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Abstract

The weight distribution of the binary self-dual [128, 64] code being
the extended code C* of the code C' spanned by the incidence vectors
of the blocks of the polarity design in PG(6,2) [LI] is computed. It is
shown also that R(3,7) and C* have no self-dual [128, 64, d] neighbor
with d € {20,24}.

1 Introduction

We assume familiarity with basic facts and notions from coding theory and
combinatorial design theory ([1], [12], [18]).

We denote by PG(m, q) the design having as points and blocks the points
and s-subspaces of the m-dimensional projective geometry PG(m, q) over a
finite field GF(q) of order ¢, where ¢ = p' is a prime power and 1 < s <
m — 1. The projective geometry design PG4(m,q) is a 2-(v, k, \) design with
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The affine geometry design AG4(m, q), (1 < s <m—1),isa 2-(v, k, \) design
of the points and s-subspaces of the m-dimensional affine geometry AG(m, q)
over GF(q), where

m—1
’U:qm7k:qs7)\:|:s_1:| . (2)
q

In the special case when ¢ = 2, AG4(m,2), s > 2, is also a 3-design, with
every three points contained in A3 blocks, where

A?,:[m‘QL. (3)

s—2

A finite geometry code (or geometric code), is a linear code being the null
space of the incidence matrix of a geometric design, AG4(m, q) or PG4(m, q).
The codes based on affine geometry designs, AG4(m,q), are also called Eu-
clidean geometry codes, while the codes based on PG(m, q) are called pro-
jective geometry codes. The codes over GF(p) thus defined, where ¢ = p',
correspond to subfield subcodes of generalized Reed-Muller codes [1l, Chapter
5], [7]. The binary Euclidean geometry code being the null space of the inci-
dence matrix of AG4(m, 2) is equivalent to the Reed-Muller code R(m—s,m)
of length 2™ and order m — s. It is well known that the finite geometry codes
admit majority logic decoding [16], [19], [§].

In [11], Jungnickel and Tonchev used polarities in projective geometry to
find a class of designs which have the same parameters and share some other
properties with a projective geometry design PG(2s,q), s > 2, but are not
isomorphic to PG4(2s,q). We refer to these designs as polarity designs.
In the cases when ¢ = p is a prime, the p-rank of the incidence matrix of a
polarity design D is equal to that of PG(2s,p), hence the polarity designs
provide an infinite class of counter-examples to Hamada’s conjecture [9], [10].
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In [5], Clark and Tonchev proved that the code being the null space
of the incidence matrix of a polarity design can correct by majority-logic
decoding the same number of errors as the projective geometry code based
on PG4(2s,q). In the binary case (¢ = 2), the minimum distance of the
code of the polarity design obtained from PG(2s,2), is equal to 2°*1 and
the majority-logic algorithm from [5] corrects all errors guaranteed by the
minimum distance. The extended code of the binary code spanned by the
blocks of a polarity design obtained from PG(2s, 2) is a self-dual binary code
of the same length, dimension and minimum distance, and correcting by
majority-logic the same number of errors as the Reed-Muller code R(s,2s+1)
of length 225*1 and order s.

In the smallest binary case, s = 2, the extended code of the polarity design
obtained from PG(4,2), is a doubly-even self-dual [32, 16, 8] code, which not
only has the same parameters and corrects by majority-logic decoding the
same number of errors as the 2nd order Reed-Muller code R(2,5), but also has
the same weight distribution as R(2,5). This phenomenon is easily explained
by the fact that both codes are extremal doubly-even self-dual codes, hence
are forced to have the same weight distribution [14] (actually, in this case
there are five inequivalent extremal doubly-even self-dual [32,16,8] codes
[6].).

It is the aim of this note to report the computation of the weight distri-
bution of the extended code of the polarity design in the next case s = 3,
i.e. the polarity design obtained from PG(6,2), and to demonstrate that this
doubly-even self-dual [128, 64, 16] code has the same weight distribution as
the 3rd order Reed-Muller code R(3,7).

One of the authors, Vladimir Tonchev, conjectures that the extended
code of the polarity design obtained from PG(2s,2) has the same weight
distribution as the Reed-Muller code R(s,2s+ 1) for every s > 2.

2 Computing the weight distribution

The polarity design D obtained from PG(6,2) [I1] is a 2-(v, k, A) design with
parameters
v =127, k=15, A =155,

that is, D has the same parameters as the projective geometry design PG3(6,2)
having as blocks the 3-dimensional subspaces of the 6-dimensional projective
geometry PG(6,2) over the field of order 2. In addition, D has the same
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block intersections as PG3(6,2), namely 1, 3 and 7, and its incidence matrix
has the same 2-rank 64 as PG3(6,2) [11], hence provides a counter-example
to Hamada’s conjecture [9], [10].

The parameters and the block intersection numbers of D imply that the
binary linear code C' spanned by the block by point incidence matrix of D has
minimum distance not exceeding 15, and its extended code C* is a doubly-
even self-dual [128, 64] code of minimum distance d < 16. It follows from the
results from [4] and [5] that d = 16 and the code C* admits majority-logic
decoding that corrects up to 7 errors, that is, the same number of errors as
the doubly-even self-dual [128, 64, 16] 3rd order Reed-Muller code R(3,7).

