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SIMSUN PERMUTATIONS, SIMSUN SUCCESSIONS AND SIMSUN

PATTERNS

SHI-MEI MA AND YEONG-NAN YEH

Abstract. In this paper, we introduce the definitions of simsun succession, simsun cycle suc-

cession and simsun pattern. In particular, the ordinary simsun permutations are permutations

avoiding simsun pattern 321. We study the descent and peak statistics on permutations avoid-

ing simsun successions. We give a combinatorial interpretation of the q-Eulerian polynomials

introduced by Brenti (J. Combin. Theory Ser. A 91 (2000), 137–170). We also present a

bijection between permutations avoiding simsun pattern 132 and set partitions.
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1. Introduction

Let Sn denote the symmetric group of all permutations of [n], where [n] = {1, 2, . . . , n}. Let

π = π(1)π(2) · · · π(n) ∈ Sn. A descent in π is an index i such that π(i) > π(i+1). We say that

π has no double descents if there is no index i ∈ [n − 2] such that π(i) > π(i + 1) > π(i + 2).

Simsun permutation is defined by Sundaram and Simion [30]. A permutation π ∈ Sn is called

simsun if for all k, the subword of π restricted to [k] (in the order they appear in π) contains no

double descents. For example, 35142 is simsun, but 35241 is not. Let RSn be the set of simsun

permutations of length n. Simion and Sundaram [30, p. 267] discovered that #RSn = En+1,

where En is the nth Euler number, which also is the number alternating permutations in Sn

(see [27] for instance). Simsun permutation is a variant of André permutation, which was

introduced by Foata and Schützenberge [10]. There has been much work related to simsun

permutations (see [2, 5, 6, 8, 9, 11, 12, 18] for instance).

Let des (π) be the number of descents of π. Let

Sn(x) =
∑

π∈RSn

xdes (π) =

⌊n/2⌋∑

k=0

S(n, k)xk.

Following [30, p. 267], the numbers S(n, k) satisfy the recurrence relation

S(n, k) = (k + 1)S(n − 1, k) + (n− 2k + 1)S(n − 1, k − 1),

with the initial conditions S(0, 0) = 1 and S(0, k) = 0 for k ≥ 1, which is equivalent to

Sn+1(x) = (1 + nx)Sn(x) + x(1− 2x)S′
n(x),

with S0(x) = 1. Let Dn(x) =
∑

k≥1 d(n, k)x
k, where d(n, k) denote the number of augmented

André permutations of order n with k− 1 left peaks (see [11]). It follows from [5, Proposition 4]
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that Dn+1(x) = xSn(x) for n ≥ 0. For each π ∈ Sn, we say that π has an excedance at i if

π(i) > i. Let exc (π) be the excedance number of π. The Eulerian polynomials are defined by

An(x) =
∑

π∈Sn

xdes (π)+1 =
∑

π∈Sn

xexc (π)+1 for n ≥ 1.

From [10, Proposition 2.7], we have

An+1(x) = x

⌊n/2⌋∑

k=0

S(n, k)(2x)k(1 + x)n−2k.

A succession in π ∈ Sn is an index i ∈ [n − 1] such that π(i + 1) = π(i) + 1. The study

of successions began in 1940s (see [13, 22]), and there has been much recent activity. There

are various variants of succession, including circular succession [31] and cycle succession [20].

The succession statistic has also been studied on various combinatorial structures, such as set

partitions [19, 21], compositions and words [14]. For example, a succession in a partition of [n]

is an occurrence of two consecutive integers appear in the same block. Following [28, p. 137,

Exercise 108], the number of partitions of [n] with no successions is B(n− 1), where B(n) is the

nth Bell number, which also is the number of partitions of [n].

This paper is organized as follows. In Section 2, we consider a subset of RSn with no

successions. In Section 3, we introduce the definition of simsun succession. In Section 4, we

give a combinatorial interpretation of the q-Eulerian polynomials introduced by Brenti [3]. In

Section 5, we present a bijection between permutations avoiding simsun pattern 132 and set

partitions.

