ON ERROR SUMS FORMED BY RATIONAL APPROXIMATIONS WITH SPLIT DENOMINATORS

Thomas Baruchel and Carsten Elsner ${ }^{*}$

Abstract

In this paper we consider error sums of the form $$
\sum_{m=0}^{\infty} \varepsilon_{m}\left(b_{m} \alpha-\frac{a_{m}}{c_{m}}\right)
$$

where α is a real number, a_{m}, b_{m}, c_{m} are integers, and $\varepsilon_{m}=1$ or $\varepsilon_{m}=(-1)^{m}$. In particular, we investigate such sums for

$$
\alpha \in\left\{\pi, e, e^{1 / 2}, e^{1 / 3}, \ldots, \log (1+t), \zeta(2), \zeta(3)\right\}
$$

and exhibit some connections between rational coefficients occurring in error sums for Apéry's continued fraction for $\zeta(2)$ and well-known integer sequences. The concept of the paper generalizes the theory of ordinary error sums, which are given by $b_{m}=q_{m}$ and $a_{m} / c_{m}=p_{m}$ with the convergents p_{m} / q_{m} from the continued fraction expansion of α.

Keywords: Errorr sums, continued fractions
AMS Subject Classification: 11J70, 11J04, 33B10, 33C05, 11M06.

[^0]
1 Introduction

Let α be a real number. We assume that there is a sequence $B:=\left(b_{n}\right)_{n \geq 0}$ of integers, a sequence $R:=$ $\left(r_{n}\right)_{n \geq 0}$ of rationals $r_{n}=a_{n} / c_{n}$, say, with $a_{n} \in \mathbb{Z}$ and $c_{n} \in \mathbb{N}$, and a real number $\omega>1$ satisfying

$$
\begin{equation*}
\left|b_{n} c_{n} \alpha-a_{n}\right| \ll \frac{c_{n}}{\omega^{n}} \quad(n \geq 0) \tag{1.1}
\end{equation*}
$$

This is equivalent with

$$
\begin{equation*}
\left|b_{n} \alpha-r_{n}\right|=\left|b_{n} \alpha-\frac{a_{n}}{c_{n}}\right| \ll \frac{1}{\omega^{n}} \quad(n \geq 0) \tag{1.2}
\end{equation*}
$$

We consider the fraction $a_{n} / b_{n} c_{n}$ as a rational approximation of α with split denominator $b_{n} c_{n}$. Since $\omega>1$, the error sums

$$
\begin{align*}
\mathcal{E}^{*}(B, R, \alpha) & :=\sum_{m=0}^{\infty}\left(b_{m} \alpha-r_{m}\right)=\sum_{m=0}^{\infty}\left(b_{m} \alpha-\frac{a_{m}}{c_{m}}\right) \tag{1.3}\\
\mathcal{E}(B, R, \alpha) & :=\sum_{m=0}^{\infty}\left|b_{m} \alpha-r_{m}\right|=\sum_{m=0}^{\infty}\left|b_{m} \alpha-\frac{a_{m}}{c_{m}}\right| \tag{1.4}
\end{align*}
$$

exist. Let $\left(p_{n} / q_{n}\right)_{n \geq 0}$ be the sequence of convergents of α defined by $p_{n} / q_{n}=\left\langle a_{0} ; a_{1}, a_{2}, \ldots a_{n}\right\rangle$ from the regular continued fraction expansion

$$
\alpha=\left\langle a_{0} ; a_{1}, a_{2}, \ldots\right\rangle=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots}}}
$$

of α. The error sums of α for $B=\left(q_{n}\right)_{n \geq 0}$ and $R=\left(p_{n}\right)_{n \geq 0}$, namely

$$
\begin{aligned}
\mathcal{E}^{*}(\alpha) & :=\mathcal{E}^{*}(B, R, \alpha)=\sum_{m=0}^{\infty}\left(q_{m} \alpha-p_{m}\right) \\
\mathcal{E}(\alpha) & :=\mathcal{E}(B, R, \alpha)=\sum_{m=0}^{\infty}\left|q_{m} \alpha-p_{m}\right|
\end{aligned}
$$

were already studied in some papers [6, 7, 8, 9]. We call $\mathcal{E}^{*}(\alpha)$ and $\mathcal{E}(\alpha)$ ordinary error sums. Conversely, for $B=(1)_{n \geq 0}$ and $R=\left(p_{n} / q_{n}\right)_{n \geq 0}$, until now nobody has found any remarkable approach to the error sums

$$
\begin{aligned}
\mathcal{E}^{*}(B, R, \alpha) & =\sum_{m=0}^{\infty}\left(\alpha-\frac{p_{m}}{q_{m}}\right) \\
\mathcal{E}(B, R, \alpha) & =\sum_{m=0}^{\infty}\left|\alpha-\frac{p_{m}}{q_{m}}\right|
\end{aligned}
$$

In this paper we focus our interest on the series in (1.3) and (1.4) in the case of particular values of α and well-known rational approximations of the form

$$
\begin{equation*}
0<\left|b_{n} \alpha-\frac{a_{n}}{c_{n}}\right| \ll \frac{1}{\omega^{n}} \quad(n \geq 0) \tag{1.5}
\end{equation*}
$$

Among others we are going to study the numbers

$$
\alpha \in\left\{\pi, e^{1 / l}, \frac{\log \rho}{\sqrt{5}}, \log (1+t), \zeta(2), \zeta(3)\right\}
$$

where $l=1,2, \ldots, e=\exp (1), \rho=(1+\sqrt{5}) / 2$, and $-1<t \leq 1$, and we shall investigate extraordinary properties of corresponding error sums (1.3) and (1.4).

2 Ordinary error sums for values of the exponential function

Ordinary error sums connected with the exponential function are studied in [1, 10]. Here, our goal is to express this usual error sums itselves by a non-regular continued fraction. For this purpose we express the error integral

$$
\operatorname{erf}(z)=\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-t^{2}} d t
$$

by a hypergeometric series, which again can be transformed into a Gauss-type continued fraction.

Theorem 2.1. Let $l \geq 2$ be an integer, and let p_{n} / q_{n} denote the convergents of $e^{1 / l}$. Then we have

$$
\begin{aligned}
\mathcal{E}\left(e^{1 / l}\right) & =\sum_{n \geq 0}\left|e^{1 / l} q_{n}-p_{n}\right|=e^{1 / l} \sqrt{\frac{\pi}{l}} e r f\left(\frac{1}{\sqrt{l}}\right)=\frac{2 e^{1 / l}}{\sqrt{l}} \int_{0}^{1 / \sqrt{l}} e^{-t^{2}} d t \\
& =\frac{1 / l}{1 / 2-\frac{1 / 2 l}{3 / 2+\frac{2 / 2 l}{5 / 2-\frac{3 / 2 l}{7 / 2+\frac{4 / 2 l}{9 / 2-\frac{5 / 2 l}{11 / 2+\ddots \frac{(-1)^{m} m / 2 l}{(2 m+1) / 2+\ddots}}}}}} \quad(m \geq 1) .}
\end{aligned}
$$

Proof: The first identity of the theorem expressing $\mathcal{E}\left(e^{1 / l}\right)$ by an error integral is already known from [1, 10]. In order to prove the continued fraction expansion, we set

$$
f(z):=\frac{\sqrt{\pi}}{2} z e^{z^{2}} \operatorname{erf}(z)=z e^{z^{2}} \int_{0}^{z} e^{-t^{2}} d t
$$

We express $f(z)$ in terms of a hypergeometric function ${ }_{1} F_{1}\left(\alpha, \beta ; z^{2}\right)$.

$$
\begin{aligned}
f(z) & =z e^{z^{2}} \int_{0}^{z} \sum_{\nu=0}^{\infty} \frac{(-1)^{\nu} t^{2 \nu}}{\nu!} d t=z e^{z^{2}} \sum_{\nu=0}^{\infty} \frac{(-1)^{\nu} z^{2 \nu+1}}{(2 \nu+1) \nu!} \\
& =z^{2}\left(\sum_{\mu=0}^{\infty} \frac{z^{2 \mu}}{\mu!}\right)\left(\sum_{\nu=0}^{\infty} \frac{(-1)^{\nu} z^{2 \nu}}{(2 \nu+1) \nu!}\right) \\
& =z^{2} \sum_{\mu=0}^{\infty} \sum_{\nu=0}^{\infty} \frac{(-1)^{\nu} z^{2(\nu+\mu)}}{(2 \nu+1) \nu!\mu!}=z^{2} \sum_{k=0}^{\infty}\left(\sum_{\substack{\mu=0 \\
\mu+\nu=k}}^{\infty} \sum_{\nu=0}^{\infty} \frac{(-1)^{\nu}}{(2 \nu+1) \nu!\mu!}\right) z^{2 k} \\
& =z^{2} \sum_{k=0}^{\infty}\left(\sum_{\nu=0}^{k} \frac{(-1)^{\nu}}{(2 \nu+1) \nu!(k-\nu)!}\right) z^{2 k}=z^{2} \sum_{k=0}^{\infty} \frac{1}{k!}\left(\sum_{\nu=0}^{k} \frac{(-1)^{\nu}\binom{k}{\nu}}{2 \nu+1}\right) z^{2 k}
\end{aligned}
$$

From [15, p. 68], Remark 8.5, we have the following formula (with k replaced by ν and n replaced by k)

$$
\frac{1}{d^{k}[k]_{k}} \sum_{\nu=0}^{k} \frac{(-1)^{\nu}\binom{k}{\nu}}{c+\nu d}=\frac{1}{c(c+d)(c+2 d) \cdots(c+k d)},
$$

where $[k]_{k}=k$!. Setting $c=1$ and $d=2$, it follows that

$$
\frac{1}{k!} \sum_{\nu=0}^{k} \frac{(-1)^{\nu}\binom{k}{\nu}}{2 \nu+1}=\frac{2^{k}}{1 \cdot 3 \cdot 5 \cdots(2 k+1)}=\frac{1}{(3 / 2)_{k}}
$$

