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ON ERROR SUMS FORMED BY RATIONAL APPROXIMATIONS

WITH SPLIT DENOMINATORS

Thomas Baruchel and Carsten Elsner∗

Abstract

In this paper we consider error sums of the form

∞
∑

m=0

εm

(

bmα− am
cm

)

,

whereα is a real number,am, bm, cm are integers, andεm = 1 or εm = (−1)
m. In particular, we

investigate such sums for

α ∈
{

π, e, e1/2, e1/3, . . . , log(1 + t), ζ(2), ζ(3)
}

and exhibit some connections between rational coefficientsoccurring in error sums for Apéry’s continued
fraction forζ(2) and well-known integer sequences. The concept of the paper generalizes the theory of
ordinary error sums, which are given bybm = qm andam/cm = pm with the convergentspm/qm from
the continued fraction expansion ofα.
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1 Introduction

Let α be a real number. We assume that there is a sequenceB := (bn)n≥0 of integers, a sequenceR :=
(rn)n≥0 of rationalsrn = an/cn, say, withan ∈ Z andcn ∈ N, and a real numberω > 1 satisfying

∣

∣bncnα− an
∣

∣ ≪ cn
ωn

(n ≥ 0) . (1.1)

This is equivalent with
∣

∣bnα− rn
∣

∣ =
∣

∣

∣
bnα− an

cn

∣

∣

∣
≪ 1

ωn
(n ≥ 0) . (1.2)

We consider the fractionan/bncn as a rational approximation ofα with split denominatorbncn. Since
ω > 1, the error sums

E∗(B,R,α
)

:=

∞
∑

m=0

(

bmα− rm
)

=

∞
∑

m=0

(

bmα− am
cm

)

, (1.3)

E
(

B,R,α
)

:=
∞
∑

m=0

∣

∣bmα− rm
∣

∣ =
∞
∑

m=0

∣

∣

∣
bmα− am

cm

∣

∣

∣
(1.4)

exist. Let(pn/qn)n≥0 be the sequence of convergents ofα defined bypn/qn = 〈a0; a1, a2, . . . an〉 from the
regular continued fraction expansion

α = 〈a0; a1, a2, . . . 〉 = a0 +
1

a1 +
1

a2 +
1

. . .

of α. The error sums ofα for B = (qn)n≥0 andR = (pn)n≥0, namely

E∗(α) := E∗(B,R,α
)

=
∞
∑

m=0

(

qmα− pm
)

,

E(α) := E
(

B,R,α
)

=

∞
∑

m=0

∣

∣qmα− pm
∣

∣ ,

were already studied in some papers [6, 7, 8, 9]. We callE∗(α) andE(α) ordinary error sums. Conversely,
for B = (1)n≥0 andR = (pn/qn)n≥0, until now nobody has found any remarkable approach to the error
sums

E∗(B,R,α) =

∞
∑

m=0

(

α− pm
qm

)

,

E(B,R,α) =

∞
∑

m=0

∣

∣

∣α− pm
qm

∣

∣

∣ .

In this paper we focus our interest on the series in (1.3) and (1.4) in the case of particular values ofα and
well-known rational approximations of the form

0 <
∣

∣

∣bnα− an
cn

∣

∣

∣ ≪ 1

ωn
(n ≥ 0) . (1.5)
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Among others we are going to study the numbers

α ∈
{

π, e1/l,
log ρ√

5
, log(1 + t), ζ(2), ζ(3)

}

,

wherel = 1, 2, . . . , e = exp(1), ρ = (1 +
√
5)/2, and−1 < t ≤ 1, and we shall investigate extraordinary

properties of corresponding error sums (1.3) and (1.4).

2 Ordinary error sums for values of the exponential function

Ordinary error sums connected with the exponential function are studied in [1, 10]. Here, our goal is to
express this usual error sums itselves by a non-regular continued fraction. For this purpose we express the
error integral

erf (z) =
2√
π

∫ z

0
e−t2 dt

by a hypergeometric series, which again can be transformed into a Gauss-type continued fraction.

Theorem 2.1. Let l ≥ 2 be an integer, and letpn/qn denote the convergents ofe1/l. Then we have

E(e1/l ) =
∑

n≥0

∣

∣e1/lqn − pn
∣

∣ = e1/l
√

π

l
erf
( 1√

l

)

=
2e1/l√

l

∫ 1/
√
l

0
e−t2 dt

=
1/l

1/2−
1/2l

3/2 +
2/2l

5/2−
3/2l

7/2 +
4/2l

9/2 −
5/2l

11/2 +
. . .

(−1)mm/2l

(2m+ 1)/2 +
. . .

(m ≥ 1) .

Proof: The first identity of the theorem expressingE(e1/l) by an error integral is already known from [1, 10].
In order to prove the continued fraction expansion, we set

f(z) :=

√
π

2
zez

2

erf(z) = zez
2

∫ z

0
e−t2 dt .



4 Thomas Baruchel and Carsten Elsner

We expressf(z) in terms of a hypergeometric function1F1(α, β; z
2).

f(z) = zez
2

∫ z

0

∞
∑

ν=0

(−1)νt2ν

ν!
dt = zez

2

∞
∑

ν=0

(−1)νz2ν+1

(2ν + 1)ν!

= z2





∞
∑

µ=0

z2µ

µ!





( ∞
∑

ν=0

(−1)νz2ν

(2ν + 1)ν!

)

= z2
∞
∑

µ=0

∞
∑

ν=0

(−1)νz2(ν+µ)

(2ν + 1)ν!µ!
= z2

∞
∑

k=0

(

∞
∑

µ=0

∞
∑

ν=0

µ+ν=k

(−1)ν

(2ν + 1)ν!µ!

)

z2k

= z2
∞
∑

k=0

(

k
∑

ν=0

(−1)ν

(2ν + 1)ν!(k − ν)!

)

z2k = z2
∞
∑

k=0

1

k!

(

k
∑

ν=0

(−1)ν
(k
ν

)

2ν + 1

)

z2k .

From [15, p. 68], Remark 8.5, we have the following formula (with k replaced byν andn replaced byk)

1

dk[k]k

k
∑

ν=0

(−1)ν
(k
ν

)

c+ νd
=

1

c(c+ d)(c+ 2d) · · · (c+ kd)
,

where[k]k = k!. Settingc = 1 andd = 2, it follows that

1

k!

k
∑

ν=0

(−1)ν
(

k
ν

)

2ν + 1
=

2k

1 · 3 · 5 · · · (2k + 1)
=

1

(3/2)k
.

This gives

f(z) = z2
∞
∑

k=0

z2k

(3/2)k
= z2

∞
∑

k=0

(1)k
k!(3/2)k

z2k = z2 1F1

(

1, 3/2; z2
)

.

