Rich square-free words

Jetro Vesti
University of Turku, Department of Mathematics and Statistics, 20014 Turku, Finland

Abstract

A word w is rich if it has $|w|+1$ many distinct palindromic factors, including the empty word. A word is square-free if it does not have a factor $u u$, where u is a non-empty word.

Pelantová and Starosta (Discrete Math. 313 (2013)) proved that every infinite rich word contains a square. We will give another proof for that result. Pelantová and Starosta denoted by $r(n)$ the length of a longest rich square-free word on an alphabet of size n. The exact value of $r(n)$ was left as an open question. We will give an upper and a lower bound for $r(n)$, and make a conjecture that our lower bound is exact.

We will also generalize the notion of repetition threshold for a limited class of infinite words. The repetition thresholds for episturmian and rich words are left as an open question.

Keywords: Combinatorics on words, Palindromes, Rich words, Square-free words, Repetition threshold.
2000 MSC: 68R15

1. Introduction

In recent years, rich words and palindromes have been studied extensively in combinatorics on words. A word is a palindrome if it is equal to its reversal. In [DJP], the authors proved that every word w has at most $|w|+1$ many distinct palindromic factors, including the empty word. The class of words which achieve this limit was introduced in [BHNR] with the term full words. When the authors of [GJWZ] studied these words thoroughly they called them rich (in palindromes). Rich words have been studied in various papers, for example in [AFMP], [BDGZ1], [BDGZ2], [DGZ], [RR] and [V].

The defect of a finite word w, denoted $D(w)$, is defined as $D(w)=|w|+1-|\operatorname{Pal}(w)|$, where $\operatorname{Pal}(w)$ is the set of palindromic factors in w. The defect of an infinite word w is

Email address: jejove@utu.fi (Jetro Vesti)
defined as $D(w)=\sup \{D(u) \mid u$ is a factor of $w\}$. In other words, the defect tells how many palindromes the word is lacking. Rich words are exactly those whose defect is equal to 0 .

The authors of [PS] proved, in Theorem 4 of the article, that every recurrent word with finite Θ-defect contains infinitely many overlapping factors. An overlapping word is a word of form uuv, where v is a non-empty prefix of u. A word is a Θ-palindrome if it is a fixed point of an involutive antimorphism Θ. The reversal mapping R is an involutive antimorphism, which means that if $\Theta=R$ then Θ-defect is equal to the defect. This means Theorem 4 in [PS] holds also for normal defect and normal palindromes. In this article we will restrict ourselves to the case where Θ is the reversal mapping.

Since every rich word has a finite defect and every overlapping factor uuv has a square $u u$, a corollary of Theorem 4 in [PS] is that every recurrent rich word contains a square. This was noted in [PS] as Remark 6, where the word recurrent was replaced with infinite. This can be done, since every infinite rich word x has a recurrent point y in the shift orbit closure of x (see e.g. Section 4 of [Q]). We know y has a square, which means x has a square. In Corollary 2.8 of our article, we will give another proof of the result in Remark 6 of [PS].

In Remark 6 of [PS] there was also noted that since every rich square-free word is finite, we can look for a longest one. The length of a longest such word, on an alphabet of size n, was denoted by $r(n)$. An explicit formula for $r(n)$ was left as an open question.

In Section 2.1 we will construct recursively a sequence of rich square-free words, the lengths of which give us a lower bound for $r(n)$. We will also make a conjecture that $r(n)$ can be achieved using these words. In Section 2.2 we will prove an upper bound for $r(n)$.

1.1. Repetition threshold

Square-free words are a special case of unavoidable repetitions of words, which has been a central topic in combinatorics on words since Thue (see [T1] and [T2]). The repetition threshold, on an alphabet of size n, is the smallest number r such that there exists an infinite word which avoids greater than r-powers. This number is denoted by $R T(n)$ and it was first studied in [D], where Dejean gave her famous conjecture. This conjecture has now been proven, in many parts and by several authors (see $[\mathrm{R}]$ and $[\mathrm{CR}]$).

The repetition threshold can be studied also for a limited class of infinite words. In [MP], it was proven that the infinite Fibonacci word does not contain a power with exponent greater than $2+\varphi$, where φ is the golden ratio $\frac{\sqrt{5}+1}{2}$, but every smaller fractional power is contained. In [CD], the authors proved that among Sturmian words, the Fibonacci word is optimal with respect to this property. Sturmian words are equal to episturmian words when $n=2$ (see [DJP]). This means the episturmian repetition threshold for $n=2$ is $2+\varphi$, denoted $E R T(2)=2+\varphi$. From [GJ], we get that the n-bonacci word is episturmian and it has critical exponent $2+1 /\left(\varphi_{n}-1\right)$, where φ_{n} is the generalized golden ratio. This means $\operatorname{ERT}(n) \leq 2+1 /\left(\varphi_{n}-1\right)$. Notice, from [HPS] we get that φ_{n} converges to 2 .

In the same way, we define the rich repetition threshold $R R T(n)$. From [PS] we get that $R R T(n) \geq 2$. Since episturmian words are rich (see [DJP]), we also know $R R T(n) \leq$ $2+1 /\left(\varphi_{n}-1\right)$ and $E R T(n) \geq 2$. This means $2 \leq R R T(n), E R T(n) \leq 2+1 /\left(\varphi_{n}-1\right)$. The exact values of $E R T(n)$ and $R R T(n)$ are left as an open problem.

Open problem 1.1. Determine the repetition threshold for episturmian words and for rich words, on an alphabet of size n.

1.2. Preliminaries

An alphabet A is a non-empty finite set of symbols, called letters. A word is a finite sequence of letters from A. The empty word ϵ is the empty sequence. The set A^{*} of all finite words over A is a free monoid under the operation of concatenation. The set $\operatorname{Alph}(w)$ is the set of all letters that occur in w. If $|\operatorname{Alph}(w)|=n$ then we say that w is n-ary.

An infinite word is a sequence indexed by \mathbb{N} with values in A. We denote the set of all infinite words over A by A^{ω} and define $A^{\infty}=A^{*} \cup A^{\omega}$.

The length of a word $w=a_{1} a_{2} \ldots a_{n}$, with each $a_{i} \in A$, is denoted by $|w|=n$. The empty word ϵ is the unique word of length 0 . By $|w|_{a}$ we denote the number of occurrences of a letter a in w.

A word x is a factor of a word $w \in A^{\infty}$, denoted $x \in w$, if $w=u x v$ for some $u \in A^{*}, v \in$ A^{∞}. If x is not a factor of w, we denote $x \notin w$. If $u=\epsilon$ (resp. $v=\epsilon$) then we say that x is a prefix (resp. suffix) of w. If $w=u v \in A^{*}$ is a word, we use the notation $u^{-1} w=v$ or $w v^{-1}=u$ to mean the removal of a prefix or a suffix of w. We say that a prefix or a suffix of w is proper if it is not the whole w.

A factor x of a word w is said to be unioccurrent in w if x has exactly one occurrence in w. Two occurrences of factor x are said to be consecutive if there is no occurrence of x between them. A factor of w having exactly two occurrences of a non-empty factor u, one as a prefix and the other as a suffix, is called a complete return to u in w.

The reversal of $w=a_{1} a_{2} \ldots a_{n}$ is defined as $\widetilde{w}=a_{n} \ldots a_{2} a_{1}$. A word w is called a palindrome if $w=\widetilde{w}$. The empty word ϵ is assumed to be a palindrome.

Other basic definitions and notation in combinatorics on words can be found from Lothaire's books Lot1] and Lot2].

Proposition 1.2. ([DJP], Prop. 2) A word w has at most $|w|+1$ distinct palindromic factors, including the empty word.

Definition 1.3. A word w is rich if it has exactly $|w|+1$ distinct palindromic factors, including the empty word. An infinite word is rich if all of its factors are rich.
Proposition 1.4. (GJWZ], Thm. 2.14) A finite or infinite word w is rich if and only if all complete returns to any palindromic factor in w are themselves palindromes.

Let $w=v u$ be a word and u its longest palindromic suffix. The palindromic closure of w is defined as $w^{(+)}=v u \widetilde{v}$. If u is the longest proper palindromic suffix of w, called lpps, we define the proper palindromic closure of w the same way as $w^{(++)}=v u \tilde{v}$. We refer to the longest proper palindromic prefix of w as lppp and define the proper palindromic prefix closure of w as ${ }^{(++)} w=\widetilde{\widetilde{w}^{(++)}}$.

Proposition 1.5. (GJWZ], Prop. 2.6) Palindromic closure preserves richness.
Proposition 1.6. (GJWZ], Prop. 2.8) Proper palindromic (prefix) closure preserves richness.

2. The length of a longest rich square-free word

A word of form $u u$, where $u \neq \epsilon$, is called a square and a word w which does not have a square as a factor is called square-free. For example 1212 is a square and 01210 is square-free.

In [PS], Theorem 4 and Remark 6 , it was proved that every infinite rich word contains a square. This means that every rich square-free word is of finite length. The length of a longest such word, on an alphabet of size n, is denoted with $r(n)$. The explicit formula for $r(n)$ was left as an open problem in PS$]$.

The first seven exact values of $r(n)$ are $r(1)=1, r(2)=3, r(3)=7, r(4)=15, r(5)=$ $33, r(6)=67$ and $r(7)=145$. These can be found from https://oeis.org/A269560. The longest rich square-free word on a given alphabet is not unique. Here are all the longest non-isomorphic ones, up to permutating the letters and taking the reversal, for $n=1, \ldots, 7$:
$w_{1,1}=1$
$w_{2,1}=121$
$w_{3,1}=2131213$
$w_{3,2}=1213121$
$w_{4,1}=131214121312141$
$w_{4,2}=123121412131214$
$w_{4,3}=213121343121312$
$w_{4,4}=121312141213121$
$w_{5,1}=421242131213531213124213121353135$
$w_{5,2}=131242131213531213124213121353135$
$w_{6,1}=1513121315131214121312141614121312141213151312141213121416141214161$
$w_{6,2}=1214121315131214121312141614121312141213151312141213121416141214161$
$w_{6,3}=4212421312135312131242131213531356531353121312421312135312131242124$
$w_{6,4}=1312421312135312131242131213531356531353121312421312135312131242124$
$w_{6,5}=5313531213124213121353121312421316131242131213531213124213121353135$
$w_{6,6}=1312421312135312131242131213531356531353121312421312135312131242131$ $w_{7,1}=242131213531213124213161312421312135312131242131213531357531353121312$ 4213121353121312421316131242131213531213124213121353135753135312135313575357 $w_{7,2}=242131213531213124213161312421312135312131242131213531357531353121312$ 4213121353121312421316131242131213531213124213121353135753135312135313575313 $w_{7,3}=242131213531213124212464212421312135312131242131213531357531353121312$ 4213121353121312421246421242131213531213124213121353135753135312135313575357 $w_{7,4}=242131213531213124212464212421312135312131242131213531357531353121312$ 4213121353121312421246421242131213531213124213121353135753135312135313575313

We can see that

$$
\begin{gathered}
w_{2,1}=w_{1,1} 2 w_{1,1}, w_{3,2}=w_{2,1} 3 w_{2,1}, w_{4,3}=w_{3,1} 4 \widetilde{w_{3,1}}, w_{4,4}=w_{3,2} 4 w_{3,2} \\
w_{6,3}=w_{5,1} 6 \widetilde{w_{5,1}}, w_{6,4}=w_{5,2} 6 \widetilde{w_{5,1}}, w_{6,5}=\widetilde{w_{5,2}} 6 w_{5,2} \text { and } w_{6,6}=w_{5,2} 6 \widetilde{w_{5,2}} .
\end{gathered}
$$

Generally, we can construct rich square-free words by using a basic recursion

$$
b_{n}=b a \widetilde{b},
$$

where b is a longest rich square-free word over an ($n-1$)-ary alphabet A and $a \notin A$ is a new letter. It is very easy to see that b_{n} is rich and square-free. This gives us a recursive lower bound for $r(n): r(n) \geq 2 r(n-1)+1$, for all $n \geq 2$. We will use this inequality excessively later in Section [2.2, when we prove an upper bound for $r(n)$. The closed-form solution for the recursion $r(1)=1, r(n) \geq 2 r(n-1)+1$ is $r(n) \geq 2^{n}-1$.

The case $n=5$ reveals that the basic recursion $b_{n}=b a \widetilde{b}$ is not always optimal, since neither $w_{5,1}$ nor $w_{5,2}$ is of that form: $\left|w_{5,1}\right|=r(5)=33>31=2 \cdot r(4)+1$.

We can also see that

$$
\begin{gathered}
w_{3,1}=2 w_{1,1} 3 w_{1,1} 2 w_{1,1} 3, w_{4,1}=13 w_{2,1} 4 w_{2,1} 3 w_{2,1} 41, w_{4,2}=213 w_{2,1} 4 w_{2,1} 3 w_{2,1} 4, \\
w_{5,1}=42124 w_{3,1} 5 \widetilde{w_{3,1}} 4 w_{3,1} 53135, w_{5,2}=13124 w_{3,1} 5 \widetilde{w_{3,1}} 4 w_{3,1} 53135, \\
w_{6,1}=1513121315 w_{4,1} 6 \widetilde{w_{4,1}} 5 w_{4,1} 6141214161, w_{6,2}=1214121315 w_{4,1} 6 \widetilde{w_{4,1}} 5 w_{4,1} 6141214161, \\
w_{7,1}=u_{1,2} 6 w_{5,2} 7 \widetilde{w_{5,2}} 6 w_{5,2} 7 v_{1,3}, w_{7,2}=u_{1,2} 6 w_{5,2} 7 \widetilde{w_{5,2}} 6 w_{5,2} 7 v_{2,4}, \\
w_{7,3}=u_{3,4} 6 w_{5,1} 7 \widetilde{w_{5,1}} 6 w_{5,1} 7 v_{1,3}, w_{7,4}=u_{3,4} 6 w_{5,1} 7 \widetilde{w_{5,1}} 6 w_{5,1} 7 v_{2,4},
\end{gathered}
$$

where $u_{1,2}=2421312135312131242131, u_{3,4}=2421312135312131242124$,

$$
v_{1,3}=53135312135313575357 \text { and } v_{2,4}=53135312135313575313
$$

This gives us a hint how to get, in some cases, a better recursion than the basic recursion. We will define this recursion explicitly in the next subsection.

