A formula for the partition function of the $\beta \gamma$ system on the cone pure spinors

M.V. Movshev
Mathematics Department, Stony Brook University, Stony Brook NY, 11794-3651, USA
mmovshev@math.sunysb.edu

February 16, 2016

Abstract

In this note, we propose a closed formula for the partition function $Z(t, q)$ of the $\beta \gamma$ system on the cone of pure spinors. We give the answer in terms of theta functions, q-Pochhammer symbols and Eisenstein series.

1 Introduction

The $\beta \gamma$ system on the cone of pure spinors \mathcal{C} is an integral part of the version of the string theory invented by N . Berkovits [5. \mathcal{C} is an eleven-dimensional subvariety in 16 -dimensional linear space with coordinates $\lambda, p_{i}, w_{i j}, \quad 1 \leq i, j \leq 5, w_{i j}=-w_{j i}$ defined by the equations

$$
\begin{align*}
& \lambda p_{i}-\operatorname{Pf}_{i}(w)=0 \quad i=1, \ldots, 5, \\
& p w=0 . \tag{1}
\end{align*}
$$

$\operatorname{Pf}_{i}(w), 1 \leq i \leq 5$ are the principal Pfaffians of w. The action is common to all $\beta \gamma$ systems:

$$
S(\beta, \gamma)=\int_{\Sigma}\langle\bar{\partial} \beta, \gamma\rangle
$$

The field β is a smooth map $\beta: \Sigma \rightarrow \mathcal{C}$, where Σ is a Riemann surface, γ is a smooth section of the pullback $\beta^{*} T_{\mathcal{C}}^{*} \otimes T_{\Sigma}^{*}$. We advise the reader to consult [7] for the notation and discussion of issues related to definition of a $\beta \gamma$ systems on the nonsmooth \mathcal{C}.

In [7], a geometric construction of the space of states $H^{i+\frac{\infty}{2}}, i=0, \ldots, 3$ of this system was presented. It is a properly regularized space of the semi-infinite local cohomology of the space of polynomial maps $\operatorname{Maps}\left(\mathbb{C}^{\times}, \mathcal{C}\right)$. The support of the local cohomology lies at $\operatorname{Maps}(\mathbb{C}, \mathcal{C})$. The space \mathcal{C} is an affine cone over $\operatorname{OGr}(5,10) . \mathbb{C}^{\times} \times \operatorname{Spin}(10)$ is the groups of symmetries \mathcal{C}, where \mathbb{C}^{\times}acts by dilations. The group $\mathbb{C}^{\times} \times \mathbf{T} \times$ $\operatorname{Spin}(10)$ acts by the symmetries of the pair $\operatorname{Maps}(\mathbb{C}, \mathcal{C}) \subset \operatorname{Maps}\left(\mathbb{C}^{\times}, \mathcal{C}\right)$. The factor $\mathbf{T} \cong \mathbb{C}^{\times}$corresponds to loop rotations. The action of $\mathbb{C}^{\times} \times \mathbf{T} \times \operatorname{Spin}(10)$ survive the regularization and continue to act on $H^{i+\frac{\infty}{2}}$. It turns out (see [7]) that the formal character

$$
\begin{equation*}
Z(t, q, z)=\sum_{i=0}^{3}(-1)^{i} \chi_{H^{i+\frac{\infty}{2}}}(t, q, z) \tag{2}
\end{equation*}
$$

is well defined as an element in $\mathbb{Z}\left(\left(t, z_{1}, \ldots, z_{5}\right)\right)((q)) \cap \mathbb{Q}\left(t, z_{1}, \ldots, z_{5}\right)((q))$, where z_{1}, \ldots, z_{5} are the coordinates on the Cartan subgroup $\mathbf{T}^{5} \subset \operatorname{Spin}(10)$. More precisely, $Z(t, q, z)$ is a limit of coefficients of an infinite matrix product [7]. The matrix product simplifies when $z=1$ ([10). We use it to derive the formula for $Z(t, q):=Z(t, q, 1)$.

It is necessary to state from the outset that the analysis presented in this note is based on experimentations with the formula for $Z_{N}^{N^{\prime}}(t, q)$ using Mathematica for finite N, N^{\prime} and extrapolation of the found structures to infinite $N \mathrm{~s}$. Though somewhat loose in justification, the result looks convincing because it passes a number of consistency checks.

Acknowledgment The author would like thank N.Berkovits, A.S. Schwarz, E. Witten for their interest and helpful conversations about this work.

2 The formula

As it is mentioned in the abstract, $Z(t, q)$ will be expressed in therms of some standard special functions. We start with reviewing their definitions.

The functions used in the formula Recall that the q-Pochhammer symbol is an infinite product

$$
(t ; q)_{\infty}:=\prod_{n \geq 0}\left(1-t q^{n}\right)
$$

It is used to write concisely the three-term identity

$$
\begin{equation*}
\theta(t, q)=\left(1-t^{-1}\right)(q, q)_{\infty}(q / t, q)_{\infty}(q t, q)_{\infty} \tag{3}
\end{equation*}
$$

for the theta function

$$
\theta(q, t):=\sum_{n \in \mathbb{Z}}(-1)^{n} q^{\frac{n(n+1)}{2}} t^{n} .
$$

Another ingredient of the formula are theta functions with characteristics:
$\epsilon_{k}(t, q)=\sum_{n \in \mathbb{Z}}(-1)^{n} q^{\frac{7 n(n+1)}{2}+k n} t^{7 n+k}=t^{k}\left(1-q^{-k} t^{-7}\right)\left(q^{7}, q^{7}\right)_{\infty}\left(q^{7-k} t^{-7}, q^{7}\right)_{\infty}\left(q^{k+7} t^{7}, q^{7}\right)_{\infty}, k=0, \ldots, 6$.
The proposed answer will also depend on the Eisenstein series

$$
E_{2}(q):=1-24 \sum_{n=1}^{\infty} \frac{n q^{n}}{1-q^{n}}, \quad E_{4}(q):=1+240 \sum_{n=1}^{\infty} \frac{n^{3} q^{n}}{1-q^{n}}
$$

Define linear combinations of $\epsilon_{k}(q, t)$:

$$
\begin{aligned}
& \theta_{1}(t, q):=-q^{3} \epsilon_{3}(q, t)-q^{4} \epsilon_{4}(q, t), \\
& \theta_{2}(t, q):=q^{2} \epsilon_{2}(q, t)+q^{5} \epsilon_{5}(q, t) \text {, and } \\
& \theta_{3}(t, q):=-q \epsilon_{1}(q, t)-q^{6} \epsilon_{6}(q, t)
\end{aligned}
$$

and introduce abbreviation $\theta_{k}(q):=\theta_{k}(1, q), k=1,2,3$.
The following conjecture contains the promised formula.