2. A subset of RSn with no successions

Definition 1. Let BSn denote the set of permutations in RSn such that for all k, the subword

of π restricted to [k] (in the order they appear in π) does not contain successions.

For example, BS5 = {25143, 21435, 24135, 24153, 52413}. Now we present the first main result

of this paper.

Theorem 2. For n ≥ 0 and 0 ≤ k ≤ ⌊n/2⌋, we have

S(n, k) = #{π ∈ BSn+2 : des (π) = k + 1}. (1)

Equivalently, we have

Sn(x) =
∑

π∈BSn+2

xdes (π)−1.

Proof. Let r(n, k) = #{π ∈ BSn+2 : des (π) = k+1}. There are two ways in which a permutation

π ∈ BSn+2 with k + 1 descents can be obtained from a permutation σ ∈ BSn+1:

(a) If des (σ) = k + 1, then we distinguish two cases:

(c1) If σ(n + 1) = n + 1, then we can insert n + 2 right after σ(i), where i is a descent

index;
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(c2) If σ(n + 1) < n+ 1, then there exists an index j ∈ [n] such that σ(j) = n+ 1. We

can insert n+2 right after σ(i), where i is a descent index and i 6= j. Moreover, we

can also put n+ 2 at the end of σ.

In either case, we have k + 1 choices for the positions of n + 2. As we have r(n − 1, k)

choices for σ. This gives (k + 1)r(n− 1, k) possibilities.

(b) If des (σ) = k, then we can not insert n + 2 immediately before or right after a decent

index. Moreover, we can not put n+ 2 at the end of σ. Therefore, the entry n + 2 can

be inserted into any of the remaining n − 2k + 1 positions. As we have r(n − 1, k − 1)

choices for σ. This gives (n− 2k + 1)r(n− 1, k − 1) possibilities.

Therefore, r(n, k) = (k+1)r(n−1, k)+ (n−2k+1)r(n−1, k−1). Note that BS2 = {21}. Thus

r(0, 0) = 1 and r(0, k) = 0 for k ≥ 1. Hence the numbers r(n, k) satisfy the same recurrence and

initial conditions as S(n, k), so they agree. �

Corollary 3. For n ≥ 1, we have #BSn = En−1.

3. The descent and peak statistics and simsun successions

The number of peaks of permutations is certainly among the most important combinatorial

statistics. See, e.g., [7, 15, 16, 24] and the references therein. We now recall some basic defini-

tions. An interior peak in π is an index i ∈ {2, 3, . . . , n− 1} such that π(i− 1) < π(i) > π(i+1).

A left peak in π ∈ Sn is an index i ∈ [n − 1] such that π(i − 1) < π(i) > π(i + 1), where we

take π(0) = 0. Let pk (π) (resp. lpk (π)) be the number of interior peaks (resp. left peaks) of π.

Similarly, a valley in π is an index i ∈ {2, 3, . . . , n− 1} such that π(i− 1) > π(i) < π(i+1). Let

val (π) be the number of valleys of π. Clearly, interior peak and valley are equidistributed over

Sn. Motivated by the study of longest increasing subsequences, Stanley [26] initiated a study

of the longest alternating subsequences. An alternating subsequence of π ∈ Sn is a subsequence

π(i1), π(i2), . . . , π(ik) satisfying π(i1) > π(i2) < π(i3) > · · · π(ik), where i1 < i2 < · · · < ik. Let

as (π) be the length (number of terms) of the longest alternating subsequence of a permutation

π ∈ Sn.

Define 〈
n

k

〉
= #{π ∈ Sn : des (π) = k − 1};

P (n, k) = #{π ∈ Sn : pk (π) = k};

P̂ (n, k) = #{π ∈ Sn : lpk (π) = k};

T (n, k) = #{π ∈ Sn : as (π) = k}.

