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TOPOLOGICALLY DISTINCT SETS OF NON-INTERSECTING

CIRCLES IN THE PLANE

RICHARD J. MATHAR

Abstract. Nested parentheses are forms in an algebra which define orders
of evaluations. A class of well-formed sets of associated opening and closing
parentheses is well studied in conjunction with Dyck paths and Catalan num-
bers. Nested parentheses also represent cuts through circles on a line. These
become topologies of non-intersecting circles in the plane if the underlying
algebra is commutative.

This paper generalizes the concept and answers quantitatively—as recur-
rences and generating functions of matching rooted forests—the questions:
how many different topologies of nested circles exist in the plane if (i) pairs of
circles may intersect, or (ii) even triples of circles may intersect. That analysis
is driven by examining the symmetry properties of the inner regions of the
fundamental type(s) of the intersecting pairs and triples.

1. Paired Parentheses and Catalan Numbers

In a (non-commutative) algebra, opening and closing parentheses prescribe the
order of grouping and evaluating expressions.

Definition 1. A string of parentheses is well-formed if the total number of opening
parentheses equals the number of closing parentheses, and if the subtotal count of
opening parentheses is always larger than or equal to the subtotal count of closing
parentheses while parsing the string left-to-right.

Remark 1. Equivalently one may demand that the subtotal of closing parentheses
is always larger or equal to the subtotal of opening parentheses while parsing the
string right-to-left.

The well-formed nested parentheses form sets PN of expressions with N pairs of
parentheses.

Definition 2. PN is the set of all well-formed expressions with N pairs of paren-
theses.

There are expressions that can be factored—in the algebra—by cutting the string
at some places such that the left and right substrings are also well-formed. The
number f of their factors puts the elements of PN into disjoint subsets:

Definition 3. P
(f)
N is the set of all well-formed expressions with N pairs of paren-

theses and 1 ≤ f ≤ N factors.
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N |PN | 1 2 3 4 5 6 7 8 9
1 1 1
2 2 1 1
3 5 2 2 1
4 14 5 5 3 1
5 42 14 14 9 4 1
6 132 42 42 28 14 5 1
7 429 132 132 90 48 20 6 1
8 1430 429 429 297 165 75 27 7 1
9 4862 1430 1430 1001 572 275 110 35 8 1

Table 1. Catalan triangle: The number of nested expressions
with N pairs of parentheses: the total count |PN | and the number

of nested expressions with 1 ≤ f ≤ N factors, |P
(f)
N |.

PN =
⋃

f

P
(f)
N ;(1)

|PN | =
N
∑

f=1

|P
(f)
N |.(2)

Example 1.

P1 = P
(1)
1 = {()};(3)

P
(1)
2 = {(())};(4)

P
(2)
2 = {()()};(5)

P
(1)
3 = {((())), (()())};(6)

P
(2)
3 = {(())(), ()(())};(7)

P
(3)
3 = {()()()};(8)

P
(1)
4 = {(((()))), ((()())), ((())()), (()(())), (()()())};(9)

Remark 2. The opening and closing parentheses are the two letters in an alphabet
of words, with a grammar that recursively admits words

(1) that are the empty word,
(2) that are concatenations of two words,
(3) that are concatenations of the first letter, a word, and the second letter.

If the opening parentheses are replaced by U and the closing parentheses replaced
by D an equivalence with Dyck paths arises; the number of returns to the horizontal
line in the paths is equivalent to the number of factors in the expression. This leads
straight to the well-known Catalan triangle [11, A033184] of Table 1. The set sizes
|PN | are the Catalan numbers [3, §1.15][11, A000108][4].

Remark 3. Because an expression distributes N left parenthesis at 2N places, the
set size is limited by |PN | <

(

2N
N

)

, the central binomial coefficients. Actually one of
them must be placed at the leftmost place and none can be placed at the rightmost
place, which leaves 2N − 2 places to distribute N − 1 of them: |PN | <

(

2N−2
N−1

)

.
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Remark 4. A computer representation uses the two binary digits 1 and 0 to rep-
resent the opening and the closing parenthesis in the aforementioned alphabet of
two letters [11, A063171,A014486]. (Then the most-significant bit is always 1. The
swapped mapping is less useful because it needs to deal with the numerical repre-
sentation of leading zeros in the binary number.) Because the rightmost part is
absent for the unique case of missing parentheses, N = 0, or a closing parenthesis,
all these representations are even numbers. This representation by non-negative
integers induces a strict ordering in the set of nested parentheses.

Example 2. () = 10 2; ()() = 1010 2; (()) = 1100 2; ()()() = 101010 2 ; ()(()) =
101100 2 ; (())() = 110010 2 ; (()()) = 110100 2 ; ((())) = 111000 2.

The expressions with one factor are given by embracing any expression with one
pair less at the left and right end with a pair of matching parentheses:

(10) |P
(1)
N | = |PN−1|.

The number of expressions with f factors is given by considering any concate-
nated “word” of factorizations [6],

(11) |P
(f)
N | =

∑

C(N):N=N1+N2+···+Nf

|P
(1)
N1

||P
(1)
N2

| · · · |P
(1)
Nf

|, f ≥ 2,

where the sum is over all compositions (“ordered” partitions) of N into positive
parts Nj such that subexpressions do not factor any further.

A well-formed expression of parentheses represents a set of N nested circles if we
join the upper and lower end of each associated pair of parentheses. The radii of
the circles are growing functions of their spatial distance in the expressions; their
mid points are on a straight line, and no perimeters of any pair of circles intersect.
The string of opening and closing parentheses is a record of entering or leaving a
circle while poking from the outside along the line through all circles. For each pair
of circles (i) either the smaller one is entirely immersed in the larger one or (ii) they
have no common points.

Example 3. (()())() 7→

♠ ♠✫✪
✬✩♠

2. Nonintersecting Circle Sets in the Plane

2.1. Nested Circle Sets. If the algebra of Section 1 is a commutative algebra,
some sets of nested parentheses are no longer considered distinct, because the order
of the factors does no longer matter.

