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Abstract

The Leigh-Strassler family of N = 1 marginal deformations of the N = 4 SYM theory
admits a Hopf algebra symmetry which is a quantum group deformation of the SU(3) part
of the R-symmetry of the N = 4 theory. We investigate how this quantum symmetry might
be expressed on the gravity side of the AdS/CFT correspondence. First, we discuss the twist
leading to the Hopf algebra structure for the well-known β-deformation as well as a unitarily
equivalent theory that we call the w-deformation. We then show how this Hopf twist can
be used to define a star product between the three scalar superfields of these theories which
encodes the deformed global symmetry. Turning to the gravity side, we adapt this star
product to deform the pure spinors of six-dimensional flat space in its generalised geometry
description. This leads to an N = 2 NS-NS solution of IIB supergravity. Starting from this
precursor solution, adding D3-branes and taking the near-horizon limit reproduces the dual
gravitational solution to the above theories, first derived by Lunin and Maldacena using
TsT techniques. This indicates that the Hopf algebra symmetry can play a useful role in
constructing the supergravity duals of the general Leigh-Strassler deformations.
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1 Introduction

The study of the AdS/CFT correspondence [1] has provided unprecedented insight into the be-
haviour of strongly-coupled quantum field theory. The additional computational power arising
when integrability [2] is present has led to very precise checks of the correspondence, as well as a
deeper understanding of how the interpolation between weak and strong coupling takes place (see
[3] for an extensive review). A common theme of these studies is the existence of a large amount
of symmetry in certain gauge theories which is not directly visible but, when identified and used
to its full extent, can be very powerful in constraining the observables of the theory.

Conformal field theories play a very special role in AdS/CFT and especially in the study of
integrability, with the most fundamental example being the N = 4 Supersymmetric Yang-Mills
theory (N = 4 SYM). An important question is how far the power of integrability extends when
considering less special theories, in particular theories with reduced supersymmetry. In exploring
this boundary of integrability, the N = 1 marginal deformations of N = 4 SYM studied by Leigh
and Strassler [4] play a very important role. They are superconformal theories with superpotential

WLS = κTr

(
Φ1[Φ2,Φ3]q +

h

3

(
(Φ1)3 + (Φ2)3 + (Φ3)3

))
(1.1)

where [X,Y ]q = XY − qY X is the q-deformed commutator. Beyond the special point q = 1, h =
0, κ = g, which corresponds to N = 4 SYM, by far the best understood example is that of the
β-deformed theory, where q = eiβ, h = 0. This is mainly due to the fact that the dual gravitational
background was constructed by O. Lunin and J. Maldacena in 2005 [5]. Knowledge of the dual
geometry has allowed very precise checks of the integrability properties of this theory. If β is
taken to be real (and thus q to just be a phase), integrability on the gravity side was established
through studies of semiclassical strings and the explicit construction of a Lax pair for the string
sigma model [6, 7]. On the gauge theory side, integrability was shown at one loop in [8] and all
loops in [9], where its asymptotic Bethe ansatz was also derived from the N = 4 SYM case by a
process of twisting. On the other hand, the complex-β deformed theory was expected to be non-
integrable since the work [10], which showed that its one-loop Hamiltonian does not correspond
to a known integrable system. This was also explained from a quantum group perspective in [11]
and demonstrated on the dual gravity side using analytic non-integrability techniques applied to
the Lunin-Maldacena background [12]. See [13] for more details and references on the integrable
properties of the Leigh-Strassler theories.

In order to achieve a better understanding of the full Leigh-Strassler deformations, it is of course
very desirable to construct the supergravity background dual to the generic (q, h) deformation. A
major obstacle, however, is that turning on the h parameter generically leaves only one U(1)
unbroken out of the SU(4) R-symmetry of the N = 4 theory. The corresponding dual background
will then also only have one U(1) isometry, the dual to the unbroken R-symmetry. This is in contrast
to the β-deformation, which breaks the SU(4) to its (Cartan) U(1)3 subgroup. The presence of the
additional U(1)×U(1) is what permits application of the TsT techniques of [5], since they depend
on T-dualising along isometry directions. The TsT method is thus not available in the general
case. One way to proceed is by attempting to solve the supergravity equations order-by-order
in the deformation. This was done in [14], guided by the group-theory structure to turn on the
additional fields required for the deformation, and imposing the supersymmetry variation equations
to maintain the required amount of supercharges. This led to the solution to second order in the
generic deformation. Although this approach demonstrated the existence of these deformations, as
required by AdS/CFT, it could not by its perturbative nature lead to the exact solution.

A different approach to constructing the dual to the pure h-deformation was followed in [15],
which used noncommutative geometry techniques within the framework of Seiberg and Witten
[16]. This led to a solution of the IIB equations up to third order in the deformation parameter.
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However, continuation to higher orders was obstructed by ambiguities related to non-associativity
of the star product introduced in [15].

On the gauge theory side, a better understanding of the symmetries of the Leigh-Strassler
theories was achieved in [11]. There it was shown that turning on the q and h parameters in (1.1)
does not actually break the SU(3) × U(1) R-symmetry of N = 4 SYM (the subgroup of SU(4)
which is manifest in N = 1 superspace notation). Rather, the SU(3) part is deformed to a Hopf

algebra, which we will call S̃U(3)q,h in this work. Using the RTT relations of Faddeev-Reshetikhin-
Takhtajan [17], the work [11] derived the commutation relations of this Hopf algebra, which was
shown to be a global symmetry of the Leigh-Strassler-deformed superpotential (1.1).

Clearly, the fact that the SU(3) is deformed, not broken, means that the (q, h)-deformations have
more symmetry than is naively visible, as long as one is willing to enlarge one’s toolkit beyond Lie
algebras to include Hopf-algebraic symmetries. If present also on the gravity side, this additional
symmetry can potentially be used to facilitate the construction of the dual background. However,
there were two immediate obstacles to implementing this programme. Firstly, the Hopf algebra
of [11] is non-quasitriangular for generic (q, h)1, which can be expected to lead to problems with
associativity similar to those encountered in [15]. Secondly, since we are dealing with a quantum
symmetry, it was not immediately clear how to make it manifest on the gravity side, where one of
course expects to find a smooth, commutative geometry.

In this work we will take some first steps towards making the Hopf-algebraic symmetry visible
on the gravity side. To avoid issues with associativity, we will focus on two special cases admitting
a quasitriangular structure. The first is the well-known β-deformation, which we will revisit from
the viewpoint of the Hopf-algebraic symmetry above. The second case we will consider is derived
by taking (q, h) = (1+w,w) in the superpotential above. We will call this theory the w-deformation
of N = 4 SYM. This theory is known to be unitarily equivalent to the β deformation [18, 19, 11]
and is thus not a new case. However, we will argue that considering it on its own merits provides
additional insight into the construction. As for the second problem, we propose that a suitable
framework within which to appreciate the consequences of the Hopf algebra symmetry on the
gravity side is that of generalised geometry.

More specifically, after a study of the (all-orders in the deformation parameter) Hopf structure
of the β and w-deformed theories, we will focus on the first order structure, which will define
a (parameter-dependent) non-commutativity matrix. This will be used to define a star product
between the superfields which encodes the deformation. We will then propose that the same
matrix can be used on the gravity side to define a non-anticommutative star product on the space
of generalised forms. Deforming the pure spinors of |||C3 with this product will result in a deformed
NS-NS geometry. Considering the near-horizon limit of D3-branes on this geometry will lead us to
the full dual geometry, which is just the LM background [5] in the coordinate system most adapted
to each of the two theories.

Apart from [11], this work draws inspiration mainly from [15], which (as mentioned above) used
non-commutativity techniques to construct the dual to the pure h-deformation up to third order in
the deformation parameter, and [20], which discussed the generalised geometry description of the
NS-NS precursor of the real-β background.

This article is organised into two main parts, which can be read independently. Sections 2-6
are concerned with the gauge theory side of the β and w-deformed theories, focusing on its Hopf
algebra structure and rewriting it in terms of a star product. Readers who are mainly interested
in geometric aspects can skip forward to sections 7-8, which are concerned with the generalised
geometry structure of the theory and how it can be employed to construct the dual background.

1See appendix A for the definition of quasitriangular Hopf algebras.
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Methodology
All symbolic computations in this work have been performed with GPL Maxima [21]. The

relevant worksheet has been attached to the arXiv submission as ancillary material.

Note Added
In the first version of this article, it was incorrectly claimed that the w-deformed IIB solution was

truly different to the β-deformed one, rather than just written in a coordinate system more adapted
to the w-deformation. We thank our colleagues, especially M. Kulaxizi and S. van Tongeren, for
comments that clarified the situation.

2 Marginal deformations of N = 4 SYM

A major milestone in the study of superconformal 4-dimensional gauge theory was the work of Leigh
and Strassler [4]. They established that, beyond the N = 4 SYM fixed line parametrised by the
complexified gauge coupling, the N = 4 SYM superpotential can also be marginally deformed along
two directions, corresponding to the complex parameters q and h in (1.1), which preserve N = 1
supersymmetry. The manifold of N = 1 finite Leigh-Strassler theories can thus be parametrised
by a function f(g, κ, q, h) = 0. This function is not known in general, but perturbative expressions
are known (see e.g. [22, 23, 24, 25]). There has been considerable recent progress in characterising
the conformal manifold of N = 1 SYM theories [26, 27, 28], of which the marginal deformations of
N = 4 SYM are a special case.

The link between the Leigh-Strassler deformations and non-commutativity was perceived early
on, starting with [29], which studied the non-commutative geometry of their moduli spaces of vacua.
In the context of the twistor string [30], it was shown in [31] that the amplitudes in these theories
can be computed, to first order in the deformation parameter, via a simple non-anticommutative
star product between the fermionic coordinates of supertwistor space. Non-associativity hindered
the extension of this construction to higher orders, which was however achieved in [32] for the
special case of the real-β deformation where associativity is present.

In the special case of the real-β deformations, a (non-commutative) Moyal star product taking
the N = 4 SYM theory to the deformed theory was introduced by Lunin and Maldacena [5],
inspiring their construction of the dual geometry using a combination of T-duality, shifting along a
U(1) direction and another T-duality. The simple relation between the N = 4 SYM and β-deformed
theory provided by this star product facilitated the construction of its Bethe ansatz [9] and paved
the way for many detailed studies and checks of AdS/CFT in this less supersymmetric setting.
Reviews of these developments from an integrability perspective can be found in [13] and [33].

There have been comparatively few studies of the Leigh-Strassler theories beyond the real-β
case. In [34] it was shown that the non-integrable complex-β theory has a one-loop integrable SU(3)
subsector, which was further studied in [35] in the context of string motion on the dual geometry.
Going beyond the β-deformation, the work [36] studied higher-loop anomalous dimensions in a very
interesting corner of the Leigh-Strassler conformal manifold, where κ and h in (1.1) are scaled such
that only the cubic second term remains. Since this theory is in a sense maximally distant from
the undeformed case, it is expected that it will not have a good supergravity dual. Rather, stringy
corrections are likely to play an important role. The higher-loop behaviour of this theory as well
as the complex-β case was further studied in [37].

The one-loop integrability of the general Leigh-Strassler theories was studied in [18, 34], leading
up to the work [11] which uncovered the Hopf algebra symmetry underlying the superpotential
of the general deformations. The main goal of the latter work was to understand the interplay
between finiteness and integrability of the Leigh-Strassler theories. It was found that although the
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S̃U(3)q,h Hopf algebra structure is present for the general, non-integrable, (q, h)-deformed theory,
integrability is only expected to arise when the Hopf algebra is quasitriangular. As we will discuss
in the next section, this is the case when the R-matrix defining the Hopf algebra can be derived
from that of the undeformed N = 4 theory by a transformation called a Hopf (or Drinfeld) twist.

Generically, however, the Hopf algebra was found to be non-quasitriangular. As discussed in
[11], in that case the requirement of associativity (which is a defining property of Hopf algebras)
necessarily imposes conditions on the Hopf algebra generators at cubic and higher level which do
not follow from the (quadratic) commutation relations. A potential consequence of this is the
trivialisation of the higher-order algebra (the additional relations appearing at each higher level
eventually setting all products of generators above some level to zero). However, in [11] it was shown
that the cubic quantum determinant is non-trivial and central. Furthermore, in [38] a Poincaré-
Birkhoff-Witt basis for this algebra was constructed for the special case where q = q̄, h = h̄ = 0.
This all points towards the existence of a consistent and non-trivial higher-order structure for the

S̃U(3)q,h algebra for general q and h, which however has not yet been uncovered.
As already mentioned, in this work we will sidestep the issue of non-associativity by focusing on

two special cases, the β and w-deformations where the Hopf algebra is quasi-triangular. The theories
are equivalent, but we find it useful to study the w-deformation independently both as a consistency
check and because the w-deformed frame might provide a better starting point for generalisations
to generic deformations. In particular, the U(1)×U(1) symmetry of the β-deformation is obscured
in the w-deformation, which means that to some extent we will be working as if that symmetry is
not there. We start by reviewing the Hopf structure of the β-deformed theory in the next section
before moving on to the w deformed theory in the section after that.

In the above we reviewed how both non-commutative and non-anticommutative star products
have been proposed in order to deform the N = 4 SYM theory to the Leigh-Strassler theories in
different contexts. In this work, we will first use the Hopf structure to define a non-commutative
star product on the gauge theory side of the AdS/CFT correspondence, however will later use the
same non-commutativity matrix to construct a non-anticommutative star product on the gravity
side, which will act on the space of polyforms in the context of generalised geometry.

2.1 Hopf structure of the Leigh-Strassler theories

In [11] it was shown that the superpotential (1.1) is invariant under a Hopf algebra which can be

thought of as a deformation of SU(3). We will call this Hopf algebra S̃U(3)q,h or sometimes just

H. The algebra is defined through the RTT relations [17] using the following R-matrix, related in
a simple way to the one-loop Hamiltonian of the theory in the SU(3) sector, acting on H⊗H:2

R =
1

2d2



1+qq̄−hh̄ 0 0 0 0 −2h̄ 0 2h̄q 0
0 2q̄ 0 1−qq̄+hh̄ 0 0 0 0 2hq̄
0 0 2q 0 −2h 0 qq̄+hh̄−1 0 0
0 qq̄+hh̄−1 0 2q 0 0 0 0 −2h
0 0 2h̄q 0 1+qq̄−hh̄ 0 −2h̄ 0 0

2hq̄ 0 0 0 0 2q̄ 0 1−qq̄+hh̄ 0
0 0 1−qq̄+hh̄ 0 2hq̄ 0 2q̄ 0 0
−2h 0 0 0 0 qq̄+hh̄−1 0 2q 0

0 −2h̄ 0 2h̄q 0 0 0 0 1+qq̄−hh̄


(2.1)

Here 2d2 = 1 + q̄q+ h̄h. We note that this R-matrix is cyclic, Rijkl = R
(i+1)(j+1)
(k+1)(l+1) =R

(i−1)(j−1)
(k−1)(l−1), which

guarantees compatibility of the Hopf algebra structure with the gauge theory trace.

2We order the basis on H⊗H as {11, 12, 13, 21, 22, 23, 31, 32, 33}, so we read off R11
11 = (1+ qq̄−hh̄)/(2d2), R11

23 =
−2h̄/(2d2) etc.
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Another important property of R is that it satisfies a triangular-type condition:

R21 = R−1
12

(
in index notation: RnmjiR

ij
kl = δmk δ

n
l

)
. (2.2)

The significance of this condition will be seen momentarily. Despite the property (2.2), the R-
matrix (2.1) does not in general satisfy the Yang-Baxter equation. This happens only for certain
special cases of the parameters q and h, which will be our focus in this work.3

For our present purposes we are not interested in the Hopf algebra H itself (for which we
refer to [11]), but rather in the structures that it induces on the Hopf algebra module, that is the
representation space on which it acts. The structure is that of a quantum plane, defined as

zjzi = Rijklz
kzl . (2.3)

Here the indices i, j, . . . range from 1 to 3. Clearly the coordinates zi are non-commuting when
R is non-trivial. They reduce to the commuting coordinates of |||C3 when (q, h) = (1, 0) and thus
R = I ⊗ I. In [11] it was shown that the Hopf algebra H acts as a symmetry algebra on this
quantum plane, i.e. the action of H rotates the zi around while preserving the condition (2.3).