This gives

$$
f(z)=z^{2} \sum_{k=0}^{\infty} \frac{z^{2 k}}{(3 / 2)_{k}}=z^{2} \sum_{k=0}^{\infty} \frac{(1)_{k}}{k!(3 / 2)_{k}} z^{2 k}=z^{2}{ }_{1} F_{1}\left(1,3 / 2 ; z^{2}\right)
$$

The function ${ }_{1} F_{1}\left(1,3 / 2 ; z^{2}\right)$ can be expressed by a Gauss-type continued fraction. Using formula (8) on page 123 in [16] with $\gamma=3 / 2$ and $x=z^{2}$, we have

$$
{ }_{1} F_{1}\left(1,3 / 2 ; z^{2}\right)=\frac{1 / 2}{1 / 2-\frac{z^{2} / 2}{3 / 2+\frac{2 z^{2} / 2}{5 / 2-\frac{3 z^{2} / 2}{7 / 2+\frac{4 z^{2} / 2}{9 / 2-\frac{5 z^{2} / 2}{11 / 2+\ddots \cdot \frac{(-1)^{m} m z^{2} / 2}{(2 m+1) / 2+\ddots}}}}}} \quad(m \geq 1)} \quad 1 \quad(m)
$$

Hence the continued fraction expansion given by the theorem follows from

$$
\sum_{n \geq 0}\left|e^{1 / l} q_{n}-p_{n}\right|=2 \cdot \frac{\sqrt{\pi}}{2} \cdot \frac{e^{1 / l}}{\sqrt{l}} \cdot \operatorname{erf}(1 / \sqrt{l})=2 f(1 / \sqrt{l})=\frac{2}{l}{ }_{1} F_{1}(1,3 / 2 ; 1 / l)
$$

We point out the particular case $z=1$.

Corollary 2.1. We have

$$
\begin{aligned}
{ }_{1} F_{1}(1,3 / 2 ; 1) & =e \int_{0}^{1} e^{-t^{2}} d t \\
& =\mathcal{E}_{M C}(e)=e-2+\sum_{n=1}^{\infty} \sum_{b=1}^{a_{n}}\left|\left(b q_{n-1}+q_{n-2}\right) e-\left(b p_{n-1}+p_{n-2}\right)\right| \\
& =\frac{1 / 2}{1 / 2-\frac{1 / 2}{3 / 2+\frac{1}{5 / 2-\frac{3 / 2}{7 / 2+\frac{2}{9 / 2-\frac{1}{11 / 2+\cdot \frac{(-1)^{m} m / 2}{(2 m+1) / 2+\ddots}}}}}} \quad(m \geq 1),}
\end{aligned}
$$

where $\mathcal{E}_{M C}(e)$ is the error sum of e taking into account all the minor convergents of

$$
\begin{equation*}
e=\langle 2 ; 1,2,1,1,4,1, \ldots\rangle=\left\langle 2 ; a_{1}, a_{2}, a_{3}, \ldots\right\rangle . \tag{2.1}
\end{equation*}
$$

Proof: The formula

$$
\mathcal{E}_{M C}(e)=e \int_{0}^{1} e^{-t^{2}} d t
$$

follows by (2.1) using

$$
\mathcal{E}_{M C}(e)=e-1+\sum_{\nu=0}^{\infty}(-1)^{\nu+1}\left(q_{\nu} e-p_{\nu}\right)\left(\frac{1}{2}\left(1+a_{\nu+1}\right) a_{\nu+1}-a_{\nu+2}\right)
$$

and the formulas

$$
\begin{aligned}
q_{3 m-1} e-p_{3 m-1} & =-\int_{0}^{1} \frac{x^{m+1}(x-1)^{m}}{m!} e^{x} d x \\
q_{3 m} e-p_{3 m} & =-\int_{0}^{1} \frac{x^{m}(x-1)^{m+1}}{m!} e^{x} d x \\
q_{3 m+1} e-p_{3 m+1} & =\int_{0}^{1} \frac{x^{m+1}(x-1)^{m+1}}{(m+1)!} e^{x} d x
\end{aligned}
$$

due to H. Cohn [5].
Let $l \geq 1$. Then we know from [18, p. 193] that the numbers $e^{1 / l}$ and $\int_{0}^{1 / \sqrt{1 / l}} e^{-t^{2}} d t$ are algebraically independent over \mathbb{Q}. This proves

Corollary 2.2. Let $l \geq 2$ be an integer. Then the numbers $\mathcal{E}\left(e^{1 / l}\right)$ and $\mathcal{E}_{M C}(e)$ are transcendental.

3 Error sums for π and $(\log \rho) / \sqrt{5}$

In [11], A.Klauke and the second-named author have found new continued fractions for $1 / \pi$ and $(\log \rho) / \sqrt{5}$. In this section we are going to apply these results to compute the corresponding error sums and to decide on their algebraic character. We start with the continued fraction for $1 / \pi$.
1.) From Theorem 8 in [11] and its proof we have the following results.

$$
\begin{aligned}
\frac{1}{\pi} & =\frac{3}{10}-\frac{14}{25}-\frac{110}{171}-\ldots-\frac{\frac{1}{9} m(m-1)(2 m-1)(2 m+1)(4 m-5)(4 m+3)}{(4 m+1)\left(4 m^{2}+2 m-1\right)}-\ldots \\
& =\frac{p_{0}}{q_{0}}-\frac{p_{1}}{q_{1}}-\frac{p_{2}}{q_{2}}-\ldots-\frac{p_{m}}{q_{m}}-\ldots \quad(m \geq 2)
\end{aligned}
$$

Let $n=0,1,2, \ldots$. Set

$$
\begin{aligned}
B_{n} & :=\frac{2 \cdot 4^{n+1}}{n!} \sum_{k=0}^{n}\binom{n}{k}(2 k+3)(k+5 / 2)_{n} \\
A_{n} & :=\frac{2 \cdot 4^{n+1}}{n!} \sum_{k=0}^{n} \sum_{\nu=0}^{k}(-1)^{k+\nu}\binom{n}{k} \frac{(2 k+3)(k+5 / 2)_{n}}{2 k-2 \nu+1}+(-4)^{n+1} .
\end{aligned}
$$

Here,

$$
(k+5 / 2)_{n}=(k+5 / 2)(k+7 / 2)(k+9 / 2) \cdots(k+n+3 / 2) .
$$

Note that A_{n} is a rational number, but no integer, while $B_{n} / 4$ is an integer. Then, for $n \geq 0$, one has

$$
\frac{p_{0}}{q_{0}}-\frac{p_{1}}{q_{1}}-\frac{p_{2}}{q_{2}}-\ldots-\frac{p_{n}}{q_{n}}=\frac{B_{n}}{4 A_{n}}
$$

and

$$
0<A_{n}-\frac{\pi B_{n}}{4}=4(n+3 / 2) \int_{0}^{1} \frac{t \sqrt{1-t}}{2-t}\left(\frac{4 t(1-t)}{2-t}\right)^{n} d t .
$$

For $0 \leq t \leq 1$ the rational function $4 t(1-t) /(2-t)$ takes its maximum $2(6-4 \sqrt{2})$ at the point $2-\sqrt{2}$. Therefore, it follows that

$$
0<A_{n}-\frac{\pi B_{n}}{4}<8(n+3 / 2)(6-4 \sqrt{2})^{n} \int_{0}^{1} \frac{t \sqrt{1-t}}{2-t} d t=8(10 / 3-\pi)(n+3 / 2)(6-4 \sqrt{2})^{n}
$$

The integral on the right-hand side is a Pochhammer integral of a certain hypergeometric function. We show the analogous details below in part 2.) which is devoted to the number $(\log \rho) / \sqrt{5}$.

For (1.3) and (1.4) we define the sequences $B:=\left(b_{n}\right)_{n \geq 0}$ and $R:=\left(r_{n}\right)_{n \geq 0}$ by $b_{n}:=-B_{n} / 4$ and $r_{n}=-A_{n}$. Then we have the error sums

$$
\begin{aligned}
\mathcal{E}^{*}(B, R, \pi) & =\sum_{m=0}^{\infty}\left(b_{m} \pi-r_{m}\right)=-\mathcal{E}(B, R, \pi) \\
& =-4 \int_{0}^{1} \frac{t \sqrt{1-t}}{2-t} \sum_{m=0}^{\infty}(m+3 / 2)\left(\frac{4 t(1-t)}{2-t}\right)^{m} d t \\
& =-4 \int_{0}^{1} \frac{t \sqrt{1-t}}{2-t} \cdot \frac{(2-t)\left(4 t^{2}-7 t+6\right)}{2\left(4 t^{2}-5 t+2\right)^{2}} d t \\
& =-4 \int_{0}^{1} \frac{u^{2}\left(1-u^{2}\right)\left(4 u^{4}-u^{2}+3\right)}{\left(4 u^{4}-3 u^{2}+1\right)^{2}} d u .
\end{aligned}
$$

Here we have introduced the new variable $u:=\sqrt{1-t}$. Computing this integral, we have the following theorem.

Theorem 3.1. For the sequences $B:=\left(b_{n}\right)_{n \geq 0}$ and $R:=\left(r_{n}\right)_{n \geq 0}$ defined by $b_{n}:=-B_{n} / 4$ and $r_{n}=-A_{n}$ we have

$$
\mathcal{E}^{*}(B, R, \pi)=-\mathcal{E}(B, R, \pi)=\frac{\sqrt{7}}{49} \log \left(\frac{3-\sqrt{7}}{3+\sqrt{7}}\right)-\frac{3 \pi}{2}-\frac{4}{7}=-5.4333111067784 \ldots
$$

Expressing π by $\pi=\frac{2 \log i}{i}$, we see that $\mathcal{E}(B, R, \pi)$ is a nonvanishing linear form in logarithms with algebraic arguments and algebraic coefficients. Then, by Theorem 2.2 in [2], we have the following corollary.

