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COMBINATORIAL PROPERTIES OF POLY-BERNOULLI

RELATIVES

BEÁTA BÉNYI AND PÉTER HAJNAL

Abstract. In this note we augment the poly-Bernoulli family with two new
combinatorial objects. We derive formulas for the relatives of the poly-Bernoulli
numbers using the appropriate variations of combinatorial interpretations. Our
goal is to show connections between the different areas where poly-Bernoulli
numbers and their relatives appear and give examples how the combinatorial
methods can be used for deriving formulas between integer arrays.

1. Introduction

Poly-Bernoulli numbers were introduced by M. Kaneko [24] in 1997 as a general-
ization of the classical Bernoulli numbers during his investigations of multiple zeta
values. The sequence received attention because of its nice properties, that were
proved by several authors analytically. The importance of the notion of the poly-
Bernoulli numbers is underlined also by the fact that there are several drastically
different combinatorial interpretations [6]. The combinatorics of the family of poly-
Bernoulli numbers is shown in the bijections that can be described between the sets.
These bijections help us to understand more the properties of the poly-Bernoulli
numbers.

In this paper we consider two number arrays that are relatives of poly-Bernoulli
numbers. The importance of the attention in this direction is that in some combi-
natorial problems these relatives arise naturally. Also Kaneko’s number theoretical
investigations led to these numbers. We go through the known combinatorial inter-
pretations of poly-Bernoulli numbers [6] and for most of them we show that slight
modifications of the original combinatorial definition lead to the descriptions of the
two related sequences.

This way we connect poly-Bernoulli numbers to the class of permutations with
a special excedance set. We augment the list of poly-Bernoulli families with two
classes of 01 matrices defined by a given forbidden set of submatrices.

The outline of the paper is as follows. After a short introduction of the poly-
Bernoulli numbers we define the poly–Bernoulli relatives using the well known in-
terpretation of lonesum matrices. We derive different formulas for these arrays
and show relations between the number sequences using appropriate combinatorial
interpretations. We close our discussion with a conjecture related to the central
binomial sum.

1.1. Poly-Bernoulli numbers. The story of the Bernoulli numbers starts with
investigating the sum of the mth powers of the first n positive integer that are
polynomials in n. Jacob Bernoulli recognized the scheme in the coefficients of
these polynomials. Kaneko generalized the well known generating function of the
Bernoulli numbers and defined the poly-Bernoulli numbers.
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2 BEÁTA BÉNYI AND PÉTER HAJNAL

Definition 1. [25] Poly–Bernoulli numbers (denoted by B
(k)
n , where n is a positive

integer and k is an integer) are defined by the following exponential generating
function

(1)

∞∑

n=0

B(k)
n

xn

n!
=
Lik(1 − e−x)

1− e−x
,

where

Lik(z) =

∞∑

i=1

zi

ik
,

i.e. Lik(z) is the kth poly-logarithm when k > 0 and a rational function when
k ≤ 0.

From the combinatorial point of view we are interested only in the poly-Bernoulli
numbers with negative k indices since in this case the numbers form an array
of positive integers. From now on we mean poly-Bernoulli numbers always with
negative indices even if we don’t emphasize it explicitly. For the sake of convenience

we denote in the rest of the paper B
(−k)
n as Bn,k. The following table shows the

values of poly-Bernoulli numbers for small indices. An extended array can be find
in OEIS [33] A099594.

Table 1. The poly-Bernoulli numbers Bn,k

❅
❅❅n
k

0 1 2 3 4 5

0 1 1 1 1 1 1
1 1 2 4 8 16 32
2 1 4 14 46 146 454
3 1 8 46 230 1066 4718
4 1 16 146 1066 6906 41506
5 1 32 454 4718 41506 329462

The symmetry of the array in n and k is immediately conspicuous. Analytically
this property is obvious from the symmetry of the double exponential function:

∞∑

k=0

∞∑

n=0

Bn,k

xn

n!

yk

k!
=

ex+y

ex + ey − ex+y
.(2)

Three formulas of poly-Bernoulli numbers were proved combinatorially in the
literature:

the combinatorial formula ([8], [6])

(3) Bn,k =

min(n,k)∑

m=0

m!

{
n+ 1

m+ 1

}
m!

{
k + 1

m+ 1

}
,

an inclusion-exclusion type formula ([8])
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Bn,k = (−1)n
n∑

m=0

(−1)mm!

{
n

m

}
(m+ 1)k,(4)

and a recursion ([6])

Bn,k+1 = Bn,k +

n∑

m=1

(
n

m

)
Bn−(m−1),k.(5)

One of the first (and widely known) combinatorial interpretation of the poly-
Bernoulli numbers are lonesum matrices [8]. Lonesum matrices arise in the roots
of discrete tomography. Ryser [35] investigated in the late 1950’s the problem of
the reconstruction of a matrix from given row and column sums. The 01 matrices
that are uniquely reconstructible from their row and column sum vectors are called
lonesum matrices. We denote the set of lonesum matrices of size n×k as Lk

n. Note
that we allow n = 0 (and k = 0 too), in which case the empty matrix counted as
lonesum.

Theorem 1. [8] The number of 01 lonesum matrices of size n× k is given by the
poly-Bernoulli numbers of negative k indices.

|Lk
n| =

min(n,k)∑

m=0

(m!)2
{
n+ 1

m+ 1

}{
k + 1

m+ 1

}
= Bn,k.

Proof. (Sketch) Take a lonesum matrix M of size n × k. Add a new column and

new row with all 0 entries and obtain lonesum matrix M̂ of size (n+ 1)× (k + 1).

