A bijection for two sequences in OEIS
 David Callan

September 8, 2018

Abstract

We show that sequences A026737 and A111279 in The On-Line Encyclopedia of Integer Sequences are the same by giving a bijection between two classes of Grand Schröder paths.

1 Introduction

In a comment on sequence A026737 in OEIS [1], Andrew Plewe asks if it is the same as A111279. The answer is yes. As we will see, each of the sequences counts a class of Grand Schröder paths, that is, lattice paths of upsteps $U=(1,1)$, flatsteps $F=(2,0)$, and downsteps $D=(1,-1)$ starting at the origin $(0,0)$ and ending on the x-axis, with size measured by \# upsteps + \# flatsteps. Thus a Grand Schröder path of size n ends at $(2 n, 0)$.

The $(n+1)$-th term of A026737 counts Grand Schröder paths of size n all of whose flatsteps (if any) lie on the horizontal line $y=2$. This assertion follows immediately from the defining recurrence for the sequence. Let \mathcal{A}_{n} denote this set of paths.

Figure 1
It is not too hard to find the generating function for \mathcal{A}_{n} using the "first return" decomposition and a little recursion involving both nonnegative paths and the analogous generating functions when " $y=2$ " in the defining condition is replaced by " $y=1$ " and by " $y=0$ ", and then observe that the generating function for \mathcal{A}_{n} coincides with that for A111279. This answers Plewe's question in the affirmative. But it's nicer to give a bijective proof.

By definition, the $(n+1)$-th term of A111279 counts permutations of $[n+1]$ avoiding the three patterns $\{3241,3421,4321\}$. These permutations are in bijection [2] with the set \mathcal{B}_{n} of Schröder paths of size n with at most one peak per component. Recall that a Schröder path is a nonnegative Grand Schröder path, that is, one that never dips below the x-axis, and the interior vertices on the x-axis split a nonempty path that ends on the x-axis into its components.

A path in \mathcal{B}_{8} with 4 components
Figure 2

2 The bijection

We give a simple bijection of the cut-and-paste type from \mathcal{A}_{n} to \mathcal{B}_{n} that preserves components. Thus it suffices to define our mapping on indecomposable (1-component) paths in \mathcal{A}_{n}. We refer to the horizontal line joining the terminal points of a path in \mathcal{A}_{n} or \mathcal{B}_{n} as ground level, GL for short, to eliminate the need for coordinate axes. Since a path in \mathcal{A}_{n} contains no flatsteps at ground level, an indecomposable path in \mathcal{A}_{n} cannot consist of a single flatstep and so lies entirely above or entirely below ground level.

If entirely below (and hence contains no flatsteps at all), flip it over the x-axis and replace all $U D$ s (peaks) by F s to get an indecomposable Schröder n-path with no peak (Figure 3).

Figure 3
If entirely above, follow the sequence of operations illustrated in Figure 4 below to get an indecomposable Schröder n-path with exactly one peak.

Figure 4

All the steps are reversible, and we have the desired bijection.
Exercise. Check that the \mathcal{A}_{8}-path in Figure 1 corresponds to the \mathcal{B}_{8}-path in Figure 2 under this bijection.

References

[1] The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2016.
[2] David Callan and Toufik Mansour, Five subsets of permutations enumerated as weak sorting permutations, submitted, http://front.math.ucdavis.edu/1602.05182

Department of Statistics, University of Wisconsin-Madison
1300 University Ave, Madison, WI 53706-1532
callan@stat.wisc.edu

