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THE BETTI NUMBERS OF REAL TORIC VARIETIES

ASSOCIATED TO WEYL CHAMBERS OF TYPE B

SUYOUNG CHOI, BORAM PARK, AND HANCHUL PARK

Abstract. We compute the (rational) Betti number of real toric varieties
associated to Weyl chambers of type B. Furthermore, we show that their
integral cohomology is p-torsion free for all odd primes p.

1. Introduction

A toric variety of complex dimension n is a normal algebraic variety over C with
an effective algebraic action of (C \ {O})n having an open dense orbit. A compact
smooth toric variety is called a toric manifold. One of the most important facts
on toric geometry is that there is a 1-1 correspondence between the class of toric
varieties of complex dimension n and the class of fans in Rn. This fact is called
the fundamental theorem of toric geometry. In particular, a toric manifold X of
complex dimension n corresponds to a complete regular fan ΣX in Rn.

Among toric manifolds, the class of toric manifolds associated to Weyl chambers
has been considered since it is introduced by Procesi [12]. A classical construction
associates to each root system a toric manifold whose fan corresponds to the re-
flecting hyperplanes of the root system and its weight lattice. It is natural to ask
about the topology of the corresponding toric manifold. Note that the integral co-
homology of a toric manifold is well-established by Jurkiwicz [11] for the projective
cases and by Danilov [7] for general cases. For a coefficient field k, the ith k-Betti

number of a topological space X is the rank of Hi(X ;k) over k, and it is denoted
by βi(X ;k). One remarkable fact is that the Betti numbers of a toric manifold X
depend only on the face numbers of its associated fan ΣX . Especially, the struc-
tures of the cohomology of toric manifolds associated to Weyl chambers have been
studied by [12], [15], [9] and [1].

On the other hand, the subset consisting of points with real coordinates of a toric
manifold is called a real toric manifold. Unlike toric manifolds, little is known about
the topology of real toric manifolds. Let X be a toric manifold and XR its real toric
manifold. By Davis and Januszkiewicz [8], the ith Z2-Betti number of XR is equal
to the 2ith Z-Betti number of X , and, hence, it depends only on the face numbers.
However, the Betti numbers with rational coefficients are not only determined by
the face numbers. For instance, both the torus and the Klein bottle are real toric
manifolds and their corresponding fans have the face structure combinatorially
equivalent to the 4-gon. Hence, their Z2-Betti numbers are the same while their
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Q-Betti numbers are different. From this sense, the computation of the rational
Betti number of real toric manifolds is difficult, and only a few examples have been
computed so far. One known example is the real toric manifolds associated to
Weyl chambers of type An due to Henderson [10]. Interestingly, their rational Betti
numbers are the Euler zigzag numbers. Arnol′d [2] has defined the notion of snake
numbers as a generalization of the Euler zigzag numbers as follows: a snake of type

An (respectively Bn), or an An-snake (respectively, Bn-snake), is a sequence of
integers xi satisfying the conditions:

• for An : x0 < x1 > x2 < · · ·xn, xi 6= xj for i 6= j;
• for Bn : 0 < x1 > x2 < · · ·xn, xi 6= ±xj for i 6= j;

where 0 ≤ xi ≤ n for all i for An, and 1 ≤ |xi| ≤ n for all i for Bn. Denote
by an (respectively, bn) the number of An-snakes (respectively, Bn-snakes). The
number an is also known as the Euler zigzag number (see A000111 of [13]), and the
number bn is also known as the generalized Euler number or the Springer number
(see A001586 of [13]).

n 0 1 2 3 4 5 6 7 8 9 · · ·
an 1 1 1 2 5 16 61 272 1385 7936 · · ·
bn 1 1 3 11 57 361 2763 24611 250737 2873041 · · ·

Table 1. The list of an and bn for small n

The formula of the rational Betti number by Henderson was recovered by Suciu
[16] later using the general formula for rational Betti numbers of real toric manifolds
established by Suciu and Trevisan [17].

Theorem 1.1 ([10], [16]). Denote by XR

An
the real toric manifold associated to the

Weyl chambers of type An. The kth Q-Betti number of XR

An
is

βk(XR

An
;Q) =

(

n+ 1

2k

)

a2k.