Corollary 3.1. For the sequences $B:=\left(b_{n}\right)_{n \geq 0}$ and $R:=\left(r_{n}\right)_{n \geq 0}$ defined by $b_{n}:=-B_{n} / 4$ and $r_{n}=-A_{n}$ the error $\operatorname{sum} \mathcal{E}(B, R, \pi)$ is transcendental, and so is the error $\operatorname{sum} \mathcal{E}^{*}(B, R, \pi)$.
2.) From Theorem 6 in [11] and its proof we have the following results.

$$
\begin{aligned}
\frac{\sqrt{5}}{\log \rho} & =\frac{60}{13}-\frac{7}{80}-\frac{110}{522}-\ldots-\frac{\frac{1}{9} m(m-1)(2 m-1)(2 m+1)(4 m-5)(4 m+3)}{2(4 m+1)\left(6 m^{2}+3 m-1\right)}-\ldots \\
& =\frac{p_{0}}{q_{0}}-\frac{p_{1}}{q_{1}}-\frac{p_{2}}{q_{2}}-\ldots-\frac{p_{m}}{q_{m}}-\ldots \quad(m \geq 2) .
\end{aligned}
$$

Let $n=0,1,2, \ldots$ Set (cf. (25) in [11] with $c=d=1$)

$$
\begin{aligned}
D_{n} & :=\frac{5 \cdot 4^{n+1}}{n!} \sum_{k=0}^{n}(-1)^{n+k}\binom{n}{k}(2 k+3)(k+5 / 2)_{n} 5^{k}, \\
C_{n} & :=4^{n}+\frac{4^{n+1}}{n!} \sum_{k=0}^{n} \sum_{\nu=0}^{k}(-1)^{n+k}\binom{n}{k} \frac{(2 k+3)(k+5 / 2)_{n} 5^{\nu}}{2 k-2 \nu+1} .
\end{aligned}
$$

Applying Lemma 6 in [11] with $x=\tau=1$, we find that

$$
\frac{p_{0}}{q_{0}}-\frac{p_{1}}{q_{1}}-\frac{p_{2}}{q_{2}}-\ldots-\frac{p_{n}}{q_{n}}=\frac{D_{n}}{C_{n}},
$$

and

$$
0<C_{n}-\frac{D_{n} \log \rho}{\sqrt{5}}=\frac{(5 / 2)_{n}(n+1)!}{4(5 / 2)_{2 n+1}}{ }_{2} F_{1}\left(\left.\begin{array}{cc}
n+1 & n+2 \\
2 n+7 / 2
\end{array} \right\rvert\,-\frac{1}{4}\right) .
$$

We define the sequences $B:=\left(b_{n}\right)_{n \geq 0}$ and $R:=\left(r_{n}\right)_{n \geq 0}$ by $b_{n}:=-D_{n}$ and $r_{n}=-C_{n}$. Then we have the error sum
$\mathcal{E}^{*}\left(B, R, \frac{\log \rho}{\sqrt{5}}\right)=\sum_{m=0}^{\infty}\left(b_{m} \frac{\log \rho}{\sqrt{5}}-r_{m}\right)=-\frac{1}{4} \sum_{m=0}^{\infty} \frac{(5 / 2)_{m}(m+1)!}{4(5 / 2)_{2 m+1}}{ }_{2} F_{1}\left(\left.\begin{array}{c}m+1 \quad m+2 \\ 2 m+7 / 2\end{array} \right\rvert\,-\frac{1}{4}\right)$.
To compute this error sum, the method is the same as used above for the error sum of $\mathcal{E}(\pi)$. First we express the hypergeometric function by Pochhammer's integral. Let a, b, c, z be complex numbers satisfying $|z|<1$, $\Re(c-b)>0$, and $\Re(b)>0$. Then we have the identity

$$
{ }_{2} F_{1}\left(\left.\begin{array}{cc}
a & b \\
& c
\end{array} \right\rvert\, z\right)=\frac{\Gamma(c)}{\Gamma(b) \Gamma(c-b)} \int_{0}^{1} t^{b-1}(1-t)^{c-b-1}(1-z t)^{-a} d t
$$

cf. [19, p. 20]. The conditions are fulfilled for $a=n+1, b=n+2, c=2 n+7 / 2$, and $z=-1 / 4$, where $n=0,1,2, \ldots$ Hence, it follows that

$$
{ }_{2} F_{1}\left(\left.\begin{array}{cc}
n+1 & n+2 \\
2 n+7 / 2
\end{array} \right\rvert\,-\frac{1}{4}\right)=\frac{\Gamma(2 n+7 / 2)}{\Gamma(n+2) \Gamma(n+3 / 2)} \int_{0}^{1} t^{n+1}(1-t)^{n+1 / 2}\left(1+\frac{t}{4}\right)^{-n-1} d t
$$

In order to simplify the above expressions we need two identities involving Pochhammer's symbol ([19] p. 239]).

$$
\begin{aligned}
\frac{(5 / 2)_{n}}{(5 / 2)_{2 n+1}} & =\frac{1}{(n+5 / 2)_{n+1}} \\
\frac{\Gamma(2 n+7 / 2)}{\Gamma(n+3 / 2)} & =(n+3 / 2)(n+5 / 2)_{n+1}
\end{aligned}
$$

Collecting together all the above results, it follows that

$$
\begin{aligned}
\mathcal{E}^{*}\left(B, R, \frac{\log \rho}{\sqrt{5}}\right) & =-\frac{1}{4} \sum_{m=0}^{\infty}(m+3 / 2) \int_{0}^{1} \frac{t^{m+1}(1-t)^{m+1 / 2}}{(1+t / 4)^{m+1}} d t \\
& =-\frac{1}{4} \int_{0}^{1} \frac{4 t \sqrt{1-t}}{4+t} \sum_{m=0}^{\infty}(m+3 / 2)\left(\frac{4 t(1-t)}{4+t}\right)^{m} d t \\
& =-\frac{1}{2} \int_{0}^{1} \frac{t\left(4 t^{2}-t+12\right) \sqrt{1-t}}{\left(4 t^{2}-3 t+4\right)^{2}} d t \\
& =\int_{0}^{1} \frac{u^{2}\left(1-u^{2}\right)\left(4 u^{4}-7 u^{2}+15\right)}{\left(4 u^{4}-5 u^{2}+5\right)^{2}} d u
\end{aligned}
$$

where $u=\sqrt{1-t}$. This proves
Theorem 3.2. For the sequences $B:=\left(b_{n}\right)_{n \geq 0}$ and $R:=\left(r_{n}\right)_{n \geq 0}$ defined by $b_{n}:=-D_{n}$ and $r_{n}=-C_{n}$ we have

$$
\begin{aligned}
& \mathcal{E}^{*}\left(B, R, \frac{\log \rho}{\sqrt{5}}\right) \\
= & \frac{\sqrt{124 \sqrt{5}-265} \log \left(1+\frac{\sqrt{5}}{2}-\frac{\sqrt{4 \sqrt{5}+5}}{2}\right)-\sqrt{124 \sqrt{5}+265} \arccos \left(\frac{\sqrt{5}}{2}-1\right)}{55 \sqrt{11}}+\frac{1}{11} \\
= & -0.1210649459927 \ldots .
\end{aligned}
$$

Using $\arccos z=\frac{1}{i} \log \left(z+\sqrt{z^{2}-1}\right)$, we obtain by Theorem 2.2 in [2] the following result.
Corollary 3.2. For the sequences $B:=\left(b_{n}\right)_{n \geq 0}$ and $R:=\left(r_{n}\right)_{n \geq 0}$ defined by $b_{n}:=-D_{n}$ and $r_{n}=-C_{n}$ the error sum $\mathcal{E}(B, R, \log \rho / \sqrt{5})$ is transcendental.

4 An error sum for $\log (1+t)$

In this section we generalize a concept from the proof of Theorem 3 in [12], where a nonregular continued fraction for $\log 2$ is established. First we shall prove a continued fraction expansion for $\log (1+t)$ with $-1<t \leq 1$, namely

$$
\begin{equation*}
\log (1+t)=\frac{2 t}{2+t}-\frac{1^{2} t^{2}}{3(2+t)}-\frac{2^{2} t^{2}}{5(2+t)}-\frac{3^{2} t^{2}}{7(2+t)}-\cdots-\frac{m^{2} t^{2}}{(2 m+1)(2+t)}-\ldots \tag{4.1}
\end{equation*}
$$

where $m=1,2, \ldots$ O.Perron [16, p. 152] cites by equation (7) the continued fraction

$$
\log (1+t)=\frac{t}{1}+\frac{1^{2} t}{2}+\frac{1^{2} t}{3}+\frac{2^{2} t}{4}+\frac{2^{2} t}{5}+\frac{3^{2} t}{6}+\frac{3^{2} t}{7}+\ldots
$$

Here we shall give full details of the proof, since a new argument is needed in H.Cohen's method [4] established for Apéry's irregular continued fractions of $\zeta(2)$ and $\zeta(3)$, and we need the details in order to compute the error sum. Similar to Apéry's approach we have to handle with combinatorial series.
In the sequel we fix a real number t with $-1<t \leq 1$. Let $n \geq 0$ be an integer. We define two combinatorial series by

$$
\begin{aligned}
B_{n} & :=\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k} t^{n-k}, \\
A_{n} & :=\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k} t^{n-k} c_{k},
\end{aligned}
$$

where

$$
c_{k}:=\sum_{m=1}^{k} \frac{(-1)^{m-1} t^{m}}{m} .
$$

By applying Zeilberger's algorithm [14, Ch. 7] (Algorithm 7.1) on a computer algebra system, it turns out that the numbers B_{n} satisfy the linear three-term recurrence formula

$$
\begin{equation*}
(n+1) X_{n+1}-(2 n+1)(2+t) X_{n}+n t^{2} X_{n-1}=0 \quad(n \geq 1) \tag{4.2}
\end{equation*}
$$