We know that M̂ contains at least one all-0 row and at least one all-0 column (this
information was not known forM). Partition the rows and the columns according to
the sum of its entries. In the case of lonesum matrices ‘having the same row/column
sum’ and ‘being equal’ is the same relation. Easy to see that the number of row
classes will be the same as the number of equivalence classes of columns. We denote
this common value by m+ 1. The plus 1 stands for the class of extra row/column,
the class of all-0 rows and all-0 columns. The row sums order the (m many) classes
of not all-0 rows. Similarly the column sums order the classes of not all-0 columns.
Our formula comes from the fact that from the two partitions and two orders it is
easy to decode M . �

This important theorem started the combinatorial investigations of poly-Bernoulli
numbers. From the point of combinatoricsBn,k = |Lk

n| is the natural way of defining
the poly-Bernoulli numbers. It turned out that there are several alternative combi-
natorial ways to describe the poly-Bernoulli numbers. Some of them were investi-
gated before Kaneko’s pioneering work. Next we define two related 2-dimensional
sequences combinatorially.

1.2. PB-Relatives. We consider lonesum matrices with further restrictions on the
occurrence of all-0 columns resp. all-0 rows. More precisely let Lk

n(c|) denote the
set of lonesum matrices with the property that each column contains at least one 1
entry and Lk

n(c|r|) the set of lonesum matrices with the property that each column
and each row contains at least one 1.
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Definition 2. Cn,k denotes |Lk
n(c|)|, i.e. the number of lonesum matrices of n× k

without all-0 columns.
Dn,k denotes |Lk

n(c|r|)|, i.e. the number of lonesum matrices of n × k without
all-0 columns and all-0 rows.

Let us see the first few values of our new numbers:

Table 2. Poly–Bernoulli relatives: Cn,k and Dn,k

❅
❅❅n
k

0 1 2 3 4

1 1 1 1 1 1
2 1 3 7 15 31
3 1 7 31 115 391
4 1 15 115 675 3451
5 1 31 391 3451 25231

❅
❅❅n
k

1 2 3 4 5

1 1 1 1 1 1
2 1 5 13 29 61
3 1 13 73 301 1081
4 1 29 301 2069 11581
5 1 61 1081 11581 95401

First we give combinatorial formulas for the two new numbers:

Theorem 2. We have

(i) for n ≥ 1 and k ≥ 0

Cn,k = |Lk
n(c|)| =

min(n,k)∑

m=0

(m!)2
{
n+ 1

m+ 1

}{
k

m

}
,

(ii) for n ≥ 1 and k ≥ 1

Dn,k = |Lk
n(c|r|)| =

min(n,k)∑

m=0

(m!)2
{
n

m

}{
k

m

}
.

Proof. (Sketch) (i): We have the information that there is no all-0 column. Hence
we do not need the extra column. The extra row ensures that the extended matrix
has the class of all-0 rows. m denotes the number of classes of (k many non-0)
columns. m + 1 will be the number of classes of the n + 1 rows. The rest is a
straightforward repeat of the original argument.

(ii) is immediate by the same logic. �

From the combinatorial definition it is obvious that the series Bn,k and Dn,k are
symmetric in n and k. The symmetry of the Cn,k numbers (Cn,k = Ck+1,n−1) is
also transparent from our table. But its proof is not straightforward. We present
it in a latter section.

The combinatorial definitions make it clear that the sequence Cn,k is the bino-
mial transform of Dn,k and the sequence Bn,k is the binomial transform of Cn,k.
Precisely:

Observation 1. The following relations hold

(i)

Bn,k = 1 +
k∑

i=1

(
k

i

)
Cn,i =

k∑

i=0

(
k

i

)
Cn,i, (k ≥ 0, n ≥ 1),
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(ii)

Cn,k =

n∑

i=1

(
n

i

)
Di,k, (k ≥ 1, n ≥ 1),

(iii)

Bn,k = 1 +

n∑

i=1

k∑

j=1

(
n

i

)(
k

j

)
Di,j , (k ≥ 1, n ≥ 1).

Proof. (i): To describe an arbitrary non-0 lonesum matrix we need to identify all
its columns with at least one 1 (their number is denoted by i(> 0)) and their entries
in these i columns (that is describing a lonesum matrix of size n× i that contains
at least one 1 in each column). This simple fact proves the formula of (i).

We obtain (ii) following the same argument on rows. (iii) summarizes (i) and
(ii). �

There are other connections, recursions, combinatorial properties of the poly-
Bernoulli numbers and its two relatives. They are not obvious, we discuss them
when the appropriate combinatorial interpretations appear below.

These numbers seem to be just minor modifications of the original poly-Bernoulli
numbers. In spite of the first impression, it turns out that these numbers appeared
a natural way in earlier papers. Now we summarize the analytical properties of
these numbers (obtained by others). The rest of the paper is combinatorial.

1.3. Analytical results in the literature. Arakawa and Kaneko [4] introduced
a function that are referred in the literature as the Arakawa-Kaneko function.

ξk(s) :=
1

Γ(s)

∫ ∞

0

ts−1

et − 1
Lik(1− e−t)dt.

The values of this function at non-positive integers are given by

ξk(−m) = (−1)mC(k)
m ,

where the generating function of the numbers {C(k)
n } (for arbitrary integers k) is

given by
∞∑

n=0

C(k)
n

xn

n!
=
Lik(1− e−x)

ex − 1
.

They computed the double exponential generating function of the C
(−k)
n num-

bers. We know that the exponential functions of two number sequences differ only
by an ex (resp. ey) factor when one sequence is the binomial transform of the
other. From this observation we can conclude the binomial transformation relation
between poly-Bernoulli numbers and {C(−k)

n }. It is immediate that Cn,k = C
(−k)
n .

Furthermore we can obtain the generating function of Dn,k numbers.

