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ON ERROR SUMS FORMED BY RATIONAL APPROXIMATIONS
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Abstract
In this paper we consider error sums of the form

oo

Zam(bma—a—m),

@
m=0 m

wherec is a real numberq,,, b, ¢, are integers, and,, = 1 ore,, = (—1)". In particular, we
investigate such sums for

ae{mee?e? . log(1+1),¢(2),((3)}

and exhibit some connections between rational coefficmraarring in error sums for Apéry’s continued
fraction for{(2) and well-known integer sequences. The concept of the paerglizes the theory of
ordinary error sums, which are given by, = ¢,,, anda.,,/c,, = p,, with the convergents,, /¢,, from
the continued fraction expansion @f
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2 Thomas Baruchel and Carsten Elsner

1 Introduction

Let a be a real number. We assume that there is a sequénee (b,,),,, Of integers, a sequende :=
(rn)n20 of rationalsr,, = a,,/c,, say, witha,, € Z andc¢,, € N, and a real numbes > 1 satisfying

‘bncna — an| < % (n>0). 1.1)
This is equivalent with
!bna—rn| = bna—a—" < in (n>0). 1.2)
Cn w

We consider the fractiow,, /b, c, as a rational approximation af with split denominatom,,c,. Since
w > 1, the error sums

8*(B,R, a) = i (bma —rm) = i (bma - a_m) , a.3)

m=0 m=0 Em
E(B,R,a) = i !bma—rm‘ = i ‘bma— Z—m 1.4)
m=0 m=0 m

exist. Let(pn/qn),~o b€ the sequence of convergentsxadefined byp,, /¢, = (ao; a1, ag, ... an) from the
regular continued fraction expansion

1
a = {(ap;ai,as,...) = ag+ N
ai + 1
az + —
of a.. The error sums ofi for B = (¢5.),,>¢ @andR = (pn),,>,, NAmMely
() = E(B,Ra) =Y (qma—pm).
m=0
E@) = E(B,R,a) = > |gme — pm|,
m=0

were already studied in some papérs [6,/7,8, 9]. We&dlk) and€(«) ordinary error sums Conversely,
for B = (1),59 and R = (pn/qn),>0, until now nobody has found any remarkable approach to trw er
sums

E*(B,R,a) = mz::o (a - Z—:) ,

E(B,R,a) = i‘a—p—m.

In this paper we focus our interest on the serie$ in (1.3) [@nd) (n the case of particular values @fand
well-known rational approximations of the form
Gn

b,oo — —
Cn

0 <

< — (n2>0). (1.5)
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Among others we are going to study the numbers

1
o e {m el UL log(144), €(2), ¢B) |

wherel = 1,2,...,e = exp(1), p = (1++/5)/2, and—1 < ¢ < 1, and we shall investigate extraordinary
properties of corresponding error surhs1.3) (1.4).

2 Ordinary error sums for values of the exponential function

Ordinary error sums connected with the exponential funcice studied in_[1, 10]. Here, our goal is to
express this usual error sums itselves by a non-regulameet fraction. For this purpose we express the
error integral

erf(z) — \% /O et dt

by a hypergeometric series, which again can be transformiediiGauss-type continued fraction.

Theorem 2.1. Let! > 2 be an integer, and let, /¢,, denote the convergents @f'’. Then we have

1 2/l UV,
£ 1/1 — 1/ln_ | = 1/1\/Eerf = _ —t dt
(e’) %‘6 q p| € I (\/Z> —\/Z ; e

_ 1/1 (m>1)
1/2 1/21
2/21
3/2+
3/2l
5/2 —
4/21
7/2+ 520
9/2 —

—1)"™m/21

11/2+ . (=1)"m/

2m+1)/2+ .

Proof: The firstidentity of the theorem expressifi¢z!/!) by an error integral is already known from [1] 10].
In order to prove the continued fraction expansion, we set

f(z) = ?zeZQGrf(z) = 2’622/ e dt.
0
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We express (z) in terms of a hypergeometric functiqi; («, 3; 22).

t21/ ) o (_l)l’z2u+1
———dt = ze? —_—
/ = VZ:;) (2v + 1)v!
- 2u X 1\ L2v
2 " (-1)"z
- - (z ) (; )
) [c'eNe ] (—1)VZ2( +M) ) ee] e Ne o] (_1 v ok
= Zz = Z
;; VZ:_O (2v + Dviu! ch:O <;§ VZ;) (2v + 1)1/';1')
u+v==k

_ 2 (=" % _ 2 D) 2
EZ(Z;2V+1M@ ) ZE:M<§:zw+1)Z '

From [15, p. 68], Remark 8.5, we have the following formulatiwk: replaced by andn replaced by)

1 (=Y (F 1

d* k], ctvd  clc+d)(c+2d)---(c+kd)’

v=0
wherelk], = k!. Settingc = 1 andd = 2, it follows that

-D"() 2* _ !
Ei;é% 2w+1  1-3-5---2k+1)  (3/2),

This gives

X 22k > 1
)= G, - Z:Z_okw(?);’%)kz% = AL,

The function1F1(1,3/2; 22) can be expressed by a Gauss-type continued fraction. Usrngufa (8) on
page 123 in[[16] withy = 3/2 andz = 22, we have

1F1(1,3/2;2%) = 1/12/2 (m >1)
1/2 - 222/2
322/2
422 /2
522/2
(—1)"mz%/2

3/2+
5/2 —

/2 +

9/2 —
11/2+ .