The function1F1

(

1, 3/2; z2
)

can be expressed by a Gauss-type continued fraction. Using formula (8) on
page 123 in [16] withγ = 3/2 andx = z2, we have

1F1

(

1, 3/2; z2
)

=
1/2

1/2 −
z2/2

3/2 +
2z2/2

5/2 −
3z2/2

7/2 +
4z2/2

9/2 −
5z2/2

11/2 +
.. .

(−1)mmz2/2

(2m+ 1)/2 +
. ..

(m ≥ 1)

Hence the continued fraction expansion given by the theoremfollows from

∑

n≥0

∣

∣e1/lqn − pn
∣

∣ = 2 ·
√
π

2
· e

1/l

√
l
· erf

(

1/
√
l
)

= 2f
(

1/
√
l
)

=
2

l
1F1

(

1, 3/2; 1/l
)

.

We point out the particular casez = 1.
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Corollary 2.1. We have

1F1

(

1, 3/2; 1
)

= e

∫ 1

0
e−t2 dt

= EMC(e) = e− 2 +
∞
∑

n=1

an
∑

b=1

∣

∣(bqn−1 + qn−2)e− (bpn−1 + pn−2)
∣

∣

=
1/2

1/2−
1/2

3/2 +
1

5/2−
3/2

7/2 +
2

9/2 −
5/2

11/2 +
. ..

(−1)mm/2

(2m+ 1)/2 +
. . .

(m ≥ 1) ,

whereEMC(e) is the error sum ofe taking into account all the minor convergents of

e = 〈2; 1, 2, 1, 1, 4, 1, . . . 〉 = 〈2; a1, a2, a3, . . . 〉 . (2.1)

Proof: The formula

EMC(e) = e

∫ 1

0
e−t2 dt

follows by (2.1) using

EMC(e) = e− 1 +

∞
∑

ν=0

(−1)ν+1(qνe− pν
)

( 1

2
(1 + aν+1)aν+1 − aν+2

)

and the formulas

q3m−1e− p3m−1 = −
∫ 1

0

xm+1(x− 1)m

m!
ex dx ,

q3me− p3m = −
∫ 1

0

xm(x− 1)m+1

m!
ex dx ,

q3m+1e− p3m+1 =

∫ 1

0

xm+1(x− 1)m+1

(m+ 1)!
ex dx

due to H. Cohn [5].

Let l ≥ 1. Then we know from [18, p. 193] that the numberse1/l and
∫ 1/

√
1/l

0 e−t2 dt are algebraically
independent overQ. This proves

Corollary 2.2. Let l ≥ 2 be an integer. Then the numbersE(e1/l ) andEMC(e) are transcendental.
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3 Error sums for π and (log ρ)/
√
5

In [11], A.Klauke and the second-named author have found newcontinued fractions for1/π and(log ρ)/
√
5.

In this section we are going to apply these results to computethe corresponding error sums and to decide on
their algebraic character. We start with the continued fraction for 1/π.
1.) From Theorem 8 in [11] and its proof we have the following results.

1

π
=

3

10 −
14

25 −
110

171 − . . .−
1
9m(m− 1)(2m − 1)(2m + 1)(4m− 5)(4m + 3)

(4m+ 1)(4m2 + 2m− 1) − . . .

=
p0
q0 −

p1
q1 −

p2
q2 − . . .−

pm
qm − . . .

(m ≥ 2) .

Let n = 0, 1, 2, . . . . Set

Bn :=
2 · 4n+1

n!

n
∑

k=0

(

n

k

)

(2k + 3)
(

k + 5/2
)

n
,

An :=
2 · 4n+1

n!

n
∑

k=0

k
∑

ν=0

(−1)k+ν

(

n

k

)

(2k + 3)
(

k + 5/2
)

n

2k − 2ν + 1
+ (−4)n+1 .

Here,
(

k + 5/2
)

n
= (k + 5/2)(k + 7/2)(k + 9/2) · · · (k + n+ 3/2) .

Note thatAn is a rational number, but no integer, whileBn/4 is an integer. Then, forn ≥ 0, one has

p0
q0 −

p1
q1 −

p2
q2 − . . .−

pn
qn

=
Bn

4An
,

and

0 < An − πBn

4
= 4(n+ 3/2)

∫ 1

0

t
√
1− t

2− t

( 4t(1− t)

2− t

)n

dt .

For 0 ≤ t ≤ 1 the rational function4t(1 − t)/(2 − t) takes its maximum2(6 − 4
√
2) at the point2−

√
2.

Therefore, it follows that

0 < An − πBn

4
< 8(n + 3/2)(6 − 4

√
2)

n
∫ 1

0

t
√
1− t

2− t
dt = 8(10/3 − π)(n+ 3/2)(6 − 4

√
2)

n
.

The integral on the right-hand side is a Pochhammer integralof a certain hypergeometric function. We show
the analogous details below in part 2.) which is devoted to the number(log ρ)/

√
5.

For (1.3) and (1.4) we define the sequencesB := (bn)n≥0 andR := (rn)n≥0 by bn := −Bn/4 and
rn = −An. Then we have the error sums

E∗(B,R, π) =

∞
∑

m=0

(bmπ − rm) = −E(B,R, π)

= −4

∫ 1

0

t
√
1− t

2− t

∞
∑

m=0

(m+ 3/2)
( 4t(1− t)

2− t

)m

dt

= −4

∫ 1

0

t
√
1− t

2− t
· (2− t)(4t2 − 7t+ 6)

2(4t2 − 5t+ 2)2
dt

= −4

∫ 1

0

u2(1− u2)(4u4 − u2 + 3)

(4u4 − 3u2 + 1)2
du .
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Here we have introduced the new variableu :=
√
1− t. Computing this integral, we have the following

theorem.

Theorem 3.1. For the sequencesB := (bn)n≥0 andR := (rn)n≥0 defined bybn := −Bn/4 andrn = −An

we have

E∗(B,R, π) = −E(B,R, π) =

√
7

49
log
( 3−

√
7

3 +
√
7

)

− 3π

2
− 4

7
= −5.4333111067784 . . . .

Expressingπ by π = 2 log i
i , we see thatE(B,R, π) is a nonvanishing linear form in logarithms with alge-

braic arguments and algebraic coefficients. Then, by Theorem 2.2 in [2], we have the following corollary.

Corollary 3.1. For the sequencesB := (bn)n≥0 andR := (rn)n≥0 defined bybn := −Bn/4 andrn = −An

the error sumE(B,R, π) is transcendental, and so is the error sumE∗(B,R, π).