Theorem 3. (i)
∞∑

n=1

∞∑

k=1

Cn,k

xn

n!

yk

k!
=

ex

ex + ey − ex+y
,

(ii)
∞∑

n=1

∞∑

k=1

Dn,k

xn

n!

yk

k!
=

1

ex + ey − ex+y
.
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Kaneko realized the importance of the C-relative and in a recent paper [26]

summarized formulas and properties of B
(k)
n and C

(k)
n parallel. Kaneko showed also

a simple arithmetic connection between the two series.

Bn,k = Cn,k + Cn+1,k−1

In our investigations we show this relation combinatorially using the variations
of the so called Callan permutations. Moreover we prove a similar relation between
the series Dn,k and Cn,k.

2. 01 matrices with excluded submatrices

The study of matrices that are characterized by excluded submatrices is an
active research area with many important results and applications [31]. Given two
matrices A and B we say that A avoids B whenever A does not contain B as a
submatrix. (Given a matrix M a submatrix is a matrix that can be obtained from
M by deletion of rows and columns.)

Generally we can set the following problem: Let S = {M1, . . . ,Mr} be a set of
01 matrices. Mk

n(S) denote the n×k 01 matrices that do not contain any matrix of
the set S, Mk

n(S; c|) denote these matrices with the extra condition of containing
in any column at least one 1, and Mk

n(S; r|c|) denote those with the same extra
condition on rows also.

Lonesum matrices can be characterized also with the terminology of forbidden
submatrices [35]. Lonesum matrices are matrices that avoid the following set of
submatrices:

L =

{(
1 0
0 1

)
,

(
0 1
1 0

)}

I.e. Lk
n = Mk

n(L), Lk
n(c|) = Mk

n(L; c|) and Lk
n(r|c|) = Mk

n(L; r|c|).
Interestingly beyond the set L there are other matrix sets S which forbiddance

as submatrices lead to the poly-Bernoulli numbers.

2.1. Γ-free matrices and recursions. In [6] the authors investigated the so called
Γ-free matrices, matrices with the forbidden set:

Γ =

{(
1 1
1 0

)
,

(
1 1
1 1

)}

and showed bijectively that the number of n × k Γ-free matrices (their set is de-
noted by Gk

n) are the Bn,k poly-Bernoulli numbers. Clearly the forbiddance of all
0 rows/resp. columns has the same effect in this case as in the case of the lonesum
matrices.

Theorem 4. We have

(i)

|Gk
n(c|)| = Cn,k,

(ii)

|Gk
n(r|c|)| = Dn,k.

The structure of these matrices gives a transparent explanation of the recursive
formula of poly-Bernoulli numbers that was first proven by Kaneko [4]. In the same
spirit we can establish the recursions concerning the poly-Bernoulli relatives.
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Theorem 5. (i)

Cn,k+1 =

n∑

m=1

(
n

m

)
Cn−m+1,k,

(ii)

Dn,k+1 =

n∑

m=1

(
n

m

)
(Dn−m,k +Dn−m+1,k).

Proof. (i): Cn,k+1 counts the Γ-free matrices of size n×(k+1) without all-0 column.
Each row of a Γ-free matrix

A. starts with a 0 or
B. starts with a 1 followed only by 0s or
C. starts with a 1 and contains at least one more 1.

Let m denote the number of rows that starts with a 1. m ≥ 1, since all columns
contain at least one 1. We choose these m rows

(
n
m

)
ways. The first m− 1 rows has

to be of type B since a Γ would appear. The further (n−m+ 1)× k elements can
be filled with an arbitrary Γ-free matrix that contain in any column at least one 1.

(ii): If we argue the same way as before we obtain
n∑

m=1

(
n

m

)
Dn−m+1,k,

but we do not count matrices that contain only type A and type B rows (and does
not have type C rows). In this case the remainder (n−m+1)×k elements contains
at least an all-0 row (the remainder of a type B row). Hence these matrices are not
counted in the above formula.

To correct the enumeration (count the missing matrices) we must add the term
n∑

m=1

(
n

m

)
Dn−m,k,

and obtain (ii). �

2.2. Permutation tableaux of size n×k. Permutation tableaux were introduced
by Postnikov [34] during his investigations of totally Grassmannian cells. They
received a lot of attention after [41] Viennot showed its one-to-one correspondence to
permutations, alternative tableaux and the strong connection to the PASEP modell
in statistical mechanics. Many bijections arised in the literature to other objects
(tree-like tableaux) and to permutations in order to are use them for enumerations
of permutations according to certain statistics [16], [11]. Permutation tableaux are
usually defined as 01 fillings of Ferrers diagram with the next two conditions:

(column) each column contains at least one 1.
(1–hinge) each cell with a 1 above in the same column and to its left in the same row

must contain a 1.

In the special case when the Ferrers diagram is a n × k array the definition gives
actually the set Mk

n(P ; c|), where

P =

{(
0 1
1 0

)
,

(
1 1
1 0

)}

Theorem 6. We have
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(i)

|Mk
n(P )| = Bn,k,

(ii)

|Mk
n(P ; c|)| = Cn,k,

(iii)
|Mk

n(P ; r|c|)| = Dn,k.

Proof. (i) is contained in [28] without the recognition of the relation to the poly–
Bernoulli numbers. In [42] in Lemma 4.3.5 the author proves the formula also and
as a corollary he receives that the number of n×k patterns of permutation diagrams
is the poly-Bernoulli numbers Bn,k. For details see [42].

(ii), (iii) is proved by the obvious binomial correspondences between |Mk
n(P )|,

|Mk
n(P ; c|)|, and |Mk

n(P ; r|c|)|. �

The theorem follows also from a certain bijection between permutations and
permutation tableaux that we cite in a latter section.

We see that in the case of permutation tableaux the important variant is the
C-relative, the one that corresponds to the restriction of the columns. This is one
of the reason why we think that the introduction and investigation of the variants
of poly-Bernoulli numbers is useful.