(2m+1)/2+ "
Hence the continued fraction expansion given by the thedodlows from

S (Mg, — pa| = vﬁ iﬁ cerf(1/v1) = (U¢)-—_gqu3m1ﬂ)
n>0

We point out the particular cage= 1.
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Corollary 2.1. We have

1
VF(1,3/2;1) = e/ e~ dt
0

oo an
= Enole) = e—=2+> > |(bgn-1+ an-2)e — (bpn—1 + Pn—2)|
n=1 b=1
1/2
_ / (m=1),
1/2
1/2 — -
3/2+
5/2 3/2
7/2+ 2
0/ 5/2
; —1)"m/2
11/2+ ™ S
2m+1)/2+ .
where&y;c(e) is the error sum oé taking into account all the minor convergents of
= (2;1,2,1,1,4,1,...) = (2;a1,a9,as,...). (2.1)
Proof: The formula
1
5]\/10(6) = e/ e_t2 dt
0
follows by (2.1) using
> 1
Evcle) =e—1+ Z (=1)v+t (qve —py) ( 5(1 + ayt1)apy1 — a,,+2)
v=0
and the formulas
1 ,.m+1 m
x z—1
43m—1€ — P3m—-1 = —/ —( ' ) e dx ,
0 m:
1,.m m+1
z™(x—1
q3m€ — P3m = _/ —( 1 ) exdx,
0 m:
1,.m+1 m—+1
T (x—1) -
— pr— d
d3m+1€ — P3m+1 /o (m+ 1) e ax
due to H. Cohn([b]. O

Let! > 1. Then we know from[[18, p. 193] that the numberg' and fl/\/_ —* 4t are algebraically
independent ove. This proves

Corollary 2.2. Letl > 2 be an integer. Then the numbeié&!/! ) and £y, (e) are transcendental.
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3 Error sums for 7 and (log p)/v/5

In [11], A.Klauke and the second-named author have foundaminued fractions fot /= and(log p)/v/5.

In this section we are going to apply these results to comimateorresponding error sums and to decide on
their algebraic character. We start with the continuedtifvador 1 /7.

1.) From Theorem 8 in[11] and its proof we have the following esu

13 14 110 m(m —1)(2m — 1)(2m + 1)(4m — 5)(4m + 3)
™ 10 — 25 — 171 —...— (4m + 1)(4m?2 +2m — 1) -
9 — @1 — q2 —---7 Gm T ---

Letn =0,1,2,.... Set

n

B, = 2'4n+1z<Z>(2k+3)(k+5/2)n,

|
n. =0
9. gnt1 .k v (M (2k+3)(k+5/2)
A, = —1)~tV noy (—g)n Tt
o 0 () g )

Here,
(k+5/2), = (k+5/2)(k+7/2)(k+9/2)-- (k+n+3/2).
Note thatA,, is a rational number, but no integer, whilg, /4 is an integer. Then, fat > 0, one has
P P P2 P _ Bn
Qo — @ — G —---— o 44,7
and

7B, tT %/ 4t(1 — 1)
0< 4, - :4(n+3/2)/0 2_t( > )dt.

For0 <t < 1 the rational functionit(1 — t)/(2 — t) takes its maximun2(6 — 41/2) at the point2 — v/2.
Therefore, it follows that

B, n 1 1-—1¢
0 < A= T2 < 8+ 3/2)(6 - VD) / WL L
0 _
The integral on the right-hand side is a Pochhammer integi@ktertain hypergeometric function. We show
the analogous details below in part 2.) which is devoted éatimber(log p) /v/5.

8(10/3 — 7)(n + 3/2)(6 — 4v/2)" .

For (1.3) and[(1}4) we define the sequendées= (b,),~, and R := (ry),>, by b, :== —B, /4 and
rn = —A,. Then we have the error sums - -

E(B,R,7) = Z(bmﬂ—rm) = —&(B,R, )

_ 3 +3/2(4té_t)) dt
B VI—t (2-t)4t* - Tt +6) it
B 2—t (4t2—5t+2)

—u?+3)
4u4 3u2 +1)?

\\
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Here we have introduced the new variable= /1 — t. Computing this integral, we have the following
theorem.

Theorem 3.1. For the sequenceB := (b,),~, andR := (r,),,~, defined by,, := —B, /4andr, = —A,
we have - -

5*(B7R77T) - _E(B,R,ﬂ') = ﬁlog(g;ﬁ) _3771-

4
— - = —5.4333111067784 . ...
o - 33311106778

Expressingr by 7 = 21°gi , We see that (B, R, ) is a nonvanishing linear form in logarithms with alge-
braic arguments and algebra|c coefficients. Then, by Tine@r2 in [2], we have the following corollary.