2.) From Theorem 6 in [11] and its proof we have the following results.
√
5

log ρ
=

60

13 −
7

80 −
110

522 − . . .−
1
9m(m− 1)(2m− 1)(2m + 1)(4m− 5)(4m + 3)

2(4m + 1)(6m2 + 3m− 1) − . . .

=
p0
q0 −

p1
q1 −

p2
q2 − . . .−

pm
qm − . . .

(m ≥ 2) .

Let n = 0, 1, 2, . . . . Set (cf. (25) in [11] withc = d = 1)

Dn :=
5 · 4n+1

n!

n
∑

k=0

(−1)n+k

(

n

k

)

(2k + 3)
(

k + 5/2
)

n
5k ,

Cn := 4n +
4n+1

n!

n
∑

k=0

k
∑

ν=0

(−1)n+k

(

n

k

)

(2k + 3)
(

k + 5/2
)

n
5ν

2k − 2ν + 1
.

Applying Lemma 6 in [11] withx = τ = 1, we find that

p0
q0 −

p1
q1 −

p2
q2 − . . .−

pn
qn

=
Dn

Cn
,

and

0 < Cn − Dn log ρ√
5

=
(5/2)n(n+ 1)!

4(5/2)2n+1
2F1

(

n+ 1 n+ 2
2n+ 7/2

∣

∣

∣
− 1

4

)

.

We define the sequencesB := (bn)n≥0 andR := (rn)n≥0 by bn := −Dn andrn = −Cn. Then we have
the error sum

E∗
(

B,R,
log ρ√

5

)

=

∞
∑

m=0

(

bm
log ρ√

5
− rm

)

= −1

4

∞
∑

m=0

(5/2)m(m+ 1)!

4(5/2)2m+1
2F1

(

m+ 1 m+ 2
2m+ 7/2

∣

∣

∣
− 1

4

)

.

To compute this error sum, the method is the same as used abovefor the error sum ofE(π). First we express
the hypergeometric function by Pochhammer’s integral. Leta, b, c, z be complex numbers satisfying|z| < 1,
ℜ(c− b) > 0, andℜ(b) > 0. Then we have the identity

2F1

(

a b
c

∣

∣

∣z

)

=
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− zt)−a dt ,
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cf. [19, p. 20]. The conditions are fulfilled fora = n + 1, b = n+ 2, c = 2n + 7/2, andz = −1/4, where
n = 0, 1, 2, . . . . Hence, it follows that

2F1

(

n+ 1 n+ 2
2n+ 7/2

∣

∣

∣
− 1

4

)

=
Γ(2n + 7/2)

Γ(n+ 2)Γ(n+ 3/2)

∫ 1

0
tn+1(1− t)n+1/2

(

1 +
t

4

)−n−1

dt .

In order to simplify the above expressions we need two identities involving Pochhammer’s symbol ([19, p.
239]).

(5/2)n
(5/2)2n+1

=
1

(n+ 5/2)n+1

,

Γ(2n+ 7/2)

Γ(n+ 3/2)
= (n+ 3/2)(n + 5/2)n+1 .

Collecting together all the above results, it follows that

E∗
(

B,R,
log ρ√

5

)

= −1

4

∞
∑

m=0

(m+ 3/2)

∫ 1

0

tm+1(1− t)m+1/2

(1 + t/4)m+1 dt

= −1

4

∫ 1

0

4t
√
1− t

4 + t

∞
∑

m=0

(m+ 3/2)
( 4t(1− t)

4 + t

)m

dt

= −1

2

∫ 1

0

t(4t2 − t+ 12)
√
1− t

(4t2 − 3t+ 4)2
dt

=

∫ 1

0

u2(1− u2)(4u4 − 7u2 + 15)

(4u4 − 5u2 + 5)2
du ,

whereu =
√
1− t. This proves

Theorem 3.2. For the sequencesB := (bn)n≥0 andR := (rn)n≥0 defined bybn := −Dn andrn = −Cn

we have

E∗
(

B,R,
log ρ√

5

)

=

√

124
√
5− 265 log

(

1 +

√
5

2
−
√

4
√
5 + 5

2

)

−
√

124
√
5 + 265 arccos

(

√
5

2
− 1

)

55
√
11

+
1

11

= −0.1210649459927 . . . .

Usingarccos z = 1
i log(z +

√
z2 − 1), we obtain by Theorem 2.2 in [2] the following result.

Corollary 3.2. For the sequencesB := (bn)n≥0 andR := (rn)n≥0 defined bybn := −Dn andrn = −Cn

the error sumE(B,R, log ρ/
√
5) is transcendental.
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4 An error sum for log(1 + t)

In this section we generalize a concept from the proof of Theorem 3 in [12], where a nonregular continued
fraction for log 2 is established. First we shall prove a continued fraction expansion forlog(1 + t) with
−1 < t ≤ 1, namely

log(1 + t) =
2t

2 + t −
12t2

3(2 + t) −
22t2

5(2 + t) −
32t2

7(2 + t) − · · · −
m2t2

(2m+ 1)(2 + t) − . . .
, (4.1)

wherem = 1, 2, . . . . O.Perron [16, p. 152] cites by equation (7) the continued fraction

log(1 + t) =
t

1 +

12t

2 +

12t

3 +

22t

4 +

22t

5 +

32t

6 +

32t

7 + . . .
.

Here we shall give full details of the proof, since a new argument is needed in H.Cohen’s method [4]
established for Apéry’s irregular continued fractions ofζ(2) andζ(3), and we need the details in order to
compute the error sum. Similar to Apéry’s approach we have to handle with combinatorial series.
In the sequel we fix a real numbert with −1 < t ≤ 1. Letn ≥ 0 be an integer. We define two combinatorial
series by

Bn :=
n
∑

k=0

(

n

k

)(

n+ k

k

)

tn−k ,

An :=

n
∑

k=0

(

n

k

)(

n+ k

k

)

tn−kck ,

where

ck :=
k
∑

m=1

(−1)m−1tm

m
.