In the sequel we prove this formula for $X_{n}=B_{n}$ without using a computer, since we need the details to show that even $X_{n}=A_{n}$ satisfy the recurrence. Let k, n denote integers. Set

$$
\begin{aligned}
\lambda_{n, k} & :=\binom{n}{k}\binom{n+k}{k} t^{n-k}, \\
B_{n, k} & :=-(4 n+2) \lambda_{n, k}, \\
A_{n, k} & :=B_{n, k} c_{k}, \\
S_{n, k} & :=(n+1) \lambda_{n+1, k} c_{k}-(2 n+1)(2+t) \lambda_{n, k} c_{k}+n t^{2} \lambda_{n-1, k} c_{k} .
\end{aligned}
$$

Note that $\binom{n}{k}=0$ for $k<0$ or $k>n$, which implies that $A_{n, n+1}=B_{n, n+1}=A_{n,-1}=B_{n,-1}=0$. One easily verfies the identities 1

$$
\begin{aligned}
\frac{\lambda_{n, k-1}}{\lambda_{n, k}} & =\frac{k^{2} t}{(n+k)(n-k+1)} \\
\frac{\lambda_{n+1, k}}{\lambda_{n, k}} & =\frac{(n+k+1) t}{n-k+1} \\
\frac{\lambda_{n-1, k}}{\lambda_{n, k}} & =\frac{n-k}{(n+k) t}
\end{aligned}
$$

which can be applied to prove the identity

$$
\begin{equation*}
B_{n, k}-B_{n, k-1}=(n+1) \lambda_{n+1, k}-(2 n+1)(2+t) \lambda_{n, k}+n t^{2} \lambda_{n-1, k} \tag{4.3}
\end{equation*}
$$

Summing up on both sides of (4.3) from $k=0$ to $k=n+1$, we obtain

$$
0=B_{n, n+1}-B_{n,-1}=\sum_{k=0}^{n+1}\left(B_{n, k}-B_{n, k-1}\right)=(n+1) B_{n+1}-(2 n+1)(2+t) B_{n}+n t^{2} B_{n-1}
$$

which proves (4.2) for $X_{n}=B_{n}$.
Multiplying 4.3) by c_{k}, we obtain $S_{n, k}=\left(B_{n, k}-B_{n, k-1}\right) c_{k}$. Hence,

$$
\begin{aligned}
A_{n, k}-A_{n, k-1} & =B_{n, k} c_{k}-B_{n, k-1} c_{k-1}=\left(B_{n, k}-B_{n, k-1}\right) c_{k}+B_{n, k-1}\left(c_{k}-c_{k-1}\right) \\
& =S_{n, k}+B_{n, k-1} \frac{(-1)^{k-1} t^{k}}{k}
\end{aligned}
$$

Again, we sum up from $k=0$ to $k=n+1$. This gives

$$
\begin{aligned}
0 & =A_{n, n+1}-A_{n,-1}=\sum_{k=0}^{n+1}\left(A_{n, k}-A_{n, k-1}\right) \\
& =\sum_{k=0}^{n+1} S_{n, k}-(4 n+2) \sum_{k=1}^{n+1}\binom{n}{k-1}\binom{n+k-1}{k-1} t^{n-k+1} \frac{(-1)^{k-1} t^{k}}{k} \\
& =(n+1) A_{n+1}-(2 n+1)(2+t) A_{n}+n t^{2} A_{n-1}-(4 n+2) t^{n+1} \sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k} \frac{(-1)^{k}}{k+1}
\end{aligned}
$$

Finally Vandermonde's theorem for the hypergeometric series ${ }_{2} F_{1}(n+1,-n, 2 ; 1)$ ([19, eq. (1.7.7)]) completes our proof of (4.2) for $X_{n}=A_{n}$ by

$$
\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k} \frac{(-1)^{k}}{k+1}={ }_{2} F_{1}(n+1,-n, 2 ; 1)=\frac{(1-n)_{n}}{(2)_{n}}=0
$$

for $n \geq 1$. In the next step we prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{A_{n}}{B_{n}}=\log (1+t) \tag{4.4}
\end{equation*}
$$

[^1]For this purpose we shall prove that for every fixed integer $\nu \geq 0$ we have the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\binom{n}{\nu}\binom{n+\nu}{\nu} t^{n-\nu}}{\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k} t^{n-k}}=0 \tag{4.5}
\end{equation*}
$$

Then, (4.5) implies (4.4) by a theorem of O.Toeplitz ([17, p. 10, no. 66]), since

$$
\lim _{n \rightarrow \infty} c_{n}=\sum_{m=1}^{\infty} \frac{(-1)^{m-1} t^{m}}{m}=\log (1+t)
$$

There is nothing to show for $t=0$, because $A_{n}=0$ and $B_{n}=\binom{2 n}{n} \neq 0$. Therefore, keep $\nu \in \mathbb{N}_{0}$ and $t \in(-1,1] \backslash\{0\}$ fixed. We substitute $X_{n}=B_{n}$ into 4.2) and divide the equation by $(n+1) B_{n}$. Then we obtain

$$
\frac{B_{n+1}}{B_{n}}-\frac{(2 n+1)(2+t)}{n+1}+\frac{n t^{2}}{n+1} \cdot \frac{1}{B_{n} / B_{n-1}}=0
$$

Let $\alpha:=\lim _{n \rightarrow \infty} B_{n+1} / B_{n}$. By taking the limit $n \rightarrow \infty$, it follows that α satisfies the quadratic equation

$$
\alpha-2(2+t)+\frac{t^{2}}{\alpha}=0
$$

which yields

$$
\alpha=2+t+2 \sqrt{1+t}>|t| \quad(-1<t \leq 1)
$$

Put $\beta:=(\alpha+|t|) / 2$. Then,

$$
\begin{equation*}
0<|t|<\beta<\alpha \tag{4.6}
\end{equation*}
$$

There is an integer $n_{0}=n_{0}(t)$ satisfying

$$
\frac{B_{m}}{B_{m-1}}>\beta>0 \quad\left(m \geq n_{0}\right)
$$

or

$$
\left|B_{m}\right|>\beta\left|B_{m-1}\right| \quad\left(m \geq n_{0}\right)
$$

Then, for $n \geq 2 n_{0}$ and $k:=n-n_{0} \geq n_{0}$, we have

$$
\left|B_{n}\right|>\beta\left|B_{n-1}\right|>\beta^{2}\left|B_{n-2}\right|>\cdots>\beta^{k}\left|B_{n-k}\right|=\beta^{n-n_{0}}\left|B_{n_{0}}\right|
$$

Consequently, we obtain

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{\binom{n}{\nu}\binom{n+\nu}{\nu} t^{n-\nu}}{\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k} t^{n-k}}\right|=\lim _{n \rightarrow \infty} \frac{\binom{n}{\nu}\binom{n+\nu}{\nu}|t|^{n-\nu}}{\left|B_{n}\right|} \\
\leq & \lim _{n \rightarrow \infty} \frac{\binom{n}{\nu}\binom{n+\nu}{\nu}|t|^{n-\nu}}{\beta^{n-n_{0}}\left|B_{n_{0}}\right|}=\frac{\beta^{n_{0}}}{|t|^{\nu}\left|B_{n_{0}}\right|} \lim _{n \rightarrow \infty}\binom{n}{\nu}\binom{n+\nu}{\nu}\left(\frac{|t|}{\beta}\right)^{n} \\
= & 0
\end{aligned}
$$

since $0<|t| \beta^{-1}<1$ by (4.6), and $\binom{n}{\nu}\binom{n+\nu}{\nu}$ is a polynomial in n of degree 2ν. This completes the proof of (4.5) and, consequently, of (4.4).
We rewrite the recurrence formula (4.2) as

$$
P(n+1) X_{n+1}-Q(n+1) X_{n}-R(n+1) X_{n-1}=0,
$$

where

$$
\begin{aligned}
P(n+1) & :=n+1, \\
Q(n+1) & :=(2 n+1)(2+t), \\
R(n+1) & :=-n t^{2} .
\end{aligned}
$$

Then, we obtain

$$
\log (1+t)=b_{0}+\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}}+\frac{a_{3}}{b_{3}}+\ldots
$$

with

$$
\begin{aligned}
& b_{0}=0, \quad b_{1}=2+t, \quad b_{n+1}=\frac{Q(n+1)}{P(n+1)}=\frac{(2 n+1)(2+t)}{n+1}, \\
& a_{1}=\quad 2 t, \quad a_{n+1}=\frac{R(n+1)}{P(n+1)}=-\frac{n t^{2}}{n+1} .
\end{aligned}
$$

This gives the continued fraction

$$
\log (1+t)=\frac{2 t}{2+t}-\frac{t^{2} / 2}{3(2+t) / 2}-\frac{2 t^{2} / 3}{5(2+t) / 3}-\frac{3 t^{2} / 4}{7(2+t) / 4}-\ldots
$$

which is equivalent with (4.1).
Next, we compute the error $\operatorname{sum} \mathcal{E}^{*}(B, R, \log (1+t))=\sum_{m=0}^{\infty}\left(B_{m} \log (1+t)-A_{m}\right)$ for $B:=\left(B_{n}\right)_{n \geq 0}$ and $R:=\left(A_{n}\right)_{n \geq 0}$.