It is well known that these numbers satisfy the following recurrences (see [16, 26] for instance):
〈
n

k

〉
= k

〈
n− 1

k

〉
+ (n− k + 1)

〈
n− 1

k − 1

〉
;

P (n, k) = (2k + 2)P (n − 1, k) + (n− 2k)P (n − 1, k − 1);

P̂ (n, k) = (2k + 1)P̂ (n− 1, k) + (n− 2k + 1)P̂ (n− 1, k − 1);

T (n, k) = kT (n− 1, k) + T (n− 1, k − 1) + (n− k + 1)T (n − 1, k − 2).
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Definition 4. We say that π avoids simsun succession if for all k, the subword of π restricted

to [k] (in the order they appear in π) does not contain successions.

For example, the permutation π = 321465 contains a simsun succession, since π restricted to

[5] equals 32145 and it contains a succession. Let ASn denote the set of permutations in Sn

that avoid simsun successions. In particular, AS1 = {1},AS2 = {21} and AS3 = {213, 321}.

Now we present the second main result of this paper.

Theorem 5. For n ≥ 2, we have
∑

σ∈Sn

xdes (σ)+1 =
∑

π∈ASn+1

xdes (π); (2)

∑

π∈Sn

xpk (π)+1 =
∑

π∈ASn+1

xlpk (π);

∑

π∈Sn

xlpk (π) =
∑

π∈ASn+1

xval (π);

∑

π∈Sn

xas (π)+1 =
∑

π∈ASn+1

xas (π).

Proof. We only prove (2) and the others can be proved in a similar way. Let a(n, k) = #{π ∈

ASn+1 : des (π) = k}. There are two ways in which a permutation π ∈ ASn+2 with k descents

can be obtained from a permutation σ ∈ ASn+1.

(a) If des (σ) = k, then we distinguish two cases:

(c1) If σ(n + 1) = n + 1, then we can insert n + 2 right after σ(i), where i is a descent

index;

(c2) If σ(n + 1) < n+ 1, then there exists an index j ∈ [n] such that σ(j) = n+ 1. We

can insert n+2 right after σ(i), where i is a descent index and i 6= j. Moreover, we

can also insert n+ 2 at the end of σ.

In either case, we have k choices for the positions of n + 2. As we have a(n, k) choices

for σ. This gives ka(n, k) possibilities.

(b) If des (σ) = k−1, we can not insert n+2 right after any decent index and we can not put

n+ 2 at the end of σ. Hence the entry n + 2 can be inserted into any of the remaining

n−k+2 positions. As we have a(n, k−1) choices for σ. This gives (n−k+2)a(n, k−1)

possibilities.

Therefore, a(n+ 1, k) = ka(n, k) + (n− k + 2)a(n, k − 1). Note that a(1, 1) = 1 and a(1, k) = 0

for k ≥ 2. Hence the numbers a(n, k) satisfy the same recurrence and initial conditions as
〈n
k

〉
,

so they agree. �

4. q-Eulerian polynomials and simsun cycle successions

Recall that π ∈ Sn can be written in standard cycle form, where each cycle is written with

its smallest entry first and the cycles are written in increasing order of their smallest entry. In

this section, we always write π in standard cycle form. A cycle succession in π is an occurrence of

two consecutive entries i, i+1 in that order within the same cycle for some i ∈ [n− 1] (see [20]).

For example, the permutation (1, 2, 6)(3, 5, 4) contains a cycle succession.
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Definition 6. We say that π avoids simsun cycle succession if for all k, the subword of π

restricted to [k] (in the order they appear in π) does not contain cycle successions.

For example, π = (1543)(2) avoids simsun cycle succession. Let CSn be the set of permutations

in Sn that avoid simsun cycle successions. In particular, CS1 = {(1)}, CS2 = {(1)(2)} and

CS3 = {(1)(2)(3), (13)(2)}.

In [3], Brenti considered a q-analog of the classical Eulerian polynomials defined by

A0(x; q) = 1, An(x; q) =
∑

π∈Sn

xexc (π)qcyc (π) for n ≥ 1,

where cyc (π) is the number of cycles in π. The first few of the q-Eulerian polynomials are

A0(x; q) = 1, A1(x; q) = q,A2(x; q) = q(x+ q), A3(x; q) = q[x2 + (3q + 1)x+ q2].