2.1. A lower bound

In this subsection, we will prove another lower bound for $r(n)$. We will use an alphabet $\left\{A_{0}, A_{1}, A_{2}, A_{3}, B_{3}, A_{4}, B_{4}, A_{5}, B_{5}, \ldots\right\}$. The following construction of rich square-free words w_{n} is recursive. The first six words are

$$
\begin{gathered}
w_{1}=A_{1}, w_{2}=A_{0} A_{2} A_{0}, w_{3}=v_{3} A_{3} w_{1} B_{3} w_{1} A_{3} w_{1} B_{3} u_{3}, w_{4}=v_{4} A_{4} w_{2} B_{4} w_{2} A_{4} w_{2} B_{4} u_{4}, \\
w_{5}=v_{5} A_{5} w_{3} B_{5} w_{3} A_{5} w_{3} B_{5} u_{5}, w_{6}=v_{6} A_{6} w_{4} B_{6} w_{4} A_{6} w_{4} B_{6} u_{6},
\end{gathered}
$$

where $v_{3}, u_{3}=\epsilon, v_{4}, u_{4}=A_{0}, v_{5}=A_{5} A_{3} A_{1} A_{3}, u_{5}=B_{3} A_{1} A_{3} A_{1}, v_{6}=A_{0} A_{6} A_{0} A_{4} A_{0} A_{2} A_{0} A_{4} A_{0}$ and $u_{6}=A_{0} B_{4} A_{0} A_{2} A_{0} A_{4} A_{0} A_{2} A_{0}$. Notice that w_{6} is isomorphic (\cong) to $w_{6,2}, w_{5} \cong w_{5,2}$, $w_{4} \cong w_{4,1}$ and $w_{3} \cong w_{3,1}$. For $n \geq 7$, we define

$$
w_{n}=v_{n} A_{n} w_{n-2} B_{n} \widetilde{w_{n-2}} A_{n} w_{n-2} B_{n} u_{n}
$$

where $v_{n}=\left(P_{n} c_{n}\right)^{-1} \widetilde{v_{n-4}} A_{n-2} \widetilde{v_{n-2}} A_{n} v_{n-2} A_{n-2} v_{n-4} A_{n-4} w_{n-6} B_{n-4} \widetilde{w_{n-6}} A_{n-4} \widetilde{v_{n-4}} A_{n-2} \widetilde{v_{n-2}}$ and $u_{n}=\widetilde{u_{n-2}} B_{n-2} \widetilde{w_{n-4}} A_{n-2} w_{n-4} B_{n-2} \widetilde{u_{n-4}} B_{n-4} \widetilde{w_{n-6}}\left(d_{n} \widetilde{P_{n}}\right)^{-1}$, where P_{n} is the largest common prefix of w_{n-6} and $\widetilde{v_{n-4}}, c_{n}$ is the first letter of $\left(P_{n}\right)^{-1} \widetilde{v_{n-4}} A_{n-2}$ and d_{n} is the first letter of $\left(P_{n}\right)^{-1} w_{n-6} B_{n-4}$.

We can see that $\operatorname{Alph}\left(w_{2 k}\right)=\left\{A_{0}, A_{2}, A_{4}, B_{4}, A_{6}, B_{6}, \ldots, A_{2 k}, B_{2 k}\right\}$ and $\operatorname{Alph}\left(w_{2 k+1}\right)=$ $\left\{A_{1}, A_{3}, B_{3}, A_{5}, B_{5}, \ldots, A_{2 k+1}, B_{2 k+1}\right\}$. This means we really have $\operatorname{Alph}\left(w_{n}\right)=n$. We also have $c_{n} \neq d_{n}$, since $A_{n-2} \notin w_{n-6}$ and $B_{n-4} \notin \widetilde{v_{n-4}}$.

Before we prove that w_{n} is rich and square-free, we will make some notation in order to make the proof look simpler. We mark that $E_{n}=A_{n} w_{n-2} B_{n} \widetilde{w_{n-2}} A_{n} w_{n-2} B_{n}, F_{n}=$ $\left(P_{n} c_{n}\right)^{-1} \widetilde{v_{n-4}} A_{n-2} \widetilde{v_{n-2}}, G_{n}=\widetilde{w_{n-6}} A_{n-4} \widetilde{v_{n-4}} A_{n-2} \widetilde{v_{n-2}}$ and $H_{n}=\widetilde{P_{n}} A_{n-4} w_{n-6} B_{n-4} G_{n}$. Now $w_{n}=v_{n} E_{n} u_{n}, v_{n}=F_{n} A_{n} \widetilde{G_{n}} B_{n-4} G_{n}$ and $w_{n-2}=\widetilde{H_{n}} d_{n} \widetilde{u_{n}}$. We can also see that H_{n} is a suffix of v_{n} and F_{n} is a suffix of G_{n}.

Proposition 2.1. The word w_{n} is square-free for all $n \geq 1$.
Proof. We prove the claim by induction. It is easy to check that w_{n} is square-free when $1 \leq n \leq 6$. Suppose w_{n} is square-free for all $n<k$, where $k \geq 7$. Now we need to prove that w_{k} is square-free.

The word $A_{k} w_{k-2} B_{k} \widetilde{w_{k-2}} A_{k} w_{k-2} B_{k} u_{k}$ is square-free because w_{k-2} is square-free, $A_{k}, B_{k} \notin$ w_{k-2} and $\widetilde{u_{k}}$ is a proper suffix of w_{k-2}. The words G_{k} and F_{k} are suffixes of $\widetilde{w_{k-2}}$ and $A_{k}, B_{k-4} \notin G_{k}, F_{k}$, which means that $v_{k}=F_{k} A_{k} \widetilde{G_{k}} B_{k-4} G_{k}$ is square-free.

Now, the only way $w_{k}=F_{k} A_{k} \widetilde{G_{k}} B_{k-4} G_{k} A_{k} w_{k-2} B_{k} \widetilde{w_{k-2}} A_{k} w_{k-2} B_{k} u_{k}$ can have a square is either 1) $x A_{k} w_{k-2} B_{k} y x A_{k} w_{k-2} B_{k} y$, where x is a suffix of both v_{k} and $\widetilde{w_{k-2}}$, and y is a prefix of both u_{k} and $\widetilde{w_{k-2}}$, or 2) $x A_{k} y x A_{k} y$, where x is a suffix of both F_{k} and $\widetilde{G_{k}} B_{k-4} G_{k}$, and y is a prefix of both $\widetilde{w_{k-2}}$ and $\widetilde{G_{k}} B_{k-4} G_{k}$.

1) Case $x A_{k} w_{k-2} B_{k} y x A_{k} w_{k-2} B_{k} y$. Now $y x=\widetilde{w_{k-2}}=u_{k} d_{k} H_{k}$. Because y is a prefix of u_{k} and x is suffix of v_{k}, we have that $d_{k} H_{k}$ is a suffix of v_{k}. We also know that $c_{k} H_{k}$ is always a suffix of v_{k}. This is a contradiction since $c_{k} \neq d_{k}$.
2) Case $x A_{k} y x A_{k} y$. Now y is a prefix of $\widetilde{w_{k-2}}$, which means that x has to have a suffix $P_{k}^{-1} \widetilde{v_{k-4}} A_{k-2} \widetilde{v_{k-2}}$. This is a contradiction, since x is also a suffix of $\left(P_{k} c_{k}\right)^{-1} \widetilde{v_{k-4}} A_{k-2} \widetilde{v_{k-2}}$.

Proposition 2.2. The word w_{n} is rich for all $n \geq 1$.
Proof. We prove the claim by induction. It is easy to check that w_{n} is rich when $1 \leq n \leq 6$. Suppose w_{n} is rich for all $n<k$, where $k \geq 7$. Now we need to prove that w_{k} is rich.

Since w_{k-2} is rich and $A_{k}, B_{k} \notin w_{k-2}$, we get that $A_{k} w_{k-2} B_{k}$ is rich. Proposition 1.5 gives now that $A_{k} w_{k-2} B_{k} \widetilde{w_{k-2}} A_{k}$ is rich. The lpps of $A_{k} w_{k-2} B_{k} \widetilde{w_{k-2}} A_{k}$ is A_{k}, which means $A_{k} w_{k-2} B_{k} \widetilde{w_{k-2}} A_{k} w_{k-2} B_{k} \widetilde{w_{k-2}} A_{k}$ is rich by Proposition 1.6. The word u_{k} is a prefix of $\widetilde{w_{k-2}}$, so the factor $A_{k} w_{k-2} B_{k} \widetilde{w_{k-2}} A_{k} w_{k-2} B_{k} u_{k}$ is also rich.

The lppp of $A_{k} w_{k-2} B_{k} \widetilde{w_{k-2}} A_{k} w_{k-2} B_{k} u_{k}$ is $A_{k} w_{k-2} B_{k} \widetilde{w_{k-2}} A_{k}$, which means that also the proper palindromic prefix closure $\widetilde{u_{k}} B_{k} \widetilde{w_{k-2}} A_{k} w_{k-2} B_{k} \widetilde{w_{k-2}} A_{k} w_{k-2} B_{k} u_{k}$ is rich. The word H_{k} is a suffix of $\widetilde{w_{k-2}}$, which means $H_{k} A_{k} w_{k-2} B_{k} \widetilde{w_{k-2}} A_{k} w_{k-2} B_{k} u_{k}=H_{k} E_{k} u_{k}$ is also rich.

The word $c_{k} H_{k} E_{k} u_{k}$ has a palindromic prefix $P P=c_{k} \widetilde{P_{k}} A_{k-4} w_{k-6} B_{k-4} \widetilde{w_{k-6}} A_{k-4} P_{k} c_{k}$. The following paragraph proves that it is unioccurrent in $c_{k} H_{k} E_{k} u_{k}$.

The letter B_{k-4} occurs only once in $c_{k} H_{k}$, in the middle of our palindromic prefix $P P$. This occurrence of B_{k-4} is preceded by $c_{k} \widetilde{P_{k}} A_{k-4} w_{k-6}$ and succeeded by $\widetilde{w_{k-6}} A_{k-4} P_{k} c_{k}$. The last occurrence of B_{k-4} in $E_{k} u_{k}$ is succeeded by $\widetilde{w_{k-6}}\left(d_{k} \widetilde{P_{k}}\right)^{-1}$ and nothing more. Since the word $\widetilde{w_{k-6}}\left(d_{k} \widetilde{P_{k}}\right)^{-1}$ is clearly a proper prefix of $\widetilde{w_{k-6}} A_{k-4} P_{k} c_{k}$, this last occurrence of B_{k-4} in $E_{k} u_{k}$ cannot occur in a factor $P P$. All other occurrences of B_{k-4} in $E_{k} u_{k}$ are preceded by $B_{k-4} \widetilde{w_{k-6}} A_{k-4} w_{k-6}$ or succeeded by $\widetilde{w_{k-6}} A_{k-4} w_{k-6} B_{k-4}$. The word $B_{k-4} \widetilde{w_{k-6}} A_{k-4} w_{k-6}$ has a suffix $d_{k} \widetilde{P_{k}} A_{k-4} w_{k-6}$, which means that it cannot have a suffix $c_{k} \widetilde{P_{k}} A_{k-4} w_{k-6}$ because $c_{k} \neq d_{k}$. These mean that no B_{k-4} in $c_{k} H_{k} E_{k} u_{k}$ can occur in a factor $P P$, except the first one.

Since $P P$ is unioccurrent palindromic prefix in $c_{k} H_{k} E_{k} u_{k}$, we get that $c_{k} H_{k} E_{k} u_{k}$ is rich and $P P$ is the lppp of $c_{k} H_{k} E_{k} u_{k}$. Now, all we need to do is to take the proper palindromic prefix closure of $c_{k} H_{k} E_{k} u_{k}$, which is rich by Proposition 1.6. It has a suffix w_{k}, which concludes the proof:

$$
\begin{gathered}
{ }^{(++)}\left(c_{k} H_{k} E_{k} u_{k}\right)=\widetilde{u_{k}} B_{k} \widetilde{w_{k-2}} A_{k} w_{k-2} B_{k} \widetilde{w_{k-2}} A_{k} \widetilde{G_{k}} B_{k-4} G_{k} E_{k} u_{k} \\
\stackrel{*}{=} X F_{k} A_{k} \widetilde{G_{k}} B_{k-4} G_{k} E_{k} u_{k}=X v_{k} E_{k} u_{k}=X w_{k}\left({ }^{*} F_{k} \text { is a suffix of } \widetilde{w_{k-2}}\right) .
\end{gathered}
$$

Now we know that w_{n} is rich and square-free, which means $r(n) \geq\left|w_{n}\right|$ for all $n \geq 1$. We can compute that $\left|w_{7}\right|=145,\left|w_{8}\right|=291,\left|w_{9}\right|=629$ and $\left|w_{10}\right|=1255$. Notice that $w_{7}=w_{7,4}$, which means our lower bound is exact when $n=7$. The cases $r(8)$ and $r(9)$ are too large to compute the exact value. However, by creating a partial tree of rich square-free words for $n=8$ and 9 , by leaving some branches out of it, the longest words we could find were of length 291 and 629, respectively. These are exactly the lengths of $\left|w_{8}\right|$ and $\left|w_{9}\right|$. Notice that $\left|w_{8}\right|=291=2 \cdot 145+1=2\left|w_{7}\right|+1$, which means the basic recursion b_{n} is as good as our recursion w_{n} when $n=8$. Notice also that $\left|w_{9}\right|=629>583=2 \cdot 291+1=2\left|w_{8}\right|+1$ and $\left|w_{10}\right|=1255<1259=2 \cdot 629+1=2\left|w_{9}\right|+1$, which mean w_{n} is better than b_{n} when $n=9$ and b_{n} is better than w_{n} when $n=10$.