Conjecture 1 The partition function $Z(t, q)$ has the form

$$
\begin{equation*}
Z(t, q)=\frac{a(q) \theta_{1}(t, q)+b(q) \theta_{2}(t, q)+c(q) \theta_{3}(t, q)}{t^{6} \theta(t, q)^{11}}=: \Psi(t, q) \tag{5}
\end{equation*}
$$

where the string functions a, b, c are

$$
\begin{align*}
a & :=\frac{1}{768(q, q)_{\infty}^{4}}\left(2744 q^{2} E_{2}(q) \theta_{3}(q) \theta_{2}^{\prime \prime}(q)-2744 q^{2} E_{2}(q) \theta_{2}(q) \theta_{3}^{\prime \prime}(q)-343 q E_{2}(q)^{2} \theta_{3}(q) \theta_{2}^{\prime}(q)+3626 q E_{2}(q) \theta_{3}(q) \theta_{2}^{\prime}(q)\right. \\
& +343 q E_{2}(q)^{2} \theta_{2}(q) \theta_{3}^{\prime}(q)-5194 q E_{2}(q) \theta_{2}(q) \theta_{3}^{\prime}(q)+98 E_{2}(q)^{2} \theta_{2}(q) \theta_{3}(q)-476 E_{2}(q) \theta_{2}(q) \theta_{3}(q) \\
& +42 q E_{4}(q) \theta_{3}(q) \theta_{2}^{\prime}(q)-42 q E_{4}(q) \theta_{2}(q) \theta_{3}^{\prime}(q)-12 E_{4}(q) \theta_{2}(q) \theta_{3}(q)-65856 q^{3} \theta_{2}^{\prime \prime}(q) \theta_{3}^{\prime}(q) \\
& +65856 q^{3} \theta_{2}^{\prime}(q) \theta_{3}^{\prime \prime}(q)-29400 q^{2} \theta_{3}(q) \theta_{2}^{\prime \prime}(q)+37632 q^{2} \theta_{2}^{\prime}(q) \theta_{3}^{\prime}(q)+10584 q^{2} \theta_{2}(q) \theta_{3}^{\prime \prime}(q) \\
& \left.-25725 q \theta_{3}(q) \theta_{2}^{\prime}(q)+18333 q \theta_{2}(q) \theta_{3}^{\prime}(q)+1350 \theta_{2}(q) \theta_{3}(q)\right), \tag{6}
\end{align*}
$$

$$
\begin{align*}
b & :=-\frac{1}{768(q, q)_{\infty}^{4}}\left(2744 q^{2} E_{2}(q) \theta_{3}(q) \theta_{1}^{\prime \prime}(q)-2744 q^{2} E_{2}(q) \theta_{1}(q) \theta_{3}^{\prime \prime}(q)-343 q E_{2}(q)^{2} \theta_{3}(q) \theta_{1}^{\prime}(q)+2842 q E_{2}(q) \theta_{3}(q) \theta_{1}^{\prime}(q)\right. \\
& +343 q E_{2}(q)^{2} \theta_{1}(q) \theta_{3}^{\prime}(q)-5194 q E_{2}(q) \theta_{1}(q) \theta_{3}^{\prime}(q)+147 E_{2}(q)^{2} \theta_{1}(q) \theta_{3}(q)-546 E_{2}(q) \theta_{1}(q) \theta_{3}(q) \\
& +42 q E_{4}(q) \theta_{3}(q) \theta_{1}^{\prime}(q)-42 q E_{4}(q) \theta_{1}(q) \theta_{3}^{\prime}(q)-18 E_{4}(q) \theta_{1}(q) \theta_{3}(q)-65856 q^{3} \theta_{1}^{\prime \prime}(q) \theta_{3}^{\prime}(q) \\
& +65856 q^{3} \theta_{1}^{\prime}(q) \theta_{3}^{\prime \prime}(q)-29400 q^{2} \theta_{3}(q) \theta_{1}^{\prime \prime}(q)+56448 q^{2} \theta_{1}^{\prime}(q) \theta_{3}^{\prime}(q)+1176 q^{2} \theta_{1}(q) \theta_{3}^{\prime \prime}(q) \\
& \left.-17325 q \theta_{3}(q) \theta_{1}^{\prime}(q)+2205 q \theta_{1}(q) \theta_{3}^{\prime}(q)+225 \theta_{1}(q) \theta_{3}(q)\right), \tag{7}
\end{align*}
$$

$$
\begin{align*}
& c:=\frac{1}{768(q, q)_{\infty}^{4}}\left(2744 q^{2} E_{2}(q) \theta_{2}(q) \theta_{1}^{\prime \prime}(q)-2744 q^{2} E_{2}(q) \theta_{1}(q) \theta_{2}^{\prime \prime}(q)-343 q E_{2}(q)^{2} \theta_{2}(q) \theta_{1}^{\prime}(q)+2842 q E_{2}(q) \theta_{2}(q) \theta_{1}^{\prime}(q)\right. \\
&+343 q E_{2}(q)^{2} \theta_{1}(q) \theta_{2}^{\prime}(q)-3626 q E_{2}(q) \theta_{1}(q) \theta_{2}^{\prime}(q)+49 E_{2}(q)^{2} \theta_{1}(q) \theta_{2}(q)-70 E_{2}(q) \theta_{1}(q) \theta_{2}(q) \\
&+42 q E_{4}(q) \theta_{2}(q) \theta_{1}^{\prime}(q)-42 q E_{4}(q) \theta_{1}(q) \theta_{2}^{\prime}(q)-6 E_{4}(q) \theta_{1}(q) \theta_{2}(q)-65856 q^{3} \theta_{1}^{\prime \prime}(q) \theta_{2}^{\prime}(q) \\
&+65856 q^{3} \theta_{1}^{\prime}(q) \theta_{2}^{\prime \prime}(q)-10584 q^{2} \theta_{2}(q) \theta_{1}^{\prime \prime}(q)+18816 q^{2} \theta_{1}^{\prime}(q) \theta_{2}^{\prime}(q)+1176 q^{2} \theta_{1}(q) \theta_{2}^{\prime \prime}(q) \\
&\left.-9261 q \theta_{2}(q) \theta_{1}^{\prime}(q)+1533 q \theta_{1}(q) \theta_{2}^{\prime}(q)+27 \theta_{1}(q) \theta_{2}(q)\right) . \tag{8}
\end{align*}
$$