The physical relevance of this quantum plane structure arises by identifying the deformed |||C3

of the quantum plane with the open-string geometry of the six-dimensional space transverse to
the stack of D3-branes defining the theory. Since the three scalar fields Φi probe the geometry
of this space, the fact that the transverse space is a non-commuting quantum plane leads to the
non-commutative moduli space of vacua explored in [29], which takes precisely the form (2.3).

However, the study of [11] showed that the S̃U(3)q,h quantum symmetry acting on this quantum
plane does not only appear at the level of the moduli space, but is an actual global symmetry of
the superpotential (1.1).

An important comment about the quantum plane relations (2.3) with the R given in (2.1) is
that they are cyclic, i.e. invariant under cyclic permutations of the indices. This is unlike the more
well-known quantum planes related to the usual SU(3)q deformations of SU(3), which are ordered
as i < j. The cyclicity of the quantum plane relations is crucial in ensuring compatibility of the
noncommutative structure with the non-abelian structure of the scalar fields, which are of course
also N ×N matrices entering in the gauge theory trace [11].

Before proceeding to the special cases which will occupy us in this work, let us see why the
condition (2.2) above is necessary for the consistency of the quantum plane, by using the definition
(2.3) twice:

zjzi = Rijklz
kzl = RijklR

lk
mnz

mzn = δjmδ
i
nz

mzn = zjzi . (2.4)

3 The β-deformed theory and its Hopf structure

As a warm-up, and to set the stage, in this section we will review the Hopf structure of the real
β-deformed theory. This is a well-known integrable deformation ofN = 4 SYM, with superpotential

W = κTr[Φ1Φ2Φ3 − qΦ1Φ3Φ2] (3.1)

3The triangularity condition is usually thought of as a special case of the quasitriangularity condition, so the fact
that it is satisfied by the non-quasitriangular Rq,h might appear odd. Note, however, that quasitriangularity requires
a Hopf twist (satisfying the cocycle condition), while the (still-to-be-constructed) twist leading to Rq,h is not expected
to be a Hopf twist. It is likely that the appropriate context to understand Rq,h is in terms of a triangular quasi-Hopf
twist. A similar situation has been described in e.g. [39].
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where q = eiβ, with β a real parameter. The corresponding R-matrix [9, 11] is diagonal and
obtained by setting (q, h) = (q, 0) in (2.1), with q̄ = 1/q:4

Rq =



1 0 0 0 0 0 0 0 0
0 q−1 0 0 0 0 0 0 0
0 0 q 0 0 0 0 0 0
0 0 0 q 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 q−1 0 0 0
0 0 0 0 0 0 q−1 0 0
0 0 0 0 0 0 0 q 0
0 0 0 0 0 0 0 0 1


. (3.2)

This R-matrix defines a quantum-plane structure on a deformed |||C3 through (2.3). The N = 4
theory corresponds to q = 1 in (2.3), with the R-matrix being simply R1 = I⊗I and commutativity
restored. In that case the symmetry leaving the plane invariant is just the usual Lie-algebraic SU(3).

A crucial feature of Rq is that it can be related to the undeformed R-matrix R1 = I⊗I through
a twisting relation

Rq = Fq,21 · (I ⊗ I) · F−1
q (3.3)

with the matrix Fq being simply

Fq =



1 0 0 0 0 0 0 0 0

0 q
1
2 0 0 0 0 0 0 0

0 0 q−
1
2 0 0 0 0 0 0

0 0 0 q−
1
2 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 q
1
2 0 0 0

0 0 0 0 0 0 q
1
2 0 0

0 0 0 0 0 0 0 q−
1
2 0

0 0 0 0 0 0 0 0 1


. (3.4)

In general, a matrix F relating the undeformed to the deformed R-matrix via the generalised
similarity transformation (3.3), is known as a twist. In order for it to be a Hopf twist (also known
as a Drinfeld twist), it needs to satisfy the cocycle identity

(F ⊗ 1)(∆⊗ id)F = (1⊗ F )(id⊗∆)F (3.5)

with ∆ being the coproduct of the undeformed Hopf algebra [40]. This identity holds for the twist
Fq above. To show this, we can use the fact that the twist Fq (being abelian) can be written in
terms of the Cartan generators of SU(3) [41, 42, 43, 44]. One way to express it is

Fq = ei
β
2
H1∧H2 , where H1 =

 1 0 0
0 −1 0
0 0 0

 , H2 =

 0 0 0
0 1 0
0 0 −1

 . (3.6)

Since the usual Lie algebraic coproduct

∆(Hi) = Hi ⊗ I + I ⊗Hi (3.7)

4The full, spectral parameter-dependent R-matrix can be found in [9]. In (3.2) we have already taken the limit of
infinite spectral parameter where the link to the underlying quantum symmetry becomes apparent.
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simply exponentiates (again because the deformation is abelian), we find

(∆⊗ id)Fq = (∆⊗ id)ei
β
2

(H1⊗H2−H2⊗H1) = ei
β
2

(∆(H1)⊗H2−∆(H2)⊗H1)

= ei
β
2

(H1⊗1⊗H2+1⊗H1⊗H2−H2⊗1⊗H1−1⊗H2⊗H1)

= ei
β
2

(H1⊗1⊗H2−H2⊗1⊗H1)ei
β
2

(1⊗H1⊗H2−1⊗H2⊗H1) = Fq,13Fq,23 .

(3.8)

We can similarly show that (id⊗∆)Fq = Fq,13Fq,12. Thus (3.5) becomes

Fq,12Fq,13Fq,23 = Fq,23Fq,13Fq,12 (3.9)

which can be straightforwardly checked.5 The counital condition (ε⊗ id)F = 1 is automatic, since
the counit satisfies ε(1) = 1 and ε(X) = 0 for any other algebra element. It is also easy to show
that Rq = F21F

−1
12 satisfies the quasitriangular identities

(∆F ⊗ id)R = R13R23 , (id⊗∆F )R = R13R12 , (3.10)

as well as
τ ◦∆F = R∆FR

−1 . (3.11)

Here ∆F denotes the twisted coproduct

∆F (X) = F∆(X)F−1 , (3.12)

although in practice it turns out to be equal to the undeformed coproduct when acting on H1,2.
As discussed in appendix A, the quasitriangular identities imply the Yang-Baxter equation for R.

For later use, let us write down the twisting relation (3.3) explicitly, along with a similar
(inverse) relation satisfied by Rq which can straightforwardly be checked:

Rijrs = (R−1)jisr = F jilk (F−1)klrs and Rjisr = (R−1)ijrs = (F−1)jilkF
kl
rs (3.13)

Finally, let us note that (3.3) trivially implies the triangularity condition (2.2):

(R21R)ijkl = RjinmR
mn
kl = F ijpq(F

−1)qpnmF
nm
sr (F−1)rskl = δikδ

j
l . (3.14)

Unlike the general case of the (q, h) R-matrix, here the triangularity condition follows from a twist
satisfying the cocycle condition. Since the starting point I ⊗ I is a quasitriangular Hopf algebra,
so is the deformed algebra S̃U q. The condition (3.14) tells us that it is actually a triangular Hopf
algebra. (This is not the case for the general (q, h) case since the twist from I ⊗ I is not expected
to be a Hopf twist).

In conclusion, from our perspective the (planar) β-deformed theory is nothing but a Hopf-twisted
version of the N = 4 SYM theory. One thus expects its properties to follow simply from those
of the undeformed theory, which has been shown to be the case, at least as far as the asymptotic
Bethe ansatz is concerned. In particular, it is integrable, with its Bethe ansatz written down in [9]
by twisting (adding appropriate phases to) the N = 4 SYM Bethe ansatz.6

From a Hopf-algebra perspective, the above construction is slightly trivial since the twisting
matrix is diagonal, which also leads to a diagonal deformed R-matrix. To better appreciate the
formalism, it is important to apply it to a non-diagonal case, which is what we will do in the next
section.

5Writing this expression as an YBE is for illustration only, since of course Fq here is abelian so any ordering of
terms would produce the same result.

6There are also significant differences between N = 4 SYM and the β-deformed theory. For instance, wrapping
corrections arise at lower loop orders in the latter theory compared to the undeformed one [45, 46]. Certainly the
non-planar behaviour of the two theories is not expected to be related in such a simple way.
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4 The w-deformed theory and its Hopf structure

Having reviewed the Hopf structure of the β-deformation, we will now focus on another one-loop
integrable Leigh-Strassler deformation, first identified in [18] and further studied in [19, 11]. It
arises from the choice

q = (1 + w) and h = w (4.1)

in the superpotential (1.1), with w a real parameter7. Explicitly, the superpotential of the w-
deformed theory is

W = κTr
[
Φ1Φ2Φ3 − (1 + w)Φ1Φ3Φ2 +

w

3

(
(Φ1)3 + (Φ2)3 + (Φ3)3

)]
(4.2)

We see that the w-deformation is a very special combination of a q and h deformation.
As discussed in [19], the w-deformation is actually unitarily equivalent to the β-deformation.

More precisely, the above superpotential can be derived from the β-deformed one (3.1) through a
field redefinition Φi −→ (T †)ijΦ

j , with T the SU(3) matrix8

T = − i√
3

1 1 1

1 ei
2π
3 e−i

2π
3

1 e−i
2π
3 ei

2π
3

 . (4.3)

This of course implies that all on-shell quantities will be equal between the two theories, while
off-shell quantities like correlation functions can be related by applying the field redefinition. As
we will see, this difference will manifest itself in a different coordinate system being more natural
to describe the dual geometry of the w-deformation. For our purposes, the importance of the field
redefinition is that it obscures the U(1)×U(1) symmetry present in the β-deformed superpotential
and thus allows us to test our methods in a setup that is closer to the generic case.

Like all of the (q, h) deformations, the superpotential (4.2) admits two very important Z3

symmetries, namely Φk −→ Φk+1 and Φk −→ e2πik/3Φk. The first of these Z3’s will be used
extensively in the following to reduce the number of independent expressions under consideration.

The w-deformed R-matrix can be found by making the above substitutions in the full (q, h)-
deformed R-matrix studied in [18, 11]. It is:

Rw =
1 + w

1 + w + w2



1 0 0 0 0 − w
1+w 0 w 0

0 1 0 − w
1+w 0 0 0 0 w

0 0 1 0 − w
1+w 0 w 0 0

0 w 0 1 0 0 0 0 − w
1+w

0 0 w 0 1 0 − w
1+w 0 0

w 0 0 0 0 1 0 − w
1+w 0

0 0 − w
1+w 0 w 0 1 0 0

− w
1+w 0 0 0 0 w 0 1 0

0 − w
1+w 0 w 0 0 0 0 1


.

(4.4)
In [11] it was shown that this R-matrix can be obtained from the β-deformed R-matrix (3.2) by
a twist taking the form F = T ⊗ T , which is nothing but a change of basis in the algebra. The

7The parameter w was denoted ρ in [18] and r in [11]. We relabelled it here to avoid potential confusion with
the ρ-deformation (an alternative notation for the pure-h deformation), as well as the classical r-matrix and the AdS
radial parameter, both of which make an appearance later on. We also note that this deformation belongs to a more
general class of integrable theories parametrised by phases [18, 11], which we set to zero in this work for simplicity.

8To obtain precisely (4.2), the parameter q needs to be rescaled as in (4.5) and the overall factor κ as κ = (1+we
πi
3 ),

which gives |κ|2 = 1 +w+w2. This results in the conformality condition |κ|2 = g2 holding for a different value of g.
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relation between the couplings is

q =
1 + 2we−

πi
3 + w2e−

2πi
3

1 + w + w2
. (4.5)

So, as already discussed, we expect the algebraic structure of the two theories to be equivalent,
and in particular, unlike the full (q, h)-deformed R-matrix, Rw can be seen to satisfy the Yang-
Baxter Equation, which implies that the corresponding one-loop planar Hamiltonian is integrable.
Although the superpotential (4.2) might appear to produce different types of interactions compared
to the β-deformed case, in [18] it was shown that appropriate redefinitions bring the w-deformed
spin-chain Hamiltonian to precisely the form of the β-deformation. So we certainly do not expect
any difference between the theories as far as integrability is concerned.

The main motivation to study the w-deformation independently of the β-deformation is that,
being superficially more complicated, it can potentially provide insights into the generic algebraic
structure of the Leigh-Strassler deformation and the way this structure is expressed on the gravity
side that are harder to see directly in the β-deformation.

The matrix Rw can be conveniently written in terms of the shift matrix U and its square V :

U =

 0 0 1
1 0 0
0 1 0

 , V := U2 =

 0 1 0
0 0 1
1 0 0

 , U3 = I . (4.6)

Using these matrices, we can express Rw as:

Rw =
1 + w

1 + w + w2

[
I ⊗ I + wU ⊗ V − w

1 + w
V ⊗ U

]
. (4.7)

Note that [U, V ] = 0, so these matrices define an abelian subsector of SU(3). This is as expected,
since the w-deformed R-matrix is equivalent to the β-deformed R-matrix.

Let us now recover the R-matrix in (4.4) via a twist from the undeformed R-matrix of N = 4
SYM. A suitable such twist is:9

Fw = C̃



1 + w 0 0 0 0 w 0 0 0
0 1 + w 0 w 0 0 0 0 0
0 0 1 + w 0 w 0 0 0 0
0 0 0 1 + w 0 0 0 0 w
0 0 0 0 1 + w 0 w 0 0
0 0 0 0 0 1 + w 0 w 0
0 0 w 0 0 0 1 + w 0 0
w 0 0 0 0 0 0 1 + w 0
0 w 0 0 0 0 0 0 1 + w


(4.8)

which can be written in a more compact form as

Fw = C̃
[
(1 + w)I ⊗ I + wV ⊗ U

]
. (4.9)

Here C̃ is a normalisation constant. It is in principle an arbitrary function of w (chosen to reduce
to 1 in the w −→ 0 limit) as it cancels out in the twisted R-matrix (3.3). However, below we will
specify a choice that is particularly natural and will also make Fw into a counital twist.

We will also be interested in the inverse of Fw, which is

F−1
w =

(1 + w)2

C̃(1 + 2w)(1 + w + w2)

[
I ⊗ I − w

1 + w
V ⊗ U +

w2

(1 + w)2
U ⊗ V

]
. (4.10)

9This turns out to be a more apt choice than the one presented in [11], which did not smoothly reduce to the
trivial twist as w = 0.
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The twist Fw satisfies the YBE, guaranteeing that the R-matrix is quasitriangular (actually trian-
gular, as discussed in the above) and that the twisted coproduct ∆F will be associative. We also
note that it satisfies both relations in (3.13).

Although the twist as given in (4.9) is perfectly acceptable, in order to better exhibit its prop-
erties and compare to other twists in the literature, it is useful to write it in exponential form.
Using the special properties of the shift matrices, in particular the fact that (V ⊗U)2 = U ⊗V and
(V ⊗ U)3 = I ⊗ I, we can rewrite Fw as10

Fw = ea(w)V⊗U+b(w)U⊗V , (4.11)

where

a(w) =
1

6
ln

(
(1 + 2w)2

1 + w + w2

)
+

arctan
(

1+2w√
3

)
√

3
− π

6
√

3
(4.12)

and

b(w) =
1

6
ln

(
(1 + 2w)2

1 + w + w2

)
−

arctan
(

1+2w√
3

)
√

3
+

π

6
√

3
. (4.13)

In order to be able to write the twist in this form, i.e. as an exponential without a prefactor, it is
necessary to choose the normalisation constant appropriately. The requisite choice is

C̃ =
C(a(w))

1 + w
(4.14)

where C(x) is the hypergoniometric cosine defined in appendix B. We will also use the corresponding
hypergoniometric sine S(x), which satisfies S′(x) = C(x) as well as

S(x)3 + C(x)3 = 1 (4.15)

which is analogous to the usual trigonometric identity. Substituting the expression for a(w) above,
we find

C(a(w)) =
1 + w

[(1 + 2w)(1 + w + w2)]
1
3

, S(a(w)) =
w

[(1 + 2w)(1 + w + w2)]
1
3

. (4.16)

We could thus simply have defined C̃ = [(1 + 2w)(1 + w + w2)]−1/3, but we find that expressing
the twist in terms of C(a) and S(a) is more appealing, in that it highlights the nilpotent nature of
our shift matrices U and V (see appendix B).