The previous paragraph suggests that it is reasonable to make the following conjecture.
Conjecture 2.3. $r(n)=\max \left\{\left|w_{n}\right|, 2 \cdot\left|w_{n-1}\right|+1\right\}$ for all $n \geq 1$.
The recursion for the length of w_{n} might be too complex to be solved in a closed-form, but we want to get at least an estimate for it. Let us first estimate the length of v_{n}, which will be used in Proposition 2.5.

Lemma 2.4. $\left|v_{n}\right| \geq 3\left|v_{n-2}\right|+2\left|w_{n-6}\right|+2\left|v_{n-4}\right|+6$, for $n \geq 7$.
Proof.

$$
\begin{gathered}
\left|v_{n}\right|=\left|\left(P_{n} c_{n}\right)^{-1} \widetilde{v_{n-4}} A_{n-2} \widetilde{v_{n-2}} A_{n} v_{n-2} A_{n-2} v_{n-4} A_{n-4} w_{n-6} B_{n-4} \widetilde{w_{n-6}} A_{n-4} \widetilde{v_{n-4}} A_{n-2} \widetilde{v_{n-2}}\right| \\
\geq\left|\widetilde{v_{n-2}} A_{n} v_{n-2} A_{n-2} v_{n-4} A_{n-4} w_{n-6} B_{n-4} \widetilde{w_{n-6}} A_{n-4} \widetilde{v_{n-4}} A_{n-2} \widetilde{v_{n-2}}\right| \\
\geq 3\left|v_{n-2}\right|+2\left|w_{n-6}\right|+2\left|v_{n-4}\right|+6,
\end{gathered}
$$

where $\left|\left(P_{n} c_{n}\right)^{-1} \widetilde{v_{n-4}} A_{n-2}\right| \geq 0$, since c_{n} is a letter and P_{n} is a prefix of $\widetilde{v_{n-4}}$.
Proposition 2.5. $r(n) \geq\left|w_{n}\right|>2,008^{n}$ for $n \geq 5$.
Proof. From our recursion of w_{n}, we get that for $n \geq 11$:

$$
\begin{gathered}
\left|w_{n}\right|=\left|v_{n} A_{n} w_{n-2} B_{n} \widetilde{w_{n-2}} A_{n} w_{n-2} B_{n} u_{n}\right|=3\left|w_{n-2}\right|+\left|v_{n}\right|+\left|u_{n}\right|+4 \\
=3\left|w_{n-2}\right|+\left|\left(P_{n} c_{n}\right)^{-1} \widetilde{v_{n-4}} A_{n-2} \widetilde{v_{n-2}} A_{n} v_{n-2} A_{n-2} v_{n-4} A_{n-4} w_{n-6} B_{n-4} \widetilde{w_{n-6}} A_{n-4} \widetilde{v_{n-4}} A_{n-2} \widetilde{v_{n-2}}\right| \\
+\left|\widetilde{u_{n-2}} B_{n-2} \widetilde{w_{n-4}} A_{n-2} w_{n-4} B_{n-2} \widetilde{u_{n-4}} B_{n-4} \widetilde{w_{n-6}}\left(d_{n} \widetilde{P_{n}}\right)^{-1}\right|+4 \\
=3\left|w_{n-2}\right|+\left|\left(P_{n} c_{n}\right)^{-1} \widetilde{v_{n-4}} A_{n-2} \widetilde{v_{n-2}} A_{n} v_{n-2} A_{n-2} v_{n-4}\right|-\left|d_{n} \widetilde{P_{n}}\right|+4 \\
+\left|\widetilde{u_{n-2}} B_{n-2} \widetilde{w_{n-4}} A_{n-2} w_{n-4} B_{n-2} \widetilde{u_{n-4}} B_{n-4} \widetilde{w_{n-6}}\right|+\left|A_{n-4} w_{n-6} B_{n-4} \widetilde{w_{n-6}} A_{n-4} \widetilde{v_{n-4}} A_{n-2} \widetilde{v_{n-2}}\right|
\end{gathered}
$$

$$
\begin{gathered}
=4\left|w_{n-2}\right|+\left|\left(P_{n} c_{n}\right)^{-1} \widetilde{v_{n-4}} A_{n-2} \widetilde{v_{n-2}} A_{n} v_{n-2} A_{n-2} v_{n-4}\right|-\left|d_{n} \widetilde{P_{n}}\right|+4 \\
=4\left|w_{n-2}\right|+2\left(\left|\widetilde{v_{n-4}}\right|-\left|P_{n}\right|\right)+2\left|v_{n-2}\right|+\left|A_{n-2} A_{n} A_{n-2}\right|-\left|d_{n}\right|-\left|c_{n}\right|+4 \\
\geq 4\left|w_{n-2}\right|+2\left|v_{n-2}\right|+5 \geq 4\left|w_{n-2}\right|+2\left(3\left|v_{n-4}\right|+2\left|w_{n-8}\right|+2\left|v_{n-6}\right|+6\right)+5 \\
\geq 4\left|w_{n-2}\right|+2\left(3\left(3\left|v_{n-6}\right|+2\left|w_{n-10}\right|+2\left|v_{n-8}\right|+6\right)+2\left|w_{n-8}\right|+2\left|v_{n-6}\right|+6\right)+5 \\
>4\left|w_{n-2}\right|+4\left|w_{n-8}\right|+12\left|w_{n-10}\right| .
\end{gathered}
$$

From our recursion of w_{n} we also know that $\left|w_{10}\right|=1255>1164=4\left|w_{8}\right|,\left|w_{9}\right|=629>$ $580=4\left|w_{7}\right|,\left|w_{8}\right|=291>268=4\left|w_{6}\right|$ and $\left|w_{7}\right|=145>132=4\left|w_{5}\right|$.

Now, for $n \geq 15$ we have

$$
\begin{gathered}
\left|w_{n}\right|>4\left|w_{n-2}\right|+4\left|w_{n-8}\right|+12\left|w_{n-10}\right|>4\left(4\left|w_{n-4}\right|+4\left|w_{n-10}\right|\right)+4\left|w_{n-8}\right|+12\left|w_{n-10}\right| \\
=16\left|w_{n-4}\right|+4\left|w_{n-8}\right|+28\left|w_{n-10}\right|>16 \cdot 4 \cdot 4 \cdot 4\left|w_{n-10}\right|+4 \cdot 4\left|w_{n-10}\right|+28\left|w_{n-10}\right| \\
=1068\left|w_{n-10}\right|>2,008^{10}\left|w_{n-10}\right| .
\end{gathered}
$$

We can also easily check that $\left|w_{n}\right|>2,008^{n}$ for all $5 \leq n \leq 14$. This means we have our result

$$
\left|w_{n}\right|>2,008^{n} \text { for } n \geq 5
$$

From the basic recursion b_{n} alone, we get $r(n) \geq 2^{n}-1$. Our new recursion gives a slightly better bound $r(n)>2,008^{n}$, which can be improved easily if we do not estimate the length of w_{n} in Proposition [2.5 that roughly. We only mention that it can be improved at least to $2,0178^{n}$, but we will not do it here.

2.2. An upper bound

In this subsection, we will prove an upper bound for $r(n)$. First, we will prove two useful lemmas. For that, let us mention that every square-free palindrome has to be of odd length, because palindromes of even length create a square of two letters to the middle, for example 12011021 has a square 11 in the middle.

Lemma 2.6. The middle letter of a rich square-free palindrome is unioccurrent.
Proof. Since all square-free palindromes are of odd length, there always exists the middle letter. Then, suppose the contrary: $z b \widetilde{z}$ is rich and square-free and the letter b has another occurrence inside z. We can take the other occurrence of b to be consecutive to the b in the middle and get that $z b \widetilde{z}=z_{1} b z_{2} b z_{2} b \widetilde{z_{1}}$, where z_{2} is a palindrome because of Proposition 1.4. We get a contradiction because $b z_{2} b z_{2}$ is a square.

Lemma 2.7. Suppose $w=u_{1} a_{1} u_{2} a_{1} \cdots a_{1} u_{k-1} a_{1} u_{k} \in\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}^{*}$ is rich and squarefree, where $n, k \geq 3$ (possibly $u_{k}=\epsilon$), $\operatorname{Alph}\left(u_{1}\right)=\left\{a_{2}, \ldots, a_{n}\right\}$ and $\forall i: a_{1} \notin \operatorname{Alph}\left(u_{i}\right)$.

$$
\text { For } 2 \leq i \leq k-1: \operatorname{Alph}\left(u_{i+1}\right) \subseteq \operatorname{Alph}\left(u_{i}\right) \backslash\left\{a_{i}\right\} \text {, where } u_{i}=v_{i} a_{i} \widetilde{v}_{i} .
$$

Proof. Since $\forall i: a_{1} \notin \operatorname{Alph}\left(u_{i}\right)$, we get from Proposition 1.4 that u_{2}, \ldots, u_{k-1} are palindromes, and because w is square-free, they are of odd length and non-empty. By permutating the letters, we can suppose for $2 \leq i \leq k-1$: a_{i} is the middle letter of $u_{i}=v_{i} a_{i} \widetilde{v_{i}}$, where $a_{i} \notin \operatorname{Alph}\left(v_{i}\right)$ by Lemma 2.6.

We will prove the claim by induction on i.

1) The base case $i=2$. Since $a_{2} \in \operatorname{Alph}\left(u_{1}\right)=\left\{a_{2}, \ldots, a_{n}\right\}$, we get from Proposition 1.4 that $u_{1}=v_{1} a_{2} \widetilde{v_{2}}$. If $a_{2} \in \operatorname{Alph}\left(u_{3}\right)$ then, by Proposition 1.4, we have $u_{3}=v_{2} a_{2} v_{3}^{\prime}$, which creates a square $\left(a_{2} \widetilde{v_{2}} a_{1} v_{2}\right)^{2}$ in $u_{1} a_{1} u_{2} a_{1} u_{3}=v_{1} a_{2} \widetilde{v_{2}} a_{1} v_{2} a_{2} \widetilde{v_{2}} a_{1} v_{2} a_{2} v_{3}^{\prime}$. This means $a_{2} \notin \operatorname{Alph}\left(u_{3}\right)$.

Suppose then that $b \in \operatorname{Alph}\left(u_{3}\right) \backslash \operatorname{Alph}\left(u_{2}\right)$, which implies $b \in \operatorname{Alph}\left(v_{1}\right)$. The word between the first occurrence of b in u_{3} and the last occurrence of b in v_{1} is a palindrome by Proposition 1.4, $u_{1} a_{1} u_{2} a_{1} u_{3}=t_{1} b t_{2} a_{2} \widetilde{v_{2}} a_{1} v_{2} a_{2} \widetilde{v_{2}} a_{1} v_{2} a_{2} \widetilde{t_{2}} b t_{3}$, where $v_{1}=t_{1} b t_{2}$ and $u_{3}=$ $v_{2} a_{2} \widetilde{t_{2}} b t_{3}$. We get a contradiction since we have a square $\left(a_{2} \widetilde{v_{2}} a_{1} v_{2}\right)^{2}$. This means $\operatorname{Alph}\left(u_{3}\right) \subseteq$ $\operatorname{Alph}\left(u_{2}\right) \backslash\left\{a_{2}\right\}$.
2) The induction hypothesis. We can now suppose $k \geq 4$, since the base case proves our claim if $k=3$. Suppose then that for every j, where $2 \leq j \leq i<k-1$, we have: $\operatorname{Alph}\left(u_{j+1}\right) \subseteq \operatorname{Alph}\left(u_{j}\right) \backslash\left\{a_{j}\right\}$.
3) The induction step. Now we need to prove that $\operatorname{Alph}\left(u_{i+2}\right) \subseteq \operatorname{Alph}\left(u_{i+1}\right) \backslash\left\{a_{i+1}\right\}$. From the induction hypothesis we get that $a_{i+1} \in \operatorname{Alph}\left(u_{i+1}\right) \subseteq \operatorname{Alph}\left(u_{i}\right) \backslash\left\{a_{i}\right\}$, which means $u_{i}=v_{i+1} a_{i+1} x a_{i} \widetilde{x} a_{i+1} \widetilde{v_{i+1}}$ by Proposition 1.4. If $a_{i+1} \in \operatorname{Alph}\left(u_{i+2}\right)$ then, by Proposition 1.4, we have $u_{i+2}=v_{i+1} a_{i+1} y$, which creates a square $\left(a_{i+1} \widetilde{v_{i+1}} a_{1} v_{i+1}\right)^{2}$ inside $u_{i} a_{1} u_{i+1} a_{1} u_{i+2}=$ $v_{i+1} a_{i+1} x a_{i} \widetilde{x} a_{i+1} \widetilde{v_{i+1}} a_{1} v_{i+1} a_{i+1} \widetilde{v_{i+1}} a_{1} v_{i+1} a_{i+1} y$. This means $a_{i+1} \notin \operatorname{Alph}\left(u_{i+2}\right)$

Suppose then that $c \in \operatorname{Alph}\left(u_{i+2}\right) \backslash \operatorname{Alph}\left(u_{i+1}\right)$, which implies $c \in \operatorname{Alph}\left(u_{1} a_{1} \ldots a_{1} u_{i}\right)$. Without loss of generality, we can assume that c is the letter from $\operatorname{Alph}\left(u_{i+2}\right) \backslash \operatorname{Alph}\left(u_{i+1}\right)$ that has the rightmost occurrence in $u_{1} a_{1} \ldots a_{1} u_{i}$. The word between the leftmost occurrence of c in $u_{i+2}=z c z^{\prime}$ and the rightmost occurrence of c in $u_{1} a_{1} \ldots a_{1} u_{i}$ has to be a palindrome by Proposition 1.4. We divide this into two cases.