Definition 4. CN is the set of well-formed expressions of N pairs of parentheses
where the order within factorizations does not matter.

Definition 5. C
(f)
N is the set of well-formed expressions of N pairs of parentheses

with f factors where the order within factorizations does not matter.
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The number of factors still is a unique parameter of each well-formed set of
expressions, so

CN =
⋃

f

C
(f)
N ;(12)

|CN | =

N
∑

f=1

|C
(f)
N |; |C0| = 1.(13)

We “lose” some of the sets of parenthesis relative to Section 1, because for example
now the expressions ()(()) and (())() are considered the same: |CN | ≤ |PN |. This
reduction in the admitted expressions applies recursively to all sub-expressions that
are obtained by “peeling” the surrounding pair of parentheses off expressions with
a single factor.

Remark 5. The reduction of equivalent expressions to a single representation re-
quires some convention of which ordering of the factors is the admitted one. One
convention is to map each factor to an integer with the representation of Remark 4,
to put these factors into non-increasing or non-decreasing numerical order, and to
concatenate their binary representations left-to-right to define the representative.

Example 4.

C1 = C
(1)
1 = {()};(14)

C
(1)
2 = {(())};(15)

C
(2)
2 = {()()};(16)

C
(1)
3 = {((())), (()())};(17)

C
(2)
3 = {(())()};(18)

C
(3)
3 = {()()()};(19)

C
(1)
4 = {(((()))), ((()())), ((())()), (()()())};(20)

Table 2 shows C
(f)
N and their sums |CN |. The values are bootstrapped as follows:

The consideration leading to Equation (10) leads also to

(21) |C
(1)
N | = |CN−1|.

The decomposition of an expression with f factors needs to consider the number of
ways of distributing the N pairs of parentheses over elements that do not factorize

further. We partition N as π(N) : N = {N c1
1 ;N c2

2 ; . . . N
cf
f } =

∑f
j=1 cjNj mean-

ing that the expression contains c1 factors with elements of C
(1)
1 , c2 factors with

elements of C
(1)
2 , and so on. For each part Nj with repetition cj we compute the

number of lists of cj elements taken from a set of |C
(1)
Nj

|, possibly selecting some

elements more than once or not at all. This is the number of weak compositions of

cj into C
(1)
Nj

parts of non-negative integers. This equals the number of compositions

of cj + |C
(1)
Nj

| into |C
(1)
Nj

| parts of positive integers, which is
(cj+|C

(1)
Nj

|−1

cj

)

[12, §1.2].

(22)

|C
(f)
N | =

∑

π(N):N={N
c1
1 ;N

c2
2 ;...N

cf
f

}

(

|C
(1)
N1

|+ c1 − 1

c1

)(

|C
(1)
N2

|+ c2 − 1

c2

)

· · ·

(

|C
(1)
Nf

|+ cf − 1

cf

)

.
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N |CN | 1 2 3 4 5 6 7 8 9 10 11
1 1 1
2 2 1 1
3 4 2 1 1
4 9 4 3 1 1
5 20 9 6 3 1 1
6 48 20 16 7 3 1 1
7 115 48 37 18 7 3 1 1
8 286 115 96 44 19 7 3 1 1
9 719 286 239 117 46 19 7 3 1 1
10 1842 719 622 299 124 47 19 7 3 1 1
11 4766 1842 1607 793 320 126 47 19 7 3 1 1
12 12486 4766 4235 2095 858 327 127 47 19 7 3 1 1

Table 2. The counts |CN | and |C
(f)
N | of nested nonintersecting

circles [11, A033185,A000081].

Table 2 shows the phenomenon that at large N the values at large f converge
to the sequence

(23) |C
(N−i)
N | = 1, 1, 3, 7, 19, 47, 127, 330, 889, 2378, . . . , i ≥ 0, N → ∞,

the envelope as Knopfmacher and Mays call it [7]. This is the Euler transform of
|CN | [1] and means that if the number of factors is large, most of the factors are
the element C1(1) = {()} and only few combinations remain to exhaust the others.

Returning to the interpretation of PN as non-intersecting circles on a line, consid-
ering the order of factorizations unimportant means that CN contains topologically
distinct sets of non-intersecting circles that are free to move away from the line—as
long as they stay within the boundaries of their surrounding circles. The two circles
inside the bigger circle in Example 3 are allowed to bump around within the bigger
circle, and the big and the outer small circle may also jointly move to other places.

Remark 6. This is a planetary model of the circles in the sense that each circle
can “rotate” inside its surrounding circle, and all these geometries are considered
equivalent.

Definition 6. The generating function for the number of nested expressions in the
commutative algebra is

(24) C(z) =
∑

N≥0

|CN |zN .

It satisfies [5, I.5.2][10, 2]

(25) C(z) = exp





∑

j≥1

zjC(zj)/j



 .

2.2. Nested Circles Embedded in the Sphere Surface. If the N circles are
not embedded in the plane but embedded in the surface of a three-dimensional
sphere, the topologies are counted by the unlabeled trees with N + 1 nodes as
stated by Reshetnikov [11, A000055]:

(26) 1, 1, 1, 2, 3, 6, 11, 23, 47, 106, . . . N ≥ 0.
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(()()())

()()()()

(()())()

(())()()

((())())

((()()))

(())(())

((()))()

(((())))

Figure 1. The 3 clusters of grouping the |C4| = 9 expressions
with 4 pairs of parentheses into clusters of expressions equivalent
under the flip transform.

Each unlabeled tree can be mapped to a circle set topology by constructing the line
graph of the tree, associating circles with nodes of the line graph, and arranging the
circles on the sphere such that they can touch (by moving them on the sphere and
changing radii) iff they are connected in the line graph. The tree is a connectivity
diagram of the regions on the sphere surface: an edge in the tree indicates one must
cross a circle boundary to enter a different region.