2.3. A further excluded submatrix set. Brewbaker made extensive computa-
tions considering 01 matrices with excluded patterns [9]. These suggest the follow-
ing theorem that we prove by showing the recursion for the poly-Bernoulli numbers.

Theorem 7. Let Q be the set

Q =

{(
1 1
1 0

)
,

(
1 0
1 1

)}
.

Then we have

(i)

|Mk
n(Q)| = Bn,k,

(ii)
|Mk

n(Q; c|)| = Cn,k,

(iii)
|Mk

n(Q; r|c|)| = Dn,k.

Proof. (i): Let M be a matrix in Mk
n(Q) and Qn,k = |Mk

n(Q)|. Let j1 > j2 >
· · · > jm the indices of the rows of the 1 entries in the first column (m ≥ 0). When
m = 0 or m = 1 the first row does not restrict the remainder n × (k − 1) entries
hence it can be filled with an arbitrary matrix in Mk−1

n (Q). When m ≥ 2 the
rows j1, j2, . . . jm coincide otherwise one of the submatrix in Q would appear. It is
enough to describe a (n−m+1)× (k− 1) Q-free matrix in order to define M . We
have:

Qn,k = (n+ 1)Qn,k−1 +
n∑

m=2

(
n

m

)
Qn−m+1,k−1.

Hence the Qn,k numbers and the poly-Bernoulli numbers satisfy the same recursion.
Induction proves (i).

(ii), (iii): The above proof of recursion easily extends to show the corresponding
recursions for |Mk

n(Q; c|)| and |Mk
n(Q; r|c|)|. �
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3. Permutations

In this section we consider classes of permutations that are enumerated by the
poly-Bernoulli numbers resp. their relatives. As usual let {1, . . . , n} = [n] and Sn

denote the set of permutations of [n].

3.1. Vesztergombi permutations. The permutations we consider in this section
are permutations that are restricted by constraints on the distance between their
elements and their images. The enumeration of such permutation classes is a special
case of a more general problem setting that were investigated by many authors.
Given n subsets A1, A2, . . . An of [n], determine the number of permutations π such
that π(i) ∈ Ai for all i ∈ [n]. The problem can be formulated as enumeration of
the 1–factors of a bipartite graph or as the determination of the permanent of a
01 matrix or as the number of rook-placements of a given board. In general these
formulations does note make the problem easier.

We want to use the results of Lovász and Vesztergombi ([40],[32], [30]) for deriva-
tion of to (4) analogous formulas for Cn,k and Dn,k. We recall definitions and main
ideas for the sake of understanding. Detailed combinatorial proofs and analytical
derivations can be found in the cited articles.

Let f(r, n, k) denote the number of permutations π ∈ Sn+k satisfying

−(k + r) < π(i)− i < n+ r.

The main result is as follows:

Theorem 8. [40]

f(r, n, k) =

n∑

m=0

(−1)n+m(m+ r)!(m + r)k
{
n+ 1

m+ 1

}
.

The original proof is analytic and depends on the solution of certain differential
equation for a generating function based on the f(r, n, k) numbers. The differen-
tial equations capture the recursions that follow from the expanding rules of the
corresponding permanent.

Launois [29] realized the connection of this formula to the poly-Bernoulli num-
bers, namely that f(2, n, k) = Bn,k.

Theorem 9. [29] Let Vk
n denote the set of permutations π of [n + k] such that

−k ≤ π(i)− i ≤ n for all i ∈ [n+ k].

|Vk
n | = Bn,k

Beyond the analytical derivation of the formula there are combinatorial proofs of
the theorem in the literature. In [27] the authors define an explicit bijection between
Vesztergombi permutations and lonesum matrices. In [30] we find a combinatorial
proof for a general case that includes the theorem. For the sake of completeness we
present here the direct combinatorial proof from [7].

Proof. (Theorem 9.) |Vk
n| is the permanent of the (n+k)×(n+k) matrix A = (aij),

where

aij =

{
1 if − k ≤ i− j ≤ n, i = 1, . . . , n+ k
0 otherwise.

The permanent of A (denoted by perA) counts the number of expansion terms of
the matrix A which do not contain a 0 term.
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The matrix A is built up of 4 blocks:

A =

[
Jn,k Bn

Bk Jk,n

]
,

where Jn,k ∈ {0, 1}n×k, Jk,n ∈ {0, 1}k×n the matrices with all entries equal 1,
furthermore Bn ∈ {0, 1}nt×n: Bn(i, j) = 1 iff i ≥ j and Bk ∈ {0, 1}k×k: Bk

ij = 1 iff
i ≤ j.

For a term in the expansion of the permanent we have to select exactly one 1
from each row and each column. The number of ways of selecting 1s from the
triangular matrices is given by the Stirling number of the second kind. (See proof
for instance in [30].) So if a term contains m 1’s from the upper left block Jk,n (m!

ways), then it contains n−m 1’s from Bn (
{
n+1
m+1

}
ways); m 1’s from the lower right

block (m! ways) and finally k −m 1’s from Bk (
{

k+1
m+1

}
ways). The total number

of terms in the expansion of perA is
∑

m=1

m!

{
n+ 1

m+ 1

}
m!

{
k + 1

m+ 1

}
.

This proves the theorem. �

Suitable modifications of the definition of Vesztergombi permutations lead to the
pB–relatives. Let Vk∗

n the set of permutations π of [n+ k] such that

−k ≤ π(i)− i < n for all i ∈ [n+ k]

and Vk∗∗
n the set of permutations π of [n+ k] such that

−k < π(i)− i < n for all i ∈ [n+ k].

Theorem 10. ([40])

(i)

|Vk∗
n | = Cn,k,

(ii)

|Vk∗∗
n | = Dn,k.