- Suppose $c \notin \operatorname{Alph}\left(u_{i}\right)$. Now $c \widetilde{z} a_{1} u_{i+1} P u_{i+1} a_{1} z c$ is a palindrome, where $\operatorname{Alph}(P) \subseteq$ $\operatorname{Alph}\left(a_{1} u_{i+1}\right)$ because of the way we chose c. Now the middle letter of the palindrome $a_{1} u_{i+1} P u_{i+1} a_{1}$ belongs to P and therefore has other occurrences inside it, in $a_{1} u_{i+1}$ and in $u_{i+1} a_{1}$. This is a contradiction by Lemma 2.6.
- Suppose $c \in \operatorname{Alph}\left(u_{i}\right)$. Now $c \widetilde{z} a_{1} v_{i+1} a_{i+1} \widetilde{v_{i+1}} a_{1} z c$ is a palindrome, where a_{i+1} is its middle letter and $c \widetilde{z}$ is a suffix of u_{i}. If $a_{i+1} \in \operatorname{Alph}(z)$ then it is not unioccurrent in the
palindrome $\widetilde{z} a_{1} v_{i+1} a_{i+1} \widetilde{v_{i+1}} a_{1} z$ and we get a contradiction by Lemma 2.6. Since $a_{i+1} \in$ $\operatorname{Alph}\left(u_{i}\right)$ by the induction hypothesis, we can take the rightmost occurrence of it in u_{i} and get that $a_{i+1} v_{i}^{\prime} c \widetilde{z} a_{1} v_{i+1} a_{i+1}$ is a palindrome, where $v_{i}^{\prime} c \widetilde{z}=\widetilde{v_{i+1}}$. We get a contradiction since this would mean $c \in \operatorname{Alph}\left(v_{i+1}\right) \subset \operatorname{Alph}\left(u_{i+1}\right)$.

Both cases yield a contradiction, which means $\operatorname{Alph}\left(u_{i+2}\right) \subseteq \operatorname{Alph}\left(u_{i+1}\right) \backslash\left\{a_{i+1}\right\}$.
Corollary 2.8. All rich square-free words are finite.
Proof. We prove this by induction. Suppose w is rich and square-free word for which $|\operatorname{Alph}(w)|=n \geq 4$. Suppose that all rich square-free words on an alphabet of size $n-1$ or smaller are finite. Cases $n=1,2,3$ are trivial.

Suppose that a_{1} is the letter of w for which $w=u_{1} a_{1} w^{\prime}$, where $\operatorname{Alph}\left(u_{1}\right)=\operatorname{Alph}(w) \backslash\left\{a_{1}\right\}$. We partition w such that $w=u_{1} a_{1} u_{2} a_{1} u_{3} a_{1} u_{4} a_{1} \ldots$, where $a_{1} \notin \operatorname{Alph}\left(u_{i}\right)$ for all i. From Lemma 2.7 we now get that $\left|\operatorname{Alph}\left(u_{i}\right)\right|>\left|\operatorname{Alph}\left(u_{i+1}\right)\right|$ for all $i \geq 2$. This means there are finitely many words u_{i}, at most n, and they are all over an alphabet of size $n-1$ or smaller, which concludes the proof.

The above corollary gives another proof for the result mentioned in Remark 6 of PS]. The proof of the above corollary also gives us a way to get an upper bound for $r(n): r(n) \leq$ $r(n-1)+1+\sum_{i=1}^{n-1}(r(n-i)+1)$. This bound can be easily improved if we examine the word also from the right side, i.e. we suppose that a_{1} is the letter of w for which $w=w^{\prime} a_{1} u_{1}$, where $\operatorname{Alph}\left(u_{1}\right)=\operatorname{Alph}(w) \backslash\left\{a_{1}\right\}$. This notice makes it reasonable to make the following definition.

Definition 2.9. Let $w=$ uav be a word, where a is a letter. If $\operatorname{Alph}(u)=\operatorname{Alph}(w) \backslash\{a\}$ then the leftmost occurrence of the letter a in w is called the left special letter of w. If $\operatorname{Alph}(v)=A l p h(w) \backslash\{a\}$ then the rightmost occurrence of the letter a in w is called the right special letter of w.

In Subsection 2.1, where we constructed the words w_{n} for our lower bound, the rightmost occurrence of A_{n} is always the right special letter of w_{n} and the leftmost occurrence of B_{n} is always the left special letter of w_{n}, for $n \geq 3$. In Lemma 2.7 and Corollary 2.8, the first occurrence of letter a_{1} is the left special letter of w.

Before we go to our upper bound for $r(n)$, we will state a helpful lemma.
Lemma 2.10. Suppose $w_{n}=x B_{n} y A_{n} z$ is a rich square-free n-ary word, where $n \geq 3$ and the letters A_{n} and B_{n} are the right and left special letters of w_{n}, respectively. Now $\operatorname{Alph}(y)=\operatorname{Alph}\left(w_{n}\right) \backslash\left\{A_{n}, B_{n}\right\}$ and $A_{n} \neq B_{n}$.

Proof. First we prove that $A_{n}, B_{n} \notin y$. Suppose to the contrary that $B_{n} \in y$ (case $A_{n} \in y$ is symmetric). We can take the leftmost occurrence of B_{n} in y and get that $w_{n}=x B_{n} y_{1} c \widetilde{y_{1}} B_{n} y_{2} A_{n} z$, where $B_{n} \notin y_{1} c \widetilde{y_{1}}$ and c is a letter. Since A_{n} is the right special letter of w_{n}, we have that $c \in z$. Since B_{n} is the left special letter of w_{n}, we get from Lemma 2.7 that $c \notin y_{2} A_{n} z$, i.e. $c \notin z$. This is a contradiction.

Then we prove that $A_{n} \neq B_{n}$. Suppose to the contrary that $A_{n}=B_{n}$. Now, since $A_{n}, B_{n} \notin y$, we get from Proposition 1.4 that y is a palindrome. From Lemma 2.7 we get that the middle letter of y cannot be in x nor in z. This is a contradiction, since x and z has to contain all the letters except A_{n}.

Then we prove that if $a \in \operatorname{Alph}\left(w_{n}\right) \backslash\left\{A_{n}, B_{n}\right\}$ then $a \in y$. Suppose to the contrary that $a \in \operatorname{Alph}\left(w_{n}\right) \backslash\left(\left\{A_{n}, B_{n}\right\} \cup \operatorname{Alph}(y)\right)$. Since A_{n} and B_{n} are the right and left special letters, we have that $a \in x, z$. If we take the leftmost occurrence of a in z and the rightmost occurrence of a in x, then we get from Proposition 1.4 that $w=x^{\prime} a u B_{n} y A_{n} v a z^{\prime}$, where $a u B_{n} y A_{n} v a$ is a palindrome, $x=x^{\prime} a u$ and $z=v a z^{\prime}$. The middle letter of the palindrome $a u B_{n} y A_{n} v a$ cannot be inside u nor v, since it would mean $B_{n} \in u$ or $A_{n} \in v$, which is impossible since A_{n} and B_{n} are special letters. The middle letter of $a u B_{n} y A_{n} v a$ cannot be inside y neither, since that would mean $B_{n} \in y A_{n}$ or $A_{n} \in B_{n} y$, which we proved above to be impossible. The only possibility is that the middle letter of $a u B_{n} y A_{n} v a$ is either A_{n} or B_{n}. Since these cases are symmetric, we can suppose B_{n} is the middle letter. This means $w=x^{\prime} a \widetilde{v} A_{n} \widetilde{y} B_{n} y A_{n} v a z^{\prime}$. Since B_{n} is the left special letter of w, we have $B_{n} \in z=v a z^{\prime}$ and $B_{n} \notin v$. This means $B_{n} \in z^{\prime}$. If we take the leftmost occurrence of B_{n} in z^{\prime}, we get $w=x^{\prime} a \widetilde{v} A_{n} \widetilde{y} B_{n} y A_{n} v a v^{\prime} B_{n} z^{\prime \prime}$, where $B_{n} y A_{n} v a v^{\prime} B_{n}$ is a palindrome which has A_{n} as the middle letter. This means $\widetilde{y}=v a v^{\prime}$ and hence $a \in y$, which is a contradiction.

There are only three cases how the right and left special letters can appear inside a word, with respect to each other. If w_{n} is a rich square-free n-ary word which has A_{n} and B_{n} as the right and left special letters, respectively, then one the following cases must hold (the visible occurrences of A_{n} and B_{n} in w_{n} are the special letters):

1) $w_{n}=x B_{n} y A_{n} z$. Now $A_{n} \neq B_{n}$ by Lemma 2.10.
2) $w_{n}=x A_{n} y B_{n} z$. Now $A_{n} \neq B_{n}$ by the definition of special letters.
3) $w_{n}=x A_{n} z=x B_{n} z$. Now $A_{n}=B_{n}$.

Proposition 2.11. Suppose w_{n} is a rich square-free n-ary word, where $n \geq 3$.

1) If $w_{n}=x B_{n} y A_{n} z$, where the letters A_{n} and B_{n} are the right and left special letters of w_{n}, respectively, then $\left|w_{n}\right| \leq 2 r(n-1)+r(n-2)+2$.
2) If $w_{n}=x A_{n} y B_{n} z$, where the letters A_{n} and B_{n} are the right and left special letters of w_{n}, respectively, then $\left|w_{n}\right| \leq r(n-1)+r(n-2)+r(n-3)+2 \leq 2 r(n-1)$ and $|x|,|z| \leq$ $r(n-2)+r(n-3)+1$, where $r(n-3)=0$ if $n=3$.
3) If $w_{n}=x A_{n} z=x B_{n} z$, where the letter $A_{n}=B_{n}$ is both the right and left special letter of w_{n}, then $\left|w_{n}\right| \leq 2 r(n-1)+1$.

Proof. Let us denote $A=\operatorname{Alph}\left(w_{n}\right)$.

1) By the definition of special letters, we have that $\operatorname{Alph}(x)=A \backslash\left\{B_{n}\right\}$ and $\operatorname{Alph}(z)=A \backslash$ $\left\{A_{n}\right\}$. These mean $|x|,|z| \leq r(n-1)$. From Lemma 2.10 we get that $\operatorname{Alph}(y)=A \backslash\left\{A_{n}, B_{n}\right\}$, which means $|y| \leq r(n-2)$, since $A_{n} \neq B_{n}$. Now
$\left|w_{n}\right|=|x|+\left|B_{n}\right|+|y|+\left|A_{n}\right|+|z| \leq r(n-1)+1+r(n-2)+1+r(n-1)=2 r(n-1)+r(n-2)+2$.
2) If $A_{n} \notin x$, then $|x| \leq r(n-2)$. If $A_{n} \in x$ then we can take the rightmost occurrence of it in x and get that $x A_{n}=x_{2} A_{n} x_{1} c \widetilde{x_{1}} A_{n}$, where $A_{n} \notin x_{1} c \widetilde{x_{1}}$ and by Lemma $2.7 c \notin x_{2} A_{n} x_{1}$. Now $\operatorname{Alph}\left(x_{2} A_{n} x_{1}\right)=A \backslash\left\{c, B_{n}\right\}$ and $\operatorname{Alph}\left(\widetilde{x_{1}}\right)=A \backslash\left\{c, A_{n}, B_{n}\right\}$, where $c \neq B_{n}$ since B_{n} is the left special letter of w_{n}. This means $|x|=\left|x_{2} A_{n} x_{1}\right|+|c|+\left|\widetilde{x_{1}}\right| \leq r(n-2)+r(n-3)+1$, where $r(n-3)=0$ if $n=3$. The same holds for z.

We have $\operatorname{Alph}\left(y B_{n} z\right)=A \backslash\left\{A_{n}\right\}$, which means $\left|y B_{n} z\right| \leq r(n-1)$. Now
$\left|w_{n}\right|=|x|+\left|A_{n}\right|+\left|y B_{n} z\right| \leq[r(n-2)+r(n-3)+1]+1+r(n-1)=r(n-1)+r(n-2)+r(n-3)+2$.
From the basic recursion we know that $r(n) \geq 2 r(n-1)+1$. This means that $r(n-1)+$ $r(n-2)+r(n-3)+2 \leq r(n-1)+r(n-2)+2 r(n-3)+2 \leq r(n-1)+2 r(n-2)+1 \leq 2 r(n-1)$, which we needed to prove.
3) By the definition of special letters, we have that $\operatorname{Alph}(x)=\operatorname{Alph}(z)=A \backslash\left\{A_{n}\right\}$, which means $|x|,|z| \leq r(n-1)$. Now

$$
\left|w_{n}\right|=|x|+\left|A_{n}\right|+|z| \leq r(n-1)+1+r(n-1)=2 r(n-1)+1 .
$$

Corollary 2.12. $r(n) \leq 2 r(n-1)+r(n-2)+2$, for $n \geq 3$.
Proof. We get our claim from Proposition [2.11, since the proposition covered all the three different possible cases for w_{n}.

We do not solve the recursion $r(n) \leq 2 r(n-1)+r(n-2)+2, r(2)=3, r(1)=1$, in a closed-form, but we will estimate it. We use the inequality $r(n) \geq 2 r(n-1)+1$ from the basic recursion, and the fact that $r(4)=15>13$. For $n \geq 8$ we have

$$
\begin{aligned}
r(n) \leq & 2 r(n-1)+r(n-2)+2 \leq 2(2 r(n-2)+r(n-3)+2)+r(n-2)+2=5 r(n-2)+2 r(n-3)+6 \\
& \leq 5(2 r(n-3)+r(n-4)+2)+2 r(n-3)+6=12 r(n-3)+5 r(n-4)+16
\end{aligned}
$$

$$
\begin{aligned}
<12 r(n-3)+5 r(n-4)+16+ & (r(n-4)-13)=12 r(n-3)+6 r(n-4)+3 \leq 15 r(n-3) \\
& <2,47^{3} r(n-3)<2,47^{n}
\end{aligned}
$$

where the last inequality comes from the fact that $r(n)<2,47^{n}$ for $1 \leq n \leq 7$. Together with the lower bound, we now have $2,008^{n}<r(n)<2,47^{n}$ for $n \geq 5$.