We note that Choi and Park [5] showed that the formula used in [17] works for
not only Q coefficient but also arbitrary field k coefficient whose characteristic is
not equal to 2. Combining it with [16], we obtain the following.

Corollary 1.2. The integral cohomology of XR

An
is p-torsion free for all odd primes

p.

In this paper, we compute the rational Betti number of real toric manifolds asso-
ciated to the Weyl chambers of type Bn, and show that their integral cohomologies
are p-torsion free for all odd primes p. We prove the following:

Theorem 1.3. Denote by XR

Bn
the real toric manifold associated to the Weyl cham-

bers of type Bn. Then, we have the following:

βk(XR

Bn
;Q) =

(

n

2k

)

b2k +

(

n

2k − 1

)

b2k−1.

Furthermore, their integral cohomologies are p-torsion free for all odd primes p.

It is worthwhile to note that the same techniques to prove the above theorem
do not directly apply to the case of type C and D, the other regular types. This is
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because the analogues for the shellability results like Lemma 3.4 fail for type C or
D, making it hard to compute homology of the corresponding posets.

This paper is organized as follows. In Section 2, we introduce preliminary facts
including the formula of Suciu-Trevisan to compute the Betti numbers of real toric
manifolds and the way to define projective toric manifolds associated to Weyl cham-
bers. In Section 3, we prove the main theorem, that is, we compute the Betti
numbers of real toric manifolds of type Bn.

2. Preliminaries

2.1. The Betti numbers of real toric manifolds. In this subsection, we shall
introduce a formula of the Betti numbers of real toric manifolds. From now on, we
restrict our interests in the projective toric manifolds and its real toric manifolds.
Let X be a projective toric manifold of complex dimension n and XR its real toric
manifold. We assume that the associated fan ΣX of X has m rays r1, . . . , rm. Then,
ΣX can be regarded as a pair of an (n− 1)-dimensional polytopal simplicial sphere
K with the vertex set [m] = {1, . . . ,m} and a map λ : [m] → Zn such that

• σ = {i1, . . . , iℓ} ∈ K if and only if {ri1 , . . . , riℓ} forms a cone in ΣX , and
• λ(i) is the primitive vector in the direction of ri.

We call K the underlying simplical complex of X and λ the characteristic map of
X . Furthermore, since X is projective, there is a convex simple polytope P with m
facets F1, . . . , Fm whose face structure is isomorphic to K and the outward normal
vector of Fi is λ(i) for i = 1, . . . ,m.

Similarly to the fundamental theorem for toric geometry, it is known that as
a Z2-space, a real toric manifold XR is determined by the pair (K,λR), where
λR the composition map of λ and the canonical quotient map Z → Z/2Z, i.e.,

λR : [m]
λ
→ Z → Z/2Z. We call λR the Z2-characteristic map, and we note that

λR can be represented as a Z2-matrix of size n × m, called the Z2-characteristic

matrix. For each subset S of {1, . . . , n}, write λS =
∑

i∈S λi, where λi is the ith

row of λR. Let [m]S := {j ∈ [m] | the jth entry of λS is nonzero} ⊂ [m]. For such

S we define KS := {σ ∈ K|σ ⊂ [m]S}, and, as dual, PS :=
⋃

j∈[m]S

Fj . We note

that the topological realization of KS is homotopy equivalent to PS . Throughout
this paper, we denote by K the topological realization of a simplicial complex K if
there is no danger of confusion.

Theorem 2.1. [17, 5] Let X be a toric manifold and XR its real toric manifold.

Let k be a ring where 2 is invertible in k. Then the ith Betti number βi(XR;k) of

XR with coefficient k is given by

βi(XR;k) =
∑

S⊆[n]

rankk H̃
i−1(PS ;k) =

∑

S⊆[n]

rankk H̃
i−1(KS ;k).