After these preliminaries, it can be checked that expanding the exponential form of Fw in terms
of a and b the terms proportional to U ⊗ V cancel out and the series organises itself as

F = C(a)I ⊗ I + S(a)V ⊗ U = C(a)

[
I ⊗ I +

S(a)

C(a)
V ⊗ U

]
. (4.17)

Inserting the dependence of a on w above we find that (see (4.16))

S(a)

C(a)
=

w

1 + w
(4.18)

which gives us back the original twist (4.9) and shows its equivalence to (4.11). As before, writing Fw
in the form (4.11) also guarantees that it is counital, i.e. that (ε⊗ id)Fw = 1, since ε exponentiates
and ε(U) = ε(1

2(X − iY )) = 0, ε(V ) = ε(1
2(X + iY )) = 0. So Fw is indeed a Hopf twist.

10We stick to the U and V notation here for simplicity, but of course when writing Fw in exponential form it would
also be appropriate to use the hermitian algebra generators X = U + V and Y = i(U − V ) instead.
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It is also straightforward to check that the R-matrix can be expressed as

Rw = Fw,21F
−1
w,12 = e(a(w)−b(w))U⊗V+(b(w)−a(w))V⊗U , (4.19)

which Taylor expands to give precisely (4.7).
If we now define the twisted coproduct as usual to be given by

∆
(w)
F = Fw∆F−1

w (4.20)

we find that on functions of U and V the coproduct is the same as the undeformed one, again due
to the abelian nature of the matrices involved. So the twisted coproduct is trivially associative.

Finally, from the above we can easily show that:

(∆F ⊗ id)Rw = Rw,13Rw,23 , (id⊗∆F )Rw = Rw,13Rw,12 (4.21)

which is the quasitriangularity condition. Of course, this condition implies the YBE for Rw, which
we already know to be satisfied, but we believe that the more detailed understanding of the Hopf
algebra structure presented in the above will turn out to be useful in extending our results to other
cases.

The theoretical framework, mainly due to Drinfeld, of how quantum groups arise from twists of
other quantum groups and in particular Lie algebras, is well understood. However, there are very
few explicit constructions in the literature. Even the twist from U(su(2)) (the universal enveloping
algebra of su(2)) to Uq(su(2)) is not available in full. The work [47] provides such a twist to second
order, though it does not satisfy the cocycle condition. In practice, one is typically interested in
specific matrix representations of the twist, and in that case there do exist explicit results, such
as [48] for the tensor product of the fundamental representation and [49] for the tensor product of
the adjoint representation (for Uq(su(2))). Drinfeld twistings of U(sl(3)) are classified in [50]. The
twists we have discussed explicitly deform U(su(3)) to the (equivalent) Hopf algebras Uq(su(3)) and
Uw(su(3)), in the tensor product of the fundamental.

Having concluded our construction of the w-twist, let us now discuss how twists can be used to
define a non-commutative star product on the coordinates of |||C3.

5 The star product from twisting

In general, the twisting procedure outlined above leads to a new, deformed Hopf (or quasi-Hopf)
algebra. In the specific case we are considering, the undeformed Hopf algebra is simply the Lie
group SU(3), the symmetry group acting on the three N = 4 SYM scalars Φi. This Hopf algebra
clearly has a trivial coproduct, acting as ∆(X) = X ⊗ I + I ⊗ X on the su(3) algebra elements.
Twisting leads to a non-trivial Hopf algebra, which was studied in some detail in [11]. In particular,
the commutation relations of the algebra were constructed from the twisted (q, h) R-matrix using
the RTT relations [17], and it was shown that the quantum determinant is a central element, from
which it follows that the Hopf algebra is a global symmetry of the deformed superpotential.11

In the following we will not be interested in the Hopf algebra itself, but rather in the function
space on which it acts (i.e. the algebra module). This space is spanned by three complex coordinates
zi. Before twisting, these are just coordinates on |||C3, in line with the symmetry algebra being su(3).
After the twist, they become non-commutative coordinates of a quantum plane, with its symmetry

algebra being the Hopf algebra S̃U(3)q,h [11]. To better study this non-commutative structure, we

would now like to find a star product among the zi coordinates which reproduces the quantum plane

11The work [11] worked in the dual picture to that employed here, where the noncommutative coproduct is matrix
multiplication, while it is the product between matrix elements which is commutative in the undeformed case and
becomes non-commutative after twisting. The two pictures are of course equivalent in our bialgebra setting.
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relations derived in [11]. This will be the standard star product arising in deformation quantisation,
which involves the twist in a fundamental way. Since so far we only have an explicit construction of
the twist for the integrable β- and w-deformations, in what follows we will restrict our attention to
those cases. The following construction follows [51, 52], which can be consulted for further details.

The notion that we want to preserve while twisting is that of compatibility between the coprod-
uct of the Hopf algebra H and the product of the module algebra A. The elements of the Hopf
algebra act on the module in the usual way as derivations, i.e. for g ∈ H and x, y ∈ A we have

g . (x · y) = (g . x) · y + x · (g . y) . (5.1)

Where we used the undeformed coproduct ∆(g) = g ⊗ 1 + 1 ⊗ g. Twisting the coproduct as in
(3.12) naturally induces a compatible twisting of the product on the algebra module. To see this,
consider the above action in slightly more detail:12

g.(x·y) = m(∆(g).[x⊗y]) = m([g⊗1+1⊗g].[x⊗y]) = m((g.x)⊗y+x⊗(g.y)) = (g.x)·y+x·(g.y)
(5.2)

Since we want the product rule property to hold when the coproduct is twisted as ∆ −→ F∆F−1,
we find that we also need to twist the module product as [51, 52]:13

mF (x⊗ y) = m(F−1 . x⊗ y) = (F−1
(1) . x) · (F−1

(2) . y) (5.3)

To show this, one can start by assuming the product rule property to obtain:

g . mF (x⊗ y) = m(F−1F∆(g)F−1 . [x⊗ y]) = m
(

[gF−1
(1) ⊗ F

−1
(2) + F−1

(1) ⊗ gF
−1
(2) ] . [x⊗ y]

)
= (gF−1

(1) . x) · (F−1
(2) . y) + (F−1

(1) . x) · (gF−1
(2) . y)

(5.4)

Alternatively, one can perform the same computation by first expanding out the twisted product:

g . mF (x⊗ y) = g . m(F−1
(1) . x⊗ F

−1
(2) . y) = m(∆(g) . [F−1

(1) . x⊗ F
−1
(2) . y])

= m(gF−1
(1) . x⊗ F

−1
(2) . y + F−1

(1) . x⊗ gF
−1
(2) . y)

(5.5)

which leads to the same answer. This confirms the compatibility of the twisted Hopf algebra
coproduct with the twisted module product.

We then define our star product on the module to be precisely the twisted product above, i.e.

x ? y = mF (x⊗ y) . (5.6)

For our purposes, it will often be sufficient to consider the action of the twist on the module
coordinates zi, rather than on arbitrary functions. In that case, it can be convenient to re-express
this relation in index notation:

zi ? zj = (F−1)j il kz
lzk (5.7)

Note that here the coordinates on the right-hand side are commuting, so the ordering of the k, l
indices is unimportant.

12We will use the notation X · Y and m(X ⊗ Y ) interchangeably to denote module multiplication.
13 See also [53, 54] for a similar construction. Although the focus there is on the action of the Hopf algebra on

itself rather than the module, we have found the exposition in those works instructive.
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5.1 Compatibility with the quantum plane relation

Let us check that this definition of the star product is consistent with the quantum plane structure.
Recall that in (2.3) the zi are quantum plane coordinates, which are non-commuting. For many
physical applications (including the application we have in mind) it is very desirable to transfer the
noncommutativity from the coordinates to the star product, i.e. we would like the star product to
lead to the following relation:

zj ? zi = Ri jk lz
k ? zl . (5.8)

Here commutative zi’s are multiplied with a non-commutative product. It is easiest to show that
our star product has this property using its index form (5.7). We have:

zj ? zi = (F−1)i jm nz
mzn = (F−1)i jm nz

nzm = (F−1)i jm n(Fnml kz
k ? zl) = Ri jk lz

k ? zl (5.9)

where we used the inverse of (5.7) as well as the second relation in (3.13), which can be seen to be
of crucial importance for our construction. As both our β and w-twists satisfy (3.13), we expect
compatibility between the star product and the quantum plane for these cases.

5.2 Higher-order star products

Of course, we are also interested in star products between more than two coordinates. This is
where the potential for ambiguities due to non-associativity arises, since different placements of
parentheses can lead to different answers. However, as discussed in appendix C, the cocycle identity
guarantees associativity. Let us apply the results of that appendix to the star product between
three coordinates, choosing for concreteness the case where they are all different. We find that the
two possible orderings of parentheses are equal to

(z1 ? z2) ? z3 = (F−1)32
k′j′(F

−1)k
′1
ni′(F

−1)j
′i′

ml z
lzmzn

z1 ? (z2 ? z3) = (F−1)21
j′i′(F

−1)3i′
k′l(F

−1)k
′j′
nm z

lzmzn .
(5.10)

If our twist satisfies the YBE, the two placements are equal and there is a unique star product
between three coordinates. We can then pick one ordering and remove the parentheses to write
just

z1 ? z2 ? z3 = (F−1)21
j′i′(F

−1)3i′
k′l(F

−1)k
′j′
nm z

lzmzn . (5.11)

We can similarly derive expressions for the higher-order star products acting on coordinates. (See
appendix C for some of these expressions). The number of twist matrices in a star product between
d coordinates is

(
d
2

)
= d!

2!(d−2)! , as can be expected by expanding the twists to first order, in which
case the star product reduces to all possible single Wick contractions between the coordinates. The
ordering of the twist matrices will depend on the placement of the parentheses, however the YBE
relations between the twists guarantee that all orderings are equal, and thus that the star product
is associative.

In defining the above star product we have followed a standard construction in deformation
quantisation. However, since our focus has been on the action of the star product on the coordinates
zi, and not on general functions, it does not take the differential form derived by Kontsevich [55].
Leaving the extension to functions and comparison with [55] to future work, we will now turn to
explicit expressions of the star product in the two specific cases under consideration.

5.3 The β-twisted star product

For the diagonal β-twist we will use the explicit index notation (5.7). We obtain

z1 ? z2 = (F−1)2 1
2 1z

2z1 = q
1
2 z1z2 z2 ? z1 = (F−1)1 2

1 2z
1z2 = q−

1
2 z1z2 (5.12)
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The remaining relations follow by cyclicity. Combining the two relations, we find

z2 ? z1 = q−1z1 ? z2 = Rq
1 2
1 2z

1 ? z2 (5.13)

in agreement with the quantum plane relation (5.8). We can also compute

z1 ? z2 ? z3 = (F−1)2 1
2 1(F−1)3 1

3 1(F−1)3 2
3 2z

1z2z3 = q
1
2 z1z2z3 (5.14)

and
z1 ? z3 ? z2 = (F−1)3 1

3 1(F−1)2 3
2 3(F−1)2 1

2 1z
1z3z2 = q−

1
2 z1z2z3 (5.15)

for the two cyclically distinct combinations. Switching to gauge theory notation for purposes of
illustration, we can use these results to show that the q-deformed superpotential with the fields
multiplied with star products is equal (up to an unimportant factor) to the undeformed N = 4
superpotential with the usual product between fields:

Tr
(
Φ1 ? Φ2 ? Φ3 − qΦ1 ? Φ3 ? Φ2

)
= q

1
2 Tr

(
Φ1[Φ2,Φ3]

)
(5.16)

5.4 The w-twisted star product

For the w-twist, the explicit form of the star product is:

x ? y = m(F−1
w . [x⊗ y]) = m(x⊗ y)− w

1 + w
m(V x⊗ U y) +

w2

(1 + w)2
m(U x⊗ V y) (5.17)

Now let us specialise to the case of the star product between the coordinates zi spanning the
module. So from now on we focus on the fundamental representation. To consider the action of
the matrices U and V on the module, we use the basis

z1 =

 1
0
0

 , z2 =

 0
1
0

 , z3 =

 0
0
1

 (5.18)

so that e.g.14

V z1 =

 0 1 0
0 0 1
1 0 0

 1
0
0

 =

 0
0
1

 = z3 (5.19)

We thus find:

z1 ? z2 = z1z2 − w

1 + w
(z3)2 +

w2

(1 + w)2
z1z2 =

(
1 +

w2

(1 + w)2

)
z1z2 − w

1 + w
(z3)2

z2 ? z1 = z1z2 − w

1 + w
z1z2 +

w2

(1 + w)2
(z3)2 =

(
1− w

1 + w

)
z1z2 +

w2

(1 + w)2
(z3)2

z3 ? z3 = (z3)2 − w

1 + w
z1z2 =

w2

(1 + w)2
z1z2 = − w

1 + w

(
1− w

1 + w

)
z1z2 + (z3)2

(5.20)

Here we have suppressed the overall normalisation of each expression, since we are interested in
writing relations purely between the star products and the normalisation drops out. Eliminating
(z3)2 and z1z2 from the above expressions we find:

z1 ? z2 = (1 + w) z2 ? z1 − w z3 ? z3 (5.21)

14Equivalently, one can express the action of U and V on the zi by re-writing them as differential operators:
U = z1∂3 + z2∂1 + z3∂2 , V = z1∂2 + z2∂3 + z3∂1.
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As expected, we have found the star-product version (5.8) of the quantum plane relation (2.3).
Let us also look at the star product (5.11) of three coordinates, for which we need to compute

the explicit expression:

F−1
12 F

−1
13 F

−1
23 =

1 + w

(1 + 2w)2(1 + w + w2)

[
(1 + 4w + 5w2 + w3)I ⊗ I ⊗ I

+ w2(1 + w)(I ⊗ U ⊗ V + U ⊗ V ⊗ I + U ⊗ I ⊗ V + U ⊗ U ⊗ U + V ⊗ V ⊗ V )

− w(1 + 3w + 3w2)(I ⊗ V ⊗ U + V ⊗ U ⊗ I)− w(1 + 3w + 2w2 − w3)

1 + w
V ⊗ I ⊗ U

]
(5.22)

Let us apply this to the w-deformed superpotential, where again we temporarily switch to gauge
theoretical language by replacing the zi coordinates with the Φi superfields. A straightforward
computation gives:

Φ1 ? Φ2 ? Φ3+Φ2 ? Φ3 ? Φ1+Φ3 ? Φ1 ? Φ2 − (1+w)
(
Φ1 ? Φ3 ? Φ2+Φ3 ? Φ2 ? Φ1+Φ2 ? Φ1 ? Φ3

)
+ w

(
Φ1 ? Φ1 ? Φ1 + Φ2 ? Φ2 ? Φ2 + Φ3 ? Φ3 ? Φ3

)
= (1 + 2w)

[
Φ1Φ2Φ3 + Φ2Φ3Φ1 + Φ3Φ1Φ2 − Φ1Φ3Φ2 − Φ3Φ2Φ1 − Φ2Φ1Φ3

]
(5.23)

Inserting the above expression into the gauge-theory trace, we see the equivalence (up to overall
normalisation) of the w-deformed superpotential, where the matrices are multiplied with the star
product, with the undeformed N = 4 superpotential. In a way the role of the star product is to
show that the deformed theory is equivalent to the undeformed one, as long as we are prepared to
multiply the fields of the deformed theory with this noncommutative product.

5.5 The inverse star product

We saw above how the star product (5.6), which is standard in the context of deformation quanti-
sation, expresses the non-commutativity of the quantum plane coordinates. Deformed expressions
(such as the quantum plane relations or the deformed superpotential) reduce to the undeformed
ones when the coordinates are multiplied with this star product. In this section, we will consider
an inverse question: Can we take an undeformed expression and, by substituting the product with
an appropriate star-product, convert it to a (meaningful) deformed expression? Having this ability
will be very useful if we want to use the star product as a solution-generating technique, since
we would like to take an undeformed (N = 4 SYM in our specific context) expression and obtain
a deformed one (relevant to the β or w-deformation in our context) simply by inserting a star
product.

More precisely, what we require is a star product which, inserted into a valid undeformed
expression, leads to a valid deformed expression in which there is no star product but the coordinates
are themselves noncommutative. This is the inverse procedure to that discussed in section 5.1.

The star product that achieves this is simply the inverse star product to the one above. We
define it as

x ∗ y = m(F . x⊗ y)
(

in indices: zi ∗ zj = F jilkz
kzl
)

(5.24)

where we denote the inverse star product with an asterisk instead of a star.
Let us check that taking an obvious undeformed expression and inserting this star product leads

to the corresponding quantum plane:

zizj = zjzi −→ zi ∗ zj = zj ∗ zi ⇒ F j il kz
kzl = F i jm nz

nzm (5.25)
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where in the last expression the zi are noncommutative. Multiplying by the inverse of F , we find

znzm = (F−1)m n
i j F

j i
l kz

kzl = Rm n
k l z

kzl (5.26)

which is the required quantum plane relation. Using the ∗ product, we have thus performed the
precisely opposite procedure to (5.9).

