block intersection numbers of D imply that the
binary linear code C spanned by the block by point incidence matrix ofD has
minimum distance not exceeding 15, and its extended code C∗ is a doubly-
even self-dual [128, 64] code of minimum distance d ≤ 16. It follows from the
results from [4] and [5] that d = 16 and the code C∗ admits majority-logic
decoding that corrects up to 7 errors, that is, the same number of errors as
the doubly-even self-dual [128, 64, 16] 3rd order Reed-Muller code R(3, 7).

We will show that C∗ has the same weight distribution as R(3, 7). The
weight distribution of the Reed-Muller code R(3, 7) was computed by Sugino,
Ienaga, Tokura and Kasami [17] (see The On-line Encyclopedia of Integer

Sequences [15], sequence A110845), and is listed in Table 1.
Since the code dimension 64 is significant, to facilitate the computation

of the weight distribution of C∗, we employ known properties of weight enu-
merators of binary doubly-even self-dual codes. Since C∗ is a doubly-even
self-dual [128, 64, 16] code, by the Gleason theorem (cf. [13, Section 2], [14]),
the weight distribution {Ai}

128
i=0 of C∗ can be determined completely by the

values of A16 and A20. More specifically, the two-variable weight enumerator
can be written as

128
∑

i=0

Aix
128−iyi =

5
∑

j=0

bj(x
8 + 14x4y4 + y8)16−3j(x4y4(x4 − y4)4)j ,

where

b0 = 1, b1 = −224, b2 = 16336, b3 = −430656,

b4 = A16 + 3196776 and b5 = A20 − 40A16 − 2696256.

Consequently, the weight enumerator

W (x) =

128
∑

i=0

Aix
i
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i Ai

0 1
16 94488
20 0
24 74078592
28 3128434688
32 312335197020
36 18125860315136
40 552366841342848
44 9491208609103872
48 94117043084875944
52 549823502398291968
56 1920604779257215744
60 4051966906789380096
64 5193595576952890822
68 4051966906789380096
72 1920604779257215744
76 549823502398291968
80 94117043084875944
84 9491208609103872
88 552366841342848
92 18125860315136
96 312335197020
100 3128434688
104 74078592
108 0
112 94488
128 1

Table 1: Weight distribution of R(3, 7)
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can be written as

W (x) =1 + A16x
16 + A20x

20

+ (13228320 + 644A16 − 6A20)x
24

+ (2940970496 + 1984A16 − 89A20)x
28

+ (320411086380− 85470A16 + 1500A20)x
32 + · · ·

(cf. [13, Section 2]).
A 64 × 128 generator matrix G of the extended code C∗ was computed

following the construction of polarity designs from [11], and is available on-
line at

\protect\vrule width0pt\protect\href{http://www.math.mtu.edu/\string~tonchev/borde

Using Magma [2], it took a few minutes to compute on a PC that

A16 = 94488, (4)

and about an hour∗ to compute

A20 = 0. (5)

Since the values A16 (see (4)) and A20 (see (5)) are the same as the
corresponding values for the self-dual [128, 64, 16] Reed-Muller code R(3, 7)
(cf. Table 1), we have the following.

Theorem 1. The weight distribution of the extended [128, 64, 16] code C∗ of

the the code C spanned by the incidence vectors of the blocks of the polarity

design D obtained from PG(6, 2), is identical with the weight distribution of

the 3rd order Reed-Muller code R(3, 7).

Using Magma, it took 90 seconds to compute the full automorphism group
Aut(C∗) of C∗. Since C∗ is spanned by the set of minimum weight vectors
which form the block by point incidence matrix of a 3-(128, 16, 155) design
D∗ [4], [5], the full automorphism group of C∗ coincides with that of D∗, and
is of order

|Aut(C∗)| = 165140150353920 = 228 · 34 · 5 · 72 · 31. (6)

∗It is an interesting question if one can prove that A20 = 0 geometrically, using the
construction from [11].
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It follows from results of [11] that the polarity 2-(127, 15, 155) design D, and
hence, the related [127, 64] code C, is invariant under the collineation group
of the affine space AG(6, 2), being of order

26(26 − 1)(26 − 2)(26 − 22)(26 − 23)(26 − 24)(26 − 25) = 221 · 34 · 5 · 27 · 31.

Thus, the full automorphism group Aut(C∗) of C∗ extends the automorphism
group of C by a factor of 27 = 128, and acts transitively on the set of 128
code coordinates.

It is known that the full automorphism group Aut(R(3, 7)) of the Reed-
Muller code R(3, 7) is equivalent to the group of collineations of AG(7, 2),
and is of order

|Aut(R(3, 7))| = 20972799094947840 = 228 · 34 · 5 · 72 · 31 · 127. (7)

Remark 1. The parameters of the extended self-dual code, obtained from
the polarity design in PG(8, 2), are [512, 256, 32]. It seems computationally
infeasible to find the weight distribution of such a code by computer, even
with the help of Gleason’s theorem, due to the very large code dimension.
Thus, any proof of the conjecture formulated in the last paragraph of Intro-
duction, has to be based on geometric or other theoretical considerations.

3 Self-dual neighbors

In this section, we investigate self-dual neighbors of the 3rd order Reed-
Muller code R(3, 7) and the extended [128, 64, 16] code C∗ given in Theorem
1. Two self-dual codes C and C ′ of length n are said to be neighbors if
dim(C ∩ C ′) = n/2 − 1. We give some observations from [3] on self-dual
codes constructed by neighbors. Let C be a self-dual [n, n/2, d] code. Let M
be a matrix whose rows are the codewords of weight d in C. Suppose that
there is a vector x ∈ GF (2)n such that

MxT = 1T , (8)

where xT denotes the transpose of x and 1 is the all-one vector. Set C0 =
〈x〉⊥ ∩C, where 〈x〉 denotes the code generated by x. Then C0 is a subcode
of index 2 in C. If the weight of x is even, then we have the two self-dual
neighbors 〈C0, x〉 and 〈C0, x + y〉 of C for some y ∈ C \ C0, which do not
have any codeword of weight d in C, where 〈C, x〉 = C ∪ (x + C). When C
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has a self-dual [n, n/2, d′] neighbor C ′ with d′ ≥ d + 2, (8) has a solution x
and we can obtain C ′ in this way. If rankM < rank(M 1T ), then C has no
self-dual [n, n/2, d′] neighbor C ′ with d′ ≥ d + 2. Using Magma, we verified
that

(rankM, rank(M 1T )) = (64, 65)

for the 3rd order Reed-Muller code R(3, 7) and the extended [128, 64, 16] code
C∗ given in Theorem 1. Therefore, we have the following:

Proposition 1. The 3rd order Reed-Muller code R(3, 7) and the extended

[128, 64, 16] code C∗ given in Theorem 1 have no self-dual [128, 64, d] neighbor
with d ∈ {20, 24}.

This means that the above two doubly-even self-dual codes of length 128
have no extremal doubly-even self-dual neighbor of that length.
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