Lemma 4.1. Let $-1<t \leq 1$. For every integer $n \geq 0$ we have

$$
B_{n} \log (1+t)-A_{n}=t^{2 n+1} \int_{0}^{1} \frac{x^{n}(1-x)^{n}}{(1+t x)^{n+1}} d x .
$$

Proof. For A_{n} and B_{n} defined above, we obtain

$$
\begin{aligned}
& B_{n} \log (1+t)-A_{n} \\
= & \sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k} t^{n-k} \sum_{m=k+1}^{\infty} \frac{(-1)^{m-1} t^{m}}{m} \\
= & \sum_{m=0}^{\infty}(-1)^{m} t^{m+1} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{n+k}{k} \frac{t^{n-k} t^{k}}{m+k+1} \\
= & t^{n+1} \int_{0}^{1} \sum_{m=0}^{\infty}(-1)^{m}(t x)^{m} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{n+k}{k} x^{k} d x \\
= & t^{n+1} \int_{0}^{1} \sum_{m=0}^{\infty}(-t x)^{m} \frac{d^{n}}{d x^{n}}\left(\frac{x^{n}(1-x)^{n}}{n!}\right) d x \\
= & t^{n+1} \int_{0}^{1} \frac{1}{1+t x} \cdot \frac{d^{n}}{d x^{n}}\left(\frac{x^{n}(1-x)^{n}}{n!}\right) d x \\
= & (-1)^{n} t^{n+1} \int_{0}^{1} \frac{d^{n}}{d x^{n}}\left(\frac{1}{1+t x}\right) \cdot \frac{x^{n}(1-x)^{n}}{n!} d x \\
= & t^{2 n+1} \int_{0}^{1} \frac{x^{n}(1-x)^{n}}{(1+t x)^{n+1}} d x .
\end{aligned}
$$

The antiderivative in the last but one line was obtained using n-fold integration by parts. The lemma is proven.
A first consequence of Lemma 4.1 is an explicit formula for the error sum of $\log (1+t)$.
Corollary 4.1. Let $-1<t \leq 1$. For the sequences $B:=\left(B_{n}\right)_{n \geq 0}$ and $R:=\left(A_{n}\right)_{n \geq 0}$ we have

$$
\mathcal{E}^{*}(B, R, \log (1+t))=\frac{2}{\sqrt{3+2 t-t^{2}}}\left(\arctan \left(\frac{1+t}{\sqrt{3+2 t-t^{2}}}-\arctan \left(\frac{1-t}{\sqrt{3+2 t-t^{2}}}\right)\right)\right.
$$

In particular, $\mathcal{E}^{*}(B, R, \log 2)=\pi / 4$.
Proof: From Lemma 4.1 we obtain

$$
\begin{aligned}
& \mathcal{E}^{*}(B, R, \log (1+t)) \\
= & t \int_{0}^{1} \sum_{m=0}^{\infty} \frac{t^{2 m} x^{m}(1-x)^{m}}{(1+t x)^{m+1}} d x \\
= & t \int_{0}^{1} \frac{1}{1+t x} \sum_{m=0}^{\infty}\left(\frac{t^{2} x(1-x)}{1+t x}\right)^{m} d x \\
= & t \int_{0}^{1} \frac{d x}{1+t(1-t) x+t^{2} x^{2}} \\
= & \frac{2}{\sqrt{3+2 t-t^{2}}}\left(\arctan \left(\frac{1+t}{\sqrt{3+2 t-t^{2}}}-\arctan \left(\frac{1-t}{\sqrt{3+2 t-t^{2}}}\right)\right) .\right.
\end{aligned}
$$

This proves the corollary.
By straightforward computations it can be seen that the error sum from Corollary 4.1 satisfies a linear first order differential equation.

Corollary 4.2. Let $-1<t \leq 1$. For the sequences $B:=\left(B_{n}\right)_{n \geq 0}$ and $R:=\left(A_{n}\right)_{n \geq 0}$ the function $f(t):=\mathcal{E}^{*}(B, R, \log (1+t))$ satisfies the differential equation

$$
\left(3+2 t-t^{2}\right) f^{\prime}+(1-t) f-3=0
$$

where $f^{\prime}=d f / d t$.
A second consequence of Lemma 4.1 is

$$
\mathcal{E}^{*}(B, R, \log (1+t))=\operatorname{sign}(t) \mathcal{E}(B, R, \log (1+t))
$$

Finally, the continued fraction (4.1) and Lemma 4.1 allow to prove the irrationality of $\log (1+t)$ for certain rationals $t:=a / b$.

Corollary 4.3. Let $0<a / b \leq 1$ be a rational number with e $a^{2}<4 b$. Then the number $\log (1+a / b)$ is irrational. In particular, for every integer $k \geq 1$ the number $\log (1+1 / k)$ is irrational.

Proof: Let $d_{n}:=$ l.c.m. $(1,2,3, \ldots, n)$ denote the least common multiple of the integers $1,2,3, \ldots, n$. One knows by the prime number theorem that

$$
\log d_{n}=\sum_{p \leq n}\left[\frac{\log n}{\log p}\right] \log p \sim n
$$

where p runs through all primes less than or equal to n ([13, Theorem 434]). By the hypothesis $e a^{2}<4 b$ there is a positive real number ε such that $e^{1+\varepsilon} a^{2}<4^{1-\varepsilon} b$. Hence, for all sufficiently large numbers n, it follows that

$$
d_{n}<e^{(1+\varepsilon) n}
$$

Let $t=a / b$. With $b^{n} d_{n} A_{n} \in \mathbb{Z}$ and $b^{n} d_{n} B_{n} \in \mathbb{Z}$ we know by Lemma4.1 that

$$
\begin{aligned}
0 & <\left|b^{n} d_{n} B_{n} \log (1+t)-b^{n} d_{n} A_{n}\right| \\
& =\frac{a}{b} b^{n} d_{n}\left(\frac{a}{b}\right)^{2 n} \int_{0}^{1} \frac{x^{n}(1-x)^{n}}{(1+a x / b)^{n+1}} d x \\
& <\frac{a}{b} \cdot \frac{e^{(1+\varepsilon) n} a^{2 n}}{b^{n}} \int_{0}^{1} x^{n}(1-x)^{n} d x \\
& <\frac{a}{b} \cdot 4^{(1-\varepsilon) n} \int_{0}^{1} \frac{d x}{4^{n}} d x \\
& =\frac{t}{4^{\varepsilon n}} \rightarrow 0
\end{aligned}
$$

for n tending to infinity. This completes the proof of Corollary 4.3.

5 On error sums formed by Apéry's continued fractions for $\zeta(2)$ and $\zeta(3)$

Computing the error sums formed by the linear three term recurrences and continued fractions of $\zeta(2), \zeta(3)$ introduced by R. Apéry, this leads unexpectedly into a wide field of connections between famous sequences of integers. For the needed results we refer to [4] and [3].
1.) Error sums for $\zeta(2)$. We have

$$
\begin{aligned}
\zeta(2) & =\frac{\pi^{2}}{6}=\frac{5}{3}+\frac{1^{4}}{25}+\frac{2^{4}}{69}+\cdots+\frac{n^{4}}{11 n^{2}+11 n+3}+\ldots \\
& =b_{0}+\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}}+\frac{a_{3}}{b_{3}}+\ldots
\end{aligned}
$$

with

$$
\begin{gathered}
b_{0}=0, \quad b_{1}=3, \quad b_{n+1}=11 n^{2}+11 n+3 \quad(n \geq 1) \\
a_{1}=5, \quad a_{n+1}=n^{4} \quad(n \geq 1)
\end{gathered}
$$

A recurrence formula for both sequences

$$
\begin{aligned}
B_{n} & :=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k} \\
A_{n} & :=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}\left(2 \sum_{m=1}^{n} \frac{(-1)^{m-1}}{m^{2}}+\sum_{m=1}^{k} \frac{(-1)^{n+m-1}}{m^{2}\binom{n}{m}\binom{n+m}{m}}\right)
\end{aligned}
$$

is

$$
0=(n+1)^{2} X_{n+1}-\left(11 n^{2}+11 n+3\right) X_{n}-n^{2} X_{n-1}
$$

Then,

$$
b_{0}+\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}}+\frac{a_{3}}{b_{3}}+\cdots+\frac{a_{n}}{b_{n}}=\frac{A_{n}}{B_{n}}
$$

We obtain from [3, eq. (5)] for the sequences $B_{2}:=\left(B_{n}\right)_{n \geq 0}$ and $R_{2}:=\left(A_{n}\right)_{n \geq 0}$,

$$
\begin{align*}
\mathcal{E}^{*}\left(B_{2}, R_{2}, \zeta(2)\right) & =\sum_{n=0}^{\infty}\left(B_{n} \zeta(2)-A_{n}\right)=\sum_{n=0}^{\infty}(-1)^{n} \int_{0}^{1} \int_{0}^{1} \frac{x^{n}(1-x)^{n} y^{n}(1-y)^{n}}{(1-x y)^{n+1}} d x d y \\
& =\int_{0}^{1} \int_{0}^{1} \frac{d x d y}{1+x^{2} y^{2}-x y^{2}-y x^{2}}=1.5832522167 \ldots \tag{5.1}
\end{align*}
$$

Similarly, one has

$$
\begin{align*}
\mathcal{E}\left(B_{2}, R_{2}, \zeta(2)\right) & =\sum_{n=0}^{\infty}\left|B_{n} \zeta(2)-A_{n}\right|=\sum_{n=0}^{\infty} \int_{0}^{1} \int_{0}^{1} \frac{x^{n}(1-x)^{n} y^{n}(1-y)^{n}}{(1-x y)^{n+1}} d x d y \\
& =\int_{0}^{1} \int_{0}^{1} \frac{d x d y}{1-x^{2} y^{2}-2 x y+x y^{2}+y x^{2}}=1.7141459142 \ldots \tag{5.2}
\end{align*}
$$

2.) Error sums for $\zeta(3)$. Here,

$$
\begin{aligned}
\zeta(3) & =\frac{6}{5}-\frac{1^{6}}{117}-\frac{2^{6}}{535}-\cdots-\frac{n^{6}}{34 n^{3}+51 n^{2}+27 n+5}-\ldots \\
& =b_{0}+\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}}+\frac{a_{3}}{b_{3}}+\ldots
\end{aligned}
$$

with

$$
\begin{gathered}
b_{0}=0, \quad b_{1}=5, \quad b_{n+1}=34 n^{3}+51 n^{2}+27 n+5 \quad(n \geq 1) \\
a_{1}=6, \quad a_{n+1}=-n^{6} \quad(n \geq 1)
\end{gathered}
$$