Any expression of nested circles in the plane can be interpreted as a set of circles
embedded in a sphere surface: draw a big circumscribing circle around the set of
all circles and interpret it as an equator of the sphere. This defines a mapping of
sets of circle topologies of the plane onto one circle topology of the sphere, because
topologies that are related by flipping the interior and exterior region of a circle are
no longer distinct on the sphere. In our notation of nested parentheses, such a flip
starts with a nested expression A ( B ), where A and B are well-formed (potentially
empty) subexpressions. After embedding in the sphere, the closing parenthesis can
be torn across the back surface of the sphere to the opposite side, ending up with
( A ) B. There are as many flip operations as there are factors in the expression
because one can move any of them to the right before the flip—although some of
their images may be the same because factors may be equal, and although in some
cases the image may be the same as the original expression.

Example 5. The flip operation on ()()() gives (()()).

Example 6. The flip operation on (())() gives ((())) if the () factor is flipped.
It gives ()(()) when the (()) factor is flipped; in that case the image is the same
as the original, because the order of the two factors does not matter here.

Figures 1–3 illustrate for N = 4–6 how expressions transform under the flip-
transform: edges in the graphs mean that the expression on one node is transformed
to the expression of the other node by a flip-transformation.

So the CN circle sets in the plane can be sorted into clusters which assemble all
expressions that are mutually convertible by a chain of flip transformations. The
number of clusters in CN equals the number of topologically distinct circle sets
embedded in the sphere surface.



TOPOLOGIES OF NON-INTERSECTING CIRCLES IN THE PLANE 7

(()()()())

()()()()()

(()()())()

(())()()()

((())()())

((()()()))

((()())())

(()())()()
(()())(())

((()))()()

(((()))())

((()()))()

(((()())))

((())())()

(())(())()

((())(()))

(((())()))

((()))(())

(((())))()

((((()))))

Figure 2. The 6 clusters of grouping the |C5| = 20 expressions
with 5 pairs of parentheses into clusters.

2.3. Sets of Nested Circles and Squares. If the geometric figures have k dis-
tinct hollow shapes— for example circles and squares with k = 2—the methods of
circumscribing and placing side by side generalize the rules. There are k different
ways of forming a single compound object from a set of objects with one element
less because there are k options for the outermost shape. An upper-left index k
specifies how many shapes are available. (21) and (22) turn into

(27) |kC
(1)
N | = k|kCN−1|,

(28) |kC
(f)
N | =

∑

π(N):N={N
c1
1 ;N

c2
2 ;...N

cf

f
}

f
∏

j=1

(

|kC
(1)
Nj

|+ cj − 1

cj

)

.

The implicit equation of the generating function for the total number of topologies
in the plane is [8]

(29) kC(z) = exp



k
∑

j≥1

zj kC(zj)/j



 .

Example 7. For k = 2, |2C2| = 7 configurations exist: a circle inside a circle, a
circle inside a square, a square inside a circle, a square inside a square, two disjoint
circles, two disjoint squares, or a separated square and circle.

The case with k = 2 shapes is further illustrated in Table 3, the case with k = 3
shapes in Table 4. The values on the diagonals are

(30) |kC
(N−1)
N | =

(

N + k − 1

k − 1

)

.

Row sums |kCN | are Euler transforms of the columns |kC
(1)
N |.
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(((()()))())
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Figure 3. The 11 clusters of grouping the |C6| = 48 expressions
with 6 pairs of parentheses into clusters.

3. Topologically Distinct Circle Sets, One Circle Marked

3.1. Base-4 Notation. In Section 2 the circles are moving without intersecting
and qualitatively equal. We move on to the combinatorics of circle sets where one
of them is marked (for example by a unique color, by morphing it into an ellipse or
replacing it by a square). The equivalent modification in the commutative algebra is
to introduce another symbol, a pair of brackets [], to locate the modified evaluation
of a subexpression. Factorization is defined as before, and the marked circle is not
intersecting with any of the other circles as before.
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N |2CN | 1 2 3 4 5 6 7 8 9
1 2 2
2 7 4 3
3 26 14 8 4
4 107 52 38 12 5
5 458 214 160 62 16 6
6 2058 916 741 288 86 20 7
7 9498 4116 3416 1408 416 110 24 8
8 44947 18996 16270 6856 2110 544 134 28 9
9 216598 89894 78408 34036 10576 2812 672 158 32 10

Table 3. The counts |2CN | and |2C
(f)
N | of nested nonintersecting

circles and squares [11, A000151,A038055,A271878].

N |3CN | 1 2 3 4 5 6 7 8 9
1 3 3
2 15 9 6
3 82 45 27 10
4 495 246 180 54 15
5 3144 1485 1143 405 90 21
6 20875 9432 7704 2856 720 135 28
7 142773 62625 52731 20682 5385 1125 189 36
8 1000131 428319 369969 150282 40914 8730 1620 252 45
9 7136812 3000393 2638332 1104702 309510 68400 12891 2205 324 55

Table 4. The counts |3CN | and |3C
(f)
N | of nested nonintersecting

circles, squares and triangles [11, A006964,A038059,A271879].

Definition 7. M
(f)
N is the set of N circles with f factors, one of these circles

marked.

MN =
N
⋃

f=1

M
(f)
N ;(31)

|MN | =

N
∑

f=1

|M
(f)
N |; |M0| = 1.(32)



10 RICHARD J. MATHAR

N |MN | 1 2 3 4 5 6 7 8 9 10 11
1 1 1
2 3 2 1
3 9 5 3 1
4 26 13 9 3 1
5 75 35 26 10 3 1
6 214 95 75 30 10 3 1
7 612 262 214 91 31 10 3 1
8 1747 727 612 268 95 31 10 3 1
9 4995 2033 1747 790 284 96 31 10 3 1
10 14294 5714 4995 2308 848 288 96 31 10 3 1
11 40967 16136 14294 6737 2506 864 289 96 31 10 3 1

Table 5. The number of nonintersecting circles with one of them

marked. |MN | are the row sums and |M
(f)
N | the entries with f

factors [11, A000243,A000107].