By applyingZeilberger’s algorithm[14, Ch. 7] (Algorithm 7.1) on a computer algebra system, it turns out
that the numbersBn satisfy the linear three-term recurrence formula

(n+ 1)Xn+1 − (2n + 1)(2 + t)Xn + nt2Xn−1 = 0 (n ≥ 1) . (4.2)

In the sequel we prove this formula forXn = Bn without using a computer, since we need the details to
show that evenXn = An satisfy the recurrence. Letk, n denote integers. Set

λn,k :=

(

n

k

)(

n+ k

k

)

tn−k ,

Bn,k := −(4n + 2)λn,k ,

An,k := Bn,kck ,

Sn,k := (n+ 1)λn+1,kck − (2n+ 1)(2 + t)λn,kck + nt2λn−1,kck .
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Note that
(n
k

)

= 0 for k < 0 or k > n, which implies thatAn,n+1 = Bn,n+1 = An,−1 = Bn,−1 = 0. One
easily verfies the identities1

λn,k−1

λn,k
=

k2t

(n+ k)(n − k + 1)
,

λn+1,k

λn,k
=

(n+ k + 1)t

n− k + 1
,

λn−1,k

λn,k
=

n− k

(n+ k)t
,

which can be applied to prove the identity

Bn,k −Bn,k−1 = (n+ 1)λn+1,k − (2n + 1)(2 + t)λn,k + nt2λn−1,k . (4.3)

Summing up on both sides of (4.3) fromk = 0 to k = n+ 1, we obtain

0 = Bn,n+1 −Bn,−1 =

n+1
∑

k=0

(

Bn,k −Bn,k−1

)

= (n+ 1)Bn+1 − (2n+ 1)(2 + t)Bn + nt2Bn−1 ,

which proves (4.2) forXn = Bn.
Multiplying (4.3) byck, we obtainSn,k = (Bn,k −Bn,k−1)ck. Hence,

An,k −An,k−1 = Bn,kck −Bn,k−1ck−1 =
(

Bn,k −Bn,k−1

)

ck +Bn,k−1

(

ck − ck−1

)

= Sn,k +Bn,k−1
(−1)k−1tk

k
.

Again, we sum up fromk = 0 to k = n+ 1. This gives

0 = An,n+1 −An,−1 =

n+1
∑

k=0

(

An,k −An,k−1

)

=

n+1
∑

k=0

Sn,k − (4n + 2)

n+1
∑

k=1

(

n

k − 1

)(

n+ k − 1

k − 1

)

tn−k+1 (−1)k−1tk

k

= (n+ 1)An+1 − (2n + 1)(2 + t)An + nt2An−1 − (4n + 2)tn+1
n
∑

k=0

(

n

k

)(

n+ k

k

)

(−1)k

k + 1
.

Finally Vandermonde’s theorem for the hypergeometric series2F1(n + 1,−n, 2; 1) ([19, eq. (1.7.7)]) com-
pletes our proof of (4.2) forXn = An by

n
∑

k=0

(

n

k

)(

n+ k

k

)

(−1)k

k + 1
= 2F1(n+ 1,−n, 2; 1) =

(1− n)n
(2)n

= 0

for n ≥ 1. In the next step we prove that

lim
n→∞

An

Bn
= log(1 + t) . (4.4)

1We should like to point out that there is a misprint in the formula forλn+1,k/λn,k in [12].



On error sums formed by rational approximations with split denominators 11

For this purpose we shall prove that for every fixed integerν ≥ 0 we have the limit

lim
n→∞

(

n

ν

)(

n+ ν

ν

)

tn−ν

n
∑

k=0

(

n

k

)(

n+ k

k

)

tn−k

= 0 . (4.5)

Then, (4.5) implies (4.4) by a theorem of O.Toeplitz ([17, p.10, no. 66]), since

lim
n→∞

cn =
∞
∑

m=1

(−1)m−1tm

m
= log(1 + t) .

There is nothing to show fort = 0, becauseAn = 0 andBn =
(2n
n

)

6= 0. Therefore, keepν ∈ N0 and
t ∈ (−1, 1] \ {0} fixed. We substituteXn = Bn into (4.2) and divide the equation by(n+ 1)Bn. Then we
obtain

Bn+1

Bn
− (2n+ 1)(2 + t)

n+ 1
+

nt2

n+ 1
· 1

Bn/Bn−1
= 0 .

Let α := limn→∞Bn+1/Bn. By taking the limitn → ∞, it follows thatα satisfies the quadratic equation

α− 2(2 + t) +
t2

α
= 0 ,

which yields
α = 2 + t+ 2

√
1 + t > |t| (−1 < t ≤ 1) .

Putβ := (α+ |t|)/2. Then,
0 < |t| < β < α . (4.6)

There is an integern0 = n0(t) satisfying

Bm

Bm−1
> β > 0 (m ≥ n0) ,

or
|Bm| > β|Bm−1| (m ≥ n0) .

Then, forn ≥ 2n0 andk := n− n0 ≥ n0, we have

|Bn| > β|Bn−1| > β2|Bn−2| > · · · > βk|Bn−k| = βn−n0 |Bn0
| .

Consequently, we obtain

lim
n→∞

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

n

ν

)(

n+ ν

ν

)

tn−ν

n
∑

k=0

(

n

k

)(

n+ k

k

)

tn−k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= lim
n→∞

(

n

ν

)(

n+ ν

ν

)

|t|n−ν

|Bn|

≤ lim
n→∞

(

n

ν

)(

n+ ν

ν

)

|t|n−ν

βn−n0 |Bn0
| =

βn0

|t|ν |Bn0
| lim
n→∞

(

n

ν

)(

n+ ν

ν

)

( |t|
β

)n

= 0 ,
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since0 < |t|β−1 < 1 by (4.6), and
(n
ν

)(n+ν
ν

)

is a polynomial inn of degree2ν. This completes the proof
of (4.5) and, consequently, of (4.4).
We rewrite the recurrence formula (4.2) as

P (n+ 1)Xn+1 −Q(n+ 1)Xn −R(n+ 1)Xn−1 = 0 ,

where

P (n+ 1) := n+ 1 ,

Q(n+ 1) := (2n + 1)(2 + t) ,

R(n+ 1) := −nt2 .

Then, we obtain

log(1 + t) = b0 +
a1
b1 +

a2
b2 +

a3
b3 + . . .

with

b0 = 0 , b1 = 2 + t , bn+1 =
Q(n+ 1)

P (n + 1)
=

(2n + 1)(2 + t)

n+ 1
,

a1 = 2t , an+1 =
R(n+ 1)

P (n+ 1)
= − nt2

n+ 1
.

This gives the continued fraction

log(1 + t) =
2t

2 + t −
t2/2

3(2 + t)/2 −
2t2/3

5(2 + t)/3 −
3t2/4

7(2 + t)/4 − . . .
,

which is equivalent with (4.1).
Next, we compute the error sumE∗(B,R, log(1 + t)) =

∑∞
m=0(Bm log(1 + t) −Am) for B := (Bn)n≥0

andR := (An)n≥0.