Suciu and Trevisan in their unpublished paper [17] have established the formula
for the rational Betti numbers of real toric manifolds. Later, Choi and Park in [5]
have also derived a cohomology formula of real toric manifolds with the coefficient
ringG, where 2 is invertible in G. It should be noted that if the reduced cohomology
of PS is p-torsion free for all S ⊆ [n] and all odd primes p, then so is the cohomology
of XR. This formula also determines a stable homotopy decomposition of a wider
class of spaces called real toric spaces, see [4].
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2.2. Projective toric manifold associated to Weyl chambers. As mentioned
in Introduction, we mainly deal with the class of (real) toric manifolds associated
to the decomposition given by Weyl chambers. Let V be a finite dimensional real
Euclidean space, Φ ⊂ V a root system, and W its Weyl group. In V we have the
lattice Λ = {v ∈ V | (v, α) ∈ Z for any α ∈ Φ} which defines an integral structure,
where (−,−) is the natural inner product. For each set ∆ of simple roots in Φ we
consider the cone C∆ = {v ∈ V | (v, α) > 0 for any α ∈ ∆}. These cones provide
the rational polyhedral decomposition of V , i.e., the set of cones is a fan in V .
Hence, it defines a projective toric variety, which is in fact smooth.

From now on, let us consider the Weyl groups of regular types. Throughout this
paper, for the Weyl group of type An, the corresponding toric variety, its fan, the
underlying simplicial complex, the characteristic map, the corresponding real toric
variety, and the Z2-characteristic map are denoted by XAn

, ΣAn
, KAn

, λAn
, XR

An

and λR

An
, respectively. For the Weyl group of type Bn, the corresponding notions

are similarly denoted by XBn
, ΣBn

, KBn
, λBn

, XR

Bn
and λR

Bn
, respectively.

2.3. Type An. In this subsection, we shall review a sketch of proof of Theorem 1.1
and Corollary 1.2. The proof presented here is essentially the same with that
by [16] or [6] for the special case when the corresponding graph is a complete
graph. However, we enclose this subsection for the sake of self-contained readability.
Furthermore, it introduces a lemma needed to prove the main result.

Let W be the Weyl group of type An. It is well-known that the vertices of KAn

can be identified by the nonempty proper subsets I of [n + 1] and each (ℓ − 1)-
dimensional simplex of KAn

is related to a nested ℓ nonempty proper subsets of
[n + 1], that is, {Ii1 , . . . , Iiℓ} ∈ KAn

if and only if there is a permutation σ on [ℓ]
such that Iiσ(1)

⊂ · · · ⊂ Iiσ(ℓ)
. In addition, the characteristic map λAn

is

λAn
(I) =

{ ∑

k∈I εk, if {n+ 1} 6∈ I;
∑

k∈I\{n+1} εk − ε1 − · · · − εn, if {n+ 1} ∈ I,

where εi is the ith standard vector of Zn. As consequence,

λR

An
(I) =

{ ∑

k∈I ek, if {n+ 1} 6∈ I;
∑

k 6∈I ek, if {n+ 1} ∈ I,

where ei is the ith standard vector of Zn
2 .

From now on, let us compute the Q-Betti number of XR

An
. By Theorem 2.1, we

have to consider (KAn
)S for all subsets S ⊂ [n]. Here are three important nontrivial

steps.
For an odd number r, define Kodd

Ar
as

Kodd
Ar

:= (KAr
)[r].

(1) Kodd
Ar

is homotopy equivalent to the wedge of spheres of dimension r−1
2 .

(2) The reduced Euler characteristic χ̃(Kodd
Ar

) is (−1)
r−1
2 ar+1.

(3) For S ⊂ [n] with |S| = r or |S| = r + 1 for some odd number r, (KAn
)S is

homotopy equivalent to Kodd
Ar

.

By (1)–(3) together with Theorem 2.1, both Theorem 1.1 and Corollary 1.2 are
immediately proved.
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3. Type Bn

Let Φ be a root system of type Bn. It consists of 2n
2 roots

±εi (1 ≤ i ≤ n) and ± εi ± εj (1 ≤ i < j ≤ n),

where εi is the ith standard vector of Rn = V . One can see that the lattice Λ
consists of all integral vectors in Rn. We note that a line containing a ray of ΣBn

is
the intersection of n− 1 hyperplanes normal to ∆ \ {α}, where ∆ is a set of simple
roots of type Bn and α ∈ ∆, and the direction of the ray is determined by α. A
set of simple roots of type Bn forms