A recurrence formula for both sequences,

$$
\begin{aligned}
D_{n} & :=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2} \\
C_{n} & :=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}\left(\sum_{m=1}^{n} \frac{1}{m^{3}}+\sum_{m=1}^{k} \frac{(-1)^{m-1}}{2 m^{3}\binom{n}{m}\binom{n+m}{m}}\right)
\end{aligned}
$$

is

$$
\begin{aligned}
0 & =P(n+1) X_{n+1}-Q(n+1) X_{n}-R(n+1) X_{n-1} \\
& =(n+1)^{3} X_{n+1}-\left(34 n^{3}+51 n^{2}+27 n+5\right) X_{n}+n^{3} X_{n-1}
\end{aligned}
$$

The construction of C_{n} and D_{n} leads to the identity

$$
b_{0}+\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}}+\frac{a_{3}}{b_{3}}+\cdots+\frac{a_{n}}{b_{n}}=\frac{C_{n}}{D_{n}}
$$

We obtain from [3, eq. (7)] for the sequences $B_{3}:=\left(D_{n}\right)_{n \geq 0}$ and $R_{3}:=\left(C_{n}\right)_{n \geq 0}$,

$$
\begin{align*}
& \mathcal{E}^{*}\left(B_{3}, R_{3}, \zeta(3)\right) \\
= & \sum_{n=0}^{\infty}\left(D_{n} \zeta(3)-C_{n}\right)=\sum_{n=0}^{\infty}\left|D_{n} \zeta(3)-C_{n}\right|=\mathcal{E}\left(B_{3}, R_{3}, \zeta(3)\right) \\
= & \sum_{n=0}^{\infty} \frac{1}{2} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{x^{n}(1-x)^{n} y^{n}(1-y)^{n} w^{n}(1-w)^{n}}{(1-(1-x y) w)^{n+1}} d x d y d w \\
= & \frac{1}{2} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{d x d y d w}{1+x^{2} y^{2} w^{2}-x y^{2} w^{2}-x^{2} y w^{2}-x^{2} y^{2} w+x y w^{2}+x y^{2} w+x^{2} y w-w} \\
= & 1.2124982529 \ldots . \tag{5.3}
\end{align*}
$$

3.) Now we focus our interest on various methods in order to express the multiple integrals in (5.1), (5.2), and (5.3), by series with rational terms. A first approach to this subject involves the hypergeometric function.

Theorem 5.1. For the sequences $B_{i}, R_{i}(i=2,3)$ defined above for $\zeta(2)$ and $\zeta(3)$, respectively, we have

$$
\begin{aligned}
& \mathcal{E}\left(B_{2}, R_{2}, \zeta(2)\right)=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{\binom{n+k}{n}}{(2 n+k+1)^{2}\binom{2 n+k}{n}^{2}} \\
& =\sum_{n=0}^{\infty} \frac{{ }_{3} F_{2}\left(\begin{array}{ccc}
n+1 & n+1 & n+1 \\
2 n+2 & 2 n+2 & 1
\end{array}\right)}{(2 n+1)^{2}\binom{2 n}{n}^{2}}, \\
& \mathcal{E}^{*}\left(B_{2}, R_{2}, \zeta(2)\right)=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{(-1)^{n}\binom{n+k}{n}}{(2 n+k+1)^{2}\binom{2 n+k}{n}^{2}} \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{{ }_{3} F_{2}\left(\begin{array}{ccc|}
n+1 & n+1 & n+1 \\
2 n+2 & 2 n+2 & 1
\end{array}\right)}{(2 n+1)^{2}\binom{2 n}{n}^{2}}, \\
& \mathcal{E}\left(B_{3}, R_{3}, \zeta(3)\right)=\frac{1}{2} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{l=0}^{k} \frac{(-1)^{l}\binom{k}{l}\binom{n+l}{n}}{(2 n+k+1)(2 n+l+1)^{2}\binom{2 n+k}{n}\binom{2 n+l}{n}^{2}} \\
& =\frac{1}{2} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{{ }_{4} F_{3}\left(\begin{array}{cccc}
n+1 & n+1 & n+1 & -k \\
2 n+2 & 2 n+2 & 1 & 1
\end{array}\right)}{(2 n+1)^{2}(2 n+k+1)\binom{2 n}{n}^{2}\binom{2 n+k}{n}} .
\end{aligned}
$$

Note that the hypergeometric function

$$
{ }_{4} F_{3}\left(\begin{array}{cccc|}
n+1 & n+1 & n+1 & -k \\
2 n+2 & 2 n+2 & 1 & 1
\end{array}\right)
$$

takes rational values for all $0 \leq k, n<\infty$.
Proof: It suffices to prove the identities for $\mathcal{E}\left(B_{2}, R_{2}, \zeta(2)\right)$, since the arguments are the same for the remaining error sums. The basic idea is to use the expansion

$$
\frac{1}{(1-t)^{n+1}}=\sum_{k=0}^{\infty} \frac{(n+1)_{k}}{k!} t^{k}
$$

Then, (5.2) gives

$$
\begin{align*}
\mathcal{E}\left(B_{2}, R_{2}, \zeta(2)\right) & =\sum_{n=0}^{\infty} \int_{0}^{1} \int_{0}^{1} \frac{x^{n}(1-x)^{n} y^{n}(1-y)^{n}}{(1-x y)^{n+1}} d x d y \\
& =\sum_{n=0}^{\infty} \int_{0}^{1} \int_{0}^{1} \sum_{k=0}^{\infty} \frac{(n+1)_{k}}{k!}(x y)^{k} x^{n}(1-x)^{n} y^{n}(1-y)^{n} d x d y \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{(n+1)_{k}}{k!} \int_{0}^{1} x^{n+k}(1-x)^{n} d x \int_{0}^{1} y^{n+k}(1-y)^{n} d y \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{(n+1)_{k}}{k!}\left(\frac{\Gamma(n+1) \Gamma(n+k+1)}{\Gamma(2 n+k+2)}\right)^{2} \tag{5.4}\\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{n!(n+k)!^{3}}{k!(2 n+k)!^{2}(2 n+k+1)^{2}}=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{\binom{n+k}{n}}{(2 n+k+1)^{2}\binom{2 n+k}{n}^{2}} .
\end{align*}
$$

The second identity for $\mathcal{E}\left(B_{2}, R_{2}, \zeta(2)\right)$ in Theorem 5.1 follows from (5.4) and from

$$
\frac{\Gamma^{2}(n+1) \Gamma^{2}(n+k+1)}{\Gamma^{2}(2 n+k+2)}=\frac{1}{(2 n+1)^{2}\binom{2 n}{n}^{2}} \cdot \frac{(n+1)_{k}(n+1)_{k}}{(2 n+2)_{k}(2 n+2)_{k}}
$$

which can be verified by straightforward computations.
Next, we define recursively a sequence $p_{\nu}(t)(\nu=1,2, \ldots)$ of polynomias in one variable t, namely

$$
\begin{align*}
& p_{1}(t)=t^{2} \tag{5.5}\\
& p_{2}(t)=t^{4}-t^{2}+t \tag{5.6}\\
& p_{\nu}(t)=t^{2} p_{\nu-1}(t)+t(1-t) p_{\nu-2}(t) \quad(\nu=3,4, \ldots) \tag{5.7}
\end{align*}
$$

It is clear that $\operatorname{deg} p_{\nu}=2 \nu$, which follows easily by induction for ν with $\operatorname{deg} p_{1}=2$ and $\operatorname{deg} p_{2}=4$. The leading coefficient of p_{ν} is 1 for $\nu=1,2, \ldots$ Let

$$
p_{\nu}(t)=\sum_{\mu=0}^{2 \nu} a_{\nu, \mu} t^{\mu}
$$

Lemma 5.1. For $\nu \geq 3$ we have

$$
p_{\nu}(t)=t^{2 \nu}+(1-\nu) t^{2 \nu-2}+\sum_{\mu=2}^{2 \nu-3}\left(a_{\nu-1, \mu-2}+a_{\nu-2, \mu-1}-a_{\nu-2, \mu-2}\right) t^{\mu}
$$

with

$$
a_{\nu, \mu}=a_{\nu-1, \mu-2}+a_{\nu-2, \mu-1}-a_{\nu-2, \mu-2} \quad(2 \leq \mu \leq 2 \nu-3) .
$$

Proof: Using the definition of $p_{\nu}(t)$ from (5.5) to (5.7) with $\nu \geq 3$, we obtain

$$
\begin{aligned}
p_{\nu}(t)= & \sum_{\mu=0}^{2 \nu} a_{\nu, \mu} t^{\mu}=\sum_{\mu=0}^{2 \nu-2} a_{\nu-1, \mu} t^{\mu+2}+\sum_{\mu=0}^{2 \nu-4} a_{\nu-2, \mu} t^{\mu+1}-\sum_{\mu=0}^{2 \nu-4} a_{\nu-2, \mu} t^{\mu+2} \\
= & \sum_{\mu=2}^{2 \nu} a_{\nu-1, \mu-2} t^{\mu}+\sum_{\mu=1}^{2 \nu-3} a_{\nu-2, \mu-1} t^{\mu}-\sum_{\mu=2}^{2 \nu-2} a_{\nu-2, \mu-2} t^{\mu} \\
= & a_{\nu-1,2 \nu-2} t^{2 \nu}+a_{\nu-1,2 \nu-3} t^{2 \nu-1}+a_{\nu-1,2 \nu-4} t^{2 \nu-2}+a_{\nu-2,0} t-a_{\nu-2,2 \nu-4} t^{2 \nu-2} \\
& +\sum_{\mu=2}^{2 \nu-3}\left(a_{\nu-1, \mu-2}+a_{\nu-2, \mu-1}-a_{\nu-2, \mu-2}\right) t^{\mu} \\
= & t^{2 \nu}+(1-\nu) t^{2 \nu-2}+\sum_{\mu=2}^{2 \nu-3}\left(a_{\nu-1, \mu-2}+a_{\nu-2, \mu-1}-a_{\nu-2, \mu-2}\right) t^{\mu},
\end{aligned}
$$

since the four identities

$$
\begin{aligned}
a_{\nu-1,2 \nu-2} & =1 \\
a_{\nu-1,2 \nu-3} & =0 \\
a_{\nu-1,2 \nu-4}-a_{\nu-2,2 \nu-4} & =1-\nu, \\
a_{\nu-2,0} & =0
\end{aligned}
$$

follow easily from (5.5) to (5.7) by $a_{\nu, 2 \nu}=1, a_{\nu, 2 \nu-1}=0, a_{\nu, 2 \nu-2}=1-\nu$, and $a_{\nu, 0}=0$ for $\nu \geq 1$. The lemma is proven.