3 Supporting evidences

The matrix product presentation for $Z(t, q)$ It was established in [7] that $Z(t, q)$ is the limit in the sense of formal power series convergence of a certain infinite matrix product. To state the result let us fix some additional notations:

$$
\begin{align*}
& B_{0}^{1}:=\frac{1+3 t+t^{2}}{(1-t)^{8}(1-q t)}, \quad A_{0}^{0}:=\frac{1+5 t+5 t^{2}+t^{3}}{(1-t)^{11}}, \\
& K(t, q):=\left(\begin{array}{cc}
\frac{t\left(t^{2}+3 t+1\right)}{(t-1)^{7}(q t-1)} & \frac{\left(t^{2}+3 t+1\right)\left(t^{3}+q^{2}\right)-5 q(t+1) t^{2}}{q^{2}(t-1)^{7}(q t-1)} \\
\frac{t(t+1)\left(t^{2}+4 t+1\right)}{(t-1)^{10}} & \frac{\left(t^{3}+5 t^{2}+5 t+1\right)\left(t^{3}+q^{2}\right)-q\left(5 t^{2}+14 t+5\right) t^{2}}{q^{2}(t-1)^{10}}
\end{array}\right), \tag{9}
\end{align*}
$$

$$
\begin{gather*}
\binom{B_{0}^{r+1}}{A_{0}^{r}}:=K\left(q^{r} t, q\right) \cdots K(q t, q)\binom{B_{0}^{1}}{A_{0}^{0}}, \tag{10}\\
A_{N}^{N^{\prime}}(t, q):=A_{0}^{N^{\prime}-N}\left(t q^{N}, q\right) .
\end{gather*}
$$

It was verified in [7] that the limit of

$$
\begin{equation*}
Z_{N}^{N^{\prime}}(t, q):=A_{N}^{N^{\prime}}(t, q) t^{4-4 N} q^{-2+4 N-2 N^{2}}, N<0 \tag{11}
\end{equation*}
$$

$N \rightarrow-\infty, N^{\prime} \rightarrow \infty$ coincides with $Z(t, q)$ (2).
Poles of $Z(t, q)$ The rational function $Z_{N}^{N^{\prime}}(t, q)$ has a fairly complicated structure. Still, experiments with Mathematica show that $Z_{N}^{N^{\prime}}(t, q)$ has poles of multiplicity $\operatorname{dim}_{\mathbb{C}} \mathcal{C}=11$ precisely at $q^{-N}, \ldots, q^{-N^{\prime}}$. It is natural to conjecture that in the limit $N \rightarrow-\infty, N^{\prime} \rightarrow \infty$ this pattern persists and Z is a meromorphic function for $|q|<1$ with poles at $t=q^{n}, n \in \mathbb{Z}$ of multiplicity 11 .
$Z(t, q)$ and a line bundle of degree 7 If this conjecture is true, then the product

$$
\begin{equation*}
\Theta(t, q):=t^{6} Z(t, q) \theta(t, q)^{11} \tag{12}
\end{equation*}
$$

is an analytic function for $t \neq 0,|q|<1$.
One of the results of [7] is that $Z(t, q, g)$ as a formal power series in q satisfies

$$
\begin{gather*}
\frac{Z(q t, q, g)}{Z(t, q, g)}=\frac{t^{4}}{q^{2}} \tag{13}\\
\frac{Z\left(1 / t, q, g^{-1}\right)}{Z(t, q, g)}=-t^{8} . \tag{14}
\end{gather*}
$$

It follows from the functional equations

$$
\begin{equation*}
\theta(q t, q)=-\theta(t, q) /(q t), \quad \theta(1 / t, q)=-t \theta(t, q) \tag{15}
\end{equation*}
$$

that $\Theta(t, q)$ obeys

$$
\begin{gather*}
\frac{\Theta(t q, q)}{\Theta(t, q)}=-\frac{1}{q^{7} t^{7}} \tag{16}\\
\frac{\Theta(1 / t, q)}{\Theta(t, q)}=t^{7} \tag{17}
\end{gather*}
$$

Stated differently, equation (15) says that θ is a holomorphic section of a line bundle \mathcal{L} of degree one on the elliptic curve $\mathbb{C}^{\times} /\left\{q^{k}\right\}$. To say that Θ satisfy (16) is equivalent to saying that Θ is a section of $\mathcal{L}^{\otimes 7}$. The space of global sections of $\mathcal{L}^{\otimes 7}$ has a basis $\epsilon_{k}, k=0, \ldots, 6$ (4). Symmetry condition (17) determines a subspace in the span of ϵ_{k} of dimension three with a basis $\theta_{i}, i=1,2,3$. As a consequence, we get

$$
\begin{equation*}
\Theta(t, q)=a(q) \theta_{1}(t, q)+b(q) \theta_{2}(t, q)+c(q) \theta_{3}(t, q), \tag{18}
\end{equation*}
$$

which is equivalent to (5).