∆ = {µ1εσ(1) − µ2εσ(2), µ2εσ(2) − µ3εσ(3), . . . , µn−1εσ(n−1) − µnεσ(n), µnεσ(n)},

where µj = ±1 and σ : [n] → [n] is a permutation. For α ∈ ∆, there exists
a unique primitive integral vector β = (b1, . . . , bn) such that (β, α′) = 0 for all
α′ ∈ ∆ \ {α} and (β, α) > 0. We note that each component bj of β is either
±1 or 0. Then, we label the ray of ΣBn

corresponding to α ∈ ∆ by the set
I = {jbj | j = 1, . . . , n} ⊂ [±n] = {±1,±2, . . . ,±n}. More precisely, by putting
xi = µiεσ(i) − µi+1εσ(i+1) for i = 1, . . . , n − 1 and xn = µnεσ(n), if α = xi,

then β =

i
∑

k=1

µkεσ(k), and, hence, the corresponding label is {µ1σ(1), . . . , µiσ(i)}.

Therefore, the vertices of KBn
can be labelled by the nonempty subsets I of [±n]

satisfying

(∗) if i ∈ I, then −i 6∈ I,

and the characteristic map λBn
is

λBn
(I) =

∑

k∈I∩[n]

εk −
∑

k∈I\[n]

ε−k.

As consequence,

λR

Bn
(I) =

∑

k∈(I∪−I)∩[n]

ek,

where ei is the ith standard vector of Zn
2 .

Furthermore, one can see that each n-dimensional cone C∆ in ΣBn
corresponds

to n subsets I1, . . . , In satisfying (∗) such that I1 ( · · · ( In and vice versa. This
implies that each (ℓ − 1)-dimensional simplex of KBn

is labelled by a nested ℓ
subsets of [±n] satisfying (∗), that is, {Ii1 , . . . , Iiℓ} ∈ KBn

if and only if there is a
permutation σ on [ℓ] such that Iiσ(1)

⊂ · · · ⊂ Iiσ(ℓ)
.

Example 3.1. Let us consider ΣB2 . The corresponding toric variety XB2 is

CP2♯5CP
2
, and the corresponding real toric variety XR

B2
is the connected sum of

six RP2s. Let us compute the Betti number of XR

B2
using Theorem 2.1. We express

λR

B2
by a matrix and draw the geometric realization of KB2 as below, respectively:





1 2 1 2 12 12 12 12
1 0 1 0 1 1 1 1
0 1 0 1 1 1 1 1



 1

2

1

2

1212

12 12
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where the numbers over the horizontal lines are indicators for vertices of KB2 .
Then, (KB2){1} ≃ S1 \ {{2}, {2}} is homotopy equivalent to S0, and similarly, we

have (KB2){2} ≃ S0 and (KB2){1,2} ≃
∨3

S0. Therefore, the Betti number of XR

B2

is

βi(XR

B2
;Q) =







1, i = 0;
5, i = 1;
0, otherwise.

From now on, let us compute the Q-Betti number of XR

Bn
. By Theorem 2.1,

we have to consider (KBn
)S for all subsets S ⊂ [n]. Given a subset S ⊂ [n], then

(KBn
)S is the restriction of KBn

by {I ∈ V (KBn
) | |S ∩ I±| is odd}, where V (K)

is the vertex set of a simplicial complex K.
Now let us consider the case where S = [n]. Define Kodd

Bn
as

Kodd
Bn

:= (KBn
)[n] = {σ ∈ KBn

| σ consists of I such that |I| is odd}.

We define the poset Sodd
Bn

whose vertices are the vertices of Kodd
Bn

and the partial

order is given by inclusion, and define another poset S̃odd
Bn

:= Sodd
Bn

∪ {∅, [±n]} with

inclusion. Note that the order complex of Sodd
Bn

is Kodd
Bn

, and hence, χ̃(Kodd
Bn

) =

µ(∅, [±n]) where µ is the Möbius function of S̃odd
Bn

(see Section 3 of [14] for details),
that is,

µ(ρ, τ) =

{

1, if ρ = τ ;

−
∑

ρ≤σ<τ µ(ρ, σ), if ρ ⊂ τ in S̃odd
Bn

.

Lemma 3.2. The absolute value of µ(∅, [±n]) is bn. More precisely,

µ(∅, [±n]) =

{

bn, if n ≡ 0, 1 (mod 4);
−bn, if n ≡ 2, 3 (mod 4).