This upper bound can still be improved. The cases 2 and 3 from Proposition 2.11already give better or equal upper bounds than the basic recursion, i.e. $r(n) \leq 2 r(n-1)+1$. This means we need to look closer only for the case 1.

Proposition 2.13. $r(n) \leq 5 r(n-2)+4$, for $n \geq 7$.
Proof. Suppose $w_{n}=x B_{n} y A_{n} z$ is a rich square-free n-ary word, where $n \geq 7$ and the letters A_{n} and B_{n} are the right and left special letters of w_{n}, respectively. This means $A_{n} \neq B_{n}$. If w_{n} is not of this form, then we already know from Proposition 2.11 that $\left|w_{n}\right| \leq 2 r(n-1)+1$, which means we can use the upper bound of Corollary 2.12 and get that

$$
\left|w_{n}\right| \leq 2(2 r(n-2)+r(n-3)+2)+1=4 r(n-2)+2 r(n-3)+5 \leq 5 r(n-2)+4,
$$

where the last inequality comes from the basic recursion $r(n) \geq 2 r(n-1)+1$. From now on, we will use the basic recursion without mentioning it.

By the definition of special letters, we have that $A_{n} \in x$ and $B_{n} \in z$. From Lemma 2.10 we know that $A_{n}, B_{n} \notin y$. Since $A_{n} \neq B_{n}$, we can take the rightmost occurrence of A_{n} in x and the leftmost occurrence of B_{n} in z and get, by Proposition 1.4, that $w_{n}=x_{1} A_{n} \widetilde{y} B_{n} y A_{n} \widetilde{y} B_{n} z_{1}$.

We divide this proof into three different cases depending whether $A_{n} \in x_{1}$ or $A_{n} \notin x_{1}$ and whether $B_{n} \in z_{1}$ or $B_{n} \notin z_{1}$.

Case 1) $A_{n} \notin x_{1}, B_{n} \notin z_{1}$.
Now we have $A_{n}, B_{n} \notin x_{1}, z_{1}, y$. This means $\left|x_{1}\right|,\left|z_{1}\right|,|y| \leq r(n-2)$. Together we get

$$
\left|w_{n}\right|=\left|x_{1} A_{n} \widetilde{y} B_{n} y A_{n} \widetilde{y} B_{n} z_{1}\right| \leq 5 r(n-2)+4 .
$$

Case 2) $A_{n} \in x_{1}, B_{n} \notin z_{1}$ (the case $A_{n} \notin x_{1}, B_{n} \in z_{1}$ is symmetric).
If we take the rightmost occurrence of A_{n} in x_{1} we get, by Proposition 1.4, Lemma 2.6 and Lemma 2.7, that $w_{n}=x_{2} A_{n} \widetilde{x_{B}} B x_{B} A_{n} \widetilde{y} B_{n} y A_{n} \widetilde{y} B_{n} z_{1}$, where $B\left(\neq A_{n}, B_{n}\right)$ is a letter, $A_{n}, B \notin x_{B}, B \notin x_{2}$ and $x_{1}=x_{2} A_{n} \widetilde{x_{B}} B x_{B}$. Since B_{n} is a left special letter of w_{n}, we have that $B_{n} \notin x_{2} A_{n} \widetilde{x_{B}}$ and $B_{n} \notin x_{B}$. We also have $A_{n}, B_{n} \notin y, z_{1}$. Together we have $|y|,\left|z_{1}\right|,\left|x_{2} A_{n} \widetilde{x_{B}}\right| \leq r(n-2)$ and $\left|x_{B}\right| \leq r(n-3)$.

Let us mark the left special letter of \widetilde{y} with B_{n-2}. Now we divide this into two cases whether $B \neq B_{n-2}$ or $B=B_{n-2}$.

Case 2.1) $B \neq B_{n-2}$.

Since B_{n-2} is the left special letter of \widetilde{y}, we must have $B_{n-2} \notin x_{B}$. Otherwise we would have, by Proposition 1.4, that $B \in x_{B}$, which is impossible by Lemma 2.6. From Lemma 2.7 we now get that $B_{n-2} \notin x_{2}$. Earlier, we already noted that $B_{n}, B \notin x_{2} A_{n} \widetilde{x_{B}}$ and $A_{n}, B_{n}, B \notin x_{B}$. Together we now get $\left|x_{2} A_{n} \widetilde{x_{B}}\right| \leq r(n-3)$ and $\left|x_{B}\right| \leq r(n-4)$, and therefore

$$
\begin{gathered}
\left|w_{n}\right|=\left|x_{2} A_{n} \widetilde{x_{B}}\right|+|B|+\left|x_{B}\right|+\left|A_{n} \widetilde{y} B_{n} y A_{n} \widetilde{y} B_{n}\right|+\left|z_{1}\right| \\
\leq r(n-3)+1+r(n-4)+[3 r(n-2)+4]+r(n-2)=4 r(n-2)+r(n-3)+r(n-4)+5 \\
<4 r(n-2)+r(n-3)+r(n-4)+5+r(n-4) \leq 5 r(n-2)+3,
\end{gathered}
$$

where we added the extra $r(n-4)$ after the second inequality only to make the use of the basic recursion simpler.

Case 2.2) $B=B_{n-2}$.
If we can prove that $\left|z_{1}\right| \leq r(n-3)$, then we get

$$
\begin{gathered}
\left|w_{n}\right|=\left|x_{2} A_{n} \widetilde{x_{B}}\right|+|B|+\left|x_{B}\right|+\left|A_{n} \widetilde{y} B_{n} y A_{n} \widetilde{y} B_{n}\right|+\left|z_{1}\right| \\
\leq r(n-2)+1+r(n-3)+[3 r(n-2)+4]+r(n-3)=4 r(n-2)+2 r(n-3)+5 \leq 5 r(n-2)+4 .
\end{gathered}
$$

So we need to prove there exists some letter, different from A_{n} and B_{n}, such that it does not belong to z_{1}. We divide this into three cases depending of which form \widetilde{y} is.

Case 2.2.1) $\widetilde{y}=y_{1} A_{n-2} y_{3} B_{n-2} y_{2}$, where the letters A_{n-2} and B_{n-2} are the right and left special letters of \widetilde{y}, respectively.

Because $B=B_{n-2}$, we have $\widetilde{x_{B}}=y_{1} A_{n-2} y_{3}$, by Proposition 1.4 and Lemma 2.6. Now $A_{n-2} \notin z_{1}$, since otherwise we could take the leftmost occurrence of A_{n-2} in z_{1} and get a square in w_{n} :

$$
\widetilde{y_{1}} A_{n} \widetilde{y} B_{n} \widetilde{y_{2}} B_{n-2} \widetilde{y_{3}} A_{n-2} \widetilde{y_{1}} A_{n} \widetilde{y} B_{n} \widetilde{y_{2}} B_{n-2} \widetilde{y_{3}} A_{n-2},
$$

where the rightmost $\widetilde{y_{2}} B_{n-2} \widetilde{y_{3}} A_{n-2}$ is a prefix of z_{1} and the leftmost $\widetilde{y_{1}}$ is a suffix x_{1}.
Case 2.2.2) $\widetilde{y}=y_{1} B_{n-2} y_{2}$, where B_{n-2} is also the right special letter of \widetilde{y}.
Because $B=B_{n-2}$, we have $\widetilde{x_{B}}=y_{1}$. Now $B_{n-2} \notin z_{1}$, since otherwise, similar to Case 2.2.1, we could take the leftmost occurrence of B_{n-2} in z_{1} and get a square in w_{n} :

$$
\widetilde{y_{1}} A_{n} \widetilde{y} B_{n} \widetilde{y_{2}} B_{n-2} \widetilde{y_{1}} A_{n} \widetilde{y} B_{n} \widetilde{y_{2}} B_{n-2}
$$

Case 2.2.3) $\widetilde{y}=y_{1} A_{n-2} y_{3} B_{n-2} \widetilde{y}_{3} A_{n-2} y_{3} B_{n-2} y_{2}$, where the rightmost A_{n-2} and the leftmost B_{n-2} are the right and left special letters of \widetilde{y}, respectively.

Because $B=B_{n-2}$, we have $\widetilde{x_{B}}=y_{1} A_{n-2} y_{3}$. Again $A_{n-2} \notin z_{1}$, since otherwise, similar to Case 2.2.1, we could take the leftmost occurrence of A_{n-2} in z_{1} and get a square in w_{n} :

$$
y_{3} B_{n-2} \widetilde{y_{3}} A_{n-2} \widetilde{y_{1}} A_{n} \widetilde{y} B_{n} \widetilde{y_{2}} B_{n-2} \widetilde{y_{3}} A_{n-2} y_{3} B_{n-2} \widetilde{y_{3}} A_{n-2} \widetilde{y_{1}} A_{n} \widetilde{y} B_{n} \widetilde{y_{2}} B_{n-2} \widetilde{y_{3}} A_{n-2}
$$

Case 3) $A_{n} \in x_{1}, B_{n} \in z_{1}$.
If we take the rightmost occurrence of A_{n} in x_{1} and the leftmost occurrence of B_{n} in z_{1}, we get that $w_{n}=x_{2} A_{n} \widetilde{x_{B}} B x_{B} A_{n} \widetilde{y} B_{n} y A_{n} \widetilde{y} B_{n} z_{A} A \widetilde{z_{A}} B_{n} z_{2}$, where $A, B\left(\neq A_{n}, B_{n}\right)$ are letters and $x_{1}=x_{2} A_{n} \widetilde{x_{B}} B x_{B}, z_{1}=z_{A} A \widetilde{z_{A}} B_{n} z_{2}$. Similar to Case 2, we have $|y|,\left|x_{1}\right|,\left|z_{1}\right|,\left|x_{2} A_{n} \widetilde{x_{B}}\right|$, $\left|\widetilde{z_{A}} B_{n} z_{2}\right| \leq r(n-2)$ and $\left|x_{B}\right|,\left|z_{A}\right| \leq r(n-3)$.

We divide this case now into three cases depending of which form \widetilde{y} is.
Case 3.1) $\widetilde{y}=y_{1} B_{n-2} y_{2}$, where B_{n-2} is both the right and left special letter of \widetilde{y}.
If $A=B=B_{n-2}$ then $x_{B}=\widetilde{y_{1}}$ and $z_{A}=\widetilde{y_{2}}$. This would create a square in w_{n} :

$$
B_{n-2} \widetilde{y_{1}} A_{n} \widetilde{y} B_{n} \widetilde{y_{2}} B_{n-2} \widetilde{y_{1}} A_{n} \widetilde{y} B_{n} \widetilde{y_{2}}
$$

Now we divide this into two possible cases: $A, B \neq B_{n-2}$ and $A=B_{n-2}, B \neq B_{n-2}$.
Case 3.1.1) $A, B \neq B_{n-2}$.
Similar to Case 2.1, we get $B_{n}, B_{n-2}, B \notin x_{2} A_{n} \widetilde{x_{B}}$ and $A_{n}, B_{n}, B_{n-2}, B \notin x_{B}$. In the same way, we get $A_{n}, A, B_{n-2} \notin \widetilde{z_{A}} B_{n} z_{2}$ and $A_{n}, A, B_{n}, B_{n-2} \notin z_{A}$. Together we have

$$
\begin{gathered}
\left|w_{n}\right|=\left|x_{2} A_{n} \widetilde{x_{B}}\right|+|B|+\left|x_{B}\right|+\left|A_{n} \widetilde{y} B_{n} y A_{n} \widetilde{y} B_{n}\right|+\left|z_{A}\right|+|A|+\left|\widetilde{z_{A}} B_{n} z_{2}\right| \\
\leq r(n-3)+1+r(n-4)+[3 r(n-2)+4]+r(n-4)+1+r(n-3)=3 r(n-2)+2 r(n-3)+2 r(n-4)+6 \\
<3 r(n-2)+2 r(n-3)+2 r(n-4)+6+2 r(n-4) \leq 5 r(n-2)+2
\end{gathered}
$$

Case 3.1.2) $A=B_{n-2}$ and $B \neq B_{n-2}$ (the case $A \neq B_{n-2}$ and $B=B_{n-2}$ is symmetric).
Now $z_{A}=\widetilde{y_{2}}$. Let us mark $y_{1}=u_{1} B_{n-4} u_{2}$ and $y_{2}=v_{1} A_{n-4} v_{2}$, where B_{n-4} and A_{n-4} are the left special letters of y_{1} and y_{2}, respectively.