Repeating the procedure discussed above for the cubic terms, we find that

z1 ∗ z2 ∗ z3 = m
(
F12F13F23 . [z1 ⊗ z2 ⊗ z3]

)
(5.27)

where for the w-deformation

F12F13F23 = C̃3(1 + w)3
[
I ⊗ I ⊗ I +

w

1 + w
(I ⊗ V ⊗ U + V ⊗ U ⊗ I) +

w3

(1 + w)3
U ⊗ I ⊗ V

+
w2

(1 + w)2
(U ⊗ U ⊗ U + V ⊗ V ⊗ V ) +

w(1 + 2w)

(1 + w)2
V ⊗ I ⊗ U

]
.

(5.28)

We can now straightforwardly check that the N = 4 SYM superpotential deforms (up to overall
normalisation) to the w-deformed one simply by converting all the normal products to inverse star
products:

Φ1 ∗ Φ2 ∗ Φ3 + Φ2 ∗ Φ3 ∗ Φ1 + Φ3 ∗ Φ1 ∗ Φ2 − Φ1 ∗ Φ3 ∗ Φ2 − Φ3 ∗ Φ2 ∗ Φ1 − Φ2 ∗ Φ1 ∗ Φ3

=
1

1 + 2w

[
Φ1Φ2Φ3 + Φ2Φ3Φ1 + Φ3Φ1Φ2 − (1 + w)

[
Φ1Φ3Φ2 − Φ3Φ2Φ1 − Φ2Φ1Φ3

]
+w

(
(Φ1)3 + (Φ2)3 + (Φ3)3

)] (5.29)

Taking the gauge theory trace on both sides leads to the expression

Tr
(
Φ1 ∗ Φ2 ∗ Φ3 − Φ1 ∗ Φ3 ∗ Φ2

)
=

3

1 + 2w
Tr
(

Φ1Φ2Φ3 − (1 + w)Φ1Φ3Φ2 +
w

3

(
(Φ1)3 + (Φ2)3 + (Φ3)3

)) (5.30)

where the left-hand side is schematic and denotes the trace of the left-hand side of (5.29).
It is of course very appealing to be able to write a Leigh-Strassler-deformed superpotential

as simply the N = 4 SYM superpotential, just with the products between fields replaced by
star products. Let us remark that a star product achieving the same result for the integrable
deformations has previously been proposed in [56]. It would be interesting to explore the relation
between these products and, in particular, whether the product in [56] can be derived from the
perspective of a twist.

In the following we will use the star product (5.24) to deform the pure spinors of the undeformed
background to those of the deformed one.

6 The first-order star product

After our study of the all-orders twist, in this section we will expand it to first order, so as to make
contact with previous work on non-commutativity based on the classical R-matrix of the theory.
We will focus exclusively on the ∗-product defined in (5.24), since this is the product which, inserted
into an undeformed expression, leads to its appropriately deformed version. However, we note that
at first order the ∗ and ? products only differ by a sign.
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6.1 The β-deformation

Although the first-order structure of the β-deformation is standard, we will review it here for
completeness. We start by expanding the twist (3.4)

F i jk l = δi kδ
j
l −

iβ

2
ri jk l (6.1)

with r the classical r-matrix, r = diag(0,−1, 1, 1, 0,−1,−1, 1, 0). The first-order star product is
then

zi ∗ zj = zizj − iβ

2
rj il kz

kzl = zizj +
iβ

2
ri jk lz

kzl (6.2)

where we have used the fact that r21 = −r12 for the classical r-matrix. We can now express the
commutator of two coordinates as

zi ∗ zj − zj ∗ zi = Θij
β , (6.3)

where Θij
β = iβri jk lz

kzl is the non-commutativity matrix [57]:

Θij = iβ

 0 −z1z2 z1z3

z1z2 0 −z2z3

−z1z3 z2z3 0

 (6.4)

Note that, despite the resemblance to more familiar star products, here Θij is a function of the
coordinates. We will see that, after extending it to the antiholomorphic sector, it will transform to
a constant matrix in an appropriate coordinate system.

6.2 The w-deformation

Expanding the w-twisted R-matrix (4.4) to first order gives us

F i jk l = δi kδ
j
l + w ri jk l (6.5)

where the classical r-matrix is

r =



0 0 0 0 0 −1 0 1 0
0 0 0 −1 0 0 0 0 1
0 0 0 0 −1 0 1 0 0
0 1 0 0 0 0 0 0 −1
0 0 1 0 0 0 −1 0 0
1 0 0 0 0 0 0 −1 0
0 0 −1 0 1 0 0 0 0
−1 0 0 0 0 1 0 0 0
0 −1 0 1 0 0 0 0 0


(6.6)

and can of course also be obtained from the β-twisted r matrix above by a similarity transformation
with T ⊗T (and a rescaling of

√
3). It is easy to see that r12 = f21−f12, where f are the first-order

expansions of the corresponding twists. So we find:

zi ∗ zj − zj ∗ zi = w(f j il k − f
i j
k l)z

kzl = wri jk lz
kzl . (6.7)

Defining again our (holomorphic) noncommutativity matrix as Θij = wri jk lz
kzl, we obtain

Θij
w = w

 0 (z3)2 − z1 z2 z1 z3 − (z2)2

z1 z2 − (z3)2 0 (z1)2 − z2 z3

(z2)2 − z1 z3 z2 z3 − (z1)2 0

 (6.8)
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with which we write the first-order noncommutativity relation as:

zi ∗ zj − zj ∗ zi = Θij
w . (6.9)

Note the absence of an i in Θij
w as compared to Θij

β . This can be traced to the reality of q and h
in the w deformation, while for the β-deformation q is a phase and expands as iβ.

6.3 Mixed coordinates

In the above, we only considered the twisting relevant to the holomorphic coordinates, which
in gauge theory language corresponds to twisting the superpotential, which is a function of the
holomorphic superfields Φi. However, since the full gauge theory potential also depends on the an-
tiholomorphic fields Φ̄i, to get the full picture we need to consider functions of the antiholomorphic
coordinates as well. As discussed in [11], their noncommutativity properties can be simply derived
from the definitions of the antiholomorphic and mixed quantum planes respectively. Denoting (only
in this section) the antiholomorphic coordinates z̄ ī with an index down, z̄i = z̄ ī, we have

z̄kz̄lR
k l
i j = z̄j z̄i (6.10)

for the antiholomorphic quantum plane, and15

z̄lR
j l
k iz

k = zj z̄i and zkR̃i lk j z̄l = z̄jz
i . (6.11)

for the mixed quantum planes. As discussed in more detail in [11], the mixed plane relations

are consistent with each other and are also invariant under S̃U(3)w transformations. The gauge
theory relevance of the mixed relations is that although the holomorphic and antiholomorphic star
products are designed to deform the F -terms of the theory, when we convert all the products in
the potential to star products they also end up deforming terms that should not be affected by
the Leigh-Strassler deformation (in particular, D-terms). The mixed terms cancel those unwanted
contributions, ensuring that the end result of the deformation is a Leigh-Strassler theory.

Expanding the R matrices in the above relations to first order and taking commutators, we are
led to the following set of noncommutativity relations:

[zi, zj ]∗ = Θij , [zi, z̄j̄ ]∗ = Θij̄ , [z̄ ī, zj ]∗ = Θīj , [z̄ ī, z̄j̄ ]∗ = Θīj̄ . (6.12)

We can combine all these relations into just one as

[zI , zJ ]∗ = ΘIJ (6.13)

where the indices I, J range from 1, 2, 3, 1̄, 2̄, 3̄ and z ī = z̄i.

The β-deformation
For the (real) β-deformation the full noncommutativity matrix was derived in [57] and reads:

ΘIJ
β = iβ



0 −z1 z2 z1 z3 0 z1 z̄2 −z1 z̄3

z1 z2 0 −z2 z3 −z̄1 z2 0 z2 z̄3

−z1 z3 z2 z3 0 z̄1 z3 −z̄2 z3 0
0 z̄1 z2 −z̄1 z3 0 −z̄1 z̄2 z̄1 z̄3

−z1 z̄2 0 z̄2 z3 z̄1 z̄2 0 −z̄2 z̄3

z1 z̄3 −z2 z̄3 0 −z̄1 z̄3 z̄2 z̄3 0

 (6.14)

15Here R̃ is the second inverse of R, defined as R̃i n
m jR

m k
l n = δilδ

k
j = Ri n

m jR̃
m k
l n .
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In [11] it was checked that the mixed and antiholomorphic plane relations also produce this matrix
as the unique extension of (6.4). As shown in [57], switching to a spherical coordinate basis on |||C3

as
z1 = r cosαeiφ1 , z2 = r sinα sin θeiφ2 , z3 = r sinα cos θeiφ3 (6.15)

converts ΘIJ
β to a coordinate-independent matrix, which furthermore acts purely on the the three

angles φi:

ΘIJ
β

∂

∂zI
∧ ∂

∂zJ
= βij

∂

∂φi
∧ ∂

∂φj
, with βij =

 0 β −β
−β 0 β
β −β 0

 . (6.16)

This shows that for the β-deformation the star product (6.13) is nothing but the Lunin-Maldacena
star product [5], and also explains why there is no issue with non-associativity for real β: In an
appropriate coordinate system, the matrix is simply constant.

The w-deformation
For the w-deformation, we find the full noncommutativity matrix, which extends (6.8) by in-

cluding the mixed and antiholomorphic planes, to be:

ΘIJ
w = w



0 (z3)2 − z1 z2 z1 z3 − (z2)2 z2 z̄2 − z3 z̄3 z2 z̄3 − z̄1 z3 z̄1 z2 − z̄2 z3

z1 z2 − (z3)2 0 (z1)2 − z2 z3 z̄2 z3 − z1 z̄3 z3 z̄3 − z1 z̄1 z̄1 z3 − z1 z̄2

(z2)2 − z1 z3 z2 z3 − (z1)2 0 z1 z̄2 − z2 z̄3 z1 z̄3 − z̄1 z2 z1 z̄1 − z2 z̄2

z3 z̄3 − z2 z̄2 z1 z̄3 − z̄2 z3 z2 z̄3 − z1 z̄2 0 z̄1 z̄2 − (z̄3)2 (z̄2)2 − z̄1 z̄3

z̄1 z3 − z2 z̄3 z1 z̄1 − z3 z̄3 z̄1 z2 − z1 z̄3 (z̄3)2 − z̄1 z̄2 0 z̄2 z̄3 − (z̄1)2

z̄2 z3 − z̄1 z2 z1 z̄2 − z̄1 z3 z2 z̄2 − z1 z̄1 z̄1 z̄3 − (z̄2)2 (z̄1)2 − z̄2 z̄3 0


(6.17)

Let us comment on the close resemblance of this matrix to one of the two noncommutativity matrices
for the pure-h deformation presented in [15], and in particular the one for real h. Like those matrices,
the matrix ΘIJ turns out to be independent of the radial direction r when converting to spherical
coordinates as in (6.15), and furthermore the first row and column both vanish, which guarantees
that (a) the deformation will purely affect the 5-dimensional internal part of the geometry, and (b)
it will do so in a way that corresponds to a marginal deformation.

More specifically, since (as we will also see in detail later) on taking the near-horizon limit of
the full geometry the r coordinate will become the radial direction of AdS5, and will therefore (as
usual in AdS/CFT) be associated with the scale of the gauge theory, the r-independence of the
noncommutativity matrix was taken in [15] to be a requirement for conformal invariance of the
theory. The absence of mixing between r and the remaining internal coordinates also guarantees
that the geometry will neatly split into an AdS and an internal part. The fact that our matrix satis-
fies these non-trivial conditions indicates that we have indeed found the correct noncommutativity
matrix beyond the holomorphic sector.

Let us finally note that ΘIJ
w is a Poisson bivector:

ΘIL
w ∂LΘJK

w + ΘJL
w ∂LΘKI

w + ΘKL
w ∂LΘIJ

w = 0 . (6.18)

In [15] this condition was seen to be necessary for associativity of the deformed star product
introduced there, as is of course also the case in the formalism of [55]. Although, as discussed, we
did not expect to encounter any issues with associativity for the w deformation, this provides an
additional check of our formalism.

This concludes our discussion of the first-order noncommutative geometry of the w-deformation
on the gauge theory side. We will now turn our focus to the gravity side of the AdS/CFT corre-
spondence, where the same matrix Θ will appear in the construction of the dual geometry.
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7 Generalised complex geometry

In the following, we will use the noncommutative structure of the w-deformed gauge theory dis-
cussed in the above to construct a gravitational background which we will propose as its AdS/CFT
dual. In order to do this most efficiently, we now need to introduce a second important element in
our construction, namely the framework of generalised complex geometry.

7.1 Overview of generalised complex geometry

Generalised complex geometry, as introduced in [58, 59], provides a framework that generalises
complex and symplectic geometry while including both as special cases. Its appeal in string theory
stems from the fact that it treats the metric and B-field on equal footing, a very natural state of
affairs from the string perspective. There exist several excellent reviews of generalised geometry
aimed at physicists [60, 61, 62], to which we refer for details and references.

For our purposes we will focus on the description of generalised geometry in terms of pure
spinors, and its relation to NS-NS supergravity backgrounds with N = 2 supersymmetry. We
follow mainly [63, 64, 20]. Let us start by considering three-complex-dimensional flat space |||C3,
with coordinates z1, z2, z3 and their complex conjugates. The two relevant quantities on this
manifold are the holomorphic volume form Ω and the Kähler form J , defined as:

Ω = dz1 ∧ dz2 ∧ dz3 and J =
i

2

3∑
i=1

dzi ∧ dz̄ ī (7.1)

Ω and J define a metric on the manifold, which in the holomorphic coordinates defined by Ω is
equal to gij̄ = −iJij̄ . Since there is a unique six-form on the manifold, Ω ∧ Ω and J ∧ J ∧ J have
to be related. In our conventions, this relation reads:

J ∧ J ∧ J =
3i

4
Ω ∧ Ω . (7.2)

Since |||C3 is a complex manifold, it admits an almost complex structure, i.e. a map from the
coordinates to the coordinates which squares to minus the identity (and thus can be represented
by a matrix with eigenvalues ±i). In our case, the almost complex structure can be obtained by
raising one of the indices of J . This can be shown to satisfy J ikJ

k
l = −δil and is thus an almost

complex structure.
Let us now move on to describe the same space in generalised complex geometry. We will

consider structures on the 12-dimensional space T ⊕T ∗. The elements of this space (vectors ∂/∂zI

and forms dzI) will be associated to the gamma matrices ΓM , with M = 1, . . . , 12. Ordering the
elements of T ⊕ T ∗ as X = {ιI ,dzI} = {ι1, ῑ1, ι2, . . . ,dz̄2, dz3,dz̄3}, with ιI denoting contraction,
we associate

ΓI = ιI and ΓI+6 = dzI . (7.3)

We can now define a metric on T ⊕ T ∗ using the pairing between vectors and forms:

IMN =

(
0 I6×6

I6×6 0

)
. (7.4)

This metric, which reduces the structure group to O(6, 6), will be used to raise and lower indices
on the generalised tangent bundle. It is not the generalised metric, the construction of which will
be discussed momentarily.
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Pure spinors
The main ingredients in the construction are certain polyforms (sums of forms of different

degree) known as pure spinors. The name arises because, through the Clifford map associating
forms to bispinors, they correspond to two independent pure spinors on the manifold (spinors
annihilated by six gamma matrices).

For flat space, the pure spinors are given by:

Φ0
− = Ω = dz1 ∧ dz2 ∧ dz3 and

Φ0
+ = e−iJ = 1+

1

2

∑
i

dzi∧dz̄i+
1

4

∑
i

dzi∧dz̄i∧dzi+1∧dz̄i+1+
1

8
dz1∧dz̄1∧dz2∧dz̄2∧dz3∧dz̄3

(7.5)

which can each be seen to have an annihilator of dimension six: For Φ0
−, the annihilators are

L−i = dzi∧ , and L−
ī

= ῑi (7.6)

while for Φ0
+ they are

L+
i = dzi∧+ 2ῑi , and L+

ī
= dz̄ ī∧− 2ιi . (7.7)

For these pure spinors to define an N = 2 background, they also need to be closed and satisfy the
compatibility conditions [20]:

〈Φ−, XΦ+〉 = 0 , 〈Φ̄−, XΦ+〉 = 0 (7.8)

with X being any element of the tangent or cotangent space (as above), and

〈Φ̄+,Φ+〉 = 〈Φ̄−,Φ−〉 (7.9)

where we made use of the Mukai pairing on the space of generalised forms:

〈A,B〉 =
∑

(−1)[n/2]An ∧B6−n . (7.10)

Here An, B6−n are the components of A and B of the corresponding degree and [·] denotes the
integer part.