Equations on coefficients a, b, c It remains to determine a, b, c. Denote the right-hand side in (5) by $\Psi(t, q)$. Identity

$$
\begin{equation*}
\lim _{t \rightarrow 1} \partial_{t}^{k} Z(t, q)(1-t)^{11}=\lim _{t \rightarrow 1} \partial_{t}^{k} \Psi(t, q)(1-t)^{11}, \quad k=k_{1}, k_{2}, k_{3} \tag{19}
\end{equation*}
$$

produces three linear equations for $a(q), b(q), c(q)$. Denote by x the vector (a, b, c). We can write the system of equations on x in the matrix form

$$
\begin{equation*}
z^{t}=A x^{t} \tag{20}
\end{equation*}
$$

The coefficients of the matrix A depend only on the functions θ_{i} and can be explicitly computed. The vector z is more complicated because it depends on the unknown function Z. But if we manage to compute three Taylor coefficients of $Z(t, q)$ with respect to the variable t, we can easily find the functions a, b, c.

Coefficients of the matrix A Let us find the matrix A first. The convenient choice for k_{i} in (19) is $0,2,4$. The function $\theta(t, q)$ has a zero of order one at $t=1$ so that $\frac{\theta(t, q)}{t-1}$ is regular. Denote

$$
\theta_{0}(q):=\lim _{t \rightarrow 1} \frac{\theta(t, q)}{1-t} .
$$

The right-hand-side of fist equation Eq_{0} (19), the $k=0$ case, becomes

$$
\begin{equation*}
\lim _{t \rightarrow 1} \Psi(t, q)(1-t)^{11}=\frac{a \theta_{1}+b \theta_{2}+c \theta_{3}}{\theta_{0}^{11}} \tag{21}
\end{equation*}
$$

The second equation Eq_{2}, corresponding to $k=2 \rrbracket$, contain t-partial derivatives of functions at $t=1$. Note that θ and ϵ_{k} satisfy the heat equations:

$$
t^{2} \partial_{t}^{2} \theta+t \partial_{t} \theta=2 q \partial_{q} \theta, \quad t^{2} \partial_{t}^{2} \epsilon_{k}+8 t \partial_{t} \epsilon_{k}-k(k+7) \epsilon_{k}=14 q \partial_{q} \epsilon_{k} .
$$

In addition, linear combinations θ_{i} of ϵ_{k} satisfy (17). These equations allow to express t-derivatives of θ_{i} at $t=1$ in terms of q-derivatives of θ_{i}. Thus equations 3 and the results of [4] imply that

$$
\begin{gathered}
\theta_{0}(q)=-(q, q)_{\infty}^{3}, \quad \lim _{t \rightarrow 1} \partial_{t} \frac{\theta(t, q)}{1-t}=-\theta_{0}(q), \quad \lim _{t \rightarrow 1} \partial_{t}^{2} \frac{\theta(t, q)}{1-t}=\theta_{0} \times\left(\frac{23}{12}+\frac{E_{2}}{12}\right), \\
\lim _{t \rightarrow 1} \partial_{t}^{3} \frac{\theta(t, q)}{1-t}=\theta_{0} \times\left(-\frac{11}{2}-\frac{1}{2} E_{2}\right), \\
\lim _{t \rightarrow 1} \partial_{t}^{4} \frac{\theta(t, q)}{1-t}=\theta_{0} \times\left(\frac{1689}{80}+\frac{23}{8} E_{2}+\frac{1}{48} E_{2}^{2}-\frac{1}{120} E_{4}\right), \\
\lim _{t \rightarrow 1} \partial_{t}^{5} \frac{\theta(t, q)}{1-t}=\theta_{0} \times\left(-\frac{1627}{16}-\frac{145}{8} E_{2}-\frac{5}{16} E_{2}^{2}+\frac{1}{8} E_{4}\right) .
\end{gathered}
$$

Similarly
$\theta_{1}(q):=\theta_{1}(1, q)=2\left(q^{3}, q^{7}\right)_{\infty}\left(q^{4}, q^{7}\right)_{\infty}\left(q^{7}, q^{7}\right)_{\infty}, \quad \partial_{t} \theta_{1}(1, q)=-7 / 2 \theta_{1}(q), \quad \partial_{t}^{2} \theta_{1}(1, q)=16 \theta_{1}(q)+14 q \partial_{q} \theta_{1}(q)$,

[^0]\[

$$
\begin{gathered}
\partial_{t}^{3} \theta_{1}(1, q)=-90 \theta_{1}-189 q \partial_{q} \theta_{1}, \quad \partial_{t}^{4} \theta_{1}(1, q)=600 \theta_{1}+2268 q \partial_{q} \theta_{1}+196 q^{2} \partial_{q}^{2} \theta_{1}, \\
\theta_{2}(q):=\theta_{2}(1, q)=-2\left(q^{2}, q^{7}\right)_{\infty}\left(q^{5}, q^{7}\right)_{\infty}\left(q^{7}, q^{7}\right)_{\infty}, \quad \partial_{t} \theta_{2}(1, q)=-7 / 2 \theta_{2}, \quad \partial_{t}^{2} \theta_{2}(1, q)=18 \theta_{2}+14 q \partial_{q} \theta_{2}, \\
\partial_{t}^{3} \theta_{2}(1, q)=-117 \theta_{2}-189 q \partial_{q} \theta_{2}, \quad \partial_{t}^{4} \theta_{2}(1, q)=900 \theta_{2}+2324 q \partial_{q} \theta_{2}+196 q^{2} \partial_{q}^{2} \theta_{2}, \\
\theta_{3}(q):=\theta_{3}(1, q)=2\left(q, q^{7}\right)_{\infty}\left(q^{6}, q^{7}\right)_{\infty}\left(q^{7}, q^{7}\right)_{\infty}, \quad \partial_{t} \theta_{3}(1, q)=-7 / 2 \theta_{3}, \quad \partial_{t}^{2} \theta_{3}(1, q)=22 \theta_{3}+14 q \partial_{q} \theta_{3}, \\
\partial_{t}^{3} \theta_{3}(1, q)=-171 \theta_{3}-189 q \partial_{q} \theta_{3}, \quad \partial_{t}^{4} \theta_{3}(1, q)=1524 \theta_{3}+2436 q \partial_{q} \theta_{3}+196 q^{2} \partial_{q}^{2} \theta_{3} .
\end{gathered}
$$
\]