Example 8.

M1 = M
(1)
1 = {[]};(33)

M
(1)
2 = {[()], ([])};(34)

M
(2)
2 = {[]()};(35)

M
(1)
3 = {(([])), ([()]), ([]()), [()()], [(())]};(36)

M
(2)
3 = {([])(), [()](), [](())};(37)

M
(3)
3 = {[]()()};(38)

M
(1)
4 = {((())[]), ((([]))), (([()])), (([])()), (([]())), ([()()]),

([()]()), ([(())]), ([]()()), [()()()], [(())()], [(()())], [((()))]};(39)

M
(2)
4 = {(()())[], ((()))[], (([]))(), ([()])(), ([])(()),

([]())(), [()()](), [()](()), [(())]()};(40)

3.2. Recurrences. An overview of how many distinct arrangements exist is given

in Table 5. The set of M
(1)
N is created by either (i) wrapping an expression without

a marked sphere into a bracket, or by (ii) wrapping an expression that already
contains a marked sphere into a pair of parentheses:

(41) |M
(1)
N | = |CN−1|+ |MN−1|.

For expressions with f ≥ 2 factors we may always move the factor with the
bracket to some pivotal (say the leftmost) factor because the order of factors does
not matter in Sections 2 and 3. That pivotal factor needs, say, N ′ pairs of paren-
theses (including the marked), and all the other factors may be varied as a set of
the C type:

(42) |M
(f)
N | =

N−1
∑

N ′=1

|M
(1)
N ′ | |C

(f−1)
N−N ′ |, f ≥ 2.
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Definition 8. The generating function of the topologies of non-intersecting circles
with one marked is

(43) M(z) =
∑

N≥0

|MN |zN .

If we sum on both sides of (42) over f , insert (13) for the sum over the C and

(41) to eliminate the M
(1)
N ′ on the right hand side, Jovovic’s relation shows up [11,

A000243]

(44) M(z) = 1 +
zC2(z)

1− zC(z)
.

For sufficiently large N the count with N−1 factors is |M
(N−1)
N | = 3 because the

set contains the expressions of the form [()]()() · · · , ([])()() · · · , and [](())()() · · · .

3.3. Inner Void Circle. There is a subset of expressions M
(v)
N ⊆ MN—indicated

with an upper v like void—where the bracket does not contain any subexpression
with parentheses, i.e., where the marked circle does not circumscribe any other
circle.

Definition 9. M
(f,v)
N is the set of N circles with f factors, where one of these

circles is marked and does not contain other circles.

M
(v)
N =

N
⋃

f=1

M
(f,v)
N ⊆ M

(f)
N ;(45)

|M
(v)
N | =

N
∑

f=1

|M
(f,v)
N |.(46)

Example 9. Removing in Example 8 the expressions where the bracket pair em-
braces other parentheses yields:

M
(v)
1 = M

(1,v)
1 = {[]};(47)

M
(1,v)
2 = {([])};(48)

M
(2,v)
2 = {[]()};(49)

M
(1,v)
3 = {(([])), ([]()), };(50)

M
(2,v)
3 = {([])(), [](())};(51)

M
(3,v)
3 = {[]()()};(52)

M
(1,v)
4 = {((())[]), ((([]))), (([])()), (([]())), ([]()()), };(53)

M
(2,v)
4 = {(()())[], ((()))[], (([]))(), ([])(()), ([]())()}.(54)

The topologies with that scenario are counted in Table 6. With the same ar-
gument as in Equation (42), scenarios with an empty bracket need to locate the
bracket at some fixed factor, and let the other factors generate all possible diagrams
with the remaining parentheses:

(55) |M
(f,v)
N | =

N−1
∑

N ′=1

|M
(1,v)
N ′ | |C

(f−1)
N−N ′ |.
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N |M
(v)
N | 1 2 3 4 5 6 7 8 9 10 11

1 1 1
2 2 1 1
3 5 2 2 1
4 13 5 5 2 1
5 35 13 13 6 2 1
6 95 35 35 16 6 2 1
7 262 95 95 46 17 6 2 1
8 727 262 262 128 49 17 6 2 1
9 2033 727 727 364 139 50 17 6 2 1

10 5714 2033 2033 1029 401 142 50 17 6 2 1
11 16136 5714 5714 2930 1147 412 143 50 17 6 2 1
12 45733 16136 16136 8344 3299 1184 415 143 50 17 6 2 1

Table 6. The number of nonintersecting circles, one marked.

|M
(v)
N | and |M

(f,v)
N | for N, f ≥ 1 [11, A000107].

On the diagonals of Tables 5 and 6 we find

(56) |M
(N)
N | = |M

(N,v)
N | = 1,

because the only expressions with as many factors as circles is the product of

singletons, M
(N)
N = M

(N,v)
N = {[]()() · · · ()}.

The number in column M
(1)
N in Table 6 duplicates the total of the previous row:

(57) |M
(1,v)
N | = |M

(v)
N−1|.

This is easily understood because each element of the set M
(1)v
N is created by sur-

rounding the expression of an element of the set M
(v)
N−1 by a pair of (non-marked)

parentheses, so the “void” within the bracket is conserved.

In a similar manner |M
(1,v)
N | = |M

(2,v)
N | is understood by “peeling off” the outer-

most pair of parentheses of the element of M
(1,v)
N and placing it as an extra factor

() aside from the peeled expression. This association works because the outermost
pair of parentheses is never the bracket.

In summary, all entries of Table 5 and 6 can be recursively generated from Table
2 with the aforementioned 4 formulas.

Remark 7. The serialized representation of the circle sets with two types of paren-
theses on a computer is possible by moving from the binary digit representation of
Sections 1 and 2 to a base-4 representation ) 7→ 0, (7→ 1, ] 7→ 2, [ 7→ 3. The mapping
is [[]] 7→ 33224, ([[()]]()) 7→ 13310221004, for example.