The compatibility conditions can be easily verified for the flat-space pure spinors in (7.5). This
is to be expected, as flat space is a (very special) case of a N = 2 background.

From pure spinors to NS-NS fields
Of course, a compatible pair of pure spinors is a rather implicit encoding of the metric and

B-field of the solution. To obtain a more explicit construction of the metric and B-field one needs
to consider the generalised complex structures associated to the pair of pure spinors.

Using the mapping of the gamma matrices to elements of T⊕T ∗, we can define the antisymmetric
combinations ΓMN as

ΓI,J =
1

2
(ιIιJ − ιJ ιI) = ιI ∧ ιJ , ΓI,J+6 =

1

2
(ιIdz

J − ιJdzI) ,

ΓI+6,J =
1

2
(dzIιJ − dzJ ιI) , ΓI+6,J+6 =

1

2
(dzIdzJ − dzJdzI) = dzI ∧ dzJ .

(7.11)

The generalised complex structures can now be obtained through the Mukai pairing as

J±MN = 〈Φ±,ΓMNΦ±〉 . (7.12)
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The generalised complex structures square to −1, that is J±MNJ±NR = −δMR .16 Equivalently, one
can construct the generalised complex structures through the annihilator space of the pure spinors.
In particular, they should be such that the corresponding annihilator vectors L± (see above) form
their ±i eigenspaces respectively.

Compatibility of the pure spinors guarantees that the generalised complex structures commute,

J+
M
NJ−NL − J−MNJ+

N
L = 0 (7.13)

which allows us to unambiguously define the (12-dimensional) generalised metric as:

GMN = −J+MLJ L
− N . (7.14)

The generalised metric squares to one and can be shown [59] to be related to the six-dimensional
metric and B-field as17

GMN =

(
−g−1B g−1

g −Bg−1B Bg−1

)
(7.15)

while in our conventions the dilaton will be given by

e2Φ =
√
|det g| (7.16)

in accordance with O(6, 6) invariance (see [65] for relevant comments).18 We have thus obtained
the three NS-NS fields of our background starting from the pure spinors.

Going through the above steps for the flat-space case (7.5), we find

G =

(
0 g−1

g 0

)
, where g =



0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

 (7.17)

which corresponds to the flat-space complex metric ds2 = gij̄dz
idz̄j̄ and vanishing B-field and

dilaton.

7.2 Twisting the pure spinors

We will now consider deforming the flat 6-dimensional geometry above in order to find new NS-NS
solutions. The deformations we will consider are bivector-type deformations, which are of the form

Φ± = eβ
IJ ιI∧ιJΦ0

± (7.18)

Such deformations are known to be equivalent to TsT transformations in cases with isometries
[64, 20, 66].19 We would like to eventually apply them also to more general cases to produce
compatible pure spinor pairs corresponding to a given deformed gauge theory. Our claim will be
that for the integrable cases the bivector βIJ above can simply be taken to be the noncommutativity
matrix ΘIJ .

16Depending on conventions, a normalisation constant might need to be included in (7.12) for this to happen.
17It is required to raise the first index in order to bring the metric into this canonical form. Leaving it down would

just permute the 6× 6 blocks.
18In [20], the dilaton satisfies e−2Φ = (Φ±,Φ±), with the norm defined as (Φ±,Φ±) = 〈Φ±,Φ±〉/volg, with volg

the volume form of the metric g. All our pure spinors will satisfy 〈Φ,Φ〉 = 1, hence the equality in (7.16).
19β-transformations and their relation with T-duality also feature crucially in the formalism of β-supergravity

[67, 68, 69] which describes backgrounds with non-geometric fluxes.
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In line with the noncommutative flavour of this work, we will also advocate an alternative way
of thinking about the above deformation, which is equivalent to first order in the deformation
parameter but might provide an alternative description at higher orders. We will propose that it
can be written as a non-anticommutative deformation, by introducing a star-product on the space
of polyforms:

dzI ∧∗ dzJ =

(
1− i

2
ΘKLιK ∧ ιL

)
dzI ∧ dzJ = dzI ∧ dzJ − iΘIJ (7.19)

where ΘIJ now plays the role of a non-anticommutativity matrix.20 So the star product deforms
the anticommutative wedge product to a generically non-anticommutative one. This is in a similar
spirit as in [31], where a very similar non-anticommutative star product was introduced between
the fermionic coordinates of supertwistor space [30] to compute amplitudes in the general Leigh-
Strassler gauge theory.

The relation between bivector deformations and noncommutativity is well established, especially
since the work of Kontsevich [55]. In the generalised geometry context, it is also well known that
bivector deformations in the presence of isometries lead to new backgrounds which can also be
obtained by a succession of T dualities21. Relevant discussions can be found in [70, 71]. So in the
case where there are isometries to T-dualise along, it is not a surprise that a TsT deformation is
equivalent to a bivector deformation. Our proposal is that the noncommutative structure of the
gauge theory can guide us as to which bivector twist generates its dual geometry also in the absence
of isometries.

Previous work on star products on forms can be found in [72, 73] as well as the recent work
[74] which deals specifically with differential Poisson algebras. The main novelty in our case is
that, since we are working in the framework of generalised geometry, our star products will act on
polyforms and will mix the degrees of the forms involved. In particular, each action of the star
product will result in a component of degree lower by two in the polyform.

Concretely, we propose that, for a given field-theoretical deformation parametrised by a non-
commutativity matrix ΘIJ , the corresponding deformation on the supergravity side is obtained by
considering the flat-space pure spinors, but multiplied with the above star product instead of the
wedge product. So we obtain:22

Φ∗− = dz1 ∧∗ dz2 ∧∗ dz3 and

Φ∗+ = 1+
1

2

3∑
i=1

dzi ∧∗ dz̄i+
1

4

3∑
i=1

dzi ∧∗ dz̄i ∧∗ dzi+1 ∧∗ dz̄i+1

+
1

8
dz1 ∧∗ dz̄1 ∧∗ dz2 ∧∗ dz̄2 ∧∗ dz3 ∧∗ dz̄3

(7.20)

In the following we will first apply this procedure to the β-deformation, in order to recover the
NS-NS precursor of the LM metric [5, 20]. After this check, we will proceed to the w-deformation
and find the same metric, but in a form more adapted to the w-deformed gauge theory.

An important comment is in order, however. From the above it might appear that we are
introducing some kind of non-anticommutativity on the gravity side, which might be taken to imply
that the closed-string metric (in the framework of [16]) is somehow becoming non-commutative.
We hasten to emphasise, however, that for the deformations we will consider the procedure (7.20)

20The minus in the definition is just a choice of sign for the deformation parameter, but the i is important for
compatibility of the deformed pure spinors. See comments in [44] for the need to introduce an i in a related context.

21This is unlike B-twists, which are symmetries of the generalised metric and do not lead to new solutions.
22This is a minimal non-anticommutative extension of the usual wedge product, in the sense that all terms arise

by introducing a star product between existing terms. One could also consider additional terms which tend to zero
in the undeformed limit, but we have so far not seen the need for such terms.
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is completely equivalent to the well-known bivector deformation (7.18). The reason is simply that
(as can be checked) only the first-order part in the expansion (7.18) is nonzero, and that for our
deformations the star product reduces to doing all single Wick contractions in (7.20), with double-
and higher Wick contractions vanishing. This property is very specific to our deformations and
is probably linked to quasi-triangularity. Future studies of non-quasitriangular deformations will
decide whether the star-product formulation is useful beyond leading order.

7.3 The β-deformation in generalised complex geometry

As shown in [20], the NS-NS precursor of the β-deformation can be obtained through a bivector
transformation on the pure spinors. It can easily be checked that the transformation performed in
[20] is equivalent to introducing the following star-product relations

dzi ∧∗ dzj = dzi ∧ dzj − iΘij , dzi ∧∗ dz̄j̄ = dzi ∧ dz̄j̄ − iΘij̄ (7.21)

and their conjugates, with the noncommutativity matrix being (6.14).
In [57], this matrix was combined with the Seiberg-Witten technique of constructing a closed-

string metric with a B-field from a non-commutative open string metric to reproduce the NS-NS
fields of the LM metric. (For earlier work in the same direction, see [75]).

Let us use this matrix to deform the 6-dimensional flat-space pure spinors as discussed in the
previous section. It turns out that we only need to consider single Wick contractions (leading to
linear terms in β). A straightforward computation results in the following beta-deformed pure
spinors:

Φβ
− = dz1 ∧ dz2 ∧ dz3 + β d(z1z2z3) and

Φβ
+ = Φ0

+ −
β

4

[
z̄1z̄2dz1 ∧ dz2 + z̄1z2dz1 ∧ dz̄2 + z1z̄2dz̄1 ∧ dz2 + z1z2dz̄1 ∧ dz̄2 +cyclic

] (7.22)

This is the same result as that in [20], which, as mentioned, applied an equivalent bivector de-
formation to the flat-space pure spinors23 Applying the procedure outlined in (7.1) to obtain the
supergravity NS-NS fields we can write the metric as24

ds2 =
G

4

(
gi,idz

idzi + gi,i+1dzidzi+1 + gi,̄idz
idz̄ ī + gi,i+1dzidz̄i+1 + c.c.

)
(7.23)

where the components are

gi,i = β2(z̄ ī)2(zi+1z̄i+1 + zi−1z̄i−1) ,

gi,̄i = (2 + β2(ziz̄ ī(zi+1z̄i+1 + zi−1z̄i−1) + 2zi−1z̄i−1zi+1z̄i+1) ,

gi,i+1 = β2z̄ īz̄i+1zi−1z̄i−1 , gi, ¯i+1 = β2z̄ īzi+1zi−1z̄i−1 ,

(7.24)

with G−1 = 1 + z1z̄1z2z̄2 + z2z̄2z3z̄3 + z3z̄3z1z̄1, while the remaining components are determined
by symmetry. The independent B-field components are:

Bi,i+1 = Gβz̄ īz̄i+1/4 and Bi,i+1 = −Gβz̄ īzi+1/4 (7.25)

while the dilaton is e2Φ = G. Converting to real coordinates we recover the N = 2 background
discussed in the appendix of [5], the NS-NS precursor of the LM background. Adding D3-branes
at the origin of this geometry and taking the near-horizon limit leads to the N = 1 real-β LM

23 In [20], a B-transformation was employed to keep Φ+ equal to its undeformed value. That transformation does
not affect the final answer for the supergravity fields, so for simplicity we choose not to perform it here.

24We have divided the metric by two to revert to the canonical normalisation where gīi = 1
2

for flat space.
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solution. As these solutions are well known, we do not reproduce them here. In the following we
will apply the same techniques to the w-deformation and will provide more details of the steps to
the N = 1 solution to highlight the features one might expect to encounter in the generic case.

The N = 1 LM solution has also been obtained in the generalised geometry context directly
(without going through the NS-NS precursor) by considering the action of T-duality on the pure
spinors of AdS5 × S5 [64]. In the following we will follow the two-step process above for the w-
deformation, the main appeal being that we start with the pure spinors of flat space, which is
closest to the quantum plane picture we developed on the gauge theory side. It would definitely be
worth exploring whether the kinds of deformations that we are interested in can be formulated as
an action on the pure spinors of AdS5 × S5.

7.4 The w-deformation in generalised complex geometry

We are now ready to consider the action of the w-deformed star product on the flat-space pure
spinors. Using (7.20) with the noncommutativity matrix (6.17) we obtain

Φw
− = dz1 ∧ dz2 ∧ dz3 − iw[(z2z3 − (z1)2)dz1 + (z3z1 − (z2)2)dz2 + (z1z2 − (z3)2)dz3] (7.26)

and

Φw
+ = Φ0

+ +
iw

4

[
(z3z̄3 − z2z̄2)dz1 ∧ dz̄1 + ((z̄3)2 − z̄1z̄2)dz1 ∧ dz2 + (z1z̄3 − z̄2z3)dz1 ∧ dz̄2

+(z2z̄3 − z1z̄2)dz1 ∧ dz̄3 + (z1z2 − (z3)2)dz̄1 ∧ dz̄2 +cyclic
]

+
iw

8

[
(z1z̄1 − z2z̄2)dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 − (z̄2z̄3 − (z̄1)2)dz1 ∧ dz̄1 ∧ dz2 ∧ dz3

+ (z̄1z3 − z1z̄2)dz1 ∧ dz̄1 ∧ dz̄2 ∧ dz̄3 − (z1z̄3 − z̄1z2)dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄3

+(z2z3 − (z1)2)dz1 ∧ dz̄1 ∧ dz̄2 ∧ dz̄3 +cyclic
]

(7.27)

We will now show that these forms are pure spinors, and are also compatible. They thus define an
N = 2 NS-NS background. To do this, we first construct the annihilators of Φw

±:

L−(1) = dz1 − iw
[
(z1z2 − (z3)2)ι2 − (z1z3 − (z2)2)ι3

]
,

L−
(1̄)

= ι1̄
(7.28)

and

L+
(1) = dz1 +

[(
2− iw(z3z̄3 − z2z̄2)

)
ι1̄ − iw(z3z̄2 − z2z̄1)ι3̄

+iw(z2z̄3 − z3z̄1)ι2̄ + iw(z1z3 − (z2)2)ι3 − iw(z1z2 − (z3)2)ι2
]
,

L+
(1̄)

= dz̄1 +
[(
−2 + iw(z3z̄3 − z2z̄2)

)
ι1 + iw(z2z̄3 − z1z̄2)ι3 − iw(z3z̄2 − z1z̄3)ι2

−iw(z̄1z̄3 − (z̄2)2)ι3̄ + iw(z̄1z̄2 − (z̄3)2)ι2̄
]
.

(7.29)

plus their cyclic permutations. The existence of six annihilators each confirms that Φ+ and Φ−
are pure spinors. It is also easy to see that they share three annihilators. Concretely, since we can
write the annihilator L+

(1) as

L+
(1) = L−(1) − iw(z3z̄3 − z2z̄2)L−

(1̄)
− iw(z3z̄2 − z2z̄1)L−

(3̄)
+ iw(z2z̄3 − z3z̄1)L−

(2̄)
(7.30)

it also annihilates Φw
+, as do its two cyclic permutations. This establishes the compatibility of the

two pure spinors.25

25Alternatively, one can also check the compatibility conditions (7.8) and (7.9), which are also satisfied.
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We can also straightforwardly check that Φ± are closed and that they have equal Mukai norms:

〈Φ−,Φ−〉 = 〈Φ+,Φ+〉 = 1 (7.31)

which are equal to those of the undeformed |||C3. Together, these conditions tell us that we have an
N = 2 background [20], the NS-NS precursor of the dual to the w-deformation.

8 The w-twisted background

Although the generalised complex description above is in principle sufficient, for many applications
(especially to AdS/CFT) it is desirable to express the background in terms of the supergravity
fields. To do this, we will first construct the generalised metric, from which it is easy to read off
the supergravity fields.

Afterwards, we will write down the w-deformed solution in real coordinates. We will start with
the 10-dimensional NS-NS precursor solution, which is simply the direct product of 4d Minkowski
space with the six-dimensional deformation of flat space defined above. We will then consider the
R-R solution which would result from the addition of D3-branes to this background and taking the
near-horizon limit. For the w-deformation it takes the form of AdS5×S5

w, where S5
w is a deformation

of the 5-sphere. A coordinate redefinition shows that this sphere is nothing but the LM metric in
an unusual coordinate system. This is in line with our field theory expectations, providing a check
of the validity of our approach and the appropriate application of the twist.