Proof. In this proof, we use i to denote the imaginary unit such that i2 = −1.
For a vertex I in S̃odd

Bn
such that I is neither ∅ nor [±n], put |I| = 2k + 1. Note

that the Möbius function µ(∅, I) depends only on |I| and µ(∅, I) = (−1)k+1a2k+1

(see the proof of Theorem 2.9 of [6]). Hence, we have

−µ(∅, [±n]) = 1 +

⌊n−1
2 ⌋

∑

k=0

(−1)k+1a2k+12
2k+1

(

n

2k + 1

)

= 1 + i

∞
∑

k=0

a2k+1(2i)
2k+1

(

n

2k + 1

)

.

Recall that the exponential generating functions of an and bn are

∞
∑

n=0

an
xn

n!
= secx+ tanx

and

B(x) :=

∞
∑

n=0

bn
xn

n!
=

1

cosx− sinx
= (cos x+ sinx) sec 2x
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respectively. Since ex = cos(−ix) + i sin(−ix), we have

M(x) := −
∞
∑

n=0

µ(∅, [±n])
xn

n!
= ex(1 + i tan(2ix))

= ex
cos(2ix) + i sin(2ix)

cos(2ix)

= (cos(ix) + i sin(ix)) sec(2ix).

Therefore, M(ix) = (cosx − i sinx) sec 2x. Since the exponential generating func-
tion of secx has only even degree terms, cosx sec 2x contributes the even degree
terms of M(ix) and sinx sec 2x contributes the odd degree terms of −iM(ix).
Therefore, the lemma immediately follows from that the odd degree term of B(x)
is equal to that of M(ix) and the even degree term of B(x) is equal to that of
−iM(ix). �

We will use the following well-known lemma in [3]. This can be regarded as
an alternative definition of shellability. Recall that a simplicial complex is called
shellable if it admits a shelling.

Lemma 3.3. [3, Lemma 2.3] An order F1, F2, . . ., Ft of the facets of a simplicial

complex is a shelling if and only if for every i and k with 1 ≤ i < k ≤ t there is a

j with 1 ≤ j < k such that Fi ∩ Fk ⊆ Fj ∩ Fk and |Fj ∩ Fk| = |Fk| − 1.

Lemma 3.4. For any integer n, Kodd
Bn

is shellable.

Proof. Note that since KBn
bounds for a convex polytope, it is shellable. Choose

a shelling σ : F1, . . . , Ft of KBn
. For each m ∈ [t], let F ′

m be the face obtained from
Fm by deleting all vertices of Fm corresponding to even subsets of [±n]. Note that
for any m ∈ [t], F ′

m is a facet of Kodd
Bn

. Then consider an ordering σ′ : F ′
1, . . . , F

′
t

of the facets of Kodd
Bn

, and then we delete F ′
m whenever F ′

m = F ′
ℓ for some ℓ such

that ℓ < m. Let σ∗ : F ∗
1 , F

∗
2 , . . . , F

∗
s be the resulting ordering, that is, the ordering

obtained from σ′ by dropping all facets of Kodd
Bn

not firstly appeared in σ′. Clearly,

σ∗ is an ordering of the facets of Kodd
Bn

. We will show that σ∗ is a shelling of Kodd
Bn

.
By Lemma 3.3, it is enough to show that, for every i and k with 1 ≤ i < k ≤ s,
there is j with 1 ≤ j < k such that

(1) F ∗
i ∩ F ∗

k ⊆ F ∗
j ∩ F ∗

k , and
(2) |F ∗

j ∩ F ∗
k | = |F ∗

k | − 1.

For each m ∈ [s], let dm ∈ [t] be the smallest integer such that F ∗
m ⊂ Fdm

, i.e., Fdm

is the first facet in σ containing F ∗
m. Note that for all ℓ,m ∈ [s],

dℓ < dm if and only if ℓ < m.(3.1)

Take i and k with 1 ≤ i < k ≤ s. Then F ∗
i ⊂ Fdi

and F ∗
k ⊂ Fdk

. Since di < dk by
(3.1), by considering two facets Fdi

and Fdk
of KBn

together with Lemma 3.3, there
is J with 1 ≤ J < dk such that Fdi

∩Fdk
⊆ FJ∩Fdk

and |FJ∩Fdk
| = |Fdk

|−1. Then
we consider a facet F ′

J of Kodd
Bn

. Let j be the smallest integer such that F ∗
j = F ′

J .