We will show that C* has the same weight distribution as R(3,7). The
weight distribution of the Reed-Muller code R(3,7) was computed by Sugino,
lenaga, Tokura and Kasami [17] (see The On-line Encyclopedia of Integer
Sequences [15], sequence A110845), and is listed in Table [

Since the code dimension 64 is significant, to facilitate the computation
of the weight distribution of C*, we employ known properties of weight enu-
merators of binary doubly-even self-dual codes. Since C* is a doubly-even
self-dual [128, 64, 16] code, by the Gleason theorem (cf. [13| Section 2], [14]),
the weight distribution {A;}12% of C* can be determined completely by the
values of Aig and Asy. More specifically, the two-variable weight enumerator
can be written as

128 5
ZAix128—iyi _ Z b;(2® + 1aty + y*) 1673 (b A (2t — yh)h),
i=0 =0
where

bp = 1,0y = —224,by = 16336, bs = —430656,

by = Ai + 3196776 and bs = Agy — 40A156 — 2696256.
Consequently, the weight enumerator

128

W(z) = Z Ax’



01

16 | 94488

2010

24 | 74078592

28 | 3128434688

32 | 312335197020

36 | 18125860315136

40 | 552366841342848

44 1 9491208609103872

48 | 94117043084875944
52 | 549823502398291968
56 | 1920604779257215744
60 | 4051966906789380096
64 | 5193595576952890822
68 | 4051966906789380096
72 | 1920604779257215744
76 | 549823502398291968
80 | 94117043084875944
84 | 9491208609103872

88 | 552366841342848

92 | 18125860315136

96 | 312335197020
100 | 3128434688
104 | 74078592
108 | O
112 | 94488
128 | 1

Table 1: Weight distribution of R(3,7)



can be written as

W(x) =1+ Ajga'® 4+ Ayor®
+ (13228320 + 644 A5 — 6Ag0)x**
+ (2940970496 + 1984 415 — 89 Agg) 2
+ (320411086380 — 85470 A6 + 1500 A9)z** + - - -

(cf. [13} Section 2J).

A 64 x 128 generator matrix G of the extended code C* was computed
following the construction of polarity designs from [11], and is available on-
line at

\protect\vrule widthOpt\protect\href{http://www.math.mtu.edu/\string~tonchev/borde
Using Magma [2], it took a few minutes to compute on a PC that
Agg = 94488, (4)
and about an houtf{ to compute
Agy = 0. (5)

Since the values Ajg (see ({l)) and Ay (see (B])) are the same as the
corresponding values for the self-dual [128, 64, 16] Reed-Muller code R(3,7)
(cf. Table []), we have the following.

Theorem 1. The weight distribution of the extended [128,64, 16] code C* of
the the code C' spanned by the incidence vectors of the blocks of the polarity
design D obtained from PG(6,2), is identical with the weight distribution of
the 3rd order Reed-Muller code R(3,7).

Using Magma, it took 90 seconds to compute the full automorphism group
Aut(C*) of C*. Since C* is spanned by the set of minimum weight vectors
which form the block by point incidence matrix of a 3-(128, 16, 155) design
D* 4], [5], the full automorphism group of C* coincides with that of D*, and
is of order

| Aut(C*)| = 165140150353920 = 2% . 3* . 5. 72 . 31. (6)

*It is an interesting question if one can prove that Ayy = 0 geometrically, using the
construction from [IT].



It follows from results of [I1] that the polarity 2-(127, 15, 155) design D, and
hence, the related [127,64] code C, is invariant under the collineation group
of the affine space AG(6,2), being of order

2020 — 1)(2% — 2)(2° — 22)(2° — 2%)(2° — 2%)(2° — 2°) = 2% . 3*.5.27. 31.

Thus, the full automorphism group Aut(C*) of C* extends the automorphism
group of C by a factor of 27 = 128, and acts transitively on the set of 128
code coordinates.

It is known that the full automorphism group Aut(R(3,7)) of the Reed-
Muller code R(3,7) is equivalent to the group of collineations of AG(7,2),
and is of order

| Aut(R(3,7))| = 20972799094947840 = 2% . 3* . 5. 72.31-127.  (7)

Remark 1. The parameters of the extended self-dual code, obtained from
the polarity design in PG(8,2), are [512, 256, 32]. It seems computationally
infeasible to find the weight distribution of such a code by computer, even
with the help of Gleason’s theorem, due to the very large code dimension.
Thus, any proof of the conjecture formulated in the last paragraph of Intro-
duction, has to be based on geometric or other theoretical considerations.

3 Self-dual neighbors

In this section, we investigate self-dual neighbors of the 3rd order Reed-
Muller code R(3,7) and the extended [128, 64, 16] code C* given in Theorem
I Two self-dual codes C' and C’ of length n are said to be neighbors if
dim(C N C") = n/2 —1. We give some observations from [3] on self-dual
codes constructed by neighbors. Let C' be a self-dual [n,n/2,d] code. Let M
be a matrix whose rows are the codewords of weight d in C'. Suppose that
there is a vector x € GF(2)" such that

Maz' =17, (8)

where 27 denotes the transpose of z and 1 is the all-one vector. Set Cy =
()t N C, where (x) denotes the code generated by z. Then Cj is a subcode
of index 2 in C'. If the weight of z is even, then we have the two self-dual
neighbors (Cy, z) and (Cy, z + y) of C for some y € C' '\ Cy, which do not
have any codeword of weight d in C', where (C,z) = C'U (z + C). When C
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has a self-dual [n,n/2,d’| neighbor C" with d' > d + 2, (§)) has a solution x
and we can obtain C” in this way. If rank M < rank(M 17), then C has no
self-dual [n,n/2,d’]| neighbor C" with d' > d + 2. Using Magma, we verified
that

(rank M, rank(M 17)) = (64, 65)

for the 3rd order Reed-Muller code R(3,7) and the extended [128, 64, 16] code
C* given in Theorem [Il Therefore, we have the following:

Proposition 1. The 3rd order Reed-Muller code R(3,7) and the extended
(128,64, 16] code C* given in Theorem[d have no self-dual [128, 64, d] neighbor
with d € {20,24}.

This means that the above two doubly-even self-dual codes of length 128
have no extremal doubly-even self-dual neighbor of that length.
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