8.1 The metric in complex coordinates

Our first task is to construct the generalised complex structures following (7.12), taking care to
normalise them appropriately in order for them to square to −1. Their expressions can be found in
appendix D. We now obtain the generalised metric according to (7.14). Using (7.15), we can easily
read off the string-frame metric, B-field and dilaton of our NS-NS background. The end result of
this procedure can be exhibited more clearly by defining the factor:

G−1 = 1 + w2
[
z2

1 z̄
2
1 + z2

2 z̄
2
2 + z2

3 z̄
2
3 + z1z̄1z2z̄2 + z2z̄2z3z̄3 + z1z̄1z3z̄3

−z1z2z̄
2
3 − z2z3z̄

2
1 − z3z1z̄

2
2 − z2

1 z̄2z̄3 − z2
2 z̄3z̄1 − z2

3 z̄1z̄2

] (8.1)

which is the inverse of the square root of the determinant of the metric.26 We then find that the
six-dimensional part of the (string-frame) metric is given by

ds2 =
G

4

[
gi,idz

idzi + gi,̄idz
idz̄ ī + gi,i+1dzidzi+1 + gi,i+1dzidz̄i+1 + c.c.

]
(8.2)

with the components given by27

gi,i =w2[zi(z̄
3
i+1 + z̄3

i−1) + z̄i(zi+1z̄
2
i−1 + zi−1z̄

2
i+1)− z̄i+1z̄i−1(zi−1z̄i−1 + zi+1z̄i+1)− 2 ziz̄iz̄i+1z̄i−1] ,

gi,i+1 =w2(z2
i − zi+1zi−1)(z̄2

i+1 − z̄i+2z̄i) ,

gi,i+1 = w2[z̄2
i (ziz̄i+1 − zi+1z̄i−1) + z̄2

i+1(zi+1z̄i − ziz̄i−1) + zi−1z̄i−1(z̄2
i−1 − z̄iz̄i+1)]

gi,̄i =2 + w2
(
2z2
i z̄

2
i + z2

i+1z̄
2
i+1 + z2

i−1z̄
2
i−1 + 2zi+1z̄i+1zi−1z̄i−1 + ziz̄i(zi−1z̄i−1 + zi+1z̄i+1)

−(2z2
i z̄i+1z̄i−1 + z2

i+1z̄iz̄i−1 + z2
i−1z̄iz̄i+1 + c.c.)

)
,

gīj̄ =gij , gj̄,i = gij̄ .

(8.3)

26The determinant of the metric in complex coordinates is −G−2, but will become positive on transformation to
real coordinates.

27We have placed the indices down and removed the bars from conjugate indices for increased readability.
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while the B-field is

B =
1

2

(
Bīidz

i ∧ dz̄ ī +Bi,i+1dzi ∧ dzi+1 +Bi,i−1dzi ∧ dzi−1 +Bi,i+1dzi ∧ dz̄i+1 + c.c.
)

(8.4)

with

Bīi = −Bīi =
iw

4
G (zi−1z̄i−1 − zi+1z̄i−1)

Bi,i+1 = −Bi+1,i =
iw

4
G
(
z̄iz̄i+1 − z̄2

i−1

)
Bi,i+1 = −Bi+1,i =

iw

4
(ziz̄i−1 − zi−1z̄i+1)

(8.5)

Finally, the dilaton is simply
e2Φ = G . (8.6)

Already at this level it can be seen that the metric (8.3) is nothing but the LM precursor metric
[5] written in complex coordinates. Transforming the zi, z̄i coordinates of (7.24) as

zi −→ (T †)ijz
j , z̄i −→ z̄jT

j
i (8.7)

with T in (4.3), and with an additional rescaling β2 = 3w2 (which arises from the rescaling needed
to precisely match the r-matrices in the two cases, c.f. section 6.2), we easily reproduce (8.3).

In the following section we will rewrite these fields in real coordinates to facilitate comparison
with the more usual parametrisation of the β-deformation [5], as well as the perturbative solution
of [15] for the h-deformation.

8.2 The NS-NS precursor solution

Let us start by converting the w-deformed NS-NS metric to real coordinates. We will use the
coordinates:

zk = rke
iφk , z̄k = rke

−iφk . (8.8)

As discussed, we expect the w-deformed metric to only have one obvious U(1) isometry, the one
corresponding to the U(1) R-symmetry of the corresponding gauge theory. In the above coordinates
this symmetry is φi −→ φi + a. We thus expect the angle dependence of the metric components
to be in terms of combinations invariant under this transformation. It turns out that the needed
combinations arise in four distinct forms, for which we define the following shorthand notation:28

Ci = cos(2φi − φi+1 − φi−1) , Ci,j = cos(3(φi − φj))
Si = sin(2φi − φi+1 − φi−1) , Si,j = sin(3(φi − φj)) .

(8.9)

The G parameter now takes the form:

G−1 = 1+w2(r4
1 + r4

2 + r4
3 + r2

2r
2
3 + r2

1r
2
3 + r2

1r
2
2 − 2C3 r1r2r

2
3 − 2C2 r3r1r

2
2 − 2C1 r2r3r

2
1) (8.10)

Going to Einstein frame, the full 10-dimensional metric is

ds2 = G−
1
4

(
−dt2 +

3∑
i=1

dx2
i +G

(
grrij dridrj + grφij dridφj + gφφij dφidφj

))
(8.11)

28A similar notation was used in [15].
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with the rr components being

grr11 = 1 +
w2

2

(
2r4

1 + r4
2 + r4

3 + r2
1r

2
2 + r2

1r
2
3 + r2

2r
2
3 − C31r1r

3
3 − C12r1r

3
2

+C1(r2r
3
3 + r3

2r3 − 2r2
1r2r3)− 3C2r1r

2
2r3 − 3C3r1r2r

2
3

)
grr12 =

w2

2

(
r1r

3
2 + r2r

3
1 + C1,2r

2
1r

2
2 + C3 r

4
3 − C2 (r3

2r3 + r2
1r2r3)− C1(r3

1r3 + r1r
2
2r3)

)
,

(8.12)

the rφ components (note that gφr = grφ)

grφ11 = −w
2

2
r1

(
S1(r2r

3
3 + r3

2r3 + 2r2
1r2r3) + S2r1r

2
2r3 + S3r1r2r

2
3 + S3,1r1r

3
3 − S1,2r1r

3
2

)
grφ12 = −w

2

2
r2

(
S1(r3

1r3 − r1r
2
2r3)− S3r

4
3 − S2(r3

2r3 + r2
1r2r3)− S1,2r

2
1r

2
2

)
grφ13 = −w

2

2
r3

(
S1(r3

1r2 − r1r2r
2
3)− S2r

4
2 − S3(r2r

2
3 + r2

1r2r3) + S3,1r
2
1r

2
3

)
(8.13)

and the φφ components:

gφφ11 = r2
1 +

w2

2
r2

1

(
2r4

1 + r4
2 + r4

3 + r2
1r

2
2 + r2

1r
2
3 + 2r2

2r
2
3

−C1(r2r
3
3 + r3

2r3 − 6r2
1r2r3)− C2r1r

2
2r3 − C3r1r2r

2
3 + C1,2r1r

3
2 + C3,1r1r

3
3

)
gφφ12 =

w2

2
r1r2

(
2r1r2r

2
3 − r1r

3
2 − r3

1r2 − C3r
4
3 + C2(r2

1r2r3 − r2
2r3) + C1(r1r

2
2r3 − r3

1r3) + C1,2r
2
1r

2
2

)
(8.14)

with the remaining components fixed by cyclicity (grr12 = grr23 = grr31 etc.) and symmetry of the
metric. The B-field components take the form:

Br1,r2 = −Gwr3(r1S1 + r2S2 + r3S3)/2

Br1,φ1 = Gwr1(r2
3 − r2

2)/2

Br1,φ2 = Gwr2(−r1r2 + C3r
3
3 − C2r2r3 + C1r1r3)/2

Br1,φ3 = Gwr3(r1r3 + C3r2r3 − C2r
2
2 − C1r1r2)/2

Bφ1,φ2 = Gwr1r2r3(r3S3 − r2S2 − r1S1)/2

(8.15)

(with the remaining components determined by cyclicity and antisymmetry) while the dilaton is

e2Φ = G (8.16)

as usual.
It can be checked explicitly that the above fields provide a solution of the IIB supergravity

equations (which we record in appendix E for completeness). This is the NS-NS precursor of the
w-deformed background. In the next section we will switch to spherical coordinates, in which the
solution can be seen to take the form of a cone over a five-dimensional geometry.

8.3 The R-R solution

The final step in our construction of the dual w-deformed geometry is to add D3-branes to the
NS-NS precursor solution and take the near-horizon limit, which will lead to a R-R solution with
an AdS and internal deformed sphere part. This is straightforward to do, since if we parametrise
the ri coordinates as (c.f. (6.15))

r1 = r cosα , r2 = r sinα sin θ , r3 = r sinα cos θ (8.17)
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the six-dimensional part of the metric takes the form

ds2 = dr2 + r2dΩ2
w . (8.18)

We see that the precursor takes the form of a cone with radial parameter r2 = r2
1 + r2

2 + r2
3 over

a 5-dimensional base, with dΩ2
w denoting the metric of a deformed sphere forming the base of the

cone. The RR background we are aiming to construct arises by placing a stack of N D3-branes at
r = 0 and taking the near-horizon limit. Exactly as in the case of S5 or the LM metric, the near-
horizon limit will result in r becoming the AdS5 radial direction, leaving us with a 5-dimensional
compact metric S5

w parametrised by the angles α, θ, φ1, φ2, φ3. This AdS5 × S5
w is expected to be

an N = 1 solution of IIB supergravity and it is natural to identify it with the AdS/CFT dual of
the w-deformation.

We will not go through the process of finding the D3-brane solution and taking the near-horizon
limit, but will take the shortcut of constructing the R-R fields of the near horizon background by
solving the supergravity equations of motion, applying a fair amount of intuition from the known
cases. In this we follow [15], which used the same approach to construct the dual to the h defor-
mation to third order. The limitation there was caused by ambiguities related to non-associativity
of the star product used to derive the NS-NS solution. As discussed, our ability to control asso-
ciativity led us to the exact NS-NS background for the w-deformation. The construction of the
all-orders RR background in our case will therefore be straightforward, although its verification
will be computationally demanding because of the complexity of the fields involved.

Of course, the generalised geometry framework encompasses AdS5 N = 1 backgrounds as well
(see e.g. [76, 77, 78]), and it would be possible (and would certainly provide further insight) to
take the near-horizon limit directly at the pure spinor level and express the R-R background in
generalised geometry language. We leave this construction to future work.

In this section it will be convenient to switch back to the string frame, where the 10-dimensional
metric will simply be a direct product AdS5×S5

w. The AdS5 part is standard, so we will just focus
on the geometry of the deformed five-sphere. From (8.18) it is clear that the metric of the sphere
will just be the five-dimensional part of the 6d metric written in spherical coordinates, with r
replaced by R, the radius of AdS5. The 5d B-field will also be derived in the same way. The
remaining ingredient to obtain the RR solution is the introduction of the RR form fields. The
five-form flux will take the standard self-dual form, and the RR zero-form will be taken to vanish.
So the only nontrivial flux will be that of the RR two-form, which will be obtained from the B-field
using the equations of motion. In the following we will just list the outcome of this procedure.

In our spherical coordinates, the G-factor takes the form:

G−1 = 1+w2R4(1− s2
αc

2
α − s4

αs
2
θc

2
θ − 2cαs

3
αcθs

2
θC2 − 2s2

αc
2
αsθcθC1 − 2cαs

3
αc

2
θsθC3) (8.19)

where R is the AdS5 radius and we abbreviate sα = sinα, cα = cosα, sθ = sin θ, cθ = cos θ.
The dilaton is again given in terms of this G as

e2Φ = G . (8.20)

Using µ, ν for the five-dimensional (internal) coordinates, the metric components are given by:

gµν = G g̃µν (8.21)

where

g̃αα = R2 +
w2R6

2

[
1− 2c2

α + 2c2
αs

2
αc

2
θs

2
θ + 2c4

α + (4c2
α − 3)cαsαcθs

2
θC2 − cαsαc3

θC3,1

−cαsαs3
θC2,1 + (4c4

α−3c2
α+1)cθsθC1+(4c3

α − 3cα)sαc
2
θsθC3

]
,

(8.22)

30



g̃αθ =
w2R6

2

[
cαs

3
αcθsθ(c

2
θ − s2

θ) + s2
αc

2
αsθc

2
θC3,1 + (2s2

αs
2
θ − s2

θ − s2
α)s2

αcθC3

−s2
αc

2
αcθs

2
θC2,1 + c3

αsα(1− 2s2
θ)C1 + (2s4

αs
3
θ − s2

αs
3
θ + sθs

2
αc

2
α)C2

]
,

(8.23)

g̃θθ = R2
[
s2
α +

w2R4

2

[
s2
α − 2s4

αs
2
θ + 2s4

αs
4
θ + cαs

3
αsθ(s

2
αs

2
θ + s2

θ − s2
α)C3 − c3

αs
3
αsθc

3
θC2,1

−c3
αs

3
αcθs

2
θC3,1 − cαs3

αcθ(s
2
θs

2
α − c2

θ)C2 + (s6
α + s4

α − 2s2
α)cθsθC1 − s6

αcθsθC3,2

] ]
,

(8.24)

g̃αφ1 =
w2R6

2

[
c2
αs

2
αsθc

2
θS3 + c2

αs
2
αs

3
θS2,1+cα(1 + c2

α)sαcθsθS1 + c2
αs

2
αc

3
θS3,1 + c2

αs
2
αcθs

2
θS2

]
, (8.25)

g̃αφ2 =
w2R6

2

[
−s4

αcθs
4
θS2 − cαs3

αcθs
3
θS1 + s2

αc
2
αs

3
θS2,1 − s2

αc
2
αcθs

2
θS2 + c3

αsαcθsθS1 − s4
αc

4
θsθS3

]
,

(8.26)

g̃αφ3 =
w2R6

2

[
−s4

αcθs
4
θS2 − s4

αc
4
θsθS3 − cαs3

αc
3
θsθS1 − s2

αc
2
αc

2
θsθS3 + c3

αsαcθsθS1 + s2
αc

2
αc

3
θS3,1

]
,

(8.27)

g̃θφ1 =
w2R6

2

[
c3
αs

3
αs

3
θS3,1 + cαs

3
αsθ(c

2
αc

2
θ − s2

αs
2
θ)S2 − cαs3

αcθs
2
θS3 + c3

αs
3
αcθs

2
θS2,1

−2c4
αs

2
αs

2
θS1 − c3

αs
3
αsθS3,1 + cαs

5
αcθS3 + c4

αs
2
αS1

]
,

(8.28)

g̃θφ2 =
w2R6

2

[
−cαs3

αsθ(2s
2
αs

2
θ + c2

θ − s2
αs

4
θ)S2 − s2

αs
2
θ(c

2
α − s2

αs
2
θc

2
α)S1

−cαs5
αcθs

4
θS3 + c3

αs
3
αcθs

2
θS2,1 − s6

αs
2
θc

2
θS3,2

]
,

(8.29)

g̃θφ3 =
w2R6

2

[
cαs

5
αc

4
θsθS2 − c3

αs
3
αc

2
θsθS3,1 − cαs5

αc
5
θS3 − s4

αc
2
αc

4
θS1 − s6

αc
2
θs

2
θS3,2

−cαs3
α(1− 2s2

α)c3
θS3 + s2

αc
2
αc

2
θS1 + cαs

3
αcθS3

]
,

(8.30)

g̃φ1φ1 = R2
[
c2
α +

w2R4

2

[
−c3

αs
3
αc

2
θsθC3 + c3

αs
3
αs

3
θC2,1 − (c2

αs
4
α + 6c4

αs
2
α)cθsθC1

+c3
αs

3
αc

3
θC3,1 − c3

αs
3
αcθs

2
θC2 + c2

αs
4
α + c4

αs
2
α + 2c6

α

] ]
,

(8.31)

g̃φ1φ2 = −w
2R6

2

[
c4
αs

2
αs

2
θ + c2

αs
4
αs

4
θ − 2c2

αs
4
αc

2
θs

2
θ + (cαs

5
αcθs

4
θ − c3

αs
3
αs

2
θcθ)C2

+(c4
αs

2
αcθsθ − c2

αs
4
αcθs

3
θ)C1 − c3

αs
3
αs

3
θC2,1 + cαs

5
αc

4
θsθC3

]
,

(8.32)

g̃φ1φ3 = −w
2R6

2

[
cαs

5
αcθs

4
θC2 − 2c2

αs
4
αc

2
θs

2
θ + cαs

5
αc

4
θsθC3 − c2

αs
4
αc

3
θsθC1 − c3

αs
3
αc

2
θsθC3

+c4
αs

2
αcθsθC1 + c2

αs
4
αc

4
θ − c3

αs
3
αc

3
θC3,1 + c4

αs
2
αc

2
θ

]
,

(8.33)
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g̃φ2φ2 = R2
[
s2
αs

2
θ +

w2R4

2

[
s2
αs

2
θ(1− s2

αs
2
θ + 2s4

αs
4
θ) + s6

αc
3
θs

3
θC3,2 − cαs5

αs
3
θc

2
θC3

−c2
αs

4
αcθs

3
θC1 + c3

αs
3
αs

3
θC2,1 − cαs3

αcθs
2
θ(6s

2
αs

2
θ + s2

αc
2
θ + c2

α)C2

] ]
,

(8.34)

g̃φ2φ3 =
w2R6

2

[
2c2
αs

4
αc

2
θs

2
θ − s6

αc
2
θs

2
θ + cαs

5
αcθs

2
θ(c

2
θ − s2

θ)C2 + s6
αc

3
θs

3
θC3,2

+cαs
5
αc

2
θsθ(s

2
θ − c2

θ)C3 − c4
αs

2
αcθsθC1

]
,

(8.35)

g̃φ3φ3 = R2
[
s2
αc

2
θ +

w2R4

2

[
s2
αc

2
θ(1− s2

αc
2
θ + 2s4

αc
4
θ) + s6

αc
3
θs

3
θC3,2 − s4

αc
2
αc

3
θsθC1

−5cαs
5
αc

4
θsθC3 − cαs3

αc
2
θsθC3 − cαs5

αc
3
θs

2
θC2 + c3

αs
3
αc

3
θC3,1

] ]
.