Then dj ≤ J by definition, and so we have dj ≤ J < dk. Thus j < k by (3.1), and
it indeed satisfies the conditions (1) and (2) as follows.

Let V be the set of vertices of Kodd
Bn

. Note that F ∗
i ∩ F ∗

k = Fdi
∩ Fdk

∩ V and
F ∗
j ∩F

∗
k = FJ∩Fdk

∩V . Therefore (1) follows from the fact that Fdi
∩Fdk

⊆ FJ∩Fdk
.

Moreover, since F ∗
j ∩ F ∗

k = FJ ∩ Fdk
∩ V and |FJ ∩ Fdk

| = |Fdk
| − 1, we have

|F ∗
j ∩ F ∗

k | ≥ |F ∗
k | − 1. Since j 6= k implies that F ∗

j 6= F ∗
k , (2) is proved. �
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1̄2 23 1̄3

1̄23

12̄ 2̄3 13

12̄3

12 23̄ 13̄

123̄

1̄2̄ 2̄3̄ 1̄3̄

1̄2̄3̄

I

[±n]

Figure 1. The interval [I, [±n]] of the poset S̃odd
Cn

. Here, ī means

−i and the label in each box means a vertex in Kodd
Cn

obtained by

the union of I and the elements in the label. For example, 1̄2 and
2̄3 mean I ∪ {−1, 2} and I ∪ {−2, 3}, respectively.

Note that Kodd
Bn

is homotopy equivalent to a wedge of uniform spheres Sd as it

is shellable. One can easily see that the dimension of the sphere is d = ⌊n−1
2 ⌋ by

observing the dimension of the facets. Since the absolute value of the reduced Euler

characteristic of Kodd
Bn

is bn by Lemma 3.2, we conclude that Kodd
Bn

≃
∨bn S⌊n−1

2 ⌋.

Remark 3.5. Here we give an explicit shelling of Kodd
Bn

. We define an ordering ≺
on [±n],

1 ≺ 2 ≺ · · · ≺ n ≺ −1 ≺ · · · ≺ −n,

(just fix an ordering so that the positive integers proceed to the negative integers)
and we define an order lexicographically induced by ≺ on the set of all maximal
chains of S̃odd

Bn
(comparing the smaller element). We also denote by the same symbol

≺ the order on the set of all maximal chains. More precisely, for two maximal chains
σ and σ′ such that

σ : ∅ = I0 ( I1 ( I2 ( · · · ( Ir ( Ir+1 = [±n]

σ′ : ∅ = I ′0 ( I ′1 ( I ′2 ( · · · ( I ′r ( I ′r+1 = [±n],

we say σ′ ≺ σ if there exists 1 ≤ i ≤ r such that I ′i <lexi Ii (comparing lexico-
graphically under the ordering ≺ on [±n]) and I ′j = Ij for any j < i. Then it can

be shown that this ordering on maximal chains gives a shelling of S̃odd
Bn

.

Remark 3.6. The proof of Lemma 3.4 is not extended naturally to the case for
Weyl chambers of types Cn and Dn. One can check that Kodd

Cn
is a set of faces σ in

KCn
such that σ consists of I satisfying one of (1)∼(4):

(1) n 6∈ I±, and |I| is odd;
(2) n ∈ I±, |I| 6= n, n− |I| is odd;
(3) n ∈ I, |I| = n, |I \ [n]| is even;
(4) −n ∈ I, |I| = n, |I ∩ [n]| is even,

where I± denotes (I∪−I)∩[n]. In general,Kodd
Cn

is not shellable. For an illustration,

consider S̃odd
Cn

when n is an even integer such that n ≥ 4. Let I = {4, 5, . . . , n} and

consider the interval [I, [±n]] of the poset S̃odd
Cn

, see Figure 1. It is easy to see that

the interval [I, [±n]] is not shellable. Since S̃odd
Cn

has an non-shellable interval, it is

not shellable. It can be similarly shown that Kodd
Dn

is not shellable.
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Now, let us return to the case where S 6= [n]. If S is an empty set, so is (KBn
)S .