4. Circle Sets With One Pair intersecting

4.1. Serialized Notation. Another derivative of the non-intersecting circle sets
of Section 2 are circle sets where exactly one pair of circles intersects at two points
of their rims.

These two intersecting circles are a natural reference frame for the otherN−2. In
the serialized notation we introduce the expression [[]] with two bracket pairs to in-
dicate crossing of the rims of the first, then of the second circle, then leaving the first
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and finally leaving the second. The notation provides 5 regions that host the N − 2
remaining circles. The well-formed general expression is reg4 [reg3 [reg2 ]reg1 ]reg0 if
the regions are enumerated 0–4.

reg4[reg3[reg2]reg1]reg0 7→

reg4

✫✪
✬✩
reg
3 reg

2✫✪
✬✩

reg
1

reg0

The serialized notation is well-suited for computerized managing, but again has
the drawback that the freedom of moving circle sets around as long as no new inter-
sections are induced is not strictly enforced. We add the following constraints to the
serialized notation to avoid over-counting those circle sets with two intersections:

(1) The regions reg1, reg2 and reg3 host members of the CN collection. This
basically ensures that their circle sets do not introduce intersections by
peeking beyond the enclosures defined by the bracket pair. Note that no
such rule is enforced on reg0 and reg4 because we allow the crossing circles
to be inside other circles; so an expression like ([[]]) is well-formed, although
the isolated left and right parentheses are not individually members of P.

(2) If the entire core region of the crossing circles is removed—leaving the
concatenated expression reg4reg0—this must be a well-formed P expression.
This ensures that circles that rotate in the space outside the crossing circles
are considered equivalent; eventually expressions like (()[[]]) and ([[]]()) for
example are counted only once.

(3) From the two expressions obtained by swapping reg1 and reg3 only one is
admitted. These are the regions inside one of the intersecting circles but
not in the intersection. The rule ensures that a sort of mirror operation
at the center of the intersection—which does not change the topology—is
admitted only once in the circle sets.

Definition 10. X
(f)
N is the set of N circles with f factors, two circle rims inter-

secting in two points.

XN =

N
⋃

f=1

X
(f)
N ;(58)

|XN | =

N
∑

f=1

|X
(f)
N |; |X1| = 0.(59)

Example 10. ([[]])() 7→

♠♠
✫✪
✬✩♠

([[]()]) 7→ ✒✑
✓✏✒✑✓✏✫✪
✬✩❤

[[]](()) 7→ ✒✑
✓✏✒✑✓✏✚✙
✛✘♠

[[()]()]() 7→ ✫✪
✬✩
✫✪
✬✩♠♠❥
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N |XN | 1 2 3 4 5 6 7 8 9 10
2 1 1 0
3 4 3 1 0
4 15 10 4 1 0
5 50 30 15 4 1 0
6 162 91 50 16 4 1 0
7 506 268 162 55 16 4 1 0
8 1558 790 506 185 56 16 4 1 0
9 4727 2308 1558 594 190 56 16 4 1 0

10 14227 6737 4727 1878 617 191 56 16 4 1 0
11 42521 19609 14227 5825 1970 622 191 56 16 4 1 0

Table 7. Topologically distinct sets of N circles with one pair

intersecting, total (row sums) |XN | and |X
(f)
N | classified according

to number of factors 1 ≤ f ≤ N .

Example 11.

X2 = X
(1)
2 = {[[]]};(60)

X
(2)
2 = {};(61)

X
(1)
3 = {([[]]), [[()]], [[]()]};(62)

X
(2)
3 = {[[]]()};(63)

X
(3)
3 = {};(64)

X
(1)
4 = {(([[]])), ([[()]]), ([[]()]), ([[]]()),

[()[]()], [[()()]], [[()]()], [[(())]], [[]()()], [[](())]};(65)

X
(2)
4 = {([[]])(), [[()]](), [[]()](), [[]](())};(66)

X
(3)
4 = {[[]]()()};(67)

X
(4)
4 = {};(68)

4.2. Recurrences. Table 7 shows how many expressions are in the sets XN and

X
(f)
N . The first three values of |XN | are mentioned in the Encyclopedia of Integer

Sequences [11, A261070].

Obviously |X
(N)
N | = 0 and |X

(N−1)
N | = 1 because we always spend two circles in

the bracket—which does not factorize—and the expression [[]]()()() · · · is the only

member of X
(N−1)
N .

For sufficiently large N there are |X
(N−2)
N | = 4 expressions, namely [[()]]()() · · · ,

[[]()]()() · · · , [[]](())() · · · , and ([[]])()() · · · with N − 3 trailing isolated circles.
The argument of isolating the factor that contains the bracket pair that led to

Equation (42) remains valid, so

(69) |X
(f)
N | =

N−1
∑

N ′=1

|X
(1)
N ′ | |C

(f−1)
N−N ′ |, f ≥ 2.

The dismantling of the sole factor of an expression of X
(1)
N that contains the two

brackets shows two variants: if the outer parentheses are the round parenthesis, the
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expression has been formed by embracing any expression with N − 1 circles, which
contributes |XN−1|. If alternatively the expression is of the form stripped down to
where reg4 and reg0 are empty, we count the number of ways of construction reg3,
reg2 and reg1 with a total of N − 2 circles by a function Dn−2:

(70) |X
(1)
N | = |XN−1|+DN−2.

(71) DN = 1, 2, 6, 15, 41, 106, 284, 750, 2010, 5382, 14523, 39290 . . . ; N ≥ 0.

Example 12. The 6 expressions that contribute to D2 = 6 are [[]()()], [[](())],
[[()]()], [()[]()], [[(())]], and [[()()]].

The distribution of the N circles over reg3, reg2 and reg1 has no further re-
strictions to place any member of C into reg2, which reduces D by composition to
another function D̂ of the form

(72) DN =

N
∑

N ′=0

|CN ′ |D̂N−N ′.