Theorem 5.2. For the sequences B_{2}, R_{2} defined above for $\zeta(2)$ we have

$$
\mathcal{E}^{*}\left(B_{2}, R_{2}, \zeta(2)\right)=1+\sum_{\nu=1}^{\infty} \sum_{\mu=0}^{2 \nu} \frac{a_{\nu, \mu}}{(\nu+1)(\mu+1)} .
$$

Proof: With (5.5) to (5.7) we obtain

$$
\begin{aligned}
& \left(1+x^{2} y^{2}-x y^{2}-y x^{2}\right)\left(1+\sum_{\nu=1}^{\infty} p_{\nu}(y) x^{\nu}\right) \\
= & 1+x^{2} y^{2}-x y^{2}-y x^{2}+\sum_{\nu=1}^{\infty} p_{\nu}(y) x^{\nu}+\sum_{\nu=1}^{\infty} y^{2} p_{\nu}(y) x^{\nu+2}-\sum_{\nu=1}^{\infty} y^{2} p_{\nu}(y) x^{\nu+1} \\
& -\sum_{\nu=1}^{\infty} y p_{\nu}(y) x^{\nu+2} \\
= & 1+x^{2} y^{2}-x y^{2}-y x^{2}+\sum_{\nu=1}^{\infty} p_{\nu}(y) x^{\nu}-\sum_{\nu=3}^{\infty} y(1-y) p_{\nu-2}(y) x^{\nu}-\sum_{\nu=2}^{\infty} y^{2} p_{\nu-1}(y) x^{\nu} \\
= & 1-p_{1}(y) x-p_{2}(y) x^{2}+y^{2} p_{1}(y) x^{2}+\sum_{\nu=1}^{\infty} p_{\nu}(y) x^{\nu}-\sum_{\nu=3}^{\infty} y(1-y) p_{\nu-2}(y) x^{\nu}-\sum_{\nu=2}^{\infty} y^{2} p_{\nu-1}(y) x^{\nu} \\
= & 1+\sum_{\nu=3}^{\infty} p_{\nu}(y) x^{\nu}-\sum_{\nu=3}^{\infty} y(1-y) p_{\nu-2}(y) x^{\nu}-\sum_{\nu=3}^{\infty} y^{2} p_{\nu-1}(y) x^{\nu} \\
= & 1+\sum_{\nu=3}^{\infty}\left[p_{\nu}(y)-\left(y^{2} p_{\nu-1}(y)+y(1-y) p_{\nu-2}(y)\right)\right] x^{\nu} \\
= & 1 .
\end{aligned}
$$

Hence,

$$
\frac{1}{1+x^{2} y^{2}-x y^{2}-y x^{2}}=1+\sum_{\nu=1}^{\infty} p_{\nu}(y) x^{\nu}=1+\sum_{\nu=1}^{\infty}\left(\sum_{\mu=0}^{2 \nu} a_{\nu, \mu} y^{\mu}\right) x^{\nu}
$$

Now the theorem follows from (5.1) by two-fold integration with respect to x and y.
We can proceed similarly in order to obtain similar results for $\mathcal{E}\left(B_{2}, R_{2}, \zeta(2)\right)$ and for $\mathcal{E}\left(B_{3}, R_{3}, \zeta(3)\right)$. Therefore, we state them without proofs. Again we define recursively a sequence $q_{\nu}(t)(\nu=1,2, \ldots)$ of integer polynomias in one variable t,

$$
\begin{aligned}
q_{1}(t) & =2 t-t^{2} \\
q_{2}(t) & =t^{4}-4 t^{3}+5 t^{2}-t \\
q_{\nu}(t) & =t(2-t) q_{\nu-1}(t)+t(t-1) q_{\nu-2}(t) \quad(\nu=3,4, \ldots)
\end{aligned}
$$

Let

$$
q_{\nu}(t)=\sum_{\mu=0}^{2 \nu} b_{\nu, \mu} t^{\mu}
$$

Here, we have

$$
\frac{1}{1-x^{2} y^{2}-2 x y+x y^{2}+y x^{2}}=\sum_{\nu=0}^{\infty} q_{\nu}(y) x^{\nu}=\sum_{\nu=0}^{\infty}\left(\sum_{\mu=0}^{2 \nu} b_{\nu, \mu} y^{\mu}\right) x^{\nu}
$$

Lemma 5.2. For $\nu \geq 3$ we have

$$
\begin{aligned}
q_{\nu}(t)= & (-1)^{\nu} t^{2 \nu}+2(-1)^{\nu+1} \nu t^{2 \nu-1}+(-1)^{\nu}\left(2 \nu^{2}-\nu-1\right) t^{2 \nu-2} \\
& +\sum_{\mu=2}^{2 \nu-3}\left(-b_{\nu-1, \mu-2}+2 b_{\nu-1, \mu-1}+b_{\nu-2, \mu-2}-b_{\nu-2, \mu-1}\right) t^{\mu}
\end{aligned}
$$

with

$$
b_{\nu, \mu}=-b_{\nu-1, \mu-2}+2 b_{\nu-1, \mu-1}+b_{\nu-2, \mu-2}-b_{\nu-2, \mu-1} \quad(2 \leq \mu \leq 2 \nu-3)
$$

Theorem 5.3. For the sequences B_{2}, R_{2} defined above for $\zeta(2)$ we have

$$
\mathcal{E}\left(B_{2}, R_{2}, \zeta(2)\right)=1+\sum_{\nu=1}^{\infty} \sum_{\mu=0}^{2 \nu} \frac{b_{\nu, \mu}}{(\nu+1)(\mu+1)}
$$

The above method can be generalized such that it also works for $\mathcal{E}\left(B_{3}, R_{3}, \zeta(3)\right)$. Let

$$
\begin{aligned}
& r_{0}(x, y)=1 \\
& r_{1}(x, y)=x^{2} y^{2}-x y^{2}-x^{2} y+1 \\
& r_{2}(x, y)=x^{4} y^{4}-2 x^{3} y^{4}-2 x^{4} y^{3}+x^{2} y^{4}+x^{4} y^{2}+2 x^{3} y^{3}+x^{2} y^{2}-x y^{2}-x^{2} y-x y+1 \\
& r_{\nu}(x, y)=\left(x^{2} y^{2}-x y^{2}-x^{2} y+1\right) r_{\nu-1}(x, y)-\left(x^{2} y^{2}-x y^{2}-x^{2} y+x y\right) r_{\nu-2}(x, y)
\end{aligned}
$$

where $\nu \geq 3$. Setting

$$
r_{\nu}(x, y)=\sum_{\mu_{1}=0}^{2 \nu} \sum_{\mu_{2}=0}^{2 \nu} c_{\nu, \mu_{1}, \mu_{2}} x^{\mu_{1}} y^{\mu_{2}}
$$

it turns out that

$$
\frac{1}{1+x^{2} y^{2} w^{2}-x y^{2} w^{2}-x^{2} y w^{2}-x^{2} y^{2} w+x y w^{2}+x y^{2} w+x^{2} y w-w}=\sum_{\nu=0}^{\infty} r_{\nu}(x, y) \cdot w^{\nu}
$$

Then, (5.3) underlies the following result.

Theorem 5.4. For the sequences B_{3}, R_{3} defined above for $\zeta(3)$ we have

$$
\mathcal{E}\left(B_{3}, R_{3}, \zeta(3)\right)=\frac{1}{2}+\frac{1}{2} \sum_{\nu=1}^{\infty} \sum_{\mu_{1}=0}^{2 \nu} \sum_{\mu_{2}=0}^{2 \nu} \frac{c_{\nu, \mu_{1}, \mu_{2}}}{(\nu+1)\left(\mu_{1}+1\right)\left(\mu_{2}+1\right)}
$$

4.) As mentionned at the beginning of Section 5] some connections between rational coefficients involved in computing the error sums for Apéry's continued fraction and well-known integer sequences may be noticed. Furthermore some unproved identities have been empirically found for such coefficients.