Proof. In these cases the blocks Bn, B
k are slightly changed. The modifications are

straightforward and hence the details are omitted. �

Corollary 1. (i)

Cn,k =

n∑

m=0

(−1)n+mm!(m+ 1)k
{
n+ 1

m+ 1

}
,

(ii)

Dn,k =

n∑

m=0

(−1)n+mm!mk

{
n+ 1

m+ 1

}
.

Proof. Clearly |Vk∗
n | = f(1, n, k − 1) and |Vk∗∗

n | = f(0, n, k). �

In [32] Theorem 1 describes the asymptotic behavior of Dn,n:.

Theorem 11. [32]

Dn,n ∼
√

1

2π(1− ln 2)
(n!)2

1

(ln 2)2n
.
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3.2. Permutations with excedance set [k]. Permutations that have special re-
strictions on their excedance set are enumerated by the poly-Bernoulli numbers
resp. their relatives. We note that the connection of this class of permutations to
poly-Bernoulli numbers is not mentioned directly in the literature.

We call an index i an excedance (resp. weak excedance) of the permutation π
when π(i) > i (resp. π(i) ≥ i). According that we define the set of excedances
(resp. the set of weak excedances) of a permutation π as E(π) := {i|π(i) > i} and
WE(π) := {i|π(i) ≥ i}. Further let define the following sets of permutations of
[n+ k] with conditions on their excedance sets:

Ek
n := {π|π ∈ Sn+k and WE(π) = [k]},

Ek∗
n := {π|π ∈ Sn+k and E(π) = [k]},

Ek∗∗
n := {π|π ∈ Sn+k and E(π) = [k] and π(i) 6= i ∀1 ≤ i ≤ n+ k}.

The main result in this line of research is summarized in the next theorem.

Theorem 12. The following three statements hold:

(i)

|Ek
n | = Bn,k,

(ii)

|Ek∗
n | = Cn,k,

(iii)

|Ek∗∗
n | = Dn,k.

Proof. There are trivial bijections between these permutations and the three vari-
ants of Vesztergombi permutations. We obtain the underlying matrices of the
permutation classes Ek

n , Ek∗
n Ek∗∗

n by shifting the building blocks of the underlying
matrix A of the appropriate variant of the Vesztergombi permutation. We just
sketch the necessary ideas for (i). The matrix which permanent determines the size
of this permutation class is built up of the following 4 blocks:

E =

[
Bk Jk,n
Jn,k Bn

]
,

where Jn,k ∈ {0, 1}n×k and Jk,n ∈ {0, 1}k×n are above (the all-1 matrices) and
Bk ∈ {0, 1}k×k: Bk(i, j) = 1 iff 1 ≤ j ≤ i ≤ k, resp. Bn ∈ {0, 1}n×n: Bn(i, j) = 1
iff 1 ≤ i ≤ j ≤ n.

The terms in the expansion of perE can be bijectively identified with the term
in the corresponding expansion in the case of Vesztergombi permutations. �

Next we connect Ek
n in another way to the poly-Bernoulli family, hence we give

an alternative proof of (i).
As we mentioned before permutation tableaux are well studied objects and sev-

eral bijections are known between permutations and permutation tableaux. We
describe a bijection between permutation tableaux and permutations that is a bijec-
tion between the sets Mk

n(P ) and Ek
n when we apply it to the subset of rectangular

Ferrers shapes.

Theorem 13.

|Mk
n(P )| = |Ek

n |.
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We modify the bijection given in [11] in order to have the following properties:
the excedances of the permutation correspond to the column labels and fixed points
of the permutation to the labels of empty rows. These modifications do not change
the bijection essentially.

Proof. (Sketch) Consider a n× k 01 matrix that avoids the submatrices in the set
P and contains a 1 in any column. We assign a permutation to this matrix the
following way:

Label the positions of the rows from left to right by [k], the positions of the
columns from bottom to top by [n]. We define the zig-zag path by bouncing right
or down every time we hit a 1. For i we find π(i) by starting at the top of the
column i (the left of the row i) following the zig-zag path until to boundary where
we hit the row or column labeled by j and set π(i) = j.

The defined map gives a bijection between the two sets in the theorem. The
details are straightforward and left to the reader. �

In [2] the authors determined the asymptotic of Cn,n investigated as the number
of the extremal excedance set statistic.

Theorem 14. [2]

Cn,n ∼
(

1

2 log 2
√
(1 − log 2)

+ o(1)

)(
1

2 log 2

)2n

(2n)!.

3.3. Callan permutations. Callan gave an alternative description of poly-Bernoulli
numbers in a note in OEIS [33]. We repeat it, sketch the proof of his claim. We do
this because Callan permutations play an important role in proving combinatorial
properties of pB-relatives.

Definition 3. Callan permutations are the permutations of [n + k] in which each
substring whose support belongs to N = {1, 2, . . . , n} or K = {n+1, n+2, . . . , n+k}
is increasing.

We call the elements in N left value elements and that of K right- value elements
and for the sake of convenience we rewrite K ≡ {1,2, . . . ,k} (N = {1, 2, . . . , n}).
Actually we need just the distinction between the elements of the sets N and K
and an order in N and K. So one can work with N = {0, 2, 3, . . . , n} and talk
about Callan permutations.

Let Ck
n denote the set of Callan permutations.

Theorem 15.

|Ck
n| =

min(n,k)∑

m=0

(m!)2
{
n+ 1

m+ 1

}{
k + 1

m+ 1

}
= Bn,k.

Proof. (Sketch) Let π ∈ Ck
n. Let π̃ = 0π(k+ 1), where 0 is a new left value and

k+ 1 is a new right value. Divide π̃ into maximal blocks of consecutive elements
such a way that each block is a subset of {0} ∪ N (left blocks) or a subset of
K ∪ {k+ 1} (right blocks). The partition starts with a left block (the block of
0) and ends with a right block (the block of k+ 1). So the left and right block
alternate, their number is the same, say m+1. Describing a Callan permutation is

equivalent to specifying m, a partition Π
N̂

of N̂ = {0} ∪N into m+ 1 classes (one
class is the class of 0, the other m ones are called ordinary classes), a partition Π

K̂
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of K̂ = K∪̇{k+ 1} into m+ 1 classes (m many of them not containing k+ 1, the
ordinary classes), and two orderings of the ordinary classes. This proves Callan’s
claim. �

The role of 0 and k+ 1 were important. With the help of them we had the
information how the left and right blocks follow each other.