D̂N counts the number of ways of placing N circles in total into reg3 and reg1 such
that each expression is a member of C and such that the third rule of Section 4.1
of counting only the “ordered” pairs is obeyed. If N is odd, the expressions in two
regions necessarily differ because they must have a different number of circles, so
the rule may for example be implemented by putting always the expression with
the lower number into one region:

(73) D̂N,odd =

⌊N/2⌋
∑

N ′=0

|CN ′ | |CN−N ′ |.

If N is even, an additional format appears where the expressions in reg3 and reg1
have the same number of circles. Because these elements of |CN/2| may be put into
a strict order, the triangular number with that argument counts the “non-ordered”
pairs of these:

(74) D̂N,even =

N/2
∑

N ′=0

|CN ′ | |CN−N ′ |+
|CN/2|(|CN/2|+ 1)

2
.

In terms of the generating functions (24), (43) and

(75) D̂(z) =
∑

N≥0

D̂NzN , D(z) =
∑

N≥0

DNzN ,

this type of half convolution in the previous two equations may be summarized as
[11, A027852]

(76) D̂(z) =
1

2
[C(z)2 + C(z2)].

Remark 8. The symmetry enforced to the contents of reg1 and reg3 is the symmetry
of the cyclic group of order 2. The cycle index for this group is (t21 + t2)/2 [5, I60].
Substitution of tj 7→ C(zj) gives the same result [3, p. 252].

(77) D̂N = 1, 1, 3, 6, 16, 37, 96, 239, 622, 1607, 4235, 11185, 29862 . . . ; N ≥ 0.
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The convolution (72) turns into a product of the generating functions:

(78) D(z) = C(z)D̂(z).

Example 13. D̂1 = 1 is the size of the set {[[]()]}.

Example 14. D̂2 = 3 is the size of the set {[()[]()], [[]()()], [[](())]}.

Example 15. D̂3 = 6 is the size of the set {[[]()()()], [[](())()], [[]((()))], [[](()())],
[()[]()()], [()[](())]}.

Summing (69) over f and using (70) leads to

(79) X(z) = 1 +
z2D(z)C(z)

1− zC(z)
.

4.3. Pair of Touching Circles. If there are no further circles in the area of the
intersection, the two intersecting circles may be moved apart until they touch in
a single point. These borderline cases are destilled from the previous analysis by
counting expressions only where the two inner brackets appear side by side, i.e,

where reg2 is empty. We call these sets of configurations X
(f,t)
N where the label t

indicates touching.

Definition 11. X
(f,t)
N is the set of N circles with f factors, two circle rims touching

at one point.

X
(t)
N =

N
⋃

f=1

X
(f,t)
N ⊆ XN ;(80)

|X
(t)
N | =

N
∑

f=1

|X
(f,t)
N | ≤ |XN |;(81)

Example 16. If we remove the expressions from Example 11 where other circles
appear within the innermost of the two square brackets, the following list emerges:

X
(t)
2 = X

(1,t)
2 = {[[]]};(82)

X
(2,t)
2 = {};(83)

X
(1,t)
3 = {([[]]), [[]()]};(84)

X
(2,t)
3 = {[[]]()};(85)

X
(3,t)
3 = {};(86)

X
(1,t)
4 = {(([[]])), ([[]()]), ([[]]()), {[()[]()], [[]()()], [[](())]};(87)

X
(2,t)
4 = {([[]])(), [[]()](), [[]](())};(88)

X
(3,t)
4 = {[[]]()()};(89)

X
(4)
4 = {};(90)

Table 8 shows how many expressions are in the sets X
(t)
N and X

(f)t
N .

As before

(91) |X
(N,t)
N | = 0; |X

(N−1,t)
N | = 1.
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N |X
(t)
N | 1 2 3 4 5 6 7 8 9 10

1 0 0
2 1 1 0
3 3 2 1 0
4 10 6 3 1 0
5 30 16 10 3 1 0
6 91 46 30 11 3 1 0
7 268 128 91 34 11 3 1 0
8 790 364 268 108 35 11 3 1 0
9 2308 1029 790 327 112 35 11 3 1 0

10 6737 2930 2308 992 344 113 35 11 3 1 0
11 19609 8344 6737 2962 1055 348 113 35 11 3 1 0

Table 8. Topologically distinct sets of N circles with one pair
touching, total and classified according to number of factors 1 ≤
f ≤ N [11, A269800].

The strategy of isolating the factor with the brackets that lead to (70) remains
valid:

(92) |X
(f,t)
N | =

N−1
∑

N ′=1

|X
(1,t)
N ′ | |C

(f−1)
N−N ′ |, f ≥ 2.

The formula that distributed the N − 2 circles within the three regions in the
intersecting circles now needs to skip the cases where some of them are in reg2.
And instead of (70) we immediately skip to

(93) |X
(1,t)
N | = |X

(t)
N−1|+ D̂N−2

and replace (79) by the generating function

(94) X(t)(z) =
∑

N≥0

X
(t)
N zN = 1 +

z2D̂(z)C(z)

1− zC(z)
.

4.4. One or More Intersecting Pairs. The topologies of the members of the
sets XN are mapped onto rooted trees representing the dependence of “being a
circle inside another” as “being a branch of a node that represents the enclosing
circle.” The plane is the root of the tree. There is no limit of how many branches
a node can have. Moving around circle clusters freely means that the nodes are
counted without a notion of order. The sole exception—which distinguishes CN

from XN—is that the tree must have a single node representing the intersecting
circle pair which has up to three nodes (the three regions) that partially respect
order because the circle clusters in reg2 are topologically considered different from
circle clusters in reg1 or reg3.

If one chops the node representing the plane off the tree, it becomes a rooted
forest, where the number of rooted trees is the factor f of the interpretation as
nested parentheses.