Clearly, An(x) = xAn(x; 1) for n ≥ 1. The real-rootedness of An(x; q) has been studied in [1, 17].

The third main result of this paper is the following.

Theorem 7. For n ≥ 1, we have
∑

π∈Sn

xexc (π)qcyc (π)+1 =
∑

σ∈CSn+1

xexc (σ)qcyc (σ). (3)

Let Sn,k,ℓ = {π ∈ Sn : exc (π) = k, cyc (π) = ℓ} and CSn,k,ℓ = {π ∈ CSn : exc (π) =

k, cyc (π) = ℓ}. In the rest of this section, we give a constructive proof of (3). We now introduce

two definitions of labeled permutations.

Definition 8. Suppose π ∈ Sn,k,ℓ and i1 < i2 < · · · < ik are the excedances of π. Then we put

superscript label ur right after ir, where 1 ≤ r ≤ k. In the remaining positions except the first

position of each cycle, we put superscript labels v1, v2, . . . , vn−k from left to right.

Definition 9. Suppose π ∈ CSn,k,ℓ and i1 < i2 < · · · < ik are the excedances of π. Then we

put superscript label pr right after ir, where 1 ≤ r ≤ k. In the remaining positions except the

first position of each cycle and the position right after the entry n, we put superscript labels

q1, q2, . . . , qn−k−1 from left to right.

In the following discussion, we always add labels to permutations in Sn,k,ℓ and CSn,k,ℓ.

As an example, for π = (135)(26)(4), if we say that π ∈ S6,3,3, then the labels of π is

given by (1u13u25v1)(2u36v2)(4v3); if we say that π ∈ CS6,3,3, then the labels of π is given

by (1p13p25q1)(2p36)(4q2).

Now we start to construct a bijection, denoted by Φ, between Sn,k,ℓ and CSn+1,k,ℓ+1. When

n = 1, we have S1,0,1 = {(1)} and CS2,0,2 = {(1)(2)}. Set Φ((1)) = (1)(2). This gives a bijection

between S1,0,1 and CS2,0,2. Let n = m. Suppose Φ is a bijection between Sm,k,ℓ and CSm+1,k,ℓ+1

for all k and ℓ. Consider the case n = m + 1. Given π ∈ Sm,k,ℓ. Assume Φ(π) = σ. Then

σ ∈ CSm+1,k,ℓ+1. Consider the following three cases:

(i) If π̂ is obtained from π by inserting the entry m+1 to the position of π with label ur, then

we insert m+2 to the position of σ with label pr. In this case, exc (π̂) = exc (Φ(π̂)) = k

and cyc (π̂) + 1 = cyc (Φ(π̂)) = ℓ+ 1.
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(ii) If π̂ is obtained from π by inserting the entry m+1 to the position of π with label vj , then

we insertm+2 to the position of σ with label qj. In this case, exc (π̂) = exc (Φ(π̂)) = k+1

and cyc (π̂) + 1 = cyc (Φ(π̂)) = ℓ+ 1.

(iii) If π̂ is obtained from π by appending (m + 1) to π as a new cycle, then we append

(m + 2) to σ as a new cycle. In this case, exc (π̂) = exc (Φ(π̂)) = k and cyc (π̂) + 1 =

cyc (Φ(π̂)) = ℓ+ 2.

By induction, we see that Φ is the desired bijection between Sn,k,ℓ and CSn+1,k,ℓ+1 for all k and

ℓ, which also gives a constructive proof of (3).

Example 10. Given π = (135)(2)(4) ∈ S5,2,3. The correspondence between π and Φ(π) is built

up as follows:

(1v1) ⇔ (1q1)(2);

(1v1)(2v2) ⇔ (1q1)(2q2)(3);

(1u13v1)(2v2) ⇔ (1p14)(2q1)(3q2);

(1u13v1)(2v2)(4v3) ⇔ (1p14q1)(2q2)(3q3)(5);

(1u13u25v1)(2v2)(4v3) ⇔ (1p14p26)(2q1)(3q2)(5q3).