Lemma 3.7 (Lemma 5.2 of [6]). Let I be a vertex of a simplicial complex K and

suppose that the link of I, LkI, is contractible. Then K is homotopy equivalent to

the complex K \ StI, where StI is the star of I.

Lemma 3.8. For a positive integer n ≥ 3, for S ⊂ [n], (KBn
)S is homotopy

equivalent to (KBn
)′S, where (KBn

)′S is obtained from (KBn
)S by deleting vertices

I in (KBn
)S such that I± 6⊂ S.

Proof. For simplicity, we let K = (KBn
)S and K ′ = (KBn

)′S . We will show that
we can eliminate stars of vertices in K \ K ′, one by one, from K to K ′, without
changing the homotopy type. First, for any vertex I of K, I ∩ S 6= ∅. In addition,
two vertices I and J meet in K if and only if I ⊂ J or J ⊂ I.

Let I be a vertex of K \K ′ such that |I± ∩ S| = 1, say I± ∩ S = {x}. Let J be
a vertex in K such that J± = {x} and J ( I. Take any L ∈ LkI. If I ⊂ L, then
J ⊂ L, and so L meets J . Suppose that L ⊂ I. Then L± ∩ S is a subset of I± ∩ S.
Since L is a vertex of K, L± ∩ S 6= ∅. Therefore L± ∩ S = I± ∩ S = {x} = J± and
so J± ⊂ L±. Since J± ⊂ L± ⊂ I±, J ⊂ I and L ⊂ I, it follows that J ⊂ L, and so
L meets J .

Hence, LkI is contractible, and so K is homotopy equivalent to K \ StI by
Lemma 3.7. By redefining K := K \ StI and repeating the argument, we can
conclude that the star of any vertex I with |I± ∩ S| = 1 can be eliminated.

Inductively, assume that we could eliminate all vertices I ∈ K \ K ′ such that
|I± ∩ S| < j, and let K∗ be the simplicial complex obtained by deleting stars of
all those vertices, where j ≥ 2. Take a smallest vertex I ∈ K∗ \ K ′ such that
|I± ∩ S| = j. Let J be a vertex in K∗ such that I± ∩ S = J± and J ⊂ I. (Note
that J ∈ K ′ and so J is in K∗ and I 6= J .) Take any L ∈ LkI in K∗. If I ⊂ L,
then J ⊂ L, and so L meets J . Suppose that L ⊂ I. Then L± ∩ S is a subset of
I±∩S = J±. If |L±∩S| < j, then such L should have already been deleted by our
induction hypothesis. Thus |L±∩S| = j and so L±∩S = J±. Therefore J± ⊂ L±.
Since J ⊂ I and L ⊂ I, we have J ⊂ L, and so L meets J .

Hence, LkI is contractible, and so K∗ is homotopy equivalent to K∗ \ StI by
Lemma 3.7. By redefining K∗ := K∗ \ StI and repeating the argument, we can
conclude that the star of any vertex I with |I± ∩ S| = j can be eliminated in
increasing order of the size |I± ∩ S|. �

Lemma 3.9. Let r = |S|. Then, (KBn
)S is homotopy equivalent to Kodd

Br
.

Proof. By Lemma 3.8, it clearly follows. �

Theorem 3.10. The ith Q-Betti number βi(XR

Bn
;Q) of XR

Bn
is

βi(XR

Bn
;Q) =

(

n

2i

)

b2i +

(

n

2i− 1

)

b2i−1.

Furthermore, their integral cohomologies of XR

Bn
are p-torsion free for all odd primes

p.

Proof. Let S ⊂ [n] and assume that |S| = r. By Lemma 3.9, (KBn
)S ∼= Kodd

Br
.

We recall that (KBr
)S ∼=

∨br S⌊ r−1
2 ⌋. Hence, the topology type of (KBn

)S only
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depends on the cardinality of S. For a fixed i and a field k with characteristic is
not equal to 2, by Theorem 2.1,

βi(XR

Bn
;k) =

∑

S

βi−1β̃((KBn
)S ;k) =

n
∑

r=0

δi−1,⌊ r−1
2 ⌋

(

n

r

)

br,

where δi,j = 1 if i = j and 0 otherwise. It proves the theorem. �
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