After simplifications Eq_{2} and Eq_{4} become

$$
\begin{align*}
& \lim _{t \rightarrow 1} \partial_{t}^{2} \Psi(t, q)(1-t)^{11}=-\frac{1}{12 \theta_{0}^{11}} \times \tag{22}\\
& \times\left(\left(11 E_{2} \theta_{1}-168 q \theta_{1}^{\prime}-23 \theta_{1}\right) a+\left(11 E_{2} \theta_{2}-168 q \theta_{2}^{\prime}-47 \theta_{2}\right) b+\left(11 E_{2} \theta_{3}-168 q \theta_{3}^{\prime}-95 \theta_{3}\right) c\right), \\
& \lim _{t \rightarrow 1} \partial_{t}^{4} \Psi(t, q)(1-t)^{11}=\frac{1}{240 \theta_{0}^{11}} \times \\
& \quad \times\left(\left(-18480 q E_{2} \theta_{1}^{\prime}+605 E_{2}^{2} \theta_{1}-990 E_{2} \theta_{1}+22 E_{4} \theta_{1}+47040 q^{2} \theta_{1}^{\prime \prime}+58800 q \theta_{1}^{\prime}+363 \theta_{1}\right) a\right. \tag{23}\\
& \left(-18480 q E_{2} \theta_{2}^{\prime}+605 E_{2}^{2} \theta_{2}-3630 E_{2} \theta_{2}+22 E_{4} \theta_{2}+47040 q^{2} \theta_{2}^{\prime \prime}+72240 q \theta_{2}^{\prime}+3003 \theta_{2}\right) b \\
& \left.\quad\left(-18480 q E_{2} \theta_{3}^{\prime}+605 E_{2}^{2} \theta_{3}-8910 E_{2} \theta_{3}+22 E_{4} \theta_{3}+47040 q^{2} \theta_{3}^{\prime \prime}+99120 q \theta_{3}^{\prime}+14043 \theta_{3}\right) c\right) .
\end{align*}
$$

The matrix A consists of coefficients of a, b, c from equations (21|22|23).
The vector z components Computation of the vector z from (20) relies on the extrapolation of the results obtained with Mathematica. We use that $Z(t, q)$ has presentation as a limit of (11), which makes it possible computation of the q-series $\lim _{t \rightarrow 1} \partial_{t}^{i} Z(t, q)(1-t)^{11}$ with arbitrary precision. Due to integrality of the coefficients, $\lim _{t \rightarrow 1} \partial_{t}^{i} Z_{N}^{N^{\prime}}(t, q)(1-t)^{11} \bmod q^{r}$ stabilizes for sufficiently large N and N^{\prime}. The first computation shows that

$$
\begin{aligned}
& \frac{1}{12} \lim _{t \rightarrow 1} Z(t, q)(1-t)^{11}= \\
& =1+22 q+275 q^{2}+2530 q^{3}+18975 q^{4}+122430 q^{5}+702328 q^{6}+3661900 q^{7}+17627775 q^{8}+\ldots O\left(q^{20}\right) .
\end{aligned}
$$

The database http://oeis.org hints that these series is the generating function for the sequence A023020. a_{n} is the number of partitions of n into parts of 22 kinds. The generating function coincides with the Taylor expansion of $\frac{1}{(q, q)_{\infty}^{22}}$.

Another computation with Mathematica shows that

$$
\frac{1}{98}(q, q)_{\infty}^{22} \lim _{t \rightarrow 1} \partial_{t}^{2} Z(t, q)(1-t)^{11}=1 / 6+q+3 q^{2}+4 q^{3}+7 q^{4}+6 q^{5}+12 q^{6}+8 q^{7}+15 q^{8}+\cdots O\left(q^{20}\right)
$$

If we drop the term $1 / 6$, the sequence a_{n} of Taylor coefficients of the remaining series is A000203 . $a(n)=$ $\sigma(n)$, the sum of the divisors of n. The generating function for a_{n} is $\left(1-E_{2}(q)\right) / 24$. The same way we find that

$$
(q, q)_{\infty}^{22} \lim _{t \rightarrow 1} \partial_{t}^{4} Z(t, q)(1-t)^{11}=\frac{42}{5}-12 E_{2}(q)+4 E_{2}^{2}(q)-\frac{2}{5} E_{4}+O\left(q^{20}\right) .
$$

To summarize, the vector z in (20) is conjecturally equal

$$
\left(\frac{12}{(q, q)_{\infty}^{22}}, \frac{20-4 E_{2}(q)}{(q, q)_{\infty}^{22}}, \frac{\frac{42}{5}-12 E_{2}(q)+4 E_{2}^{2}(q)-\frac{2}{5} E_{4}}{(q, q)_{\infty}^{22}}\right)
$$

The matrix A has the determinant

$$
\begin{gathered}
\Delta=\frac{8 \tilde{\Delta}}{\theta_{0}^{33}} \\
\tilde{\Delta}=\left(-343 q^{3} \theta_{3} \theta_{1}^{\prime \prime} \theta_{2}^{\prime}+343 q^{3} \theta_{2} \theta_{1}^{\prime \prime} \theta_{3}^{\prime}+343 q^{3} \theta_{3} \theta_{1}^{\prime} \theta_{2}^{\prime \prime}\right. \\
-343 q^{3} \theta_{2} \theta_{1}^{\prime} \theta_{3}^{\prime \prime}-343 q^{3} \theta_{1} \theta_{2}^{\prime \prime} \theta_{3}^{\prime}+343 q^{3} \theta_{1} \theta_{2}^{\prime} \theta_{3}^{\prime \prime}+98 q^{2} \theta_{2} \theta_{3} \theta_{1}^{\prime \prime} \\
+98 q^{2} \theta_{3} \theta_{1}^{\prime} \theta_{2}^{\prime}-294 q^{2} \theta_{2} \theta_{1}^{\prime} \theta_{3}^{\prime}-147 q^{2} \theta_{1} \theta_{3} \theta_{2}^{\prime \prime}+196 q^{2} \theta_{1} \theta_{2}^{\prime} \theta_{3}^{\prime} \\
\left.+49 q^{2} \theta_{1} \theta_{2} \theta_{3}^{\prime \prime}+42 q \theta_{2} \theta_{3} \theta_{1}^{\prime}-126 q \theta_{1} \theta_{3} \theta_{2}^{\prime}+84 q \theta_{1} \theta_{2} \theta_{3}^{\prime}+6 \theta_{1} \theta_{2} \theta_{3}\right)
\end{gathered}
$$

It is not hard to check with Mathematica that

$$
\tilde{\Delta}=-48(q, q)_{\infty}^{15}+O\left(q^{300}\right)
$$

We conjecture that this is an exact equality. We use it and the Kramer's rule to derive from (20) the formulas (6/7]8).