5. Permutations avoiding the simsun pattern 132 and set partitions

In this section, containment and avoidance will always refer to consecutive patterns. Let

m,n be two positive integers with m ≤ n, and let π ∈ Sn and τ ∈ Sm. We say that π contains

τ as a consecutive pattern if it has a subsequence of adjacent entries order-isomorphic to τ . A

permutation π avoids a pattern τ if π does not contain τ .

Definition 11. Let π ∈ Sn and τ ∈ Sm. We say that π avoids simsun pattern τ if for all k,

the subword of π restricted to [k] (in the order they appear in π) does not contain the consecutive

pattern τ .

Let SPn(τ) denote the set of permutations in Sn that avoid simsun pattern τ . In particular,

SPn(321) = RSn. Using the reverse map, we get #SPn(321) = #SPn(123) = En+1. In the

following, we shall establish a connection between SPn(132) and set partitions of [n].

A partition p of [n] is a collection of nonempty disjoint subsets, called blocks, whose union

is [n]. As usual, we always write p ⊢ [n] and put p = B1/B2/ · · · /Bk in standard form with

minB1 < minB2 < · · · < minBk. It is well known that the number of partitions of [n] with

exactly k blocks is the Stirling number of the second kind
{n
k

}
. Let

∏
n = {p : p ⊢ [n]} and

let block (p) be the number of blocks of p. Let p = B1/B2/ · · · /Bk be a partition of [n]. For

c ∈ Bs and d ∈ Bt, we say that the pair (c, d) is a free rise of p if c < d, where 1 ≤ s < t ≤ k.

Let fr (p) be the number of free rises of p. For example, fr ({1, 2, 3}/{4}/{5}) = 7. A singleton

of a partition is a block with exactly one element (see [29] for instance). Let singleton (p)

be the number of singletons of p. We say that a block of p is non-singleton if it contains at

least two elements. Let nsingleton (p) be the number of non-singletons of p. For example,

singleton ({1, 2, 3}/{4}/{5}) = 2 and nsingleton ({1, 2, 3}/{4}/{5}) = 1.
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Let π = π(1)π(2) · · · π(n) ∈ Sn. A right peak of π is an entry π(i) with i ∈ {2, 3, . . . , n} such

that π(i− 1) < π(i) > π(i+1), where we take π(n+1) = 0. Let rpk (π) be the number of right

peaks of π. An inversion of π is a pair (π(i), π(j)) such that i < j and π(i) > π(j). Let inv (π)

be the number of inversions of π. We say that the entry π(i) is an exterior double descent of π if

π(i−1) > π(i) > π(i+1), where i ∈ [n] and we take π(0) = +∞ and π(n+1) = 0. Let exddes (π)

be the number of exterior double descents of π. For example, rpk (42315) = 2, inv (42315) = 5

and exddes (42315) = 1.

Now we present the fourth main result of this paper.

Theorem 12. For n ≥ 1, we have

∑

π∈SPn(132)

xdes (π)+1yrpk (π)zexddes (π)qinv (π) =
∑

p∈
∏

n

xblock (p)ynsingleton (p)zsingleton (p)qfr (p). (4)

In the following, we shall present a constructive proof of (4).

Recently, Chen et al. [4] present a grammatical labeling of partitions of [n]: For p ∈
∏

n, we

label a block of p by letter b and label the partition itself by letter a, and the weight of a partition

is defined to be the product of its labels. Hence w(p) = abk if block (p) = k. They deduced

that
∑

p∈
∏

n

w(p) = a
∑n

k=0

{n
k

}
bk. As a variant of the grammatical labeling, we introduce the

following definition.

Definition 13. Suppose p = B1/B2/ · · · /Bk is a partition of [n]. Then we label Bi by letter

bk+1−i, where 1 ≤ i ≤ k. Moreover, we put label a at the end of p.

Note that in order to get a permutation π̂ ∈ SPn+1(132) from π ∈ SPn(132), we can’t insert

the entry n+1 right after any ascent entry of π, where an ascent entry is a value π(i) such that

π(i) < π(i+ 1). We now introduce a definition of labeled permutations.