We prove $B \neq B_{n-4}$. Suppose to the contrary that $B=B_{n-4}$. Since B_{n-2} is the right and left special letter of \widetilde{y}, we have that $A_{n-4} \in y_{1}$. If we take the rightmost occurrence of A_{n-4} in y_{1} then we get from Proposition 1.4 that $A_{n-4} \widetilde{v_{1}}$ is a suffix of y_{1} and hence A_{n-4} is the right special letter of y_{1}. There are now three different cases how A_{n-4} and B_{n-4} can appear inside y_{1} with respect to each other. These all yield a square and hence a contradiction:

- If $y_{1}=u_{1}^{\prime} A_{n-4} u_{3} B_{n-4} \widetilde{u_{3}} A_{n-4} u_{3} B_{n-4} u_{2}^{\prime}$, where $u_{1}=u_{1}^{\prime} A_{n-4} u_{3}, u_{2}=\widetilde{u_{3}} A_{n-4} u_{3} B_{n-4} u_{2}^{\prime}$ and $v_{1}=\widetilde{u_{2}^{\prime}} B_{n-4} \widetilde{u_{3}}$, then we have a square in w_{n} :

$$
A_{n-4} u_{3} B_{n-4} \widetilde{u_{3}} A_{n-4} \widetilde{u_{1}^{\prime}} A_{n} \widetilde{y} B_{n} \widetilde{y_{2}} B_{n-2} \widetilde{u_{2}^{\prime}} B_{n-4} \widetilde{u_{3}} A_{n-4} u_{3} B_{n-4} \widetilde{u_{3}} A_{n-4} \widetilde{u_{1}^{\prime}} A_{n} \widetilde{y} B_{n} \widetilde{y_{2}} B_{n-2} \widetilde{u_{2}^{\prime}} B_{n-4} \widetilde{u_{3}} .
$$

- If $y_{1}=u_{1} B_{n-4} u_{2}=u_{1} A_{n-4} \widetilde{v_{1}}$ (i.e. $A_{n-4}=B_{n-4}$), then $u_{2}=\widetilde{v_{1}}$ and we have a square in w_{n} :

$$
B_{n-4} \widetilde{u_{1}} A_{n} \widetilde{y} B_{n} \widetilde{y_{2}} B_{n-2} \widetilde{u_{2}} B_{n-4} \widetilde{u_{1}} A_{n} \widetilde{y} B_{n} \widetilde{y_{2}} B_{n-2} \widetilde{u_{2}}
$$

- If $y_{1}=u_{1}^{\prime} A_{n-4} u_{3} B_{n-4} u_{2}$, where $u_{1}=u_{1}^{\prime} A_{n-4} u_{3}$ and $v_{1}=\widetilde{u_{2}} B_{n-4} \widetilde{u_{3}}$, then we have a square in w_{n} :

$$
B_{n-4} \widetilde{u_{3}} A_{n-4} \widetilde{u_{1}^{\prime}} A_{n} \widetilde{y} B_{n} \widetilde{y_{2}} B_{n-2} \widetilde{u_{2}} B_{n-4} \widetilde{u_{3}} A_{n-4} \widetilde{u_{1}^{\prime}} A_{n} \widetilde{y} B_{n} \widetilde{y_{2}} B_{n-2} \widetilde{u_{2}} .
$$

This means $B \neq B_{n-4}$. Similar to Case 2.1 we now get that $B_{n}, B_{n-2}, B_{n-4}, B \notin x_{2} A_{n} \widetilde{x_{B}}$ and $A_{n}, B_{n}, B_{n-2}, B_{n-4}, B \notin x_{B}$. Together we have

$$
\begin{gathered}
\left|w_{n}\right|=\left|x_{2} A_{n} \widetilde{x_{B}}\right|+|B|+\left|x_{B}\right|+\left|A_{n} \widetilde{y} B_{n} y A_{n} \widetilde{y} B_{n}\right|+\left|z_{A}\right|+\left|B_{n-2}\right|+\left|\widetilde{z_{A}} B_{n} z_{2}\right| \\
\leq r(n-4)+1+r(n-5)+[3 r(n-2)+4]+r(n-3)+1+r(n-2) \\
\quad=4 r(n-2)+r(n-3)+r(n-4)+r(n-5)+6 \\
<4 r(n-2)+r(n-3)+r(n-4)+r(n-5)+6+r(n-5) \leq 5 r(n-2)+3
\end{gathered}
$$

Case 3.2) $\widetilde{y}=y_{1} A_{n-2} y_{3} B_{n-2} y_{2}$, where the letters A_{n-2} and B_{n-2} are the right special letter and the left special letter of \widetilde{y}, respectively.

If $A=A_{n-2}, B=B_{n-2}$ then we would have a square in w_{n} :

$$
A_{n-2} \widetilde{y_{1}} A_{n} \widetilde{y} B_{n} \widetilde{y_{2}} B_{n-2} \widetilde{y_{3}} A_{n-2} \widetilde{y_{1}} A_{n} \widetilde{y} B_{n} \widetilde{y_{2}} B_{n-2} \widetilde{y_{3}} .
$$

This means we can divide this case, similar to Case 3.1, into two different cases: $A=A_{n-2}$, $B \neq B_{n-2}$ and $A \neq A_{n-2}, B \neq B_{n-2}$.

Case 3.2.1) $A \neq A_{n-2}, B \neq B_{n-2}$.
Similar to Case 2.1, we get $B_{n}, B_{n-2}, B \notin x_{2} A_{n} \widetilde{x_{B}}$ and $A_{n}, B_{n}, B_{n-2}, B \notin x_{B}$. In the same way, we get $A_{n}, A_{n-2}, A \notin \widetilde{z_{A}} B_{n} z_{2}$ and $A_{n}, A_{n-2}, A, B_{n} \notin z_{A}$. Together we have

$$
\begin{gathered}
\left|w_{n}\right|=\left|x_{2} A_{n} \widetilde{x_{B}}\right|+|B|+\left|x_{B}\right|+\left|A_{n} \widetilde{y} B_{n} y A_{n} \widetilde{y} B_{n}\right|+\left|z_{A}\right|+|A|+\left|\widetilde{z_{A}} B_{n} z_{2}\right| \\
\leq r(n-3)+1+r(n-4)+[3 r(n-2)+4]+r(n-4)+1+r(n-3)=3 r(n-2)+2 r(n-3)+2 r(n-4)+6 \\
<3 r(n-2)+2 r(n-3)+2 r(n-4)+6+2 r(n-4) \leq 5 r(n-2)+2 .
\end{gathered}
$$

Case 3.2.2) $A=A_{n-2}, B \neq B_{n-2}$ (the case $A \neq A_{n-2}, B=B_{n-2}$ is symmetric).
Now $z_{A}=\widetilde{y_{2}} B_{n-2} \widetilde{y_{3}}$. We divide this case into two cases: $A_{n-2} \notin y_{1}$ and $A_{n-2} \in y_{1}$.
Case 3.2.2.1) $A_{n-2} \notin y_{1}$.
We must have $A_{n-2} \notin x_{1}$. Otherwise we could take the rightmost occurrence of A_{n-2} in x_{1} and get a square in w_{n} :

$$
A_{n-2} \widetilde{y_{1}} A_{n} \widetilde{y} B_{n} \widetilde{y_{2}} B_{n-2} \widetilde{y_{3}} A_{n-2} \widetilde{y_{1}} A_{n} \widetilde{y} B_{n} \widetilde{y_{2}} B_{n-2} \widetilde{y_{3}} .
$$

Similar to Case 2.1, we have $B_{n}, B_{n-2} \notin x_{1}$. Since B_{n} and B_{n-2} are the left special letters of w_{n} and \widetilde{y}, respectively, we have $B_{n}, B_{n-2} \notin y_{1}$. Together with the previous paragraph we get that $A_{n-2}, B_{n}, B_{n-2} \notin x_{1} A_{n} y_{1}$. Since A_{n-2} is the right special letter of \widetilde{y} we have $A_{n}, B_{n}, A_{n-2} \notin y_{3} B_{n-2} y_{2}$. These mean $\left|x_{1} A_{n} y_{1}\right| \leq r(n-3)$ and $\left|y_{3} B_{n-2} y_{2}\right| \leq r(n-3)$. Together we have

$$
\left|w_{n}\right|=\left|x_{1} A_{n} y_{1}\right|+\left|A_{n-2}\right|+\left|y_{3} B_{n-2} y_{2}\right|+\left|B_{n} y A_{n} \widetilde{y} B_{n}\right|+\left|z_{A}\right|+\left|A_{n-2}\right|+\left|\widetilde{z_{A}} B_{n} z_{2}\right|
$$

$$
\begin{gathered}
\leq r(n-3)+1+r(n-3)+[2 r(n-2)+3]+r(n-3)+1+r(n-2) \\
=3 r(n-2)+3 r(n-3)+5<3 r(n-2)+3 r(n-3)+5+r(n-3) \leq 5 r(n-2)+3 .
\end{gathered}
$$

Case 3.2.2.2) $A_{n-2} \in y_{1}$.
If we take the rightmost occurrence of A_{n-2} in y_{1}, we get $\widetilde{y}=y_{1}^{\prime} A_{n-2} y_{4} B_{y} \widetilde{y}_{4} A_{n-2} y_{3} B_{n-2} y_{2}$, where B_{y} is a letter, $y_{1}=y_{1}^{\prime} A_{n-2} y_{4} B_{y} \widetilde{y}_{4}$ and $A_{n-2} \notin y_{4} B_{y} \widetilde{y}_{4}$. Let us mark $y_{3}=u_{1} B_{n-4} u_{2}$, where B_{n-4} is the left special letter of y_{3}. We will prove $B_{n-4} \notin x_{1}$.

Suppose $B_{n-4} \notin y_{1}$. Now $B_{n-4} \notin x_{1}$, since otherwise we could take the rightmost occurrence of B_{n-4} in x_{1} and get a square in w_{n} :

$$
A_{n-2} \widetilde{y_{1}} A_{n} \widetilde{y} B_{n} \widetilde{y_{2}} B_{n-2} \widetilde{y_{3}} A_{n-2} \widetilde{y_{1}} A_{n} \widetilde{y} B_{n} \widetilde{y_{2}} B_{n-2} \widetilde{y_{3}} .
$$

Suppose $B_{n-4} \in y_{1}$. Because of Lemma [2.6, we must have that $B_{y}=B_{n-4}$ and $y_{4}=\widetilde{u}_{1}$. Also now $B_{n-4} \notin x_{1}$, since otherwise we would have a square in w_{n} :

$$
B_{n-4} \widetilde{u}_{1} A_{n-2} \widetilde{y}^{\prime}{ }_{1} A_{n} \widetilde{y} B_{n} \widetilde{y}_{2} B_{n-2} \widetilde{y}_{3} A_{n-2} \widetilde{u}_{1} B_{n-4} \widetilde{u}_{1} A_{n-2} \widetilde{y y}^{\prime}{ }_{1} A_{n} \widetilde{y} B_{n} \widetilde{y}_{2} B_{n-2} \widetilde{y}_{3} A_{n-2} \widetilde{u}_{1} .
$$

This means we have $B_{n-4} \notin x_{1}$.
If $B_{y}=B_{n-4}$ then we get from Lemma 2.7 that $B_{n-4} \notin y_{1}^{\prime} A_{n-2} y_{4}$. If $B_{y} \neq B_{n-4}$ then, since B_{n-4} is the left special letter of y_{3}, we also get from Lemma 2.6 and 2.7 that $B_{n-4} \notin y_{1}^{\prime} A_{n-2} y_{4}$. These mean $B_{n-4} \notin x_{1} A_{n} y_{1}^{\prime} A_{n-2} y_{4}$.

From Lemma [2.6] we get that $B_{y} \notin \widetilde{y_{4}}$, which means $A_{n}, A_{n-2}, B_{n}, B_{n-2}, B_{y} \notin \widetilde{y_{4}}$. Since A_{n-2} is the right special letter of \widetilde{y}, we have that $A_{n}, A_{n-2}, B_{n} \notin y_{3} B_{n-2} y_{2}$. Together we have

$$
\begin{aligned}
& \left|w_{n}\right|=\left|x_{1} A_{n} y_{1}^{\prime} A_{n-2} y_{4}\right|+\left|B_{y}\right|+\left|\widetilde{y}_{4}\right|+\left|A_{n-2}\right|+\left|y_{3} B_{n-2} y_{2}\right|+\left|B_{n} y A_{n} \widetilde{y} B_{n}\right|+\left|z_{A}\right|+\left|A_{n-2}\right|+\left|\widetilde{z_{A}} B_{n} z_{2}\right| \\
& \quad \leq r(n-3)+1+r(n-5)+1+r(n-3)+[2 r(n-2)+3]+r(n-3)+1+r(n-2) \\
& =3 r(n-2)+3 r(n-3)+r(n-5)+6<3 r(n-2)+3 r(n-3)+r(n-5)+6+3 r(n-5) \leq 5 r(n-2)+1 .
\end{aligned}
$$

Case 3.3) $\widetilde{y}=y_{1} A_{n-2} y_{3} B_{n-2} \widetilde{y_{3}} A_{n-2} y_{3} B_{n-2} y_{2}$, where the rightmost A_{n-2} and the leftmost B_{n-2} are the right and left special letters of \widetilde{y}, respectively.

If $A=A_{n-2}, B=B_{n-2}$ then we would have a square in w_{n} :

$$
B_{n-2} \widetilde{y_{3}} A_{n-2} \widetilde{y_{1}} A_{n} \widetilde{y} B_{n} \widetilde{y_{2}} B_{n-2} \widetilde{y_{3}} A_{n-2} y_{3} B_{n-2} \widetilde{y_{3}} A_{n-2} \widetilde{y_{1}} A_{n} \widetilde{y} B_{n} \widetilde{y_{2}} B_{n-2} \widetilde{y_{3}} A_{n-2} y_{3} .
$$

This means we can divide this case, similar to Case 3.1, into two different cases: $A=A_{n-2}$, $B \neq B_{n-2}$ and $A \neq A_{n-2}, B \neq B_{n-2}$.

Case 3.3.1) $A \neq A_{n-2}$ and $B \neq B_{n-2}$.

Similar to Case 2.1, we get $B_{n}, B_{n-2}, B \notin x_{2} A_{n} \widetilde{x_{B}}$ and $A_{n}, B_{n}, B_{n-2}, B \notin x_{B}$. In the same way, we get $A_{n}, A_{n-2}, A \notin \widetilde{z_{A}} B_{n} z_{2}$ and $A_{n}, A_{n-2}, A, B_{n} \notin z_{A}$. Together we have

$$
\begin{gathered}
\left|w_{n}\right|=\left|x_{2} A_{n} \widetilde{x_{B}}\right|+|B|+\left|x_{B}\right|+\left|A_{n} \widetilde{y} B_{n} y A_{n} \widetilde{y} B_{n}\right|+\left|z_{A}\right|+|A|+\left|\widetilde{z_{A}} B_{n} z_{2}\right| \\
\leq r(n-3)+1+r(n-4)+[3 r(n-2)+4]+r(n-4)+1+r(n-3)=3 r(n-2)+2 r(n-3)+2 r(n-4)+6 \\
<3 r(n-2)+2 r(n-3)+2 r(n-4)+6+2 r(n-4) \leq 5 r(n-2)+2 .
\end{gathered}
$$

Case 3.3.2) $A=A_{n-2}, B \neq B_{n-2}$ (the case $A \neq A_{n-2}, B=B_{n-2}$ is symmetric).
Let A_{n-4} be the right special letter of y_{3}. We will divide this into two cases: $A_{n-4} \notin y_{2}$ and $A_{n-4} \in y_{2}$.