Corollary 3.1. For the sequenceB := (by,),,~o andR := (r,),, defined by, := —B,, /4 andr, = — A,
the error sum€ (B, R, r) is transcendental, and so is the error sdéM( B, R, ).

2.) From Theorem 6 in[11] and its proof we have the following fesu

V6 60 7 110 m(m —1)(2m — 1)(2m + 1)(4m — 5)(4m + 3)
logp 13 — 80 — 522 —...— 2(4m + 1)(6m?2 + 3m — 1) —...
g — @1 — 92 —---7 gm T .-

Letn = 0,1,2,.... Set (cf. (25) in[[11] with: = d = 1)

n

9 4n+1 ntk [T k
Dy = —— > (-1 <k> (2k +3)(k+5/2) 5%,
k=0
4n+1 n (2k + 3)(k +5/2) 5"
C, = oy e n+k< ) >
! PR 2k —2v +1
Applying Lemma 6 in[[11] withe = 7 = 1, we find that
Po P12 Pn _ Dn
g — 41 — 42 —---7 d4n C(n7

and

2 1)!
O<C’n—D"10gp ~(5/2),(n+1) 2F1<n—|—1 n—|—2‘ 1>

VB A(5/2)50 m+7/2 14
We define the sequencés := (by,),,~, andR := (r,),,~, by b, := —D,, andr,, = —C,,. Then we have
the error sum B -

log p St logp 1 & 5/2 (m+1)! m+1 m+2 1
& (B, R, - b S F ‘—— .
( \/5> g;o( 5 ) 44 4(5/2)y, 0\ 2m+T/2 4

To compute this error sum, the method is the same as used falvalie error sum of (7). First we express
the hypergeometric function by Pochhammer’s integral.al&tc, = be complex numbers satisfying| < 1,
R(c—b) > 0, andR(b) > 0. Then we have the identity

o Fy ( ac b ‘z) = %/Oltb—l(l — )1 — 2t) " at,
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cf.[19, p. 20]. The conditions are fulfilled far=n +1,b =n+ 2, ¢ = 2n + 7/2, andz = —1/4, where
n=20,1,2,.... Hence, it follows that

n+1l n+2| 1\  T@2n+7/2) /1 il 12 £\t
2F1< o0 +17/2 | 4>_F(n—|—2)I‘(n—|—3/2) LA (1+3)  ar

In order to simplify the above expressions we need two itleatinvolving Pochhammer’s symbol (19, p.
239)).

(5/2), 1
(5/2)2n+1 B (TL + 5/2)n+1 7
D(2n +7/2)
Tn+3/2) (n+3/2)(n+5/2), -

Collecting together all the above results, it follows that

. logp 1 00 /1 tm+1(1 _ t)m+1/2
&*( B,R, = -= +3/2 dt
( V5 ) 4 X:O m+3/2) o (L+t/a)mt!
1 4t/1 — t(1—t)\"
- _Z/ 4+t Z +3/2( 4+t > di

_ _l/ (4t2—t—|—12)\/1Tdt
2Jo (412 — 3t +4)?

/1 u?(1 — u?)(4u* — Tu® + 15) d
0 (4ut — 5u? + 5)°

u,

whereu = /1 — t. This proves

Theorem 3.2. For the sequenceB := (by,),,~, and R := (r,,),,~, defined by,, := —D,, andr, = —-C,
we have - B

5*<B,R, logp>

V5
5 4545 5
\/124f—265log<1+§— \/2_ )—\/124\/5+265arccos<§—1> 1
= + =
55v11 11

= —0.1210649459927 ... .

Usingarccos z = %log(z + V22 — 1), we obtain by Theorem 2.2 inl[2] the following result.

Corollary 3.2. For the sequenceB := (bn)n20 andR := (rn)nZO defined by,, := —D, andr, = —C,
the error sum€ (B, R, log p/+/5) is transcendental.
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4 An error sum for log(1 + ¢)

In this section we generalize a concept from the proof of Téxao3 in [12], where a nonregular continued
fraction forlog 2 is established. First we shall prove a continued fractiopaesion forlog(1 + t) with
—1 <t <1, namely

2 1242 2242 32¢2 m2t?
log(1+1t) = ,  (4.1)
24t — 3(2+1t) — 52+t) — 7(24+t) —-— 2m+1)(2+1t) —...

wherem = 1,2,.... O.Perron[[156, p. 152] cites by equation (7) the continuadtfon

t 1%t 12t 2%t 22t 3% 3%t
log(l+t) = - @ — —  — — —  — .