Lemma 4.1. Let−1 < t ≤ 1. For every integern ≥ 0 we have

Bn log(1 + t)−An = t2n+1

∫ 1

0

xn(1− x)n

(1 + tx)n+1 dx .
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Proof. ForAn andBn defined above, we obtain

Bn log(1 + t)−An

=

n
∑

k=0

(

n

k

)(

n+ k

k

)

tn−k
∞
∑

m=k+1

(−1)m−1tm

m

=
∞
∑

m=0

(−1)mtm+1
n
∑

k=0

(−1)k
(

n

k

)(

n+ k

k

)

tn−ktk

m+ k + 1

= tn+1

∫ 1

0

∞
∑

m=0

(−1)m(tx)m
n
∑

k=0

(−1)k
(

n

k

)(

n+ k

k

)

xk dx

= tn+1

∫ 1

0

∞
∑

m=0

(−tx)m
dn

dxn

( xn(1− x)n

n!

)

dx

= tn+1

∫ 1

0

1

1 + tx
· dn

dxn

( xn(1− x)n

n!

)

dx

= (−1)ntn+1

∫ 1

0

dn

dxn

( 1

1 + tx

)

· x
n(1− x)n

n!
dx

= t2n+1

∫ 1

0

xn(1− x)n

(1 + tx)n+1 dx .

The antiderivative in the last but one line was obtained using n-fold integration by parts. The lemma is
proven.
A first consequence of Lemma 4.1 is an explicit formula for theerror sum oflog(1 + t).

Corollary 4.1. Let−1 < t ≤ 1. For the sequencesB := (Bn)n≥0 andR := (An)n≥0 we have

E∗(B,R, log(1 + t)
)

=
2√

3 + 2t− t2

(

arctan
( 1 + t√

3 + 2t− t2
− arctan

( 1− t√
3 + 2t− t2

)

)

.

In particular, E∗(B,R, log 2) = π/4.

Proof: From Lemma 4.1 we obtain

E∗(B,R, log(1 + t)
)

= t

∫ 1

0

∞
∑

m=0

t2mxm(1− x)m

(1 + tx)m+1 dx

= t

∫ 1

0

1

1 + tx

∞
∑

m=0

( t2x(1− x)

1 + tx

)
m

dx

= t

∫ 1

0

dx

1 + t(1− t)x+ t2x2

=
2√

3 + 2t− t2

(

arctan
( 1 + t√

3 + 2t− t2
− arctan

( 1− t√
3 + 2t− t2

)

)

.

This proves the corollary.
By straightforward computations it can be seen that the error sum from Corollary 4.1 satisfies a linear first
order differential equation.
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Corollary 4.2. Let −1 < t ≤ 1. For the sequencesB := (Bn)n≥0 and R := (An)n≥0 the function
f(t) := E∗(B,R, log(1 + t)) satisfies the differential equation

(3 + 2t− t2)f ′ + (1− t)f − 3 = 0 ,

wheref ′ = df/dt.

A second consequence of Lemma 4.1 is

E∗(B,R, log(1 + t)
)

= sign(t)E
(

B,R, log(1 + t)
)

.

Finally, the continued fraction (4.1) and Lemma 4.1 allow toprove the irrationality oflog(1 + t) for certain
rationalst := a/b.

Corollary 4.3. Let 0 < a/b ≤ 1 be a rational number withea2 < 4b. Then the numberlog(1 + a/b) is
irrational. In particular, for every integerk ≥ 1 the numberlog(1 + 1/k) is irrational.

Proof: Let dn := l.c.m.(1, 2, 3, . . . , n) denote the least common multiple of the integers1, 2, 3, . . . , n. One
knows by the prime number theorem that

log dn =
∑

p≤n

[ log n

log p

]

log p ∼ n ,

wherep runs through all primes less than or equal ton ([13, Theorem 434]). By the hypothesisea2 < 4b
there is a positive real numberε such thate1+εa2 < 41−εb. Hence, for all sufficiently large numbersn, it
follows that

dn < e(1+ε)n .

Let t = a/b. With bndnAn ∈ Z andbndnBn ∈ Z we know by Lemma 4.1 that

0 <
∣

∣bndnBn log(1 + t)− bndnAn

∣

∣

=
a

b
bndn

( a

b

)2n
∫ 1

0

xn(1− x)n

(1 + ax/b)n+1 dx

<
a

b
· e

(1+ε)na2n

bn

∫ 1

0
xn(1− x)n dx

<
a

b
· 4(1−ε)n

∫ 1

0

dx

4n
dx

=
t

4εn
→ 0

for n tending to infinity. This completes the proof of Corollary 4.3.

5 On error sums formed by Apéry’s continued fractions for ζ(2) and ζ(3)

Computing the error sums formed by the linear three term recurrences and continued fractions ofζ(2), ζ(3)
introduced by R. Apéry, this leads unexpectedly into a widefield of connections between famous sequences
of integers. For the needed results we refer to [4] and [3].
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1.) Error sums forζ(2). We have

ζ(2) =
π2

6
=

5

3 +

14

25 +

24

69 + · · ·+
n4

11n2 + 11n + 3 + . . .

= b0 +
a1
b1 +

a2
b2 +

a3
b3 + . . .

with
b0 = 0 , b1 = 3 , bn+1 = 11n2 + 11n+ 3 (n ≥ 1) ,

a1 = 5 , an+1 = n4 (n ≥ 1) .

A recurrence formula for both sequences

Bn :=

n
∑

k=0

(

n

k

)2(n+ k

k

)

,

An :=
n
∑

k=0

(

n

k

)2(n+ k

k

)

(

2
n
∑

m=1

(−1)m−1

m2
+

k
∑

m=1

(−1)n+m−1

m2
(n
m

)(n+m
m

)

)

,

is
0 = (n+ 1)2Xn+1 − (11n2 + 11n+ 3)Xn − n2Xn−1 .

Then,

b0 +
a1
b1 +

a2
b2 +

a3
b3 + · · ·+

an
bn

=
An

Bn
.

We obtain from [3, eq. (5)] for the sequencesB2 := (Bn)n≥0 andR2 := (An)n≥0,

E∗(B2, R2, ζ(2)
)

=

∞
∑

n=0

(

Bnζ(2)−An

)

=

∞
∑

n=0

(−1)n
∫ 1

0

∫ 1

0

xn(1− x)nyn(1− y)n

(1− xy)n+1 dx dy

=

∫ 1

0

∫ 1

0

dx dy

1 + x2y2 − xy2 − yx2
= 1.5832522167 . . . . (5.1)

Similarly, one has

E
(

B2, R2, ζ(2)
)

=

∞
∑

n=0

∣

∣

∣
Bnζ(2)−An

∣

∣

∣
=

∞
∑

n=0

∫ 1

0

∫ 1

0

xn(1− x)nyn(1− y)n

(1− xy)n+1 dx dy

=

∫ 1

0

∫ 1

0

dx dy

1− x2y2 − 2xy + xy2 + yx2
= 1.7141459142 . . . . (5.2)

2.) Error sums forζ(3). Here,

ζ(3) =
6

5 −
16

117 −
26

535 − · · · −
n6

34n3 + 51n2 + 27n + 5 − . . .