4 Some consistency checks

Note that by construction the function Ψ (5) satisfies equations (13|14). $Z(t, q)$ is the solution of the same set of equations. The q-expansion of Ψ is

$$
\begin{aligned}
& \Psi(t, q)=-\frac{t^{3}+5 t^{2}+5 t+1}{(t-1)^{11}} \\
& -\frac{q\left(46 t^{3}+86 t^{2}+86 t+46\right)}{(t-1)^{11}} \\
& +\frac{q^{2}\left(t^{11}-11 t^{10}+55 t^{9}-181 t^{8}-567 t^{7}-947 t^{6}-947 t^{5}-567 t^{4}-181 t^{3}+55 t^{2}-11 t+1\right)}{(t-1)^{11} t^{4}} \\
& +\frac{2 q^{3}\left(8 t^{13}-65 t^{12}+195 t^{11}-143 t^{10}-1011 t^{9}-2657 t^{8}-3917 t^{7}-3917 t^{6}-2657 t^{5}-1011 t^{4}-143 t^{3}+195 t^{2}-65 t+\right.}{(t-1)^{11} t^{5}} \\
& -\frac{q^{4}\left(-126 t^{15}+794 t^{14}-1491 t^{13}-559 t^{12}+3597 t^{11}+18745 t^{10}+38767 t^{9}+54123 t^{8}+54123 t^{7}+38767 t^{6}+18745 t^{5}+\right.}{(t-1)^{11} t^{6}} \\
& \frac{2 q^{5}\left(336 t^{17}-1662 t^{16}+1810 t^{15}+2173 t^{14}+1337 t^{13}-21131 t^{12}-65159 t^{11}-122387 t^{10}-162607 t^{9}-162607 t^{8}-12238\right.}{(t-1)^{11} t^{7}} \\
& +O\left(q^{6}\right)
\end{aligned}
$$

It agrees with the expansion from [2].
Another interesting consistency check gives comparison of the functions $Z(t, q)$ and $\Psi(t, q)$ at $t=-1$.
Literal comparison is not very fruitful because by virtue of (17) $Z(-1, q)=\Psi(-1, q)=0$. To get a nonzero
result, we used Mathematica to compute the derivatives $\partial_{t} Z(-1, q)$ and $\partial_{t} \Psi(-1, q)$. Two values agree by giving

$$
\begin{align*}
& -1024(q, q)_{\infty}^{22} \partial_{t} Z(-1, q)=-1024(q, q)_{\infty}^{22} \partial_{t} \Psi(-1, q)=1-48 q+1104 q^{2}-16192 q^{3}+170064 q^{4}-1362336 q^{5}+ \\
& 8662720 q^{6}-44981376 q^{7}+195082320 q^{8}+O\left(q^{9}\right) \tag{24}
\end{align*}
$$

The coefficients a_{n} (up to a sign) coincide with the sequence A000156. a_{n}, according to the database, is the number of ways of writing n as a sum of 24 squares. This is why it is very plausible that the series (24) is the expansion of

$$
\left(\sum_{n \in \mathbb{Z}}(-1)^{n} q^{n^{2}}\right)^{24}=(1-q)^{24}\left(q, q^{2}\right)_{\infty}^{24}\left(q^{2}, q^{2}\right)_{\infty}^{24}\left(q^{3}, q^{2}\right)_{\infty}^{24}
$$

5 Functions θ_{k}

$\theta_{k}, k=1,2,3$ are closely related to Rogers-Selberg functions (see e.g. [8], [3] [6]). They satisfy
$A(q):=\sum_{n \geq 0} \frac{q^{2 n^{2}}}{\left(1-q^{2}\right)\left(1-q^{4}\right) \cdots\left(1-q^{2 n}\right)(1+q)\left(1+q^{2}\right) \cdots\left(1+q^{2 n}\right)}=\frac{\left(q^{3}, q^{7}\right)_{\infty}\left(q^{4}, q^{7}\right)_{\infty}\left(q^{7}, q^{7}\right)_{\infty}}{\left(q^{2}, q^{2}\right)_{\infty}}=\frac{\theta_{1}}{2\left(q^{2}, q^{2}\right)_{\infty}}$,
$B(q):=\sum_{n \geq 0} \frac{q^{2 n^{2}+2 n}}{\left(1-q^{2}\right)\left(1-q^{4}\right) \cdots\left(1-q^{2 n}\right)(1+q)\left(1+q^{2}\right) \cdots\left(1+q^{2 n}\right)}=\frac{\left(q^{2}, q^{7}\right)_{\infty}\left(q^{5}, q^{7}\right)_{\infty}\left(q^{7}, q^{7}\right)_{\infty}}{\left(q^{2}, q^{2}\right)_{\infty}}=-\frac{\theta_{2}}{2\left(q^{2}, q^{2}\right)_{\infty}}$,
$C(q):=\sum_{n \geq 0} \frac{q^{2 n^{2}+2 n}}{\left(1-q^{2}\right)\left(1-q^{4}\right) \cdots\left(1-q^{2 n}\right)(1+q)\left(1+q^{2}\right) \cdots\left(1+q^{2 n+1}\right)}=\frac{\left(q, q^{7}\right)_{\infty}\left(q^{6}, q^{7}\right)_{\infty}\left(q^{7}, q^{7}\right)_{\infty}}{\left(q^{2}, q^{2}\right)_{\infty}}=\frac{\theta_{3}}{2\left(q^{2}, q^{2}\right)_{\infty}}$.
For a list known identities these functions obey see [6].