1+ 2 + 3 + 4 + 5 + 6 + 7 +...
Here we shall give full details of the proof, since a new arganmis needed in H.Cohen’s methad [4]
established for Apéry’s irregular continued fractions(¢2) and((3), and we need the details in order to
compute the error sum. Similar to Apéry’s approach we hav&ndle with combinatorial series.
In the sequel we fix a real numbewith —1 < ¢ < 1. Letn > 0 be an integer. We define two combinatorial
series by

n n+k —k
A = n
n k < k >t Ck
k=0
where
k m—1
._ (=pmm
Cp 1= mZ::l —

By applying Zeilberger’s algorithm[14, Ch. 7] (Algorithm 7.1) on a computer algebra systemurib$ out
that the number®,, satisfy the linear three-term recurrence formula

(n+1D)Xp1 — Cn+ D2 +)X, +nt’X, 1 =0  (n>1). (4.2)

In the sequel we prove this formula fof,, = B,, without using a computer, since we need the details to
show that evernX,, = A,, satisfy the recurrence. L&t n denote integers. Set

n n -+ k —k
Ak = ",

Bn,k = —(4n + 2))\n,k ,
Apk = Byck,
Snk = (n+DApgrper — (2n 4 1)(2 4 ) Ay ik + nt* A1 ke -



10 Thomas Baruchel and Carsten Elsner

Note that(}) = 0 for k < 0 or k > n, which implies thatd,, 41 = By 511 = Ap,—1 = Bp—1 = 0. One
easily verfies the identitils

>\n,k—1 _ k2t

Mk (it k)n—k+1)’
Ayie  (n+k+1)t

m - n—k+1"
A1k n—k

Dk (k)

which can be applied to prove the identity
Buk—Bnr1 = (n+Dhprk — 20+ D)2+ ) Ap + 02 N1 - (4.3)

Summing up on both sides &f (#.3) frokn= 0to k = n + 1, we obtain

n+1
0 = Bpnt1—Bn-1 =Y (Buk— Bni-1) = (n+1)Bny1 — (2n+1)(2+)By + nt’ B,
k=0

which proves[(42) foX,, = B,,.
Multiplying @.3) by ¢, we obtainS,, , = (B, x — By k—1)ck. Hence,
Apk —Apgp—1 = Bugcr — Bujg—1ck—1 = (Bng — Bnjp—1)ck + Bnj—1(ck — ck—1)
: )

Again, we sum up fronk = 0to kK = n + 1. This gives

= Sn,k + Bn,k—l

n+1
0 = An,n+1 - An,—l = Z (An,k - An,k—l)
k=0
n+1 n+1 k—1,k
o n n+k_1 n—k—i—l(_l) t
= > Sus (4n+2)z<k—l>< 1 >t -
k=0 k=1
n k
B 9 el n\ (n+k\(—1)
— (4 DAt — 20+ 1)(2 4+ DA, + nt2 Ay — (4n + 2)t §<k>< . ) —

Finally Vandermonde’s theorem for the hypergeometricesed’ (n + 1, —n,2;1) ([19, eq. (1.7.7)]) com-
pletes our proof of (412) foX,, = A,, by

f: <Z> <n Z k) (k_i)f = oFi(n+1,—n,2;1) % =0

k=0

for n > 1. In the next step we prove that

lim % = log(1+1). (4.4)

n—o0 n

1We should like to point out that there is a misprint in the fatanfor A\, 1,5 /A % in [12].
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For this purpose we shall prove that for every fixed integer 0 we have the limit

L))
V¥ ~ 0. (4.5)

lim — =
n—o00 Z n n _|_ k tn—k
k k

k=0

Then, [4.5) implies(4]4) by a theorem of O.Toeplifz ([1710, no. 66]), since
= (e

lim ¢, = g
n—oo

m=1

= log(1+1).

There is nothing to show far = 0, becaused,, = 0 andB,, = (27?) # 0. Therefore, keep € Ny and
t € (—1,1] \ {0} fixed. We substituteX,, = B,, into (4.2) and divide the equation iy + 1)B,,. Then we

obtain
Bop1  (2n+1)(2+1) | nt? 1

B, n+1 1 BB
Let « := lim;,—, o Bp+1/By. By taking the limitn — oo, it follows that« satisfies the quadratic equation

= 0.

2
a—22+t)+— =0,
«
which yields
a=2+t+2V1+t > [t (—1<t<1).

Puts := (a+|t[)/2. Then,

0<|t| < B <a. (4.6)
There is an integety = ng(t) satisfying
B
>
Bm_1>ﬁ>0 (m >ng),
or
’Bm‘ > B’Bm—l‘ (m > Tlo) .

Then, forn > 2ng andk := n — ng > ng, we have

|Bn| > B|Bn_1| > BYBn_a| > > B¥|Bu_i| = 877™|By,|.

L) e

1m
<Tl + k) tn—k n—o0 ’Bn’

Consequently, we obtain

< lim 2N Y A (") ("J”’)(m)n
T ommoo BRTTOIBy| [t Bpg| n=o0 \1v) \ v B
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since0 < [t[3~! < 1 by (&8), and(") (") is a polynomial inn of degree2v. This completes the proof

of (4.5) and, consequently, &f (4.4). ’
We rewrite the recurrence formula(#.2) as

Pn+1)Xpt1 —Q(n+1)X, —Rn+1)X,—1 =0,

where

Pn+1) = n+1,
Qn+1) = (2n+1)(2+1),
Rn+1) = —nt*.