= b0 +
a1
b1 +

a2
b2 +

a3
b3 + . . .
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with

b0 = 0 , b1 = 5 , bn+1 = 34n3 + 51n2 + 27n+ 5 (n ≥ 1) ,

a1 = 6 , an+1 = −n6 (n ≥ 1) .

A recurrence formula for both sequences,

Dn :=
n
∑

k=0

(

n

k

)2(n+ k

k

)2

,

Cn :=

n
∑

k=0

(

n

k

)2(n+ k

k

)2
(

n
∑

m=1

1

m3
+

k
∑

m=1

(−1)m−1

2m3
(

n
m

)(

n+m
m

)

)

,

is

0 = P (n+ 1)Xn+1 −Q(n+ 1)Xn −R(n+ 1)Xn−1

= (n+ 1)3Xn+1 − (34n3 + 51n2 + 27n + 5)Xn + n3Xn−1 .

The construction ofCn andDn leads to the identity

b0 +
a1
b1 +

a2
b2 +

a3
b3 + · · ·+

an
bn

=
Cn

Dn
.

We obtain from [3, eq. (7)] for the sequencesB3 := (Dn)n≥0 andR3 := (Cn)n≥0,

E∗(B3, R3, ζ(3)
)

=

∞
∑

n=0

(

Dnζ(3)− Cn

)

=

∞
∑

n=0

∣

∣

∣Dnζ(3)− Cn

∣

∣

∣ = E
(

B3, R3, ζ(3)
)

=
∞
∑

n=0

1

2

∫ 1

0

∫ 1

0

∫ 1

0

xn(1− x)nyn(1− y)nwn(1− w)n
(

1− (1− xy)w
)n+1 dx dy dw

=
1

2

∫ 1

0

∫ 1

0

∫ 1

0

dx dy dw

1 + x2y2w2 − xy2w2 − x2yw2 − x2y2w + xyw2 + xy2w + x2yw − w

= 1.2124982529 . . . . (5.3)

3.) Now we focus our interest on various methods in order to express the multiple integrals in (5.1), (5.2),
and (5.3), by series with rational terms. A first approach to this subject involves the hypergeometric function.
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Theorem 5.1. For the sequencesBi, Ri (i = 2, 3) defined above forζ(2) andζ(3), respectively, we have

E
(

B2, R2, ζ(2)
)

=
∞
∑

n=0

∞
∑

k=0

(

n+ k

n

)

(2n+ k + 1)2
(

2n+ k

n

)2

=

∞
∑

n=0

3F2

(

n+ 1 n+ 1 n+ 1
2n+ 2 2n+ 2

∣

∣

∣1

)

(2n+ 1)2
(

2n

n

)2 ,

E∗(B2, R2, ζ(2)
)

=

∞
∑

n=0

∞
∑

k=0

(−1)n
(

n+ k

n

)

(2n+ k + 1)2
(

2n+ k

n

)2

=
∞
∑

n=0

(−1)n
3F2

(

n+ 1 n+ 1 n+ 1
2n + 2 2n+ 2

∣

∣

∣1

)

(2n+ 1)2
(

2n

n

)2 ,

E
(

B3, R3, ζ(3)
)

=
1

2

∞
∑

n=0

∞
∑

k=0

k
∑

l=0

(−1)l
(

k

l

)(

n+ l

n

)

(2n + k + 1)(2n + l + 1)2
(

2n + k

n

)(

2n+ l

n

)2

=
1

2

∞
∑

n=0

∞
∑

k=0

4F3

(

n+ 1 n+ 1 n+ 1 − k
2n+ 2 2n+ 2 1

∣

∣

∣
1

)

(2n + 1)2(2n + k + 1)

(

2n

n

)2(2n+ k

n

)
.

Note that the hypergeometric function

4F3

(

n+ 1 n+ 1 n+ 1 − k
2n+ 2 2n+ 2 1

∣

∣

∣1

)

takes rational values for all0 ≤ k, n < ∞.
Proof: It suffices to prove the identities forE

(

B2, R2, ζ(2)
)

, since the arguments are the same for the
remaining error sums. The basic idea is to use the expansion

1

(1− t)n+1 =

∞
∑

k=0

(n+ 1)k
k!

tk .
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Then, (5.2) gives

E
(

B2, R2, ζ(2)
)

=

∞
∑

n=0

∫ 1

0

∫ 1

0

xn(1− x)nyn(1− y)n

(1− xy)n+1 dx dy

=
∞
∑

n=0

∫ 1

0

∫ 1

0

∞
∑

k=0

(n+ 1)k
k!

(xy)kxn(1− x)nyn(1− y)n dx dy

=
∞
∑

n=0

∞
∑

k=0

(n+ 1)k
k!

∫ 1

0
xn+k(1− x)n dx

∫ 1

0
yn+k(1− y)n dy

=
∞
∑

n=0

∞
∑

k=0

(n+ 1)k
k!

( Γ(n+ 1)Γ(n+ k + 1)

Γ(2n + k + 2)

)2

(5.4)

=
∞
∑

n=0

∞
∑

k=0

n!(n+ k)!3

k!(2n + k)!2(2n + k + 1)2
=

∞
∑

n=0

∞
∑

k=0

(

n+ k

n

)

(2n + k + 1)2
(

2n + k

n

)2 .

The second identity forE
(

B2, R2, ζ(2)
)

in Theorem 5.1 follows from (5.4) and from

Γ2(n+ 1)Γ2(n+ k + 1)

Γ2(2n + k + 2)
=

1

(2n + 1)2
(

2n

n

)2 · (n+ 1)k(n+ 1)k
(2n + 2)k(2n + 2)k

,

which can be verified by straightforward computations.

Next, we define recursively a sequencepν(t) (ν = 1, 2, . . . ) of polynomias in one variablet, namely

p1(t) = t2 , (5.5)

p2(t) = t4 − t2 + t , (5.6)

pν(t) = t2pν−1(t) + t(1− t)pν−2(t) (ν = 3, 4, . . . ). (5.7)

It is clear thatdeg pν = 2ν, which follows easily by induction forν with deg p1 = 2 anddeg p2 = 4. The
leading coefficient ofpν is 1 for ν = 1, 2, . . . . Let

pν(t) =
2ν
∑

µ=0

aν,µt
µ .

Lemma 5.1. For ν ≥ 3 we have

pν(t) = t2ν + (1− ν)t2ν−2 +
2ν−3
∑

µ=2

(

aν−1,µ−2 + aν−2,µ−1 − aν−2,µ−2

)

tµ

with
aν,µ = aν−1,µ−2 + aν−2,µ−1 − aν−2,µ−2 (2 ≤ µ ≤ 2ν − 3) .



