A note on a bijection for Schröder permutations

DAVID CALLAN
Department of Statistics
University of Wisconsin-Madison
Madison, WI 53706-1532
callan@stat.wisc.edu

Abstract

There is a bijection from Schröder paths to $\{4132,4231\}$-avoiding permutations due to Bandlow, Egge, and Killpatrick that sends "area" to "inversion number". Here we give a concise description of this bijection.

1 Introduction

Permutations of length n avoiding the two 4 -letter patterns 4132 and 4231 are known [1] to be counted by the large Schröder number r_{n-1} with generating function $\sum_{n \geq 0} r_{n} x^{n}=$ $1+2 x+6 x^{2}+22 x^{3}+\cdots=\frac{1-x-\sqrt{1-6 x+x^{2}}}{2 x}$ (A006318). It is well known that r_{n} is the number of Schröder paths of size n where a Schröder path is a lattice path of north steps $N=(0,1)$, diagonal steps $D=(1,1)$ and east steps $E=(1,0)$ that starts at the origin, never drops below the diagonal $y=x$, and terminates on the diagonal. Its size is $\# N$ steps $+\# D$ steps, and a Schröder n-path is one of size n. Thus a Schröder n-path ends at (n, n).

Bandlow, Egge, and Killpatrick [2] construct a bijection from Schröder n-paths to $\{4132,4231\}$-avoiding permutations of length $n+1$. They show that their bijection relates the area below the path to the number of inversions in the permutation. Here we give a concise, and possibly more transparent, formulation of their bijection.

It is convenient, and natural for present purposes, to take our permutations on $[0, n]$ rather than the standard $[1, n]$ and to define the truncated coinversion table of a permutation p on $[0, n]$ to be the list $c=\left(c_{i}\right)_{i=1}^{n}$ where c_{i} is the number of coinversions topped by i, that is, $c_{i}=\#\{j: 0 \leq j<i$ and j precedes i in the permutation $\}$. The table is "truncated" because we omit c_{0} which would necessarily be 0 . We say i is a fixed point of c if $c_{i}=i$ and denote the list of fixed points of c by $\operatorname{FP}(c)$. Thus, for $p=350214$, we have $c=11041$ and $\operatorname{FP}(c)=(1,4)$. Clearly, the fixed points of c are right-to-left minima of p and conversely, every nonzero right-to-left minimum of p is a fixed point of c.

2 The Bandlow-Egge-Killpatrick bijection

In these terms, the bijection from $\{4132,4231\}$-avoiders p on $[0, n]$ to Schröder n-paths has a short description: find the coinversion table c of p, then form the unique Schröder n-path whose D steps end at x coordinates in $\mathrm{FP}(c)$ and whose N steps, taken in order, have x coordinates given by the list $c \backslash \mathrm{FP}(c)$. For example, with $n=10$ and $p=$ 210796105348 , we have $c=0034333846$, $\mathrm{FP}(c)=348$, and $c \backslash \mathrm{FP}(c)=$ 0033346 . The corresponding Schröder path is shown in Figure 1.

A Schröder 10-path
Figure 1

The map is both defined and reversible due to the following characterization of $\{4132,4231\}$ avoiders whose straightforward proof is left to the interested reader.

Proposition. Suppose p is a permutation on $[0, n]$ with truncated coinversion table c. Then p avoids $\{4132,4231\}$ if and only if the list $c \backslash \operatorname{FP}(c)$ is weakly increasing.

The connection between number of inversions in the permutation $\left(=\binom{n+1}{2}-\#\right.$ coinversions) and area of the path is clear: the number of unit squares in the first quadrant lying wholly or partially to the left of the path (in yellow in Figure 1) is the sum of the x coordinates of all the north and diagonal steps which, by the construction, is $\sum_{i=1}^{n} c_{i}$, the total number of coinversions in the permutation.

References

[1] Darla Kremer, Permutations with forbidden subsequences and a generalized Schröder number, Discrete Mathematics 218 (2000) 121-130.
[2] Jason Bandlow, Eric S. Egge, and Kendra Killpatrick, A weight-preserving bijection between Schröder paths and Schröder permutations, Annals of Combinatorics 6 (2002) 235-248.