Then, we obtain

aq as as
log(1+¢) = o+ & 2 B
og(l+1) =bot o™ L LT 4o

with
bo = 0, by = 24t, by = gézig _ (2n—|7—11—i)_(12+t)7
ap = 2t, Gp+1 = ﬁ2213 — _nnfl'
This gives the continued fraction
2t t2/2 2t%/3 32 /4

log(1+1t) = 24+t — 3(24+1)/2 — 5(2+1)/3 — T(2+t)/4 —...

which is equivalent with[(4]1).
Next, we compute the error sufit(B, R,log(1 +t)) = > " (Bmlog(l +t) — Ay,) for B := (By),,¢
andR := (4,),,>0-

Lemma4.1l. Let—1 < ¢ < 1. For every integen > 0 we have

(1 —a)"

1
B,log(l1+t)—A :t2"+1/7 T .
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Proof. For A,, andB,, defined above, we obtain
Bplog(l1+1t)— A,

O

m=k+

[y

1 n n o n
:tn+1/ 1 ,d_<x(1 z) )dw
o 1+tx dz» n!

— (_1)ntn+1 /1 ﬁ( 1 ) . xn(l - w)n da
0

dz" \ 1+ tx n!

1
= t2"+1/ 2 -a) xl"l dx .
o (14 tx)"

The antiderivative in the last but one line was obtained gisiffold integration by parts. The lemma is
proven. ]
A first consequence of Lemrha 4.1 is an explicit formula foreéh®r sum oflog(1 + ¢).

Corollary 4.1. Let—1 < ¢ < 1. For the sequenceB := (B,),>c and R := (A,),,>, We have

2 1+1¢ 1—t¢
E(B,R,log(l +1t)) = ——— | arctan | ——— — arctan [ ———— .
( g( )) \/3+2t—t2< (\/3+2t—t2 (\/3+2t—t2>>

In particular, £*(B, R,log 2) = /4.
Proof: From Lemma4l1 we obtain
£*(B, R,log(1 +1))
1 X 2m, .m(1 _ . \Mm
_ t/ t=mz™(1 — x) i
0

(1 + tﬂj‘)m+1

m=0

1 o 9 m
1 t“x(l —

_ t/ Z(M) de
0 1+t$m:0 1+t$

B t/l dx
o 14+t =)z + 222

2 1+1 1-1¢
= ——— | arctan (7 — arctan (7) .
\/3+2t—t2< V3+2t—t2 V3+2t—1t2 >

This proves the corollary. O
By straightforward computations it can be seen that the e from Corollary 411 satisfies a linear first
order differential equation.
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Corollary 4.2. Let—1 < t < 1. For the sequence® := (B,),, and R := (A4,),, the function
f(t) == &*(B, R,log(1 + t)) satisfies the differential equation

B+2t—t)f' +(1-t)f -3 =0,
wheref’ = df /dt.
A second consequence of Lemmal 4.1 is
E*(B,R,log(1 +1t)) = sign(t)&(B, R,log(1+1t)) .

Finally, the continued fraction (4.1) and Lemmal4.1 allovptove the irrationality ofog(1 + ¢) for certain
rationalst := a/b.

Corollary 4.3. Let0 < a/b < 1 be a rational number witla? < 4b. Then the numbeibg(1 + a/b) is
irrational. In particular, for every integek > 1 the numbetog(1 + 1/k) is irrational.

Proof: Letd,, :=l.c.m(1,2,3,...,n) denote the least common multiple of the integer, 3, ..., n. One
knows by the prime number theorem that

logd, = Z H(()EZ} logp ~ n,

p<n

wherep runs through all primes less than or equaht([13, Theorem 434]). By the hypothesig? < 4b
there is a positive real numbersuch thate'*¢a? < 4'~¢b. Hence, for all sufficiently large numbers it
follows that

d, < ell+om

Lett = a/b. With b"d,, A,, € Z andb"d,,B,, € Z we know by Lemm&4I1 that
0 < |b"dpBylog(l+1t) —b"dpA,|
n 1 nl — )"
= (s ) /0 (1$+((1m/;))"+1 e
% . 7‘5(1?:“2” /0 1 2"(1—x)" dz
<@ .4<1—a>n/01 2 o
t