On error sums formed by rational approximations with split denominators 19

Proof: Using the definition ofpν(t) from (5.5) to (5.7) withν ≥ 3, we obtain

pν(t) =

2ν
∑

µ=0

aν,µt
µ =

2ν−2
∑

µ=0

aν−1,µt
µ+2 +

2ν−4
∑

µ=0

aν−2,µt
µ+1 −

2ν−4
∑

µ=0

aν−2,µt
µ+2

=
2ν
∑

µ=2

aν−1,µ−2t
µ +

2ν−3
∑

µ=1

aν−2,µ−1t
µ −

2ν−2
∑

µ=2

aν−2,µ−2t
µ

= aν−1,2ν−2t
2ν + aν−1,2ν−3t

2ν−1 + aν−1,2ν−4t
2ν−2 + aν−2,0t− aν−2,2ν−4t

2ν−2

+

2ν−3
∑

µ=2

(

aν−1,µ−2 + aν−2,µ−1 − aν−2,µ−2

)

tµ

= t2ν + (1− ν)t2ν−2 +

2ν−3
∑

µ=2

(

aν−1,µ−2 + aν−2,µ−1 − aν−2,µ−2

)

tµ ,

since the four identities

aν−1,2ν−2 = 1 ,

aν−1,2ν−3 = 0 ,

aν−1,2ν−4 − aν−2,2ν−4 = 1− ν ,

aν−2,0 = 0

follow easily from (5.5) to (5.7) byaν,2ν = 1, aν,2ν−1 = 0, aν,2ν−2 = 1− ν, andaν,0 = 0 for ν ≥ 1. The
lemma is proven.

Theorem 5.2. For the sequencesB2, R2 defined above forζ(2) we have

E∗(B2, R2, ζ(2)
)

= 1 +

∞
∑

ν=1

2ν
∑

µ=0

aν,µ
(ν + 1)(µ + 1)

.
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Proof: With (5.5) to (5.7) we obtain

(1 + x2y2 − xy2 − yx2)
(

1 +
∞
∑

ν=1

pν(y)x
ν
)

= 1 + x2y2 − xy2 − yx2 +

∞
∑

ν=1

pν(y)x
ν +

∞
∑

ν=1

y2pν(y)x
ν+2 −

∞
∑

ν=1

y2pν(y)x
ν+1

−
∞
∑

ν=1

ypν(y)x
ν+2

= 1 + x2y2 − xy2 − yx2 +

∞
∑

ν=1

pν(y)x
ν −

∞
∑

ν=3

y(1− y)pν−2(y)x
ν −

∞
∑

ν=2

y2pν−1(y)x
ν

= 1− p1(y)x− p2(y)x
2 + y2p1(y)x

2 +

∞
∑

ν=1

pν(y)x
ν −

∞
∑

ν=3

y(1− y)pν−2(y)x
ν −

∞
∑

ν=2

y2pν−1(y)x
ν

= 1 +
∞
∑

ν=3

pν(y)x
ν −

∞
∑

ν=3

y(1− y)pν−2(y)x
ν −

∞
∑

ν=3

y2pν−1(y)x
ν

= 1 +

∞
∑

ν=3

[

pν(y)−
(

y2pν−1(y) + y(1− y)pν−2(y)
)

]

xν

= 1 .

Hence,

1

1 + x2y2 − xy2 − yx2
= 1 +

∞
∑

ν=1

pν(y)x
ν = 1 +

∞
∑

ν=1

(

2ν
∑

µ=0

aν,µy
µ
)

xν .

Now the theorem follows from (5.1) by two-fold integration with respect tox andy.

We can proceed similarly in order to obtain similar results for E
(

B2, R2, ζ(2)
)

and forE
(

B3, R3, ζ(3)
)

.
Therefore, we state them without proofs. Again we define recursively a sequenceqν(t) (ν = 1, 2, . . . ) of
integer polynomias in one variablet,

q1(t) = 2t− t2 ,

q2(t) = t4 − 4t3 + 5t2 − t ,

qν(t) = t(2− t)qν−1(t) + t(t− 1)qν−2(t) (ν = 3, 4, . . . ).

Let

qν(t) =
2ν
∑

µ=0

bν,µt
µ .

Here, we have

1

1− x2y2 − 2xy + xy2 + yx2
=

∞
∑

ν=0

qν(y)x
ν =

∞
∑

ν=0

(

2ν
∑

µ=0

bν,µy
µ
)

xν .
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Lemma 5.2. For ν ≥ 3 we have

qν(t) = (−1)νt2ν + 2(−1)ν+1νt2ν−1 + (−1)ν(2ν2 − ν − 1)t2ν−2

+

2ν−3
∑

µ=2

(

− bν−1,µ−2 + 2bν−1,µ−1 + bν−2,µ−2 − bν−2,µ−1

)

tµ

with

bν,µ = −bν−1,µ−2 + 2bν−1,µ−1 + bν−2,µ−2 − bν−2,µ−1 (2 ≤ µ ≤ 2ν − 3) .

Theorem 5.3. For the sequencesB2, R2 defined above forζ(2) we have

E
(

B2, R2, ζ(2)
)

= 1 +

∞
∑

ν=1

2ν
∑

µ=0

bν,µ
(ν + 1)(µ + 1)

.

The above method can be generalized such that it also works for E
(

B3, R3, ζ(3)
)

. Let

r0(x, y) = 1 ,

r1(x, y) = x2y2 − xy2 − x2y + 1 ,

r2(x, y) = x4y4 − 2x3y4 − 2x4y3 + x2y4 + x4y2 + 2x3y3 + x2y2 − xy2 − x2y − xy + 1 ,

rν(x, y) =
(

x2y2 − xy2 − x2y + 1
)

rν−1(x, y)−
(

x2y2 − xy2 − x2y + xy
)

rν−2(x, y) ,

whereν ≥ 3. Setting

rν(x, y) =
2ν
∑

µ1=0

2ν
∑

µ2=0

cν,µ1,µ2
xµ1yµ2 ,

it turns out that

1

1 + x2y2w2 − xy2w2 − x2yw2 − x2y2w + xyw2 + xy2w + x2yw − w
=

∞
∑

ν=0

rν(x, y) · wν .

Then, (5.3) underlies the following result.

Theorem 5.4. For the sequencesB3, R3 defined above forζ(3) we have

E
(

B3, R3, ζ(3)
)

=
1

2
+

1

2

∞
∑

ν=1

2ν
∑

µ1=0

2ν
∑

µ2=0

cν,µ1,µ2

(ν + 1)(µ1 + 1)(µ2 + 1)
.