Definition 14. Suppose π ∈ SPn(132) with k − 1 descents, where 1 ≤ k ≤ n. Let i1 < i2 <

· · · < ik−1 be the descent indices of π. We put superscript labels sr right after π(ir), where

1 ≤ r ≤ k − 1. Moreover, we put superscript label sk at the end of π and superscript label t at

the front of π.

For example, the partition {1, 3}/{2, 4, 5} and the permutation 42315 are labeled as follows:

{1, 3}b2/{2, 4, 5}b1a,
t4s123s215s3 .

For 1 ≤ k ≤ n and 0 ≤ ℓ ≤
(n
2

)
, we define

∏
n,k,ℓ = {p ∈

∏
n : block (p) = k, fr (p) = ℓ} and

SPn,k,ℓ(132) = {π ∈ SPn(132) : des (π) = k − 1, inv (π) = ℓ}.

In the following discussion, we always add labels to partitions and permutations.

Now we construct a bijection, denoted Ψ, between SPn,k,ℓ(132) and
∏

n,k,ℓ. When n = 1, we

have SP1,1,0(132) = {1} and
∏

1,1,0 = {{1}}. The bijection between SP1,1,0(132) and
∏

1,1,0 is

given by

t1s1 ⇔ {1}b1a.
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When n = 2, if the entry 2 is inserted to the position of t1s1 with label t, then we append the

block {2} to {1}b1a; if the entry 2 is inserted to the position of t1s1 with label s1, then we insert

the element 2 into the block {1}. In other words, the bijection Ψ is given by

t2s11s2 ⇔ {1}b2/{2}b1a;

t12s1 ⇔ {12}b1a.

It should be noted that the block with label b1 consists of the elements lie before the label s1,

and the block with label b2 (if exists) consists of the elements lie between the labels s1 and s2.

Let n = m, where m ≥ 2. Suppose Ψ is a bijection between SPm,k,ℓ(132) and
∏

m,k,ℓ.

Consider the case n = m+ 1. Suppose π ∈ SPm,k,ℓ(132) and π̂ is obtained from π by inserting

the entry m+1 into π. Set Ψ(π) = p. Suppose further that the block of p with label b1 consists

of the elements of π lie before the label s1, and for 1 < i ≤ k, the block of p with label bi consists

of the elements of π lie between the labels si−1 and si. Consider the following two cases:

(i) If the entry m+1 is inserted to the position of π with label t, then we append the block

{m+ 1} to p. In this case, des (π̂) = des (π) + 1 = k and inv (π̂) = inv (π) +m = ℓ+m.

Moreover, block (Ψ(π̂)) = block (p) + 1 = k + 1 and fr (Ψ(π̂)) = fr (p) +m = ℓ+m.

(ii) If the entry m + 1 is inserted to the position of π with label si, then we insert the

element m+ 1 into the block of p with label bi. In this case, des (π̂) + 1 = block (Ψ(π̂))

and inv (π̂) = fr (Ψ(π̂)). More precisely, we distinguish two cases:

(c1) if i = k, then des (π̂) = des (π) = k−1, inv (π̂) = inv (p) = ℓ,block (π̂) = block (p) =

k and fr (π̂) = fr (p) = ℓ.

(c2) if 1 ≤ i < k and the label si lies right after π(j), then π(j) > π(j + 1). By

the induction hypothesis, there are m − j elements in the union of the blocks of

p with labels bi+1, bi+2, · · · , bk. Therefore, des (π̂) = des (π) = k − 1, inv (π̂) =

ℓ+m− j,block (π̂) = block (p) = k. and fr (π̂) = fr (p) +m− j = ℓ+m− j.