for n tending to infinity. This completes the proof of Corollard4. O

5 On error sums formed by Apéry’s continued fractions for ¢(2) and ((3)

Computing the error sums formed by the linear three termrrenaes and continued fractions@®), ¢(3)
introduced by R. Apéry, this leads unexpectedly into a Viiglel of connections between famous sequences
of integers. For the needed results we refer to [4] and [3].
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1.) Error sums for{(2). We have
(@ = @ 5 1t 2! n*
6 3+ 25469 +--+ 1In24+11In+3 +...
T
0+b1 + by + b3 +...
with
bo=0, b1 =3, by =11n*+1In+3 (n>1),
a1 =5, apy =nt (n>1).
A recurrence formula for both sequences
"\ /n+k
B, = ,
> () (")
k=0
n 2 n m—1 k n+m—1
n\" (n+k (-1 (-1)
A, = ( > < > (2 — T Sy | o
2 ) Ui ) P2 e e
is
0= (n+1)X,1 — (1102 +11n +3)X,, — n?X, ;.
Then,
as as Cln An
bp+ — — = —.
0+b1+bg+b3+ “+ by, Bn
We obtain from|[3, eq. (5)] for the sequencBs := (B,,),,>, and Rz := (4n),,>0,
5*(332—003 —A (1_)dd
2 27C( )) - Z n<(2) n 7L+1 T ay
n=0
1 1
dx dy
= = 1.5832522167... . 51
/ /0 1+ a2y — ay? — ya? &
Similarly, one has
"1—x)"y"(1—y)"
8(327R27 Z‘Bn( Z/ / T(H-l y) d[L’dy
dx dy
= 1.7141459142. .. . 5.2
/0/0 1 — 22y? — 2zy + xy? + ya? »9 -2

2.) Error sums for{(3). Here,

RO U nt
5 — 117 — 535 —+--— 34n3 +51n2 +2Tn+5 —...
= tp o

by + by + by +...
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with
bo=0, by=5, by =343 +51n>+2Tn+5 (n>1),
a1:6, an+1:—n6 (’I’LZl)

A recurrence formula for both sequences,

b= ()
e QO (S S )

=1 m=1 m m

0 = Pn+1)Xp1 —Qn+1)X, —R(n+1)X,,—
= (n+1)°Xn41 — (340% + 51n% 4+ 270 +5) X, + nan_l .

The construction of’,, andD,, leads to the identity

as as An Cn
bo—l—— — = —.
b1 + by + b3 +t b D,

We obtain from|[3, eq. (7)] for the sequencBs := (D»,),,~o andR3 := (Cy),,>

E*(Bs, R3,((3))

= 3 (D) = 3| D -
-2 / I “if"fi;;i’in?fﬁ‘”

/ / / dx dy dw
20 Jo Jo 1+ 229202 — 2y2w? — 22yw? — 2292w + zyw? + xy?w + 22yw — w

&(Bs, Rs,((3))

= 1.2124982529. .. . (5.3)

3.) Now we focus our interest on various methods in order to esgptiee multiple integrals i (3.1), (5.2),
and [5.3), by series with rational terms. A first approachi®subject involves the hypergeometric function.
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Theorem 5.1. For the sequenceB;, R; (i = 2, 3) defined above fof(2) and((3), respectively, we have

n+k
E(Ba, Ry, ¢(2)) = i i < n )

n
2 n+1 n+1 n+1 ‘1
oo 342 Mm+2 2n+2

on 2 7
n=0 (2n+ 1)2<n>

o or(
E* (B2, R2,¢(2)) = ZZ

2
n=0 k=0 (2n + k, + 1)2 <2n: k)

r n+1l n+1 n+1 ‘1
> s 2n+2 2n+2

n=0 (2n + 1) <2n> 2 |

n

£(Bs, Ry, C(3)) = %i f: 2’“: (—1)Z<I;> (":O

2
0 1=0 (20 4 k4 1)(2n + [ + 1)? <2n; k) <2nn+ l)

e
Il

n=0

r n+1 n+1 n+1 —Ek ‘1
i oo 453 Mm+2 2m+2 1

=0 (20 + 1)2(@2n+ k+ 1) <2n>2 (2” + k>

n n

N =
Eol

n=0

Note that the hypergeometric function

2 n+1 n+1 n+1 —k ‘1
453 Mm+2 2m+2 1

takes rational values for all < k,n < oc.
Proof: It suffices to prove the identities faf (B2, R2,((2)), since the arguments are the same for the
remaining error sums. The basic idea is to use the expansion

[e.e]

1 :Z(n+1)ktk.

Q-t)"tt = K
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Then, [5.2) gives

0 1 1 1_ n n 1_ n
E(Bz2,R2,¢(2)) = Z/o ; il z) 7(L+1 v) dx dy

o0

AR ”+1 n m n
- Z/O /0 Z 2y)F 2 (1 — o)y (1 — )" da dy

k=0

o

_OO (n—l—l ntk(q wln—i-k_n
-y el / (1=a)de [ 1) dy

o
B
Il

0

3

-5

n=

n—l—l F(n+1)F(n+k+1)>2
( T(2n+k +2)

Mg

(5.4)

o
e
Il

0

nk
- iik'2n+kn+k) ZZ < - )

5
=0 k=0 2n +k+1)° n=0 k=0 (9 4 k + 1) <2n—|—k:>
n

The second identity fof (Bs, R», ((2)) in Theoreni.l follows froni(514) and from

3

MPn+DI2n+k+1) 1 (n+1).(n+1),
T2(2n + k + 2 B 2" (2n+2), (2n+2
( ) (2n + 1) <2n> ( )i )k
n
which can be verified by straightforward computations. O