The natural extension of these rules is to symmetrize the rules for the branches
in that rooted forest, i.e., to allow circles and the three regions in the intersecting
circle pair to host any number of intersecting circle clusters or intersecting circle
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pairs. The restriction that remains is that intersection of more than two circles are
still not considered.

Definition 12. 2XN is the set of topologies of N nested circles in the plane where

each circle intersects with at most one other circle. 2X
(f)
N is the set of topologies of

N nested circles with f factors, i.e., with f of these objects that are not inside any
other of these objects.

Definition 13. The generating function is

(95) 2X(z) =
∑

N≥0

|2XN |zN .

Example 17. This is a circle bundle in 2X
(1)
7 which is not in X7:

♠♠
✫✪
✬✩
♠♠❤✫✪
✬✩

The outer pair of 2 intersecting circles contains another pair of 2 intersecting circles
(amongst others) in one of its three regions.

The grand book-keeping of placing these objects side by side works as before,
and the empty plane is the unique way of not having any circles:

(96) 2
XN =

N
⋃

f=1

2
X

(f)
N ; |2XN | =

N
∑

f=1

|2X
(f)
N |; |2X0| = 1.

(97) |2X
(f)
N | =

∑

π(N):N={N
c1
1 ;N

c2
2 ;...N

cf

f
}

f
∏

j=1

(

|2X
(1)
Nj

|+ cj − 1

cj

)

; f ≥ 2.

The difference starts where the objects at f = 1 are dismantled. These are not the
two types considered in (41), (70) or (93) nor the k types as in (27). The compound
object is either a circle that hosts the same type of objects with one circle less, or
a pair of intersecting circles with other objects of the same type in their regions:

(98) |2X
(1)
N | = |2XN−1|+ D̄N−2.

D̄N−2 is the number of ways of distributing objects of the 2X type with a total of
N − 2 circles into three regions with the symmetry rules of Section 4.2.

With the splitting rule of Section 4.2 the overlapping reg2 may contain any
number of the elements of 2X and the other two regions share the remaining number
of circles as if the set was ordered. Copying from (72) and (76),

(99) D̄N =
N
∑

N ′=0

|2XN ′ | D̃N−N ′ ;

(100) D̃(z) =
∑

N≥0

D̃NzN =
1

2
[2X(z)2 + 2X(z2)].

(101)
D̄N = 1, 2, 8, 26, 99, 364, 1417, 5541, 22193, 89799, 368160, 1523020, . . . , N ≥ 0.
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N |2XN | 1 2 3 4 5 6 7 8 9
1 1 1
2 3 2 1
3 8 5 2 1
4 27 16 8 2 1
5 90 53 26 8 2 1
6 330 189 100 30 8 2 1
7 1225 694 375 115 30 8 2 1
8 4729 2642 1473 453 120 30 8 2 1
9 18554 10270 5823 1827 473 120 30 8 2 1
10 74234 40747 23479 7432 1936 479 120 30 8 2 1
11 300828 164033 95618 30622 7954 1961 479 120 30 8 2 1

Table 9. The number of topologies of nested N circles intersect-
ing at most as binaries, |2XN |, and the subcounts with f factors,

|2X
(f)
N |, 1 ≤ f ≤ N . The row sums are the Euler transform of the

column f = 1.

The number of ways of distributing N circles over reg1 and reg3 of two inter-
secting circles is
(102)

D̃N = 1, 1, 4, 11, 41, 141, 537, 2041, 8042, 32028, 129780, 531331, 2198502, . . .N ≥ 0.

Example 18. D̃2 = 4 counts the three ways of Example 14 plus the one way of
putting two intersecting circles in one of the two regions.

Example 19. D̃3 = 11 counts the six ways of Example 15 plus the following five
ways that are new in 2XN :

(1) putting [[]]() in one region,
(2) putting [[]] in one region and () in the other,
(3) putting ([[]]) in one region,
(4) putting [[]()] in one region,
(5) putting [[()]] in one region.

5. Outlook: 3-circle Intersections

5.1. 6 New Topologies. Adding 3-circle intersections introduces 6 new topologies
beyond those of 2XN [11, A250001]:

(1) The “RGB spot diagram” 3,1X3: ✫✪
✬✩
✫✪
✬✩✫✪
✬✩

1

2

3

The 7 regions
inside the circles may be labeled by the circles that cover them: 1, 12, 2, 23,
3, 13, 123. The symmetry of the diagram is established by three mirror lines
that pass through 12, 23 and 13, and a symmetry for rotations by multiples
of 120◦ around the center. The symmetry group is the noncyclic group of
order 6. A permutation representation is (1)(23) for the first generator and
(123) for the second [9]. The elements are
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• the unit element (1)(2)(3) which contributes t31 to the cycle polynomial,
• the first generator which contributes t1t2,
• the second generator which contributes t3,
• the square of the second generator, (132), which contributes t3,
• the element (12) which contributes t1t2, and
• the element (13) which contributes t1t2.

The cycle index is (t31 + 3t1t2 + 2t3)/6.

(2) The torn version of this with an uncovered central area 3,2X3: ✧✦
★✥
✧✦
★✥✧✦
★✥

1

2

3

The 7 regions inside the circles may be labeled by the circles that cover
them: 1, 12, 2, 23, 3, 13, /∈ 123. The symmetry is the same as for 3,1X3

above.

(3) A linear chain 3,3X3: ✫✪
✬✩

3

✫✪
✬✩

2

✫✪
✬✩

1

The 5 regions inside the
circles may be labeled by the circles that cover them: 1, 12, 2, 23, 3. The
symmetry is the same left-right mirror symmetry as in Remark 8; the cycle
index is (t21 + t2)/2.