Case 3.3.2.1) $A_{n-4} \notin y_{2}$.
If $A_{n-4} \in z_{2}$ then we could take the leftmost occurrence of it in z_{2}, which would create a square in w_{n} :

$$
\widetilde{y_{3}} A_{n-2} y_{3} B_{n-2} y_{2} B_{n} \widetilde{y_{2}} B_{n-2} \widetilde{y_{3}} A_{n-2} y_{3} B_{n-2} y_{2} B_{n} \widetilde{y_{2}} B_{n-2}
$$

This means $A_{n-4} \notin z_{2}$. Let us now mark $y_{3}=u_{1} A_{n-4} u_{2}$, where the letter A_{n-4} is the right special letter. We get that $A_{n-4} \notin u_{2} B_{n-2} y_{2} B_{n} z_{2}$. Similar to Case 2.1, we also have $A_{n}, A_{n-2} \notin u_{2} B_{n-2} y_{2} B_{n} z_{2}$. From Proposition 2.11 we get that $\left|u_{1}\right| \leq r(n-5)+r(n-6)+1$. Similar to Case 2.1, we get $B_{n}, B_{n-2}, B \notin x_{2} A_{n} \widetilde{x_{B}}$ and $A_{n}, B_{n}, B_{n-2}, B \notin x_{B}$. Together we have

$$
\begin{aligned}
& \left|w_{n}\right|=\left|x_{2} A_{n} \widetilde{x_{B}}\right|+|B|+\left|x_{B}\right|+\left|A_{n} \widetilde{y} B_{n} y A_{n} \widetilde{y} B_{n}\right|+\left|\widetilde{y_{2}} B_{n-2} \widetilde{u_{2}}\right|+\left|A_{n-4} \widetilde{u_{1}} A_{n-2} u_{1} A_{n-4}\right|+\left|u_{2} B_{n-2} y_{2} B_{n} z_{2}\right| \\
& \begin{array}{c}
\leq r(n-3)+1+r(n-4)+[3 r(n-2)+4]+r(n-4)+[2(r(n-5)+r(n-6)+1)+3]+r(n-3) \\
\quad=3 r(n-2)+2 r(n-3)+2 r(n-4)+2 r(n-5)+2 r(n-6)+10 \\
<3 r(n-2)+2 r(n-3)+2 r(n-4)+2 r(n-5)+2 r(n-6)+10+2 r(n-6) \leq 5 r(n-2)+2 .
\end{array}
\end{aligned}
$$

Case 3.3.2.2) $A_{n-4} \in y_{2}$.
We will divide this case into three cases depending of which form y_{3} is.
Case 3.3.2.2.1) $y_{3}=u_{1} A_{n-4} u_{3} B_{n-4} u_{2}$, where A_{n-4} and B_{n-4} are the right and left special letters of y_{3}, respectively.

Since $A_{n-4} \in y_{2}$, we have that $y_{2}=\widetilde{u_{2}} B_{n-4} \widetilde{u_{3}} A_{n-4} y_{2}^{\prime}$, where the A_{n-4} is the leftmost occurrence of A_{n-4} in y_{2}. If $B_{n-4} \in y_{1}$ then $y_{1}=y_{1}^{\prime} B_{n-4} \widetilde{u_{3}} A_{n-4} \widetilde{u_{1}}$, where the B_{n-4} is the rightmost occurrence of B_{n-4} in y_{1}. This would create a square in \widetilde{y} :

$$
B_{n-4} \widetilde{u_{3}} A_{n-4} \widetilde{u_{1}} A_{n-2} y_{3} B_{n-2} \widetilde{u_{2}} B_{n-4} \widetilde{u_{3}} A_{n-4} \widetilde{u_{1}} A_{n-2} y_{3} B_{n-2} \widetilde{u_{2}} .
$$

So $B_{n-4} \notin y_{1}$. Now, if $B=B_{n-4}$ then $x_{B}=\widetilde{u_{3}} A_{n-4} \widetilde{u_{1}} A_{n-2} \widetilde{y_{1}}$ by Lemma 2.6, since $B_{n-4} \notin y_{1}$. This would create a square in w_{n} :

$$
\begin{aligned}
& B_{n-4} \widetilde{u_{3}} A_{n-4} \widetilde{u_{1}} A_{n-2} \widetilde{y_{1}} A_{n} \widetilde{y} B_{n} \widetilde{y_{2}} B_{n-2} \widetilde{y_{3}} A_{n-2} y_{3} B_{n-2} \widetilde{u_{2}} \\
& B_{n-4} \widetilde{u_{3}} A_{n-4} \widetilde{u_{1}} A_{n-2} \widetilde{y_{1}} A_{n} \widetilde{y} B_{n} \widetilde{y_{2}} B_{n-2} \widetilde{y_{3}} A_{n-2} y_{3} B_{n-2} \widetilde{u_{2}} .
\end{aligned}
$$

So $B \neq B_{n-4}$. This means that, in similar way as in Case 2.1, we get $B_{n}, B_{n-2}, B_{n-4}, B \notin$ $x_{2} A_{n} \widetilde{x_{B}}$ and $A_{n}, B_{n}, B_{n-2}, B_{n-4}, B \notin x_{B}$. Together we have

$$
\begin{gathered}
\left|w_{n}\right|=\left|x_{2} A_{n} \widetilde{x_{B}}\right|+|B|+\left|x_{B}\right|+\left|A_{n} \widetilde{y} B_{n} y A_{n} \widetilde{y} B_{n}\right|+\left|z_{A}\right|+\left|A_{n-2}\right|+\left|\widetilde{z_{A}} B_{n} z_{2}\right| \\
\leq r(n-4)+1+r(n-5)+[3 r(n-2)+4]+r(n-3)+1+r(n-2) \\
\quad=4 r(n-2)+r(n-3)+r(n-4)+r(n-5)+5 \\
<4 r(n-2)+r(n-3)+r(n-4)+r(n-5)+5+r(n-5) \leq 5 r(n-2)+2 .
\end{gathered}
$$

Case 3.3.2.2.2) $y_{3}=u_{1} B_{n-4} u_{2}$, where B_{n-4} is both the right and left special letter.
This case is very similar to the previous, Case 3.3.2.2.1.
Now B_{n-4} is both the right and left special letter, which means $A_{n-4}=B_{n-4}$. Since this case is a subcase of Case 3.3.2.2, we have that $A_{n-4}=B_{n-4} \in y_{2}$, which means $y_{2}=$ $\widetilde{u_{2}} B_{n-4} y_{2}^{\prime}$. If $B_{n-4} \in y_{1}$ then $y_{1}=y_{1}^{\prime} B_{n-4} \widetilde{u_{1}}$ and we would have a square in \widetilde{y} :

$$
B_{n-4} \widetilde{u_{1}} A_{n-2} y_{3} B_{n-2} \widetilde{u_{2}} B_{n-4} \widetilde{u_{1}} A_{n-2} y_{3} B_{n-2} \widetilde{u_{2}} .
$$

So $B_{n-4} \notin y_{1}$. If $B=B_{n-4}$ then $x_{B}=\widetilde{u_{1}} A_{n-2} \widetilde{y_{1}}$. This would create a square in w_{n} :

$$
\begin{aligned}
& B_{n-4} \widetilde{u_{1}} A_{n-2} \widetilde{y_{1}} A_{n} \widetilde{y} B_{n} \widetilde{y_{2}} B_{n-2} \widetilde{y_{3}} A_{n-2} y_{3} B_{n-2} \widetilde{u_{2}} \\
& B_{n-4} \widetilde{u_{1}} A_{n-2} \widetilde{y_{1}} A_{n} \widetilde{y} B_{n} \widetilde{y_{2}} B_{n-2} \widetilde{y_{3}} A_{n-2} y_{3} B_{n-2} \widetilde{u_{2}}
\end{aligned}
$$

So $B \neq B_{n-4}$. This means that, in similar way as in Case 2.1, we get $B_{n}, B_{n-2}, B_{n-4}, B \notin$ $x_{2} A_{n} \widetilde{x_{B}}$ and $A_{n}, B_{n}, B_{n-2}, B_{n-4}, B \notin x_{B}$. Again, we have

$$
\begin{gathered}
\left|w_{n}\right|=\left|x_{2} A_{n} \widetilde{x_{B}}\right|+|B|+\left|x_{B}\right|+\left|A_{n} \widetilde{y} B_{n} y A_{n} \widetilde{y} B_{n}\right|+\left|z_{A}\right|+\left|A_{n-2}\right|+\left|\widetilde{z_{A}} B_{n} z_{2}\right| \\
\leq r(n-4)+1+r(n-5)+[3 r(n-2)+4]+r(n-3)+1+r(n-2) \\
\quad=4 r(n-2)+r(n-3)+r(n-4)+r(n-5)+5 \\
<4 r(n-2)+r(n-3)+r(n-4)+r(n-5)+5+r(n-5) \leq 5 r(n-2)+2 .
\end{gathered}
$$

Case 3.3.2.2.3) $y_{3}=u_{1} A_{n-4} u_{3} B_{n-4} \widetilde{u_{3}} A_{n-4} u_{3} B_{n-4} u_{2}$, where the rightmost A_{n-4} and the leftmost B_{n-4} are the right and left special letters of y_{3}, respectively.

We divide this case into two subcases: $B_{n-4} \notin y_{1}$ and $B_{n-4} \in y_{1}$.
Case 3.3.2.2.3.1) $B_{n-4} \notin y_{1}$.
Now $B \neq B_{n-4}$, since otherwise we would have a square in w_{n} :

$$
\begin{aligned}
& A_{n-4} u_{3} B_{n-4} \widetilde{u_{3}} A_{n-4} \widetilde{u_{1}} A_{n-2} \widetilde{y_{1}} A_{n} \widetilde{y} B_{n} \widetilde{y_{2}} B_{n-2} \widetilde{y_{3}} A_{n-2} y_{3} B_{n-2} \widetilde{u_{2}} B_{n-4} \widetilde{u_{3}} \\
& A_{n-4} u_{3} B_{n-4} \widetilde{u_{3}} A_{n-4} \widetilde{u_{1}} A_{n-2} \widetilde{y_{1}} A_{n} \widetilde{y} B_{n} \widetilde{y_{2}} B_{n-2} \widetilde{y_{3}} A_{n-2} y_{3} B_{n-2} \widetilde{u_{2}} B_{n-4} \widetilde{u_{3}} .
\end{aligned}
$$

Similar to Case 2.1, we get $B_{n}, B_{n-2}, B_{n-4}, B \notin x_{2} A_{n} \widetilde{x_{B}}$ and $A_{n}, B_{n}, B_{n-2}, B_{n-4}, B \notin x_{B}$. Again, we have

$$
\begin{gathered}
\left|w_{n}\right|=\left|x_{2} A_{n} \widetilde{x_{B}}\right|+|B|+\left|x_{B}\right|+\left|A_{n} \widetilde{y} B_{n} y A_{n} \widetilde{y} B_{n}\right|+\left|z_{A}\right|+\left|A_{n-2}\right|+\left|\widetilde{z_{A}} B_{n} z_{2}\right| \\
\leq r(n-4)+1+r(n-5)+[3 r(n-2)+4]+r(n-3)+1+r(n-2) \\
\quad=4 r(n-2)+r(n-3)+r(n-4)+r(n-5)+5 \\
<4 r(n-2)+r(n-3)+r(n-4)+r(n-5)+5+r(n-5) \leq 5 r(n-2)+2 .
\end{gathered}
$$

Case 3.3.2.2.3.2) $B_{n-4} \in y_{1}$.
Now $y_{1}=y_{1}^{\prime} B_{n-4} \widetilde{u_{3}} A_{n-4} \widetilde{u_{1}}$, where the B_{n-4} is the rightmost occurrence of B_{n-4} in y_{1}, and $y_{2}=\widetilde{u_{2}} B_{n-4} \widetilde{u_{3}} A_{n-4} y_{2}^{\prime}$, where the A_{n-4} is the leftmost occurrence of A_{n-4} in y_{2}. Remember that we really have $A_{n-4} \in y_{2}$, since this is a subcase of Case 3.3.2.2.

If $A_{n-2} \in y_{1}$ then we can take the rightmost occurrence of A_{n-2} in y_{1}^{\prime} and get that $y_{1}=y_{1}^{\prime \prime} A_{n-2} u_{1} A_{n-4} u_{3} B_{n-4} \widetilde{u_{3}} A_{n-4} \widetilde{u_{1}}$, which creates a square in \widetilde{y} :

$$
A_{n-4} u_{3} B_{n-4} \widetilde{u_{3}} A_{n-4} \widetilde{u_{1}} A_{n-2} y_{3} B_{n-2} \widetilde{u_{2}} B_{n-4} \widetilde{u_{3}} A_{n-4} u_{3} B_{n-4} \widetilde{u_{3}} A_{n-4} \widetilde{u_{1}} A_{n-2} y_{3} B_{n-2} \widetilde{u_{2}} B_{n-4} \widetilde{u_{3}}
$$

This means $A_{n-2} \notin y_{1}$.
Now we divide this case into two subcases: $B \neq A_{n-2}$ and $B=A_{n-2}$.
Case 3.3.2.2.3.2.1) $B \neq A_{n-2}$.
Now, in similar way as in Case 2.1, we get that $A_{n-2}, B_{n}, B_{n-2}, B \notin x_{2} A_{n} \widetilde{x_{B}}$ and $A_{n}, A_{n-2}, B_{n}, B_{n-2}, B \notin x_{B}$. Again, we have

$$
\begin{gathered}
\left|w_{n}\right|=\left|x_{2} A_{n} \widetilde{x_{B}}\right|+|B|+\left|x_{B}\right|+\left|A_{n} \widetilde{y} B_{n} y A_{n} \widetilde{y} B_{n}\right|+\left|z_{A}\right|+\left|A_{n-2}\right|+\left|\widetilde{z_{A}} B_{n} z_{2}\right| \\
\leq r(n-4)+1+r(n-5)+[3 r(n-2)+4]+r(n-3)+1+r(n-2) \\
\quad=4 r(n-2)+r(n-3)+r(n-4)+r(n-5)+5 \\
<4 r(n-2)+r(n-3)+r(n-4)+r(n-5)+5+r(n-5) \leq 5 r(n-2)+2 .
\end{gathered}
$$

Case 3.3.2.2.3.2.2) $B=A_{n-2}$.