Next, we define recursively a sequengét) (v = 1,2,...) of polynomias in one variable namely

pi(t) = t%, (5.5)
pa(t) = t'—t"+1t, (5.6)
p(t) = t*p_1(t) +t(1 —t)p_2(t)  (r=3,4,...). (5.7)

It is clear thatdeg p,, = 2v, which follows easily by induction for with degp; = 2 anddeg ps = 4. The
leading coefficient op, is 1 forv =1,2,.... Let

2v
= E ay,  th .
=0

Lemmab5.1. For v > 3 we have

2v—-3
pu(t) = t2V + (1 - V)t2l/_2 + Z (ay—l,,u—2 +ay—2pu-1— au—2,u—2)tu
n=2
with
Quyp = Qy—1p—2+ Q-2 -1 — Ay—2 -2 (2 <pu<2v-— 3) .
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Proof: Using the definition op, (¢) from (5.8) to [5.7) withv > 3, we obtain

2v 2v—2 2v—4 2v—4
— § E +2 § : +1 2 : +2
pl/(t) - al/,u Ay — 1u th + Ay — 2u th Ay — 2,u th
2v—3 2v—2
= 5 Qy—1,u— 2tﬂ_|_ 5 Ay—2 p— 1tﬂ E al/—2,u—2tu
pn=2
2 w—2 2w—2
= au—1,2u—2t + au—1,2u—3t a1 0u—at® TP ay_a ot — ay_2.2,—at™
2v—3
+ E (au—l,u—2 +ay—2pu-1— au—2,,u—2)tu
pn=2
2v—3
2 2w—2
= A=Y (Gerpe2 T Gz — Gy 2)t
H=2
since the four identities
ay—120-2 = 1,
ay—120-3 = 0,
Ay 1204 — Qy-220-4 = 1—v,
ay—20 = 0

follow easily from [5.5) to[(5J7) byi, 2, = 1, ay2,—1 = 0, ay2,—2 = 1 — v, anda,, o = 0 for v > 1. The
lemma is proven. O

Theorem 5.2. For the sequenceB;, R, defined above fof(2) we have

E* (B2, R2,((2)) = 1*2: Z_:(wrf)yﬁ
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Proof: With (5.8) to [5.7) we obtain
o0
(1+ 2%y — zy® — ya?) ( 1+ Zpu(y)w”>
v=1
o o o
14220 — i — v 2 V2 2 v41
= 1+2% —ay’ —yr® + ) p W)’ + Y p () =) yin(y)e
v=1 v=1 v=1
o
- Zypy(y)%”*2
= 1+a%’ —ay’ —yx +Zpu )z¥ —Zy 1= y)py—2(y)z” —Zy o
v=1 v=3

= 1-pi(y)r —p()2® + ¥’ (w)a® + > pu(y)r” - Z y(1 = y)py—2(y)z” — Z v pu—1(y)z”

= 1+ Zpu(y)w” - Zy(l —Ypv—2(y)r”’ =Y v’ pa(y)z”
=3 v=3

= 1+Z [py (v*pu-1(y )+y(1—y)pu_2(y))}w”

1 0o e ) 2v
1+ 22y2 — zy? — ya2 =1+ Zpu(y)ﬂfy =1+ Z < Z%,W“):E”
v=1 v=1 n=0

Now the theorem follows froni_(5.1) by two-fold integrationtivrespect tar andy. O

We can proceed similarly in order to obtain similar resuts & (Ba, Rz, ((2)) and for&(Bs, Rs,((3)).
Therefore, we state them without proofs. Again we definenseely a sequence, (t) (v = 1,2,...) of
integer polynomias in one variabte

Q) = 26—+t
g(t) = t*—4at> 4+ 5% —t
QI/(t) = t(2 - t)QV—l(t) +t(t — 1)gu—2(t) (V =3,4,...).

Let
2v
t) =) byt
n=0

Here, we have

1 [e'¢) 00 2v
2.2 2 7 = un(l/)ﬂfy = Z ( bu,py”>$u
1 —a?y® = 2wy + oy +ya* = —

v=0
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Lemma5.2. For v > 3 we have

qy(t) _ (—1)”752'/ + 2(_1)1/+1Vt21/—1 + (_1)11(2]/2 - 1)t21/—2
2v-3
+ Z ( - bu—l,,u—2 + 2b1/—1,,u—1 + bu—2,,u—2 - bu—2,,u—1)tu
n=2

with
bl/,u = _bl/—l,u—2 + 2bl/—1,u—1 + bl/—2,u—2 - bl/—2,u—1 (2 < M <2v-— 3) .