After the above step, we label the obtained permutations and partitions. It is clear that the

block of Ψ(π̂) with label b1 consists of the elements of π̂ lie before the label s1, and for 1 < i ≤ k,

the block of Ψ(π̂) with label bi consists of the elements of π̂ lie between the labels si−1 and si,

and the block of Ψ(π̂) with label bk+1 (if exists) consists of the elements of π̂ lie between the

labels sk and sk+1. By induction, we see that Ψ is the desired bijection between SPn,k,ℓ(132)

and
∏

n,k,ℓ for all k and ℓ. Using Ψ, we see that if π(i) is a right peak of π, then π(i − 1) and

π(i) are in the same block and π(i) is the largest element of that block. Moreover, if π(i) is an

exterior double descent of π, then {π(i)} is a singleton of Ψ(π).

Furthermore, we define a map ϕ :
∏

n → SPn(132) as follows: For p = B1/B2/ . . . /Bk ∈
∏

n,

let pr = Bk/Bk−1/ · · · /B1. Let ϕ(p) be a permutation obtained from pr by erasing all of the

braces of blocks and bars of pr. For example, if p = {1}/{2, 4}/{3, 5, 7}/{6}, then ϕ(p) =

6357241. Combining Ψ, we see that ϕ is also a bijection and SPn,k,ℓ(132) = {ϕ(p) : p ∈
∏

n,k,ℓ}.

It is clear that if Bi is a non-singleton of p with the largest element m, then m is a right peak

of ϕ(p). Moreover, if {c} is a singleton of p, then c is an exterior double descent of ϕ(p). In

conclusion, using the bijections Ψ and ϕ, we get a constructive proof of (4).
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Example 15. Given π = 42351 ∈ SP5,3,6(132). The correspondence between π and Ψ(π) can

be done if you proceed as follows:

t1s1 ⇔ {1}b1a;

t2s11s2 ⇔ {1}b2/{2}b1a;

t23s11s2 ⇔ {1}b2/{2, 3}b1a;

t4s123s21s3 ⇔ {1}b3/{2, 3}b2/{4}b1a;

t4s1235s21s3 ⇔ {1}b3/{2, 3, 5}b2/{4}b1a.

Let Bn(x) =
∑n

k=0

{n
k

}
xk be the Stirling polynomials. Taking y = z = q = 1 in (4) leads to

the following.

Corollary 16. For n ≥ 1, we have

Bn(x) =
∑

π∈SPn(132)

xdes (π)+1.

By using the reverse and complement maps, it is clear that

Bn(x) =
∑

π∈SPn(231)

xasc (π)+1 =
∑

π∈SPn(312)

xasc (π)+1 =
∑

π∈SPn(213)

xdes (π)+1,

where asc (π) is the number of ascents of π, i.e., the number of indices i such that π(i) < π(i+1).

Using the bijection Ψ and [28, p. 137, Exercise 108], we get the following result.

Proposition 17. The number of permutations in SPn(132) with no successions is B(n− 1).

Let π = π(1)π(2) · · · π(n) ∈ Sn. We say that an element π(i) is a left-to-right maximum of

π if π(i) > π(j) for every j < i. Let lrm (π) be the number of left-to-right maxima of π. For

example, lrm (2314) = 3. Let p = B1/B2/ · · · /Bk. Following [23], we define ai to be the number

of c ∈ Bi with c > minBi−1, where 2 ≤ i ≤ k. Let

D̂es(p) = {2a2 , 3a3 , . . . , kak}

be the dual descent multiset of p, where id means that i is repeated d times. For example,

D̂es({1, 3, 5}/{2}/{4, 6, 7}) = {21, 33}. Let dudes (p) = #D̂es(p). Using the bijections Ψ and

ϕ, it is easy to verify the following result.

Proposition 18. For n ≥ 1, we have

∑

π∈SPn(132)

xlrm(π) =
∑

p∈
∏

n

xn−dudes (p).

Let D(π) = {i : π(i) > π(i + 1)} be the descent set of π. The major index of π is the sum

of the descents: maj (π) =
∑

i∈D(π) i. Along the same lines as the proof of [28, Eq. (1.41)], it is

routine to check that ∑

π∈SPn(132)

xinv (π) =
∑

π∈SPn(132)

x(
n

2)−maj (π).
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