4.) As mentionned at the beginning of Section 5, some connections between rational coefficients involved in
computing the error sums for Apéry’s continued fraction and well-known integer sequences may be noticed.
Furthermore some unproved identities have been empirically found for such coefficients.
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The Theorems 5.2 and 5.3 rely on two triangles of integer coefficients, namelyaν,µ for the former andbν,µ
for the latter. Both can be expressed by binomial sums as follows.

aν,µ =

ν
∑

k=0

k
∑

i=0

(−1)ν+k

(

µ− k

2µ − ν − k − i

)(

µ− k

i

)(

µ− i

k − i

)

,

bν,µ =

ν
∑

k=0

k
∑

i=0

(−1)ν+µ

(

µ− k

2µ − ν − k − i

)(

µ− k

i

)(

µ− i

k − i

)

,

which both lead to non-recurrent formulas for the error sumsas quadruple sums.
Several basic properties concerning the coefficientsaν,µ andbν,µ can be noticed, including

2ν
∑

µ=0

aµ,ν = 1 and
2ν
∑

µ=0

bµ,ν = 1 (ν ∈ N)

and
aν,µ = aµ,ν and bν,µ = bµ,ν .

More unproved identities come from the theory of generatingfunctions. Both coefficientsaν,µ and bν,µ
seem to be the coefficients of degree2ν − µ in the MacLaurin series expansion of



















































(

x2 + 1−
√
x4 − 4x3 + 2x2 + 1

2x3

)µ−ν

√
x4 − 4x3 + 2x2 + 1

for aν,µ

(

x2 + 2x− 1 +
√
x4 + 2x2 − 4x+ 1

2x3

)µ−ν

√
x4 + 2x2 − 4x+ 1

for bν,µ

.

These generating functions actually allow to build the triangles of coefficientsaν,µ andbν,µ by diagonals
rather than by rows.
Summing these coefficients by rows according to Theorems 5.2and 5.3, the results can be easely achieved
by applying the following unproved recursive identities.































α0 = 1, α1 = 1/3, α2 = 11/30, α3 = 17/70

αn =
4n− 1

2n+ 1
αn−1 − 2n − 2

2n + 1
αn−2

− n− 1

4n+ 2
αn−3 +

n− 2

4n + 2
αn−4

and






























β0 = 1, β1 = 2/3, β2 = 11/30, β3 = 47/210

βn =
6n− 1

2n+ 1
βn−1 − 6n− 5

2n+ 1
βn−2

+
5n− 7

4n+ 2
βn−3 − n− 2

4n+ 2
βn−4

,
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where

αν =

2ν
∑

µ=0

aν,µ
µ+ 1

and βν =

2ν
∑

µ=0

bν,µ
µ+ 1

.

The special casebn,n, which may be called the main diagonal in the triangle of coefficientsbν,µ, leads to the
following simplifications. We have

bn,n =

n
∑

k=0

k
∑

i=0

(

n− k

i

)2(n− i

k − i

)

,

where the generating function of thebn,n is given by1/
√
x4 + 2x2 − 4x+ 1. This is the sequence A108626

from theOn-Line Encyclopedia of Integer Sequences. This sequence gives the antidiagonal sums of the
square array A108625 itself known to be highly related to theconstantζ(2).
bν,µ is defined recursively by

bν,µ = 2bν−1,µ−1 − bν−1,µ−2 + bν−2,µ−2 − bν−2,µ−1 .

Assumingbn,n+1 = bn+1,n (unproved), a new recursive identity can be given concerning A108626:

A108626 (n+ 2)− 2× A108626 (n+ 1)− A108626 (n)

= 2
n
∑

k=0

k
∑

i=0

(

n− k + 1

i− 1

)(

n− k + 1

i

)(

n− i+ 1

k − i

)

.

The previous relation actually happens to be the simplest case from a more general sequence of recurrence
relations of order2d given by:

2d
∑

k=0

ckA108626 (n+ k) = (−1)d
n
∑

k=0

k
∑

i=0

(

n− k

d+ i

)(

n− k

i

)(

n− i

k − i

)

,

where the numbersck are coefficients of order2d− k in the characteristic polynomial

1

2d

⌊ d
2⌋
∑

i=0

(

d

2i

)

(

x4 + 2x2 − 4x+ 1
)i (

x2 + 2x− 1
)d−2i

.

These recurrence relations, as well as similar ones relatedto the coefficientsaν,µ, can be written as new
generating functions, the diagonal of orderd being made from the coefficients of terms with positive powers
in



























































⌊ d
2⌋
∑

k=0

(

d

2k

)

(

x4 − 4x3 + 2x2 + 1
)k (

x2 + 1
)d−2k

(2x3)d
√
x4 − 4x3 + 2x2 + 1

for an,n+d

⌊ d
2⌋
∑

k=0

(

d

2k

)

(

x4 + 2x2 − 4x+ 1
)k (

x2 + 2x− 1
)d−2k

(2x3)d
√
x4 + 2x2 − 4x+ 1

for bn,n+d

.
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bres, 5 octobre 1978, Grenoble, VI.1 - VI.9.

[5] H. Cohn, A short proof of the simple continued fraction expansion ofe, Amer. Math. Monthly113
(2006), 57-62.

[6] C. Elsner, Series of error terms for rational approximations of irrational numbers,Journal of Integer
Sequences14 (2011), Article 11.1.4;
http://www.cs.uwaterloo.ca/journals/JIS/VOL14/Elsner/elsner9.html

[7] C. Elsner and M. Stein, On error sum functions formed by convergents of real numbers,Journal of
Integer Sequences14 (2011), Article 11.8.6;
http://www.cs.uwaterloo.ca/journals/JIS/VOL14/Elsner2/elsner10.html

[8] C. Elsner and M. Stein, On the value distribution of ErrorSums for approximations with rational num-
bers,Integers12 (2012), A66, 1–28.

[9] C. Elsner, On error sums for square roots of positive integers with applications to Lucas and Pell
numbers,Journal of Integer Sequences, 17 (2014), Article 14.4.4 .
https://cs.uwaterloo.ca/journals/JIS/VOL17/Elsner/elsner15.html

[10] C. Elsner and A. Klauke, Errorsums for the values of the exponential function, Forschungsberichte der
FHDW Hannover, Bericht Nr. 02014/01, 1 - 19; RS 8153 (2014,1)

[11] C. Elsner and A. Klauke, Transcendence results and continued fraction expansions obtained from a
combinatorial series,Journal of Combinatorics and Number Theory5 (2013), 53 - 79.

[12] C. Elsner, On prime-detecting sequences from Apéry’srecurrence formulae forζ(3) andζ(2), Journal
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