Theorem 5.3. For the sequenceBs, Rs defined above fof(2) we have

co  2v

) e
E(Ba, R2,((2)) = 1+VZ::1 uz::o v+Dp+1)

The above method can be generalized such that it also wark 8, R3, ((3)). Let

7/‘0(337 y) =1 )

ri(z,y) = 2%y —ay’ -2y +1,

ro(z,y) = zlyt — 223yt — 20 + 2Pyt 4 2ty? 4 2233 2%y — ay? — 2Py —ay + 1,
ro(x,y) = (2% —ay® — 2Py + V) a(,y) — (2%9° — 2y’ — 2%y + zy)r, (e, y)

wherer > 3. Setting

2v 2v
Tl/(x7y) = Z Z CV7M1,M2wulyu27
p1=0 p2=0
it turns out that
1 o
j— . v
1+ 22y2w? — zy?w? — 22yw? — p2y%w + zyw? + 2yPw + v2yw —w ;rl,(x, y)-u”
Then, [5.8) underlies the following result.
Theorem 5.4. For the sequenceBs, R3 defined above fof(3) we have
1 1 co  2v 2v c
5 B37R37< 3 = -+ = AIRI .
( 3)) 2 2Z D (v+ 1) (1 + 1) (p2 + 1)

v=1 pu1=0 p2=0

4.) As mentionned at the beginning of Sectidn 5, some connechetween rational coefficients involved in
computing the error sums for Apéry’s continued fractiod arell-known integer sequences may be noticed.
Furthermore some unproved identities have been empirifmlind for such coefficients.
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The TheoremE 512 ad 5.3 rely on two triangles of integerfimierfits, namely, , for the former and,, ,,
for the latter. Both can be expressed by binomial sums amAsll

v k .
—k w—k\ (pn—1
V — _1l/+l€ /’L
s : (=) <2u—u—k—i>< i ><k—z>
k=0 i=0
v k

—k w—k\ (pn—1
5 — _11/+u 1%
e = 20 (o, ) ()G

which both lead to non-recurrent formulas for the error sasiguadruple sums.
Several basic properties concerning the coefficieptsandb,, , can be noticed, including

2v 2v
 au,=1 and ) b, =1 (veN)
=0 u=0
and
Ay = Qp and by =buy -

More unproved identities come from the theory of generafingctions. Both coefficients, , andb, ,
seem to be the coefficients of degtee— 1 in the MacLaurin series expansion of

2241 -Vt — 43+ 222+ 1 r
23
for a
Vat — 43 + 222+ 1 s
2 T 2 H=v
22420 — 14+ Vet +222 —dr + 1
23
ford
Vat + 222 —dr + 1 s

These generating functions actually allow to build thengias of coefficients:, , andb, , by diagonals
rather than by rows.

Summing these coefficients by rows according to Theofemarks. B, the results can be easely achieved
by applying the following unproved recursive identities.

Oé():l, a1:1/3, a2:11/30, a3:17/70
4dn — 1 2n — 2
oy = Oyl — Oy
n m+1 "t 1 "2
n—1 n n—2
— Oy
An+2°"7® dn +2°74
and
By =1, p1=2/3, B2 = 11/30, B3 = 47/210
6n —1 6n —>5
e L = L )
5n — 7 n—2
+ 4n+2ﬁn—3 - 4n+2ﬁn—4
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where
2v a 2v b
v,p v,
= —_— and = —_— .
oy E:O o+ 1 Bl/ /?:O o+ 1

The special cask, ,,, which may be called the main diagonal in the triangle of toehtsb,, ,,, leads to the
following simplifications. We have

EECT ()

1=0

where the generating function of thg,, is given byl /v/z* + 222 — 4z + 1. This is the sequence A108626
from the On-Line Encyclopedia of Integer Sequencdsis sequence gives the antidiagonal sums of the
square array A108625 itself known to be highly related tocthrestant (2).

b, . is defined recursively by

bu,,u = 2bzx—1,u—1 - bzx—l,u—2 + bzx—2,u—2 - bzx—2,u—1 .
Assumingb,, ,+1 = b,+1,, (Unproved), a new recursive identity can be given concgrAib08626:

A108626 (n +2) — 2 x A108626 (n + 1) — A108626 (n)
n k )
n—k+1\/n—k+1\/n—i+1
=92 '

The previous relation actually happens to be the simplesst fram a more general sequence of recurrence
relations of ordeRd given by:

2d n k .
—k\/n—k\[/n—1i
A108626 = (—1)° "
> amosszaee )= (0*3 3 (0 70) (") ().
k=0 k=0 i=0
where the numbers; are coefficients of ordexd — k in the characteristic polynomial
1 L] d ‘ d—2i
4 2 7 2 —21
ﬁz<2i>(w +22° — 4z +1) (2° 42z —1) .
i=0

These recurrence relations, as well as similar ones retatélie coefficients:, ,, can be written as new
generating functions, the diagonal of orddseing made from the coefficients of terms with positive p@ver
in

L] d k d—2k
<2k> (x4 — 423 + 227 + 1) (w2 + 1) a
k=0
for a d
(23)% V2T — 423 + 222 + 1 et
L2 d k d—2k
<2k> (x4 +22% — 4z + 1) (w2 +2z—1)"
k=0
forb
(203) Vot + 222 — 4z + 1 ok
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