The Theorems 5.2 and 5.3 rely on two triangles of integer coefficients, namely $a_{\nu, \mu}$ for the former and $b_{\nu, \mu}$ for the latter. Both can be expressed by binomial sums as follows.

$$
\begin{aligned}
& a_{\nu, \mu}=\sum_{k=0}^{\nu} \sum_{i=0}^{k}(-1)^{\nu+k}\binom{\mu-k}{2 \mu-\nu-k-i}\binom{\mu-k}{i}\binom{\mu-i}{k-i} \\
& b_{\nu, \mu}=\sum_{k=0}^{\nu} \sum_{i=0}^{k}(-1)^{\nu+\mu}\binom{\mu-k}{2 \mu-\nu-k-i}\binom{\mu-k}{i}\binom{\mu-i}{k-i}
\end{aligned}
$$

which both lead to non-recurrent formulas for the error sums as quadruple sums.
Several basic properties concerning the coefficients $a_{\nu, \mu}$ and $b_{\nu, \mu}$ can be noticed, including

$$
\sum_{\mu=0}^{2 \nu} a_{\mu, \nu}=1 \quad \text { and } \quad \sum_{\mu=0}^{2 \nu} b_{\mu, \nu}=1 \quad(\nu \in \mathbb{N})
$$

and

$$
a_{\nu, \mu}=a_{\mu, \nu} \quad \text { and } \quad b_{\nu, \mu}=b_{\mu, \nu}
$$

More unproved identities come from the theory of generating functions. Both coefficients $a_{\nu, \mu}$ and $b_{\nu, \mu}$ seem to be the coefficients of degree $2 \nu-\mu$ in the MacLaurin series expansion of

$$
\begin{cases}\frac{\left(\frac{x^{2}+1-\sqrt{x^{4}-4 x^{3}+2 x^{2}+1}}{2 x^{3}}\right)^{\mu-\nu}}{\sqrt{x^{4}-4 x^{3}+2 x^{2}+1}} & \text { for } a_{\nu, \mu} \\ \frac{\left(\frac{x^{2}+2 x-1+\sqrt{x^{4}+2 x^{2}-4 x+1}}{2 x^{3}}\right)^{\mu-\nu}}{\sqrt{x^{4}+2 x^{2}-4 x+1}} & \text { for } b_{\nu, \mu}\end{cases}
$$

These generating functions actually allow to build the triangles of coefficients $a_{\nu, \mu}$ and $b_{\nu, \mu}$ by diagonals rather than by rows.
Summing these coefficients by rows according to Theorems 5.2 and 5.3, the results can be easely achieved by applying the following unproved recursive identities.

$$
\left\{\begin{aligned}
\alpha_{0}=1, & \alpha_{1}=1 / 3, \\
\alpha_{2}=11 / 30, & \alpha_{3}=17 / 70 \\
\alpha_{n} & =\frac{4 n-1}{2 n+1} \alpha_{n-1} \\
-\frac{n-1}{4 n+2} \alpha_{n-3} & +\frac{2 n-2}{2 n+1} \alpha_{n-2} \\
& -\frac{n-2}{4 n+2} \alpha_{n-4}
\end{aligned}\right.
$$

and

$$
\left\{\begin{aligned}
\beta_{0}=1, & \beta_{1}=2 / 3, \quad \beta_{2}=11 / 30, \quad \beta_{3}=47 / 210 \\
\beta_{n} & =\frac{6 n-1}{2 n+1} \beta_{n-1}-\frac{6 n-5}{2 n+1} \beta_{n-2} \\
& +\frac{5 n-7}{4 n+2} \beta_{n-3}-\frac{n-2}{4 n+2} \beta_{n-4}
\end{aligned}\right.
$$

where

$$
\alpha_{\nu}=\sum_{\mu=0}^{2 \nu} \frac{a_{\nu, \mu}}{\mu+1} \quad \text { and } \quad \beta_{\nu}=\sum_{\mu=0}^{2 \nu} \frac{b_{\nu, \mu}}{\mu+1}
$$

The special case $b_{n, n}$, which may be called the main diagonal in the triangle of coefficients $b_{\nu, \mu}$, leads to the following simplifications. We have

$$
b_{n, n}=\sum_{k=0}^{n} \sum_{i=0}^{k}\binom{n-k}{i}^{2}\binom{n-i}{k-i}
$$

where the generating function of the $b_{n, n}$ is given by $1 / \sqrt{x^{4}+2 x^{2}-4 x+1}$. This is the sequence A108626 from the On-Line Encyclopedia of Integer Sequences. This sequence gives the antidiagonal sums of the square array A108625 itself known to be highly related to the constant $\zeta(2)$.
$b_{\nu, \mu}$ is defined recursively by

$$
b_{\nu, \mu}=2 b_{\nu-1, \mu-1}-b_{\nu-1, \mu-2}+b_{\nu-2, \mu-2}-b_{\nu-2, \mu-1} .
$$

Assuming $b_{n, n+1}=b_{n+1, n}$ (unproved), a new recursive identity can be given concerning A108626:

$$
\begin{aligned}
& \operatorname{A108626}(n+2)-2 \times \operatorname{A108626}(n+1)-\operatorname{A108626(n)} \\
& =2 \sum_{k=0}^{n} \sum_{i=0}^{k}\binom{n-k+1}{i-1}\binom{n-k+1}{i}\binom{n-i+1}{k-i} .
\end{aligned}
$$

The previous relation actually happens to be the simplest case from a more general sequence of recurrence relations of order $2 d$ given by:

$$
\sum_{k=0}^{2 d} c_{k} \mathrm{~A} 108626(n+k)=(-1)^{d} \sum_{k=0}^{n} \sum_{i=0}^{k}\binom{n-k}{d+i}\binom{n-k}{i}\binom{n-i}{k-i}
$$

where the numbers c_{k} are coefficients of order $2 d-k$ in the characteristic polynomial

$$
\frac{1}{2^{d}} \sum_{i=0}^{\left\lfloor\frac{d}{2}\right\rfloor}\binom{d}{2 i}\left(x^{4}+2 x^{2}-4 x+1\right)^{i}\left(x^{2}+2 x-1\right)^{d-2 i}
$$

These recurrence relations, as well as similar ones related to the coefficients $a_{\nu, \mu}$, can be written as new generating functions, the diagonal of order d being made from the coefficients of terms with positive powers in

$$
\begin{cases}\frac{\sum_{k=0}^{\left\lfloor\frac{d}{2}\right\rfloor}\binom{d}{2 k}\left(x^{4}-4 x^{3}+2 x^{2}+1\right)^{k}\left(x^{2}+1\right)^{d-2 k}}{\left(2 x^{3}\right)^{d} \sqrt{x^{4}-4 x^{3}+2 x^{2}+1}} & \text { for } a_{n, n+d} \\ \frac{\sum_{k=0}^{\left\lfloor\frac{d}{2}\right\rfloor}\binom{d}{2 k}\left(x^{4}+2 x^{2}-4 x+1\right)^{k}\left(x^{2}+2 x-1\right)^{d-2 k}}{\left(2 x^{3}\right)^{d} \sqrt{x^{4}+2 x^{2}-4 x+1}} & \\ \text { for } b_{n, n+d}\end{cases}
$$

References

[1] J. P. Allouche and T. Baruchel, Variations on an error sum function for the convergents of some powers of e, http://arxiv.org/abs/1408.2206
[2] A. Baker, Transcendental Number Theory, Cambridge University Press, 1975.
[3] F. Beukers, A note on the irrationality of $\zeta(2)$ and $\zeta(3)$, Bull. London Math. Soc. 11 (1979), 268-272.
[4] H. Cohen, Demonstration de l'irrationalite de $\zeta(3)$ (d'aprés R.Apéry), Séminaire de Théorie des Nombres, 5 octobre 1978, Grenoble, VI. 1 - VI. 9.
[5] H. Cohn, A short proof of the simple continued fraction expansion of e, Amer. Math. Monthly $\mathbf{1 1 3}$ (2006), 57-62.
[6] C.Elsner, Series of error terms for rational approximations of irrational numbers, Journal of Integer Sequences 14 (2011), Article 11.1.4; http://www.cs.uwaterloo.ca/journals/JIS/VOL14/Elsner/elsner9.html
[7] C.Elsner and M. Stein, On error sum functions formed by convergents of real numbers, Journal of Integer Sequences 14 (2011), Article 11.8.6; http://www.cs.uwaterloo.ca/journals/JIS/VOL14/Elsner2/elsner10.html
[8] C.Elsner and M. Stein, On the value distribution of Error Sums for approximations with rational numbers, Integers 12 (2012), A66, 1-28.
[9] C.Elsner, On error sums for square roots of positive integers with applications to Lucas and Pell numbers, Journal of Integer Sequences, 17 (2014), Article 14.4.4 . https://cs.uwaterloo.ca/journals/JIS/VOL17/Elsner/elsner15.html
[10] C. Elsner and A. Klauke, Errorsums for the values of the exponential function, Forschungsberichte der FHDW Hannover, Bericht Nr. 02014/01, 1-19; RS 8153 (2014,1)
[11] C. Elsner and A. Klauke, Transcendence results and continued fraction expansions obtained from a combinatorial series, Journal of Combinatorics and Number Theory 5 (2013), 53-79.
[12] C. Elsner, On prime-detecting sequences from Apéry's recurrence formulae for $\zeta(3)$ and $\zeta(2)$, Journal of Integer Sequences 11 (2008), Article 08.5.1.
[13] G.H.Hardy and E.M. Wright, An introduction to the theory of numbers, fifth ed., Clarendon Press, 1979.
[14] W. Koepf, Hypergeometric Summation, Vieweg, 1998.
[15] M. E. Larsen, Summa Summarum, CMS Treatises in Mathematics, A K Peters, Ltd., 2007.
[16] O.Perron, Die Lehre von den Kettenbrüchen, Bd. II, Wissenschaftliche Buchgesellschaft Darmstadt, 1977.
[17] G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Bd. 1, 3rd ed., Springer, 1964.
[18] A.B. Shidlovskii, Transcendental Numbers, Walter de Gruyter, 1989.
[19] L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, 1966.

List of OEIS sequence numbers.
A001850,
A003417,
A005258,
A005259,
A051451,
A108626,
A108626.

[^0]: *Lycée naval, Centre d'instruction naval, Brest, France, e-mail: baruchel@riseup.net Fachhochschule für die Wirtschaft, University of Applied Sciences, Freundallee 15, D-30173 Hannover, Germany, e-mail: carsten.elsner@fhdw.de

[^1]: ${ }^{1}$ We should like to point out that there is a misprint in the formula for $\lambda_{n+1, k} / \lambda_{n, k}$ in [12].