(4) The left-right compressed version of the previous diagram, 3,4X3:✫✪
✬✩
✫✪
✬✩
✫✪
✬✩

1
2

3

The 7 regions inside the circles may be labeled by the circles that cover
them: 1, 12, 123, 23, 3, 2, 2, using overline and underline to register the
upper and lower regions of the pieces of circle 2. The appearance of the
regions 2 and 2 introduces an additional up-down mirror symmetry. The
symmetry group is the noncyclic group of order 4, which has the generators
(34) and (12) [9]. The elements are

• the unit element (1)(2)(3)(4) which contributes t41 to the cycle poly-
nomial,

• the first generator which contributes t21t2,
• the second generator which contributes t21t2,
• the element (12)(34) which contributes t22.

The cycle index is (t41+2t21t2+ t22)/4. This is replaced by the direct product

(t21+ t2)/2×(t′1
2
+ t′2)/2 as we wish to represent the combined regions 1∪12

and 3 ∪ 23 that are related by one of the C2 symmetries differently from
the regions 2 and 2 by the other C2 symmetry.

(5) The previous diagramwith a shrunk center circle, 3,5X3: ✫✪
✬✩♠
✫✪
✬✩

123

The 7 regions inside the circles may be labeled by the circles that cover
them: 1, 12, 123, 23, 3, 13, 13, using overline and underline to register the
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upper and lower regions. The symmetry is the same as in the preceding
diagram 3,4X3.

(6) The asymmetric bundle 3,6
X3: ✫✪
✬✩
✖✕
✗✔
✫✪
✬✩

12 3

The 5 regions inside the
circles may be labeled by the circles that cover them: 1, 12, 123, 23, 2. The
cycle index is t1.

Let 3XN ⊇ 2XN denote the arrangements of N nested circles which admit the
topologies of simple circles, the one topology of two-circle intersections and the six
topologies of three-circle intersections in the subregions.

Example 20. This is an element of 3X
(2)
10 which is not in 2XN : ✫✪

✬✩
✖✕
✗✔❥❤✫✪
✬✩
♠♠♠ ✍✌
✎☞❤

5.2. Recurrences.

Definition 14. Generating function of the topologies with up-to-three intersections:

(103)
∑

N

|3XN |zN = 3X(z).

The multiset interpretation as a forest of rooted trees with non-factoring elements
3
X

(1)
N in the roots holds again:

(104) |3X
(f)
N | =

∑

π(N):N={N
c1
1 ;N

c2
2 ;...N

cf

f
}

f
∏

j=1

(

|3X
(1)
Nj

|+ cj − 1

cj

)

.

There is one type of compound objects constructed by wrapping a circle around
others, one type of covering them with two intersecting circles, and six types of
covering them with three intersecting circles. Because the two types 3,1X and 3,2X

of the 3-circles have the same number of regions and the same symmetry, we count
the first type twice and drop the second; because types 3,4X and and 3,5X have the
same number of regions and the same symmetry, we also count 3,4X twice and drop
3,5

X. The upgrade of (98) is

(105) |3X
(1)
N | = |3XN−1|+

2DN−2 +2 3,1DN−3 +
3,3DN−3 +2 3,4DN−3 +

3,6DN−3.

The generating functions are defined in the obvious way preserving the upper left
type indices:

∑

N≥0
...DNzN = ...D(z). They are all anchored at ...D0 = 1 and

zero for negative N .

(1) The three regions in 2XN are populated as before, but now also accepting
elements of 3X in their subregions such that their values differ from the
values of D̄N of Equation (99):

(106) 2D(z) =
1

2
3X(z)[3X2(z) + 3X(z2)].

(2) In 3,1
XN region 123 is populated without restriction. The remaining 6

regions associated via symmetry are then incorporated with tj 7→
3X2(zj),

j ≥ 1, in the cycle index, so

(107) 3,1D(z) =
1

6
3X(z)[3X6(z) + 3 3X2(z) 3X2(z2) + 2 3X2(z3)].



22 RICHARD J. MATHAR

N |3XN | 1 2 3 4 5 6 7 8 9
1 1 1
2 3 2 1
3 14 11 2 1
4 61 44 14 2 1
5 252 169 66 14 2 1
6 1019 609 323 70 14 2 1
7 4127 2253 1431 356 70 14 2 1
8 17242 8779 6320 1695 361 70 14 2 1
9 74007 36319 27420 8081 1739 361 70 14 2 1

10 325615 157297 119821 37849 8455 1745 361 70 14 2 1
11 1458604 701901 528557 176894 40549 8510 1745 361 70 14 2 1

Table 10. The number of topologies of nested N circles intersect-
ing at most as triples, |3XN |, and the subcounts with f factors,

|3X
(f)
N |, 1 ≤ f ≤ N . The row sums are the Euler transform of the

column f = 1.

(3) Region 2 in 3,3XN is populated without restrictions, which contributes a
factor 3X(z). The pair regions 1 and 12 are populated without restrictions
with is represented by f(z) = 3X2(z). The regions 3 and 23 associated
to them via symmetry are then incorporated with tj 7→ f(zj) in the cycle
index, so

(108) 3,3D(z) =
1

2
3X(z)[3X4(z) + 3X2(z2)].

(4) In 3,4XN region 123 is populated without restriction which contributes a
factor 3X(z). Regions 1 and 12 are represented by f(z) and 2 is represented
by 3X(z). Substituting tj = f(zj), t′j =

3X(z) in the cycle index yields

(109) 3,4D(z) =
1

4
3X(z)[3X4(z) + 3X2(z2)][3X2(z) + 3X(z2)].

(5) The five regions in 3,6
XN are populated without restrictions:

(110) 3,6D(z) = 3X5(z).

The numerical evaluation of the recurrences leads to Table 10. The first difference
in comparison to Table 9 is where the 6 additional topologies offer new branches as

soon as at least 3 circles are involved: |3X
(1)
3 | = |2X

(1)
3 |+ 6.

In a wider context one would like to construct and count all circle sets of N
circles with an arbitrary number of intersections [11, A250001]. That is out of
reach of this paper; in Table 10 that analysis is only complete up to N = 3.
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8. Pierre Leroux and Brahim Miloudi, Généralisations de la formule d’Otter, Ann. Sci. Math.
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