$6 Z(t, q, g)$ in the general case

Some of the above arguments extend to $Z(t, q, g)$. In particular the divisor of poles of $Z(t, q, g)$ satisfies equations

$$
1-q^{n} t v_{\alpha}(z)=0
$$

where $v_{\hat{\alpha}}(z)$ are the weights of the spinor representation. In order to be more explicit recall (see see e.g. [7]) that coordinates λ^{α} on the spinor representation of $\operatorname{Spin}(10)$ can be labelled by elements of the set

$$
\alpha \in \mathrm{E}:=\{(0),(i j),(k) \mid 1 \leq i<j \leq 5,1 \leq k \leq 5\}
$$

Let $\widetilde{\mathbf{T}^{5}}$ be the two sheeted cover of the maximal torus $\mathbf{T}^{5} \subset \mathrm{SO}(10)$ and $z=\left(z_{1}, \ldots, z_{5}\right)$ be the image of g under projection $\widetilde{\mathbf{T}^{5}} \rightarrow \mathbf{T}^{5}$. The action Π of $g \in \widetilde{\mathbf{T}^{5}}$ on λ^{α} is given by the formula

$$
\begin{align*}
& \Pi(g) \lambda^{\alpha} v_{\alpha}(z) \lambda^{\alpha} \\
& \text { or in more } \operatorname{details:~} \\
& \Pi(g) \lambda^{(0)}=\operatorname{det}^{-\frac{1}{2}}(z) \lambda^{(0)} \\
& \Pi(g) \lambda^{(i j)}=\operatorname{det}^{-\frac{1}{2}}(z) z_{i} z_{j} \lambda^{(i j)} \tag{25}\\
& \Pi(g) \lambda^{(k)}=\operatorname{det}^{\frac{1}{2}}(z) z_{k}^{-1} \lambda^{(k)}, \\
& \operatorname{det}^{\frac{1}{2}}(z)=\sqrt{z_{1} \cdots z_{5}}
\end{align*}
$$

Introduce the product

$$
\theta_{\mathrm{E}}(t, q, z):=\prod_{\alpha \in \mathrm{E}} \theta\left(t v_{\alpha}(z), q\right)
$$

If the conjecture about the structure of the poles of $Z(t, q, z)$ is correct, then

$$
\Xi(t, q, z):=t^{6} Z(t, q, z) \theta_{\mathrm{E}}(t, q, z)
$$

is an analytic function for $|q|<1$ and $t, z \in \mathbb{C}^{\times} \times \widetilde{\mathbf{T}^{5}}$. Equations (13) (15) imply that $\Theta(t, q, z)$ satisfies

$$
\Xi(q t, q, z)=\frac{1}{t^{12} q^{12}} \Xi(t, q, z)
$$

That is $\Xi(t, q, z)$ is a section of $\mathcal{L}^{\otimes 12}$. Let us fix a basis

$$
\eta_{k}(t, q)=\sum_{n \in \mathbb{Z}} q^{\frac{12 n(n+1)}{2}+k n} t^{12 n+k}, k=0, \ldots, 11
$$

in the space of global sections of $\mathcal{L}^{\otimes 12}$. Functions η_{k} satisfy

$$
\eta_{k}(q t, q)=1 /(t q)^{12} \eta_{k}(t, q), \quad \eta_{k}(1 / t, q)=q^{12-2 k} t^{12} \eta_{12-k}(t, q), \quad \eta_{k}(t, q)=q^{k+12} \eta_{k+12}(t, q)
$$

The function $\Xi(t, q, z)$ is a linear combination

$$
\Xi(t, q, z)=\sum_{k=0}^{11} c_{k}(q, z) \eta_{k}(t, q)
$$

(17) implies that

$$
\begin{gathered}
c_{k}(q, z)=-q^{12-2 k} c_{12-k}\left(q, z^{-1}\right), k \neq 0,6, \\
c_{0}(q, z)=-c_{0}\left(q, z^{-1}\right), \quad c_{6}(q, z)=-c_{6}\left(q, z^{-1}\right)
\end{gathered}
$$

Determination of the coefficients $c_{i}(q, z)$ is more difficult than in the case $z=1$ and will be postponed for the future publications.

Note that after specialization $g=1 \Xi(t, q, 1)=\Theta(t, q) \theta(t, q)^{5}$ and $\theta_{\mathrm{E}}(t, q, 1)=\theta(t, q)^{16}$ giving as a fraction the function $Z(t, q)$.

7 Concluding remarks

Partition function $Z_{\mathcal{X}}$ for $\mathcal{X}=\mathcal{Q}$ a smooth affine quadric of dimension $n-1$ is known [1]:

$$
Z_{\mathcal{Q}}(t, q)=\frac{1-t^{2}}{(1-t)^{n}} \frac{\left(q t^{2}, q\right)_{\infty}\left(q t^{-2}, q\right)_{\infty}}{(q t, q)_{\infty}^{n}\left(q t^{-1}, q\right)_{\infty}^{n}}
$$

It satisfies

$$
\begin{gather*}
\frac{Z_{\mathcal{Q}}(q t, q)}{Z_{\mathcal{Q}}(t, q)}=(-1)^{n} t^{n-4} q^{-1} \tag{26}\\
\frac{Z_{\mathcal{Q}}\left(t^{-1}, q\right)}{Z_{\mathcal{Q}}(t, q)}=-(-t)^{n-2} \tag{27}
\end{gather*}
$$

Functions $Z_{\mathcal{C}}(t, q), Z_{\mathcal{Q}}(t, q)$ have some common features. In both cases $\lim _{t \rightarrow 1} Z_{\mathcal{X}}(t, q)(1-t)^{\operatorname{dim} \mathcal{X}}=c_{\mathcal{X}} \frac{1}{(q, q)^{\operatorname{dim} \mathcal{X}}}$, where $c_{\mathcal{X}}$ is some constant. Functions $Z_{\mathcal{X}}(t, q)$ have poles of multiplicity $\operatorname{dim} \mathcal{X}$ at points $\left\{q^{k}\right\}$.