Now we have that $x_{B}=\widetilde{y_{1}}=u_{1} A_{n-4} u_{3} B_{n-4} \widetilde{y_{1}^{\prime}}$. We will first show that $A_{n-4} \notin y_{1}^{\prime}, x_{2}$ and $B_{n-4} \notin y_{2}^{\prime}, z_{2}$.

If $A_{n-4} \in y_{1}^{\prime}$ then we have $y_{1}=y_{1}^{\prime \prime} A_{n-4} u_{3} B_{n-4} \widetilde{u_{3}} A_{n-4} \widetilde{u_{1}}$. This creates a square in w_{n} :

$$
\begin{aligned}
& u_{3} B_{n-4} \widetilde{u_{3}} A_{n-4} \widetilde{u_{1}} A_{n-2} \widetilde{y_{1}} A_{n} \widetilde{y} B_{n} \widetilde{y_{2}} B_{n-2} \widetilde{y_{3}} A_{n-2} y_{3} B_{n-2} \widetilde{u_{2}} B_{n-4} \widetilde{u_{3}} A_{n-4} \\
& u_{3} B_{n-4} \widetilde{u_{3}} A_{n-4} \widetilde{u_{1}} A_{n-2} \widetilde{y_{1}} A_{n} \widetilde{y} B_{n} \widetilde{y_{2}} B_{n-2} \widetilde{y_{3}} A_{n-2} y_{3} B_{n-2} \widetilde{u_{2}} B_{n-4} \widetilde{u_{3}} A_{n-4}
\end{aligned}
$$

So $A_{n-4} \notin y_{1}^{\prime}$. If $B_{n-4} \in y_{2}^{\prime}$ then we have that $y_{2}=\widetilde{u_{2}} B_{n-4} \widetilde{u_{3}} A_{n-4} u_{3} B_{n-4} y_{2}^{\prime \prime}$. Also this creates a square in w_{n} :

$$
\begin{aligned}
& B_{n-4} \widetilde{u_{3}} A_{n-4} \widetilde{u_{1}} A_{n-2} \widetilde{y_{1}} A_{n} \widetilde{y} B_{n} \widetilde{y_{2}} B_{n-2} \widetilde{y_{3}} A_{n-2} y_{3} B_{n-2} \widetilde{u_{2}} B_{n-4} \widetilde{u_{3}} A_{n-4} u_{3} \\
& B_{n-4} \widetilde{u_{3}} A_{n-4} \widetilde{u_{1}} A_{n-2} \widetilde{y_{1}} A_{n} \widetilde{y} B_{n} \widetilde{y_{2}} B_{n-2} \widetilde{y_{3}} A_{n-2} y_{3} B_{n-2} \widetilde{u_{2}} B_{n-4} \widetilde{u_{3}} A_{n-4} u_{3}
\end{aligned}
$$

So $B_{n-4} \notin y_{2}^{\prime}$. If $A_{n-4} \in x_{2}$ then we could take the rightmost occurrence of A_{n-4} in x_{2} and get a square in w_{n} :

$$
A_{n-4} u_{3} B_{n-4} \widetilde{y_{1}^{\prime}} A_{n} y_{1}^{\prime} B_{n-4} \widetilde{u_{3}} A_{n-4} \widetilde{u_{1}} A_{n-2} u_{1} A_{n-4} u_{3} B_{n-4} \widetilde{y_{1}^{\prime}} A_{n} y_{1}^{\prime} B_{n-4} \widetilde{u_{3}} A_{n-4} \widetilde{u_{1}} A_{n-2} u_{1}
$$

So $A_{n-4} \notin x_{2}$. If $B_{n-4} \in z_{2}$ then we could take the leftmost occurrence of B_{n-4} in z_{2} and get a square in w_{n} :

$$
\begin{aligned}
& u_{2} B_{n-2} \widetilde{y_{3}} A_{n-2} y_{3} B_{n-2} \widetilde{u_{2}} B_{n-4} \widetilde{u_{3}} A_{n-4} y_{2}^{\prime} B_{n} \widetilde{y_{2}^{\prime}} A_{n-4} u_{3} B_{n-4} \\
& u_{2} B_{n-2} \widetilde{y_{3}} A_{n-2} y_{3} B_{n-2} \widetilde{u_{2}} B_{n-4} \widetilde{u_{3}} A_{n-4} y_{2}^{\prime} B_{n} \widetilde{y_{2}^{\prime} A_{n-4} u_{3} B_{n-4}}
\end{aligned}
$$

So $B_{n-4} \notin z_{2}$. Now we know that $A_{n-4} \notin x_{2} A_{n} y_{1}^{\prime} B_{n-4} \widetilde{u_{3}}$ and $B_{n-4} \notin \widetilde{u_{3}} A_{n-4} y_{2}^{\prime} B_{n} z_{2}$.
Similar to Case 2.1, we get $A_{n-2}, B_{n}, B_{n-2} \notin x_{2} A_{n} y_{1}^{\prime} B_{n-4} \widetilde{u_{3}}$ and $A_{n}, A_{n-2}, B_{n}, B_{n-2} \notin$ $u_{3} B_{n-4} \widetilde{y_{1}^{\prime}}$ and $A_{n}, A_{n-2} \notin \widetilde{u_{3}} A_{n-4} y_{2}^{\prime} B_{n} z_{2}$. From Proposition 2.11 we get that $\left|u_{1}\right|,\left|u_{2}\right| \leq$ $r(n-6)+r(n-7)+1$, where $r(n-7)=0$ if $n=7$. Since $A_{n}, B_{n} \notin y$ and A_{n-2} is the right special letter of \widetilde{y}, we trivially have $A_{n}, A_{n-2}, B_{n} \notin \widetilde{y_{2}} B_{n-2} \widetilde{y_{3}}$. From Lemma 2.10 we also get easily that $A_{n}, A_{n-2}, B_{n}, B_{n-2} \notin y_{3}$. Together we finally have

$$
\begin{aligned}
& \quad\left|w_{n}\right|=\left|x_{2} A_{n} y_{1}^{\prime} B_{n-4} \widetilde{u_{3}}\right|+\left|A_{n-4} \widetilde{u_{1}} A_{n-2} u_{1} A_{n-4}\right|+\left|u_{3} B_{n-4} \widetilde{y_{1}^{\prime}}\right|+\left|A_{n} \widetilde{y} B_{n} y A_{n} \widetilde{y} B_{n}\right| \\
& \quad+\left|\widetilde{y_{2}} B_{n-2} \widetilde{y_{3}}\right|+\left|A_{n-2}\right|+\left|y_{3}\right|+\left|B_{n-2}\right|+\left|\widetilde{u_{2}}\right|+\left|B_{n-4}\right|+\left|\widetilde{u_{3}} A_{n-4} y_{2}^{\prime} B_{n} z_{2}\right| \\
& \leq r(n-4)+[2 r(n-6)+2 r(n-7)+5]+r(n-5)+[3 r(n-2)+4]+r(n-3)+1+r(n-4)+1+ \\
& {[r(n-6)+r(n-7)+1]+1+r(n-3)=3 r(n-2)+2 r(n-3)+2 r(n-4)+r(n-5)+3 r(n-6)+3 r(n-7)+13} \\
& <3 r(n-2)+2 r(n-3)+2 r(n-4)+r(n-5)+3 r(n-6)+3 r(n-7)+13+r(n-6)+r(n-7) \leq 5 r(n-2)+2 .
\end{aligned}
$$

As we can see, improving our upper bound was very exhausting. If we would like to achieve Conjecture 2.3, we would need to use a slightly different approach.

Let us still estimate our upper bound in a closed form. Suppose first $n \geq 7$ is even:

$$
\begin{aligned}
& r(n) \leq 5 r(n-2)+4 \leq 5(5 r(n-4)+4)+4 \leq \ldots \leq 5^{(n-6) / 2} r(6)+4\left(5^{(n-8) / 2}+\ldots+5+1\right) \\
& <5^{(n-6) / 2} \cdot\left(5^{3}-58\right)+\left(5^{(n-8) / 2+1}+\ldots+5\right)=5^{n / 2}-58 \cdot 5^{(n-6) / 2}+\left(5^{(n-8) / 2+1}+\ldots+5\right)<5^{n / 2}<2,237^{n}
\end{aligned}
$$

Suppose then that $n \geq 7$ is odd:
$r(n) \leq 5 r(n-2)+4 \leq 5(5 r(n-4)+4)+4 \leq \ldots \leq 5^{(n-5) / 2} r(5)+4\left(5^{(n-7) / 2}+\ldots+5+1\right)$
$<5^{(n-5) / 2} \cdot\left(5^{2,5}-22\right)+\left(5^{(n-7) / 2+1}+\ldots+5\right)=5^{n / 2}-22 \cdot 5^{(n-5) / 2}+\left(5^{(n-7) / 2+1}+\ldots+5\right)<5^{n / 2}<2,237^{n}$.
Together with the lower bound, we finally get that $2,008^{n}<r(n)<2,237^{n}$, for $n \geq 5$.

Acknowledgements

I want to thank Š. Starosta for making me aware of this problem, L. Zamboni and T. Harju for insightful comments, and J. Peltomäki for calculating the exact value of $r(7)$ and adding all the values of $r(n)$ up to $n=7$ to the OEIS database https://oeis.org/A269560.

References

References

[AFMP] P. Ambrož, C. Frougny, Z. Masáková, E. Pelantová: Palindromic complexity of infinite words associated with simple Parry numbers, Ann. Inst. Fourier (Grenoble) 56 (2006), pp. 2131-2160.
[BDGZ1] M. Bucci, A. De Luca, A. Glen, L. Q. Zamboni: A connection between palindromic and factor complexity using return words, Advances in Applied Mathematics 42 (2009), pp. 60-74.
[BDGZ2] M. Bucci, A. De Luca, A. Glen, L. Q. Zamboni: A new characteristic property of rich words, Theoret. Comput. Sci. 410 (2009), pp. 2860-2863.
[BHNR] S. Brlek, S. Hamel, M. Nivat, C. Reutenauer: On the palindromic complexity of infinite words, Internat. J. Found. Comput. 15 (2004), pp. 293-306.
[CD] A. Carpi, A. de Luca: Special factors, periodicity, and an application to Sturmian words, Acta Informatica 36 (2000), pp. 983-1006.
[CR] J. D. Currie, N. Rampersad: A proof of Dejeans conjecture, Math. Comput. 80(274) (2011), pp. 1063-1070.
[D] F. Dejean: Sur un théorème de Thue, J. Combin. Theory Ser. A 13 (1972), pp. 90-99.
[DGZ] A. de Luca, A. Glen, L. Q. Zamboni: Rich, Sturmian, and trapezoidal words, Theoret. Comput. Sci. 407 (2008), pp. 569-573.
[DJP] X. Droubay, J. Justin, G. Pirillo: Episturmian words and some constructions of de Luca and Rauzy, Theoret. Comput. Sci. 255 (2001), pp. 539-553.
[GJ] A. Glen, J. Justin: Episturmian words: A survey, Theor. Inform. Appl. 43(3) (2009), pp. 403-442.
[GJWZ] A. Glen, J. Justin, S. Widmer, L. Q. Zamboni: Palindromic richness, European Journal of Combinatorics 30 (2009), pp. 510-531.
[HPS] K. Hare, H. Prodinger, J. Shallit: Three Series for the Generalized Golden Mean, Fibonacci Quart. 52 (2014), pp. 307-313.
[Lot1] M. Lothaire: Combinatorics on Words, in: Encyclopedia of Mathematics and its Applications, vol 17, Addison-Wesley, Reading, MA, 1983.
[Lot2] M. Lothaire: Algebraic Combinatorics on Words, in: Encyclopedia of Mathematics and its Applications, vol 90, Cambridge University Press, UK, 2002.
[MP] F. Mignosi, G. Pirillo: Repetitions in the Fibonacci infinite word, Informatique théorique et applications, tome 26, n. 3 (1992), pp. 199-204.
[PS] E. Pelantová, Š. Starosta: Languages invariant under more symmetries: overlapping factors versus palindromic richness, Discrete Math. 313 (2013), pp. 2432-2445.
[Q] M. Queffélec: Substitution Dynamical Systems Spectral Analysis, Lecture Notes in Mathematics. 2nd ed. 2010. Springer-Verlag, Berlin.
[R] M. RaO: Last cases of Dejeans conjecture, Theoret. Comput. Sci. 412(27) (2011), pp. 3010-3018.
[RR] A. Restivo, G. Rosone: Burrows-Wheeler transform and palindromic richness, Theoret. Comput. Sci. 410 (2009), pp. 3018-3026.
[T1] A. Thue: Uber unendliche Zeichenvihen, Kra. Vidensk. Selsk. Skrifter. I Mat.-Nat.Kl., Christiana, Nr. 7, 1906.
[T2] A. Thue: Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Kra. Vidensk. Selsk. Skrifter. I Mat.-Nat.Kl., Christiana, Nr. 12, 1912.
[V] J. Vesti: Extensions of rich words, Theoret. Comput. Sci. 548 (2014), pp. 14-24.