Let Ck
n(∗, l) be the set of Callan permutations of N ∪̇K that end with a left-value

element (and hence with a left block). The star is to remind the reader that there is
no assumption on the leading block of our permutation. Similarly let Ck

n(l, ∗) be the
set of Callan permutations of N ∪̇K that start with a left-value element. Let Ck

n(l, r)
be the set of Callan permutations of N ∪̇K that start with a left-value element and
ends with a right element. The reader easily can define the sets Ck

n(r, ∗), Ck
n(∗, r),

Ck
n(r, l), Ck

n(l, l), and Ck
n(r, r).

If we take a Callan permutation, reverse the order of its blocks (leaving the order
within each block) we obtain a Callan permutation too. This simple observation
proves the following equalities:

|Ck
n(∗, l)| = |Ck

n(l, ∗)|,
|Ck

n(r, l)| = |Ck
n(l, r)|.

Now we state our next theorem that, gives a new interpretation of pB-relatives
with the help of Callan permutations.

Theorem 16. (i)

Cn,k = |Ck
n(∗, l)| =

min(n,k)∑

m=0

(m!)2
{
n+ 1

m+ 1

}{
k

m

}
n ≥ 1 and k ≥ 0.

(ii)

Dn,k = |Ck
n(l, r)| =

min(n,k)∑

m=0

(m!)2
{
n

m

}{
k

m

}
n ≥ 1 and k ≥ 1.

Proof. (i): Take a π ∈ Ck
n(∗, l) and extend it with a starting 0 (an extra left value):

π̂ = 0π. One extra element is enough to control the structure of blocks: the block
decomposition starts and ends with a left block. Let m + 1 the number of left
blocks, m is the number of right blocks (and the number of ordinary left blocks, i.e.
blocks not containing 0). The rest of the proof is a straightforward modification of
the previous one.

(ii): Without any extra element we control the starting and ending block. m
denotes the common number of left and right blocks. The details are left to the
reader. �

The next lemma is implicit in [6]. Since it is central for us, we present it here.

Lemma 2. There is a bijection

ϕ : Ck
n(∗, l) → Ck+1

n−1(∗, r).

Proof. Take any π ∈ Ck
n(∗, l). Find n (the largest left value) in it. It is the last

element of one of the left blocks (possibly the very last element of π).
Assume that n is not the last element of π. Then it is followed by a right block

R and by at least one left block. Exchange n to k+ 1 and move R to the end of π.
The permutation that we obtain this way will be ϕ(π).
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If n is the last element of π, then exchange it to k+ 1.
In both case the described image is obviously in Ck+1

n−1(∗, r). In order to see that
ϕ is a bijection we need to construct its inverse. This can be done easily based on
k+ 1. The details are left to the reader. �

The lemma is obviously gives us a ψ : Ck
n(∗, r) → Ck−1

n+1(∗, l) bijection too.

In [6] this lemma was used to prove that
∑

k,ℓ:k+ℓ=n(−1)kBk,ℓ = 0. We use the
lemma for different purposes. First we combinatorially prove the symmetry of the
Cn,k numbers.

Corollary 2.

Cn,k = Ck+1,n−1.

Proof. Change the role of left and right values. The two orderings remain, hence
we obtain a Callan permutation (the blocks remain the same). This leads to a
bijection between Ck

n(∗, l) and Cn
k (∗, r). Using the previous lemma we obtain that

Cn,k = |Ck
n(∗, l)| = |Cn

k (∗, r)| = |Cn−1
k+1 (∗, l)| = Ck+1,n−1.

�

The next application of our lemma will be a simple connection between poly-
Bernoulli numbers and its C-relative. It was proved in [26] with analytical methods.
Here we present a combinatorial method.

Theorem 17. [26]

Bn,k = Cn,k + Ck,n = Cn,k + Cn+1,k−1.

Proof. We know that Bn,k = |Ck
n|, furthermore Ck

n = Ck
n(∗, l)∪̇Ck

n(∗, r). We have a

bijection between Ck
n(∗, r) and Ck−1

n+1(∗, l). Hence

Bn,k = |Ck
n| = |Ck

n(∗, l)|+ |Ck
n(∗, r)| = Cn,k + |Ck−1

n+1(∗, l)| = Cn,k + Cn+1,k−1.

�

A similar connection is true between Cn,k and Dn,k.

Theorem 18.

Cn,k = Dn,k +Dn−1,k +Dn−1,k+1.

Proof. We know that Cn,k = |Ck
n(∗, l)|, furthermore Ck

n(∗, l) = Ck
n(r, l)∪̇Ck

n(l, l).

Cn,k = |Ck
n(∗, l)| = |Ck

n(r, l)|+ |Ck
n(l, l)| = Dn,k + |Ck

n(l, l)|.
The second term can be handled as we handled Ck

n(∗, l) on our lemma: We

present a bijection ϕ : Ck
n(l, l) → Ck+1

n−1(l, r)∪̇Ck
n−1(r, l).

Let π ∈ Ck
n(l, l). Find the position of n (the largest left value) in π. It is the last

element of one of the left blocks. If it is in the last block then simply rewrite it to
k+ 1. If it is not in the last block then there is a following right block R and at
least one more left block. Then also rewrite it to k+ 1 and at the same time move
R to the end of π. The resulting permutation is ϕ(π).