(8.36)

When transforming to spherical coordinates, the B-field also transforms to a purely five-dimensional
field, as of course required for the solution to be a direct product. Its components are:

Bαθ = wR4G
(
s2
αsθS2 + s2

αcθS3 + cαsαS1

)
/2 ,

Bαφ1 = wR4G
(
2cαsαs

2
θ − cαsα

)
/2 ,

Bαφ2 = wR4G
(
s2
αcθs

2
θC2 + cαsαs

2
θ − s2

αc
2
θsθC3 − cαsαcθsθC1

)
/2 ,

Bαφ3 = wR4G
(
s2
αcθs

2
θC2 + cαsαsθcθC1 − s2

αc
2
θsθC3 − cαsαc2

θ

)
/2 ,

Bθφ1 = wR4G
(
2c2
αs

2
αcθsθ − cαs3

αsθC2 − cαs3
αcθC3 + c2

αs
2
αc1

)
/2 ,

Bθφ2 = wR4G
(
−cαs3

αs
3
θC2 + cαs

3
αcθs

2
θC3 + s2

αc
2
αs

2
θC1 + s2

α(1− 2s2
α)cθsθ

)
/2 ,

Bθφ3 = wR4G
(
cαs

3
αc

2
θsθC2 + s2

α(1− 2s2
α)cθsθ − cαs3

αc
3
θC3 + s2

αc
2
αc

2
θC1

)
/2 ,

Bφ1φ2 = wR4G
(
−cαs3

αcθs
2
θS2 + cαs

3
αc

2
θsθS3 − c2

αs
2
αcθsθS1

)
/2 ,

Bφ1φ3 = wR4G
(
−cαs3

αcθs
2
θS2 + cαs

3
αc

2
θsθS3 + c2

αs
2
αcθsθS1

)
/2 ,

Bφ2φ3 = wR4G
(
−cαs3

αcθs
2
θS2 − cαs3

αc
2
θsθS3 + c2

αs
2
αcθsθS1

)
/2 .

(8.37)

Let us also note the determinant of the metric:√
detgw = R5G sin3 α cosα sin θ cos θ , (8.38)

from which we can construct the Hodge dual of Hµνρ,

H̃µν =
1

24

√
detgwεµνρστH

ρστ (8.39)

and thus the three-form field strength F (3) = dC(2) of the RR two-form:

F (3) = d(e−2ΦH̃) . (8.40)

The expression of Fµνρ is too long to be reproduced here but it can be easily constructed from the
ancillary files provided with the submission.

The five-form field strength F5 = dC4 is taken to be of the same form as the other AdS5×sphere
metrics, with the w-deformed geometry reflected only in the coefficient G in front of the internal
metric:

F = R5(ωAdS5 +GωS5) , with ωS5 = s3
αcαsθcθdα ∧ dθ ∧ dφ1 ∧ dφ2 ∧ dφ3 (8.41)
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Finally the RR zero-form C0 is taken to vanish, as in [15] (and as required by consistency with the
forms of the metric and five-form).

We have succeeded in writing down the full R-R geometry of the w-deformation by making use
of the gauge-theoretic noncommutative structure. As expected, the U(1)×U(1) isometries are not
directly visible in the coordinate system above, which is the most natural one for the w-deformed
gauge theory. The unfamiliar form can of course be brought into the form of the LM solution [5]
by the coordinate transformation following from (8.7).

8.4 Visualising the deformations

Although the metric of the w-deformed theory above is equivalent to that of the β-deformation,
it is written in a coordinate system that is more adapted to computations with the w-deformed
theory. A quick way of seeing the difference between the coordinate systems is by plotting the
scalar curvature as a function of the α, θ angles, and as a function of the deformation parameter.
This is done in Fig. 1 for the slice where we take the three φi angles to zero. The α, θ angles are
taken to be the polar and azimuthal angles of a usual spherical coordinate system. The apparent
difference in the scalar curvatures is due to the fact that the α, θ angles are not directly comparable
in the two coordinate systems (in particular, in the w-frame the scalar curvature depends on the
φi angles as well as on α, θ), as well as the relation β2 = 3w2.

(a) βR=0.3 βR=0.45 βR=0.6 βR=1.0

(b) wR=0.3 wR=0.45 wR=0.6 wR=1.0

Figure 1: Plot of the α, θ dependence of the scalar curvature of the (a) β-deformed and (b) w-
deformed metrics as a function of their respective parameters. For the w-deformation we have
restricted to the subspace φi = 0. We have suppressed the axes for clarity. The distance from
the origin corresponds to the magnitude of the scalar curvature, which in the undeformed case is
simply 20/R2. However the scale changes from plot to plot so they are not directly comparable.
We emphasise that the plots are not R3 embeddings of the geometries.

Of course, ideally, to better visualise the geometry of a higher-dimensional deformed sphere one
would like to construct an isometric embedding in R3. For the imaginary-β deformed LM sphere,
such an embedding was recently provided in [79].
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9 Outlook

In this section we touch upon various potential extensions and applications of our work.

Relation to other approaches
An important recent development in understanding the algebraic structures behind AdS/CFT

has been the gravity/classical YBE correspondence [80, 81, 82, 83, 42, 84, 43, 44], where the
deformation is performed at the level of the string sigma model and can be used as a supergravity
generating technique [85, 86]. Similarly to our method, these deformations are based on a classical
r-matrix, which satisfies an, in general, modified classical YBE. In the unmodified CYBE case this
approach generates IIB supergravity solutions (and indeed the LM solution has been reproduced
in this framework in [42]) while in the modified CYBE case it has recently been shown to produce
solutions of a modified system of equations which are related to standard IIB solutions by T-duality
[87, 88]. It would certainly be interesting to explore possible links with our approach.

A parallel line of work has been the application of non-abelian T-duality to interpolate between
CFT’s while preserving integrability [89, 90]. These λ-deformations have been shown to be closely
related to the η deformations above [91, 92, 93]. A recent review can be found in [94].

A further way to deform the N = 4 SYM integrable structure is at the level of the centrally
extended psu(2|2) ⊗ psu(2|2) symmetry algebra of the integrable S-matrix of the theory, as in
the work [95]. For real deformation parameter q, these deformations have been related to the η
deformations above [96], while for q a root of unity they have been studied in [97].

The general feature of all the sigma model-based deformations above is that they explicitly
preserve integrability29, but tend to lack a clear gauge theory interpretation. Our approach is in
principle complementary in that it is motivated by a well-understood gauge theory deformation,
but the sigma-model side is less clear, and the twist of the supergravity structures, although well
motivated, does not follow directly from the gauge theory twist. So perhaps a method including
aspects of the above approaches could lead to a more powerful solution-generating technique that
extends beyond the Leigh-Strassler deformations. As a first step, one would like to understand
whether our deformation can be performed at the level of the string sigma model, which would
provide additional insight on integrability (and its absence).

We have frequently remarked on the similarities between our approach and that of [15], which
used the Seiberg-Witten relations [16] to relate a noncommutative deformation on the gauge theory
side to a deformed gravity background. It appears likely that, at least for integrable deformations,
our approach is actually equivalent to [15], and it would be interesting to show this explicitly. It is
less clear whether the approaches would still be equivalent in the non-integrable cases. If this were
to be true, a possible extension of our methods to the non-associative case (see below) might lead
to an extension of Seiberg-Witten-type methods to the non-associative case as well.

Extension to the complex-w background
The work [15] constructed two different matrices for the ρ (pure-h) deformation, which were

associated to the real and imaginary part of the ρ parameter respectively. Since (6.17) led to the
real-w deformation, we would similarly expect that there will be a noncommutativity matrix for

29Although they can also be applied to non-integrable backgrounds [98], so integrability does not appear to be a
prerequisite.
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the case where w is imaginary, and indeed a candidate such matrix is

ΘIJ =



0 z1z2 − z2
3 z2

2 − z1z3 0 −X X̄
z2

3 − z1z2 0 z2z3 − z2
1 X̄ 0 −X

z1z3 − z2
2 z2

1 − z2z3 0 −X X̄ 0
0 −X̄ X 0 z̄1z̄2 − z̄2

3 z̄2
2 − z̄3z̄1

X 0 −X̄ z̄2
3 − z̄1z̄2 0 z̄2z̄3 − z̄2

1

−X̄ X 0 z̄3z̄1 − z̄2
2 z̄2

1 − z̄2z̄3 0

 (9.1)

where X = z1z̄2 + z2z̄3 + z3z̄1. This matrix is similar to the one found to correspond to the
imaginary-h deformation in [15].

This matrix also converts to an r-independent deformation matrix in spherical coordinates and
is thus a good candidate to produce a conformal theory. It is expected to correspond to the non-
integrable version of the w-twist when the w parameter becomes complex. The non-integrability
appears to be reflected in that the pure spinor pair derived from (9.1) fails to be compatible at first
order and higher-order corrections in w need to be added. Understanding the role of associativity
in deriving these corrections is of crucial importance, and we aim to report on a fuller analysis of
this case in the near future.30

An alternative way to construct the complex-w-deformed background might proceed through
IIB S-duality from the real-w solution, as in [5]. Since the relation (4.3) between the β- and
w-deformation applies only for real values of the parameters, it will be interesting to determine
whether the resulting background is the same as the complex-β background in [5].

Assuming that the complex-w background is indeed different to the complex-β one, its con-
struction would be important, since it would, for instance, allow detailed studies of integrable vs.
non-integrable string motion along the lines of [12] for the real vs. complex β-deformation.

Extension to the generic Leigh-Strassler theory
The triangularity condition (2.2) satisfied by the Rq,h matrix is a strong indication that it is

possible to construct a twist relating that matrix to the undeformed N = 4 SYM R-matrix. The
close resemblance of the noncommutativity matrices of the w deformation to a linear combination
of β and h noncommutativity matrices (as derived in [15]) can be taken as further evidence for the
existence of a generic twist. The anticipated problem, however, in applying our methods beyond the
integrable Leigh-Strassler theories is not so much the construction of a suitable twist but dealing
with the non-quasitriangular structures it is expected to lead to.

In this work we have focused on Hopf twists, which by definition do not alter the quasitriangular
structure of the theory. So, starting with the N = 4 SYM structure, they can only be applied to
obtain other integrable cases. A promising way to twist fromN = 4 SYM to a non-integrable Leigh-
Strassler theory would be to make use of quasi-Hopf twists [40] (see [99] for a recent discussion of
such twists in a related context). These twists lead to non-associative quasi-Hopf algebras. If it
can be shown that the non-integrable Leigh-Strassler deformations arise in this way, the question
would then be whether and how one can translate a quasi-Hopf noncommutative structure to the
gravity side in order to produce the dual background. Work in this direction is in progress.

Other extensions
The deformations we considered involve only the SU(3) part of the SU(4) ∼ SO(6) global

symmetry of the N = 4 theory. The reason for this is the wish to preserve supersymmetry. One can
certainly try to explore deformations involving the full SU(4), which would not be supersymmetric
but can be expected to lead to planar-integrable subsectors similar to the γi deformations [7].

30An intermediate step would be to construct the complex β-deformation of [5] using an extension of our techniques,
which is work currently in progress.
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One can also contemplate an extension of our noncommutativity-based techniques to conformal
theories beyond the Leigh-Strassler deformations, such as the N = 2 SQCD whose integrability
properties have been extensively studied starting with [100, 101, 102].

It should be emphasised that, even though our construction is purely in the planar limit (in the
sense of relying on planar structures like the R-matrix which is derived from the spin-chain Hamil-

tonian), the S̃U(3)q,h symmetry derived in [11] and used here is a symmetry of the Leigh-Strassler
lagrangian and does appear to require the planar limit. On the other hand, the conformality con-
straint on the Leigh-Strassler couplings g, κ, q, h does depend on the rank N of the gauge group
[22, 23, 24, 25]. It is thus important to understand how adding 1/N corrections might affect the
algebraic structures we have discussed.

Another important issue concerns the role of the spectral parameter. Recall that all our discus-
sion has been in the limit where the spectral parameter is taken to infinity. It is worth considering
whether the spectral parameter can be put back, at least for the integrable cases, and what its
interpretation would be on the gauge theory side. Also, since our method is based on structures
(such as the R-matrix) appearing at one loop in the gauge theory, understanding the (possible)
extension of these structures to higher loops would provide additional insight and confidence in
their application.

10 Conclusion

In this work, we proposed a way of making the Hopf-algebraic symmetry of a class of conformal
gauge theories visible on the gravity side of the AdS/CFT correspondence. The main elements of
our construction were:

• The underlying Hopf algebra/noncommutative structure of the gauge theory

• The generalised geometry description of N = 2 IIB solutions

• Applying noncommutativity to construct the deformed pure spinors of the background.

We saw that these steps led to the construction of the dual supergravity background of the
β-deformation and of its equivalent w-deformation. Although the w-deformed solution can also be
constructed directly from the β-deformed one, its direct derivation from N = 4 SYM presented
above is particularly interesting since it exhibits more of the features that one might expect to
encounter in attempting to construct the duals of more general deformations. In particular, the
natural coordinate system for the w-deformation obscures the isometries of the metric, making the
verification of the solution computationally challenging. This is also expected to be true (and,
likely, exacerbated) for more general deformations.

One of our main motivations in this work was to clarify the role of the Hopf algebra symmetry
of [11] in the Leigh-Strassler theories (and perhaps eventually in other finite four-dimensional
theories). Does the symmetry extend beyond one-loop? Can it be used to classify observables like
any other global symmetry? The fact that we have found an analogue of this symmetry on the
gravity side is an encouraging sign that the symmetry is more than a one-loop artifact and that
(at least in the integrable cases) it plays an important role also on the strong coupling side. More
studies (also from the string-sigma model side, which we have not considered in the current work)
are needed to fully understand the consequences of this intriguing quantum group symmetry.

Of course, the quest to construct the AdS/CFT dual of the generic Leigh-Strassler deformation
continues. We hope that our techniques will provide useful new input in that direction.
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A Hopf algebras

In this appendix we introduce some basic properties of Hopf algebras in order to fix notation
and for quick reference. For a more thorough exposition, the reader is referred to any of the
many excellent books on quantum books, for instance [51]. Note that when working with elements
belonging to two copies of a vector space V we will often use Sweedler notation, in which an element
F i jk l =

∑
a(F

a(1))ik ⊗ (F a(2))jl of V ⊗ V is expressed as

F =
∑
a

Fa(1) ⊗ Fa(2) or more simply F = F(1) ⊗ F(2) . (A.1)

The condensed notation takes some getting used to but can greatly simplify expressions, especially
involving coproducts.

A Hopf algebra (often called a quantum group) can be thought of as a generalisation of a usual
Lie algebra such that both the algebra product and co-product are non-commutative. Recall that
the product takes two elements of the algebra to a single element:

m(C ⊗ C) = C · C −→ C . (A.2)

In the universal enveloping algebra U(g) of a (non-abelian) Lie algebra g, this product is matrix
multiplication in a given representation of the generators, and is thus non-commutative. The
co-product, on the other hand, takes a single element to two elements:

∆(C) −→ C ⊗ C . (A.3)

A familiar application of the coproduct is in the quantum mechanical addition of spins. When
acting with the angular momentum operator J on a product of two wavefunctions, we are really
first applying a coproduct, in the form

∆(J) = J ⊗ 1 + 1⊗ J (A.4)

We call this a trivial action of the coproduct. It has the special property of being co-commutative,
meaning τ ◦∆(J) = ∆(J), where τ : V1 ⊗ V2 → V2 ⊗ V1 is the transposition map.