To further extend the analogy we need to digress. The spaces of polynomial maps $\mathbb{C} \rightarrow \mathcal{X}$ of degree N is a cone over the space of Drinfeld's quasimaps $Q \operatorname{Maps}_{N}(\mathcal{X})$ to projectivization of \mathcal{X}. The space $Q M a p s_{N}(\mathcal{X})$ is not smooth but still has a well defined line bundle of algebraic volume forms $\mathcal{K} . \mathcal{K}^{*}=\mathcal{O}(a(\mathcal{X})+N b(\mathcal{X}))$ in for some constants $a(\mathcal{X}), b(\mathcal{X})$. As usual $\mathcal{O}(n)$ is the power of the tautological line bundle. Exponents of t in (13) and (26) coincide with $b(\mathcal{C})$ and $b(\mathcal{Q})$. Thus functions $\Theta_{\mathcal{C}}(t, q)$ and $\Theta_{\mathcal{Q}}(t, q)$ are sections of $\mathcal{L}^{\operatorname{dim} \mathcal{C}-a(\mathcal{C})}=\mathcal{L}^{7}$ and $\mathcal{L}^{\operatorname{dim} \mathcal{Q}-a(\mathcal{Q})}=\mathcal{L}^{3}$ respectively. Finally $P_{\mathcal{X}}(t)=\lim _{q \rightarrow 0} Z_{\mathcal{X}}(t, q)$ is the classical Poincaré series of the algebra of homogeneous functions on \mathcal{X}.

It is tempting to say that this is a common features of an elliptic generalization of Poincaré series of an algebra of functions \mathcal{X} that should exist for a class of conical varieties whose members are \mathcal{C} and \mathcal{Q}. This class contains in the class of local conical Calabi-Yao varieties \mathcal{X}, whose base $B(\mathcal{X})$ is Fano of sufficiently large index. In this generalization

$$
Z_{\mathcal{X}}(t, q)=\frac{\Theta_{\mathcal{X}}(t, q)}{t^{(\mathcal{X})} \theta(t, q)^{\operatorname{dim} \mathcal{X}}} .
$$

$l(\mathcal{X}) \in \mathbb{Z}^{>0}, \Theta_{\mathcal{X}}$ is a section of $\mathcal{L}^{\operatorname{dim} \mathcal{X}-a(\mathcal{X})}$. The denominator in this formula is similar to the denominator in the Kac formula for the character of an integrable representations of an affine Lie algebra $\hat{\mathfrak{g}}$ at a positive level.

It appears that the first nontrivial Laurent coefficients of $Z_{\mathcal{Q}_{n}}(t, q)$ for a quadric at $t=1$ can be expressed through algebraic combinations of $(q, q)_{\infty}, E_{2}, E_{4}$ and probably E_{6}. The formulas are similar to the ones that have already appeared in Section 3:
$\lim _{t \rightarrow 1} Z_{\mathcal{Q}_{n}}(t, q)(1-t)^{n-1}=2(q, q)_{\infty}^{2-2 n}$
$\lim _{t \rightarrow 1} \partial_{t}\left(Z_{\mathcal{Q}_{n}}(t, q)(1-t)^{n-1}\right)=(q, q)_{\infty}^{2-2 n}$
$\lim _{t \rightarrow 1} \partial_{t}^{2}\left(Z_{\mathcal{Q}_{n}}(t, q)(1-t)^{n-1}\right)=(q, q)_{\infty}^{2-2 n} \frac{(n-4)\left(1-E_{2}\right)}{6}$
$\lim _{t \rightarrow 1} \partial_{t}^{3}\left(Z_{\mathcal{Q}_{n}}(t, q)(1-t)^{n-1}\right)=(q, q)_{\infty}^{2-2 n} \frac{(4-n)\left(1-E_{2}\right)}{4}$
$\lim _{t \rightarrow 1} \partial_{t}^{4}\left(Z_{\mathcal{Q}_{n}}(t, q)(1-t)^{n-1}\right)=(q, q)_{\infty}^{2-2 n}\left(\frac{(n-4)^{2} E_{2}^{2}}{24}-\frac{(n-4)(n+6) E_{2}}{12}+\frac{(n-16) E_{4}}{60}+\frac{5 n^{2}+58 n-288}{120}\right)$

Introduce an increasing multiplicative filtration on the algebra of function generated by E_{2}, E_{4}, E_{6}. The n-th derivative of $Z_{\mathcal{Q}_{n}}(t, q)(1-t)^{n-1}$ at $t=1$ is a multiple of $(q, q)_{\infty}^{-2} \operatorname{dim} \mathcal{Q}$. The factor belongs to n filtration space of the algebra. This parallels between $Z_{\mathcal{Q}_{n}}$ and $Z_{\mathcal{C}}$ suggests that this also holds for a more general \mathcal{X}. It raises a question whether coefficients of the E_{2}, E_{4}, E_{6}-monomials in the above formulas can be computed in terms of the characteristic classes of some bundles on the base of the cone \mathcal{X}.

References

[1] Y. Aisaka and E. A. Arroyo. Hilbert space of curved $\beta \gamma$ systems on quadric cones. JHEP, 0808(052), 2008.
[2] Y. Aisaka, E. A. Arroyo, N. Berkovits, and N. Nekrasov. Pure spinor partition function and the massive superstring spectrum. $J H E P, 0907(062), 2009$. arXiv:0806.0584v1 [hep-th].
[3] G. E. Andrews. Gap-frequency partitions and the Rogers-Relberg identities. Ars. Combin., 9:201-210, 1980.
[4] Nikos Bagis. Evaluations of derivatives of Jacobi theta functions in the origin. arXiv:1105.6279 [math.GM], 2011.
[5] Nathan Berkovits. Covariant quantization of the superstring. Int.J.Mod.Phys.A, 16:801-811, 2001.
[6] H. Hahn. Septic analogues of the Rogers-Ramanujan functions. Acta Arith., 110:381-399, 2003.
[7] M.V. Movshev. Local algebra and string theory. arXiv:1511.04743 [math.QA].
[8] L.J. Slater. Further identities of the Rogers-Ramanujan type. Proc. London Math. Soc. Ser. 2, 54:147167, 1952.

[^0]: ${ }^{1} \mathrm{Eq}_{1}$ is proportional to Eq_{0}