So far we did the same as we did in the proof of the lemma. The only problem,
that the image is not necessarily in Ck+1

n−1(l, r). It is possible that the block of n
is the first block of π and it consists of only one element. Then the lemmas idea
leads to ϕ(π) where the leading element is k+ 1. We don’t want that. In this very
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special case (n is the first element of π) we just erase n from π in order to obtain
ϕ(π).

Now it is clear that we defined a map with Ck+1
n−1(l, r)∪̇Ck

n−1(r, l) as codomain.
To see that it is a bijection we construct its inverse: If we have a permutation from
Ck

n−1(r, l), then the inverse puts a starting n in front of it. If we have a permutation

from Ck+1
n−1(l, r), then the inverse works as in our lemma.

The bijection leads to a fast end to our proof:

Cn,k = Dn,k+|Ck
n(l, l)| = Dn,k+|Ck

n−1(r, l)|+|Ck+1
n−1(l, r)| = Dn,k+Dn−1,k+Dn−1,k+1.

�

4. Acyclic orientations of bipartite complete graphs

The connection of poly-Bernoulli numbers to acyclic orientations of the bipartite
complete graph was discovered independently in two lines of research. (Acyclic
orientation of a graph is an assignment of direction to each edge of the graph such
that there are no directed cycles.)

Cameron, Glass and Schumacher [13] investigated the problem of maximizing
number of acyclic orientations of graphs with v vertices and e edges. They con-
jecture that if v = 2n and e = n2 then Kn,n is the extremal graph. Along their
research they counted the acyclic orientations of Kn,k, and established a bijection
between these orientations and lonesum matrices of size n× k.

In [19] the authors realized the connection of the permutations with extremal
excedance sets (see section 4) and acyclic orientations with a unique sink. Without
referring to the C-relatives of poly-Bernoulli numbers they gave an interpretation
of the Cn,k numbers in terms of acyclic orientations of complete bipartite graphs.
Their proof is a specialization of general statements, we reprove the version, we
need, by elementary means.

We extend their results with an interpretation for Dn,k and summarize this line
of research in the next theorem. We need some notation. Let N = {u1, u2, . . . , un},
N̂ = N ∪ {u}, M = {v1, v2, . . . , vk}, M̂ = M ∪ {v} be vertex sets. Let KA,B

denote the complete bipartite graphs on A∪̇B. Let Dk
n denote the set of acyclic

orientations ofKN,M . Let Dk
n
′ denote the set of acyclic orientations ofK

N,M̂
, where

v is the only sink (vertex without outgoing edge). Let Dk
n
′′ denote the set of acyclic

orientations of K
N̂,M̂

, where u is the only source (vertex without ingoing edge) and

v is the only sink.

Theorem 19. (i) [13]

|Dk
n| = Bn,k,

(ii) [19]

|Dk
n
′| = Cn,k,

(iii)

|Dk
n
′′| = Dn,k.

Proof. (i)[13]: An acyclic orientation of KN,K can be coded by a 01 matrix B of
size n × k the following way: bi,j = 0 whenever the edge uivj is oriented from ui
to vj , and bi,j = 1 whenever the edge uivj is oriented from vj to ui. It is easy to
check that the orientation is acyclic iff the corresponding matrix B does not contain
any of the submatrix of the set L, hence B lonesome. This establishes a bijection
between Dk

n and Lk
n. The claim follows from our previous results.
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(ii): Take a binary matrix coding an orientation of a complete bipartite graph
KA,B. An all-0 column (the column of vertex w ∈ B) corresponds to the information
that w is a sink. Hence if we take an arbitrary orientation of K

N,M̂
from Dk

n
′, then

its restriction to KN,M will be an acyclic orientation. Its coding binary matrix
cannot contain an all-0 column (an all-0 column would correspond to a second sink,
that cannot exists in an orientation from Dk

n
′). Note that there is no restriction on

rows. The elements of N cannot be sinks, since the edges connecting them to v are
outgoing edges.

The above argument gave us a bijection between Dk
n
′ and Lk

n(c|), hence it proves
our claim.

(iii): Straight forward extension of the previous proof. �

Using classical results the connection to acyclic orientation of complete bipartite
graphs immediately leads to connections to the chromatic polynomials of complete
bipartite graphs. The chromatic polynomial of a graph G is a polynomial chrG(q),
such that for natural number k chrG(k) gives the number of good k-colorings of G.

The famous result of Stanley [37] is that the number of the acyclic orientations
of a graph is equal to the absolute value of the chromatic polynomial of the graph
evaluated at −1. Green and Zaslavsky [22] showed that the number of acyclic
orientations with a given unique sink is (up to sign) the coefficient of the linear
term of the chromatic polynomial (see [21] for elementary proofs). Also in [22] it
is proven, that the number of acyclic orientations of a graph G with a specified uv
edge, such that u is the unique source and v is the unique sink is the derivative
of the chromatic polynomial evaluated at 1 (the necessary signing is taken), the so
called “Crapo’s beta invariant”. Again [21] present an elementary discussion of this
result.

By putting together the information quoted above we obtain the following the-
orem.

Theorem 20. (i) [13]

Bn,k = (−1)n+kchrKn,k
(−1),

(ii) [19]

Cn,k = (−1)n+k[q]chrKn,k+1
(q),

(iii)

Dn,k = (−1)n+k

(
d

dq
chrKn+1,k+1

)
(1).

The chromatic polynomials of complete bipartite graphs are well understood.
We list a few results on this topic.