In Hopf algebras, such as the quantum group su(2)q, the coproduct is deformed for some of the
generators and becomes non-co-commutative. An interesting way to relax the co-commutativity
axiom is so that it holds up to conjugation by an invertible element R ∈ H ⊗H. Such an element
R is called a quasitriangular structure. Formally: A quasitriangular Hopf algebra is a pair (H, R)
where H is a Hopf algebra and R is an invertible element of H⊗H satisfying:

(∆⊗ id)R =R13R23, (id⊗∆)R = R13R12

τ ◦∆(h) = R(∆(h))R−1, ∀h ∈ H.
(A.5)

Here the indexed form of R is to be understood as Rij =
∑

1 ⊗ · · · ⊗ Ri ⊗ · · · ⊗ Rj ⊗ 1 and the
same notation will be used for the twist F . We will often write simply R instead of R12.
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Given a Hopf algebra H, it is possible to obtain a new Hopf algebra, HF , via the twisting
construction. This requires the existence of an invertible element F ∈ H ⊗ H, called a 2-cocycle,
such that

(1⊗ F )(id⊗∆)F = (F ⊗ 1)(∆⊗ id)F (A.6)

A 2-cocycle satisfying this condition, as well as the counital relation (ε⊗ id)F = 1 = (id⊗ ε)F with
ε the counit of the algebra, is also known as a Drinfeld or Hopf twist.31 The benefit of the twist
construction is that it retains additional structures on the original Hopf algebra H. For instance,
if (H, R) be a quasitriangular HA with R the quasitriangular structure, the twisted Hopf algebra
(HF , RF ) is also quasitriangular. The co-product, quasitriangular structure and antipode of the
original algebra are all twisted to become

∆F (h) = F (∆(h))F−1 ∀ h ∈ H (A.7)

RF = F21RF
−1 (A.8)

SFh = U(Sh)U−1 ∀ h ∈ H (A.9)

with U invertible and given by U =
∑
F (1)(SF (2)). The deformed coproduct is used in section 5

to construct the deformed star product on the coordinates of |||C3, the module on which the Hopf
algebra H acts.

It can be shown (see e.g. [51] for a proof) that if (A.5) hold then R satisfies the Yang-Baxter
equation

R12R13R23 = R23R13R12 (A.10)

which, in components, takes the form

Ri1i2j1j2
Rj1i3k1j3

Rj2j3k2k3
= Ri2i3j2j3

Ri1j3j1k3
Rj1j2k1k2

. (A.11)

We will thus also call R the R-matrix of the Hopf algebra. In the context of Hopf algebras defined
through the RTT relations of Faddeev-Reshetikhin and Takhtajan [17], one indeed starts with an
R-matrix and (if it satisfies the YBE) constructs a quasitriangular Hopf algebra with R as its
quasitriangular structure.

A special case of quasitriangular structure is one which satisfies R21 = R−1. This is called a
triangular structure and the corresponding Hopf algebra is the one closest to our usual Lie algebraic
notions. Any RF structure arising from a Hopf twist from the trivial quasitriangular structure I⊗I
is automatically triangular, since RF = F21(I ⊗ I)F−1

12 implies that

RF,21RF,12 = F12F
−1
21 F21F

−1
12 = I ⊗ I . (A.12)

As shown by Drinfeld [40], the concept of a twist can be usefully extended to invertible elements
of H ⊗ H which do not satisfy the cocycle conditions (A.6). The resulting RF -structure is then
not quasitriangular and the twisted coproduct ∆F is not associative. Since coassociativity is a
defining property of Hopf algebras, the algebras one obtains in these way are in a more general
class, called quasi-Hopf algebras. In a very similar way to quasitriangular Hopf algebras, which
are non-cocommutative but the lack of cocommutativity is controlled by the R-matrix (cf (A.5), in
quasi-Hopf algebras the lack of coassociativity is controlled by an invertible element of H⊗H⊗H
called the coassociator.

The relevance of quasi-Hopf algebras in our context is that it is likely that if, unlike [11], we do
not impose associativity on the twisted coproduct, the algebraic structure behind the generic (q, h)
deformation will turn out to be a quasi-Hopf algebra. However, in this work we focus exclusively
on special cases where the twist satisfies the cocycle condition and is thus a quasitriangular (and
actually triangular, since we are twisting the trivial R-matrix I ⊗ I) Hopf algebra.

31“Drinfeld twist” is the standard nomenclature. We use “Hopf twist” to emphasise the difference from twists
leading to quasi-Hopf algebras, which we call “quasi-Hopf twists”.
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B The hypergoniometric functions

The expressions of the w-deformed R-matrix and twist are greatly simplified if one makes use of
the hypergoniometric sine and cosine functions S(x) and C(x). The former is defined through the
integral [103, 104]:

x =

∫ y dy

(1− yn)
m
n

(B.1)

and inverting so that y = S(x). S(x) is called the hypergoniometric sine (or sinualis) of order
m and degree n, sometimes denoted Sm

n
(x). (In this notation, the usual trigonometric sine is

sin(x) = S 1
2
(x), as can easily be checked). In our context, the relevant values are m = 1, n = 3, so

in the text S(x) denotes S 1
3
(x). A description of its properties can be found in [105].

The hypergoniometric cosine is defined through

x = −
∫ z

1

dz

(1− yn)
m
n

(B.2)

and inverting so that z = C(x). We will again suppress the order and degree and write C(x) instead
of the more accurate C 1

3
(x).

The S(x) and C(x) functions satisfy relations that are completely analogous to the usual trigono-
metric identities. In particular, for m = 1, n = 3 we have:

S(x)3 + C(x)3 = 1 , S(x)′ = C(x) and C ′(x) = −S(x)2/C(x) . (B.3)

For concreteness, let us record the first few terms in the series expansions of these functions (see
also [105]):

S(x) = x− 2
x4

4!
− 20

x7

7!
− 3320

x10

10!
+ · · · , C(x) = 1− 2

x3

3!
− 20

x6

6!
− 3320

x9

9!
+ · · · (B.4)

The reason that these functions make an appearance here is the nilpotency of our shift matrices U
and V . It can be straightforwardly checked that, for any X such that X3 = 1, and defining b to be
b(a) = −

∫ a
daS(a)/C(a), we have

eaX+bX2
= C(a) + S(a) ·X . (B.5)

That is, no terms proportional to X2 appear in the series expansion. In section 4, this property
was used to exponentialise the twist Fw, which greatly simplifies some manipulations, such as the
action of the coproduct.

C Higher powers of the star product

Let us briefly discuss how the star product defined through the twisted product (5.6) extends to
higher powers. First, consider the cubic product:

(x ? y) ? z = mF (mF (x⊗ y)⊗ z) = mF

(
(F−1

(1′) . x)(F−1
(2′)y)⊗ z

)
= m

(
F−1

(1) . m(F−1
(1′) . x⊗ F

−1
(2′) . y)⊗ F−1

(2) . z
)

= m
(

∆(F−1
(1) ) . [F−1

(1′) . x⊗ F
−1
(2′) . y]⊗ F−1

(2) . z
)

= m
(

[F−1
(1)(1)F

−1
(1′) ⊗ F

−1
(1)(2)F

−1
(2′) ⊗ F

−1
(2) ] . [x⊗ y ⊗ z]

)
= m

(
(∆⊗ id)(F−1)(F−1 ⊗ 1) . [x⊗ y ⊗ z]

)
.

(C.1)
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Similarly, we compute

x ? (y ? z) = mF (x⊗mF (y ⊗ z)) = mF (x⊗ (F−1
(1) . y)(F−1

(2) z))

= m
(
F−1

(1) . x⊗ F
−1
(2) . m(F−1

(1′) . y ⊗ F
−1
(2′) . z)

)
= m

(
F−1

(1) . x⊗∆(F−1
(2) ) . [F−1

(1′) . y ⊗ F
−1
(2′) . z]

)
= m

(
F−1

(1) . x⊗ F
−1
(2)(1)F

−1
(1′) . y ⊗ F

−1
(2)(2)F

−1
(2′) . z

)
= m

(
(id⊗∆)F−1(1⊗ F−1) . [x⊗ y ⊗ z]

)
.

(C.2)

(We have used the associativity of the untwisted module product to extend it asm : C⊗C⊗C −→ C,
meaning just m(X ⊗ Y ⊗ Z) = m(X ⊗m(Y ⊗ Z)))

We see that the cocycle condition guarantees the associativity of the twisted product. In our
specific case we can go further, since the twist satisfies the YBE. In that case we can write

(x ? y) ? z = m
(
(F−1

23 F
−1
13 F

−1
12 ) . [x⊗ y ⊗ z]

)
x ? (y ? z) = m

(
(F−1

12 F
−1
13 F

−1
23 ) . [x⊗ y ⊗ z]

) (C.3)

which makes the relation between YBE and associativity even more direct. We emphasise, however,
that the weaker cocycle condition is sufficient for associativity (this has also been stressed in [54]).
We conclude that we only need consider one of the above orderings in defining the star product.
We pick:

x ? y ? z = m
(
(F−1

12 F
−1
13 F

−1
23 ) . [x⊗ y ⊗ z]

)
(C.4)

For many applications it is useful to also express this relation in index form, acting on the coordi-
nates zi. It is straightforward to check that it is equal to

zi ? zj ? zk = (F−1)jij′i′(F
−1)kl

′
k′l(F

−1)k
′j′
nmz

lzmzn (C.5)

where we note that an inversion in indices is required.
Acting on four coordinates we obtain:

((z1 ? z2) ? z3) ? z4 = m(F−1
34 F

−1
24 F

−1
14 F

−1
23 F

−1
13 F

−1
12 . z1 ⊗ z2 ⊗ z3 ⊗ z4) , (C.6)

(z1 ? z2) ? (z3 ? z4) = m(F−1
23 F

−1
13 F

−1
24 F

−1
14 F

−1
12 F

−1
34 . z1 ⊗ z2 ⊗ z3 ⊗ z4) (C.7)

and so on for the various different placements of parentheses. Here we used the special properties of
our twist to write the final answer. We can again confirm that different placements of parentheses
are equal, by manipulating the twist matrices using the YBE.

D The w-deformed generalised complex structures

In this appendix we record the generalised complex structures of the w-deformed background. The
generalised complex structure corresponding to the Φ− pure spinor can be written as

J−MN =

(
J

(ul)
− J

(ur)
−

0 −J (ul)
−

)
(D.1)

where

J
(ul)
− =



−i 0 0 0 0 0
0 i 0 0 0 0
0 0 −i 0 0 0
0 0 0 i 0 0
0 0 0 0 −i 0
0 0 0 0 0 i

 (D.2)
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and

J
(ur)
− =


0 0 w

(
z32 − z1 z2

)
0 w

(
z1 z3 − z22

)
0

0 0 0 w
(
z̄2
3 − z̄1 z̄2

)
0 w

(
z̄1 z̄3 − z̄2

2

)
−w

(
z32 − z1 z2

)
0 0 0 −w

(
z2 z3 − z12

)
0

0 −w
(
z̄2
3 − z̄1 z̄2

)
0 0 0 −w

(
z̄2 z̄3 − z̄2

1

)
−w

(
z1 z3 − z22

)
0 w

(
z2 z3 − z12

)
0 0 0

0 −w
(
z̄1 z̄3 − z̄2

2

)
0 w

(
z̄2 z̄3 − z̄2

1

)
0 0

 .

(D.3)

The generalised complex structure corresponding to Φ+ can be written as

J+
M
N =

(
J

(ul)
+ J

(ur)
+

(J
(ur)
+ )T −(J

(ul)
+ )T

)
(D.4)

with

J
(ul)
+ =



w (z3 z̄3−z2 z̄2)
2

0 −w (z2 z̄3−z̄1 z3)
2

w (z32−z1 z2)
2

w (z̄2 z3−z̄1 z2)
2

w (z1 z3−z22)
2

0
w (z3 z̄3−z2 z̄2)

2

w (z̄23−z̄1 z̄2)
2

w (z1 z̄3−z̄2 z3)
2

w (z̄1 z̄3−z̄22)
2

w (z2 z̄3−z1 z̄2)
2

w (z1 z̄3−z̄2 z3)
2

−w (z32−z1 z2)
2

−w (z3 z̄3−z1 z̄1)
2

0 −w (z̄1 z3−z1 z̄2)
2

−w (z2 z3−z12)
2

−w (z̄23−z̄1 z̄2)
2

−w (z2 z̄3−z̄1 z3)
2

0 −w (z3 z̄3−z1 z̄1)
2

−w (z̄2 z̄3−z̄21)
2

−w (z1 z̄3−z̄1 z2)
2

w (z2 z̄3−z1 z̄2)
2

−w (z1 z3−z22)
2

−w (z1 z̄3−z̄1 z2)
2

w (z2 z3−z12)
2

w (z2 z̄2−z1 z̄1)
2

0

−w (z̄1 z̄3−z̄22)
2

w (z̄2 z3−z̄1 z2)
2

w (z̄2 z̄3−z̄21)
2

−w (z̄1 z3−z1 z̄2)
2

0
w (z2 z̄2−z1 z̄1)

2


(D.5)

and

J
(ur)
+ =



0 −i 0 0 0 0
i 0 0 0 0 0
0 0 0 −i 0 0
0 0 i 0 0 0
0 0 0 0 0 −i
0 0 0 0 i 0

 (D.6)

These generalised complex structures both square to −1 and commute. They thus define a gener-
alised complex metric via (7.14).

E The IIB supergravity equations

For completeness, in this appendix we write down the field equations of IIB supergravity that our
solutions satisfy. Restricting at first to the NS-NS sector, the relevant equations are as follows
[106, 107]:32

RMN =
1

2
∂MΦ∂NΦ +

1

4
e−ΦHMRSH

RS
N − 1

48
e−ΦgMNHRSTH

RST (E.1)

where H = dB ,
1

2
∇M∂MΦ = − 1

24

1√
G
HMNRH

MNR . (E.2)

and

DP
(
e−Φ/2HMNP

)
=

1

2
(DPΦ)e−Φ/2HMNP . (E.3)

The solution exhibited in section 8.2 can be straightforwardly shown to satisfy these equations.

For the RR solution, we prefer to write the IIB equations in string frame (g
(s)
MN = eΦ/2g

(E)
MN ),

where the 10-d metric factorises into an AdS5 and S5
w part. We also take the following ansatz for

the five-form field strength F = dC4:

F(5) = ωAdS5 + ωS5
w

(E.4)

32In this appendix M,N, . . . denote the coordinates of ten-dimensional spacetime.
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with
ωS5

w
= R5√gdαdθdφ1dφ2dφ3 = G sin3 α cosα sin θ cos θ (E.5)

ensuring self-duality. We also set the RR scalar C0 to zero.
There are two three-form equations of motion. The first one is

FMNP = −R
24
DM
√
ge−2ΦεNPQRSH

QRS (E.6)

which (knowing the B-field) we use to obtain the RR three-form field strength. This of course
ensures that it is satisfied. It is also compatible with the other three-form equation of motion

HMNP =
R

24
DM
√
gεNPQRSH

QRS (E.7)

Thus the two equations to be checked are the Einstein equations:

RMN = −2DM∂NΦ− 1

4
gMND

P∂PΦ +
1

2
gMN∂PΦ∂PΦ +

1

96
e2ΦFMPQRSF

PQRS
N

+
1

4

(
HMPQH

PQ
N + e2ΦFMPQF

PQ
N

)
− 1

48
gMN

(
HMNPH

MNP + e2ΦFMNPF
MNP

)
(E.8)

and the dilaton equation:

DM∂Me
−2Φ = −1

6

(
FMNPF

MNP − e−2ΦHMNPH
MNP

)
(E.9)

The task of checking these equations for the solution in section 8.3 is formidable, given the com-
plexity of the metric in the coordinate system used. As discussed in the text, the solution has been
verified as an expansion in w (up to and including O(w6)) as well as exactly in w but for specific
choices of angles. Of course, a coordinate redefinition to the standard LM coordinates brings the
w-deformed metric into a far more manageable form.
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