The exponential generating function of the chromatic polynomial of Kn,k [38]
Ex. 5.6: ∑

n≥0

∑

k≥0

chrKn,k
(q) · x

n

n!

yk

k!
= (ex + ey − 1)q

Several formulas for the chromatic polynomial of complete bipartite graphs are
known (for example [39], [19], [23]):

chrKn,k
(q) =

n∑

i=0

k∑

j=0

{
n

i

}{
k

j

}
(q)i+j ,
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where (q)ℓ = q(q − 1)(q − 2) . . . (q − ℓ + 1), the “falling factorial”.

chrKn,k
(q) =

∑

m≥0




n∑

i=0

k∑

j=0

s(i+ j,m)

{
n

i

}{
k

j

}
 qm,

where s(n, k) is the (signed) Stirling number of the first kind.
Simple arithmetic leads to the following theorem:

Theorem 21. (i)

Bn,k = (−1)n+k

n+k∑

m=0

n∑

i=0

k∑

j=0

(−1)ms(i+ j, l)

{
n

i

}{
k

j

}
,

(ii)

Cn,k = (−1)n+k

n∑

i=0

k∑

j=0

s(i+ j, 1)

{
n

i

}{
k + 1

j

}
,

(iii)

Dn,k = (−1)n+k

n+k+2∑

l=0

n∑

i=0

k∑

j=0

ls(i+ j, l)

{
n+ 1

i

}{
k + 1

j

}
.

We mention that the formula in (ii) is implicit in [19], without mentioning the
poly-Bernoulli connection.

5. Algorithms for generating the series

In this section we recall algorithms that computes the arrays Bn,k, Cn,k and
Dn,k by similar simple rules as Pascal’s triangle the binomial coefficients. We will
see that in this context the relatives Dn,k arise naturally.

This line of research was initiated by the Akiyama–Tanigawa algorithms, that
generates the Bernoulli numbers. Let define the array an,i recursively (based on
{a0,i}) by the rule:

an+1,i = (i+ 1)(an,i − an,i+1).

Akiyama–Tanigawa proved that if the initial sequence is a0,i =
1
i
then an,0 are the

n-th Bernoulli numbers. Let denote by AT the transformation {a0,i} → {an,0}.
Akiyama–Tanigawa’s theorem says that AT ({1/(i+ 1)}i) = {Bi}i (with B1 = 1

2 ).
Kaneko showed [25] that for any initial sequence a0,i it holds

an,0 =

n∑

i=0

(−1)ii!

{
n+ 1

i+ 1

}
a0,i.

Based on the sieve formulas and simple arithmetic we obtain the following the-
orem.

Theorem 22. (i) [25]

AT ({(i+ 1)k}i) = {(−1)iCi,k}i,
(ii)

AT ({ik}i) = {(−1)iDi,k}i
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The poly–Bernoulli numbers itself can be generated also by such simple rules,
though the recursive rule has to be modified for that. Chen [14] presents the variant
of the algorithm with these changes:

bn+1,i = ibn,i − (i+ 1)bn,i+1,

Chen shows (Proposition 2.) that

bn,0 =

n∑

i=0

(−1)ni!

{
n

i

}
b0,i.

Let denote BT transformation {b0,i} → {bn,0} the transformation based on the
modified recursive rule. One consequence of Chen’s theorem ([14] Theorem 1.) is
BT ({1/(i+ 1)}i) = {Bi}i (with B1 = − 1

2 ) and another is that

Theorem 23.

BT ({(i+ 1)k}i) = {(−1)iBi,k}i

6. Diagonal sum of poly-Bernoulli numbers

The diagonal sum of poly-Bernoulli numbers resp. their relatives arise in analyt-
ical, number theoretical and combinatorial investigations [33], [26], [2]. However a
nice formula is still missing. The diagonal sum of the poly-Bernoulli numbers

∑

n+k=N

Bn,k

are referred in OEIS [33] A098830:

1, 2, 4, 10, 32, 126, 588, 3170, . . .

The diagonal sum of the C-relatives are also referred in OEIS [33] A136127:

1, 2, 5, 16, 63, 294, 1585 . . .

The simple arithmetic relation between Bn,k and Cn,k of theorem 17. implies that
(except the first entry) the A098830 is exactly the double of A136127.

From the combinatorial point of view the diagonal sum enumerates of course
sets of the combinatorial objects we listed in this paper before. However there are
combinatorial objects where this sum itself appears naturally: there is no reason for
the division of the basic set of size N into two sets of size n and k with n+ k = N .
Here we mention some of them.

The ascending-to-max property [20] is one of the characteristic property of per-
mutations that are suffix arrays of binary words. Suffix arrays play an important
role in efficient searching algorithms of given patterns in a text.

Cycles without stretching pairs [2] received attention because of their connection
to a result of Sharkovsky in discrete dynamical systems. The occurrence of a
stretching pair within a periodic orbit implies turbulence [17]. In [17] we find
also the description of strong connections to permutations that avoid (21− 34) or
(34− 21) as generalized patterns.

The introduction of the combinatorial non-ambiguous trees [5] that are com-
pact embeddings of binary trees in a grid, was motivated by enumeration of par-
allelogram polynomios. Non-ambiguous trees are actually special cases of tree-like
tableaux, objects that are in one-to-one correspondence with permutation tableaux.
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From the analytical results we recall here an interesting connection to the central
binomial sum:

CB(k) =
∑

n≥1

nk

(
2n
n

)

Borwein and Girgensohn ([10] section 2.) showed that

CB(N) = PN +QN

π√
3
,

where PN and QN are explicitly given rationals.
Stephan’s computations suggest the following interesting conjecture [33]:

Conjecture 1. ∑

n+k=N

Bn,k = 3PN .

Based on the explicit formula that was given in [10] we can reformulate the
Stephan’s conjecture:

∑

n+k=N

Bn,k = 3PN = (−1)N+1 1

2

N+1∑

j=1

(−1)jj!

{
N + 1

j

} (2j
j

)

3j−1

j−1∑

i=0

3i

(2i+ 1)
(
2i
i

) .

It would be interesting to prove the conjecture or/and to find a simple expression
for the diagonal sum.
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