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Generating Asymptotics

for factorially divergent sequences

Michael Borinsky∗

Abstract

The algebraic properties of formal power series with factorial growth which admit a
certain well-behaved asymptotic expansion are discussed. It is shown that these series form
a subring of R[[x]] which is also closed under composition of power series. An ‘asymptotic
derivation’ is defined which maps a power series to its asymptotic expansion. Leibniz and
chain rules for this derivation are deduced. With these rules asymptotic expansions of
implicitly defined power series can be obtained. The full asymptotic expansions of the
number of connected chord diagrams and the number of simple permutations are given as
examples.

Keywords: Asymptotic expansions; Formal power series; Chord diagrams; Simple permu-
tations
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1 Introduction

This article is concerned with sequences an, which admit an asymptotic expansion of the form,

an ∼ αn+βΓ(n+ β)

(

c0 +
c1

α(n+ β − 1)
+

c2
α2(n+ β − 1)(n+ β − 2)

+ . . .

)

, (1.1)

for some α, β ∈ R>0 and ck ∈ R. Sequences of this type appear in many enumeration problems,
which deal with coefficients of factorial growth. For instance, generating functions of subclasses
of permutations and graphs of fixed valence show this behaviour [1, 7]. Furthermore, there
are countless examples where perturbative expansions of physical quantities admit asymptotic
expansions of this kind [4, 22, 15].

The restriction to this specific class of power series is inspired by the work of Bender [6]. In
this work the asymptotic behaviour of the composition of a power series, which has mildly growing
coefficients, with a power series, which has rapidly growing coefficients, is analyzed. Bender’s
results are extended into a complete algebraic framework. This is achieved making heavy use
of generating functions in the spirit of the analytic combinatorics or ‘generatingfunctionology’
approach [18, 29]. The key step in this direction is to interpret the coefficients of the asymptotic
expansion as another power series.

These structures bear many resemblances to the theory of resurgence, which was established
by Jean Ecalle [16]. Resurgence assigns a special role to power series which diverge factorially,
as they offer themselves to be Borel transformed. Jean Ecalle’s theory can be used to assign a
unique function to a factorially divergent series. This function could be interpreted as the series’
generating function. Moreover, resurgence provides a promising approach to cope with divergent
perturbative expansions in physics. Its application to these problems is an active field of research
[15, 2].

During a conversation with David Sauzin it became plausible that the presented methods
can also be derived from resurgence. In fact, the formalism can be seen as a toy model of
resurgence’s calcul différentiel étranger [16, Vol. 1] also called alien calculus [23, II.6]. This toy
model is unable to fully reconstruct functions from asymptotic expansions, but does not rely on
analytic properties of Borel transformed functions and therefore offers itself for combinatorial
applications. A detailed and illuminating account on resurgence theory is given in David Sauzin’s
review [23, Part II] or [24]. For a review focused on applications to problems from physics consult
[2].

1.1 Statement of results

Power series with well-behaved asymptotic expansions, as in eq. (1.1), form a subring of R[[x]],
which will be denoted as R[[x]]αβ . This subring is also closed under composition and inversion of
power series. A linear map, Aα

β : R[[x]]αβ → R[[x]], can be defined which maps a power series to
the asymptotic expansion of its coefficients. A natural way to define such a map is to associate
the power series

∑

n=0 cnx
n to the series

∑

n=0 anx
n both related as in eq. (1.1). This map turns

out to be a derivation, that means it fulfills a Leibniz rule

with f, g ∈ R[[x]]αβ (Aα
β (f · g))(x) = f(x)(Aα

βg)(x) + g(x)(Aα
βf)(x)

and a chain rule, (Aα
β (f ◦ g))(x) = f ′(g(x))(Aα

βg)(x) +

(

x

g(x)

)β

e
g(x)−x

αxg(x) (Aα
βf)(g(x)),

where (f · g)(x) = f(x)g(x) and (f ◦ g)(x) = f(g(x)). These statements will be derived from
elementary properties of the Gamma function. Note that the chain rule involves a peculiar cor-
rection term if f has a non-trivial asymptotic expansion. The fact that the chain rule cannot be
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simple, that means for general f, g: (Aα
β (f ◦ g))(x) 6= f ′(g(x))(Aα

βg)(x), is obvious. The reason-
able requirement that the function g(x) = x has a trivial asymptotic expansion, (Aα

βg)(x) = 0,
would otherwise imply that all f ∈ R[[x]]αβ have trivial asymptotic expansions. The formalism
can be applied to calculate the asymptotic expansions of implicitly defined power series. This
procedure is similar to the extraction of the derivative of an implicitly defined function using the
implicit function theorem. In sections 2-4 the derivation ring R[[x]]αβ will be described and the
main Theorem 4.4, which establishes the chain rule for the asymptotic derivation, will be proven.
In section 5, the apparatus will be applied to the calculation of the full asymptotic expansions
of the number of connected chord diagrams and of the number of simple permutations.

1.2 Notation

A (formal) power series f ∈ R[[x]] will be denoted in the usual ‘functional’ notation f(x) =
∑∞

n=0 fnx
n. The coefficients of a power series f will be expressed by the same symbol with

the index attached as a subscript fn or with the coefficient extraction operator [xn]f(x) = fn.
Ordinary (formal) derivatives are expressed as f ′(x) =

∑∞
n=0 nfnx

n−1. The ring of power series,
restricted to expansions of functions which are analytic at the origin, or equivalently power
series with non-vanishing radius of convergence, will be denoted as R{x}. The O-notation will
be used: O(an) denotes the set of all sequences bn such that lim supn→∞ | bn

an
| < ∞ and o(an)

denotes all sequences bn such that limn→∞
bn
an

= 0. Equations of the form an = bn +O(cn) are
to be interpreted as statements an − bn ∈ O(cn) as usual. See [5] for an introduction to this
notation. Tuples of non-negative integers will be denoted by bold letters t = (t1, . . . , tL) ∈ NL

0 .

The notation |t| will be used as a short form for
∑L

l=1 tl.

2 Prerequisites

The first step is to establishing a suitable notion of a power series with a well-behaved asymptotic
expansion.

Definition 2.1. For given α, β ∈ R>0 let R[[x]]αβ be the subset of R[[x]], such that f ∈ R[[x]]αβ
if and only if there exists a sequence of real numbers (cfk)k∈N0 , which fulfills

fn =

R−1
∑

k=0

cfkα
n+β−kΓ(n+ β − k) +O (αnΓ(n+ β −R)) ∀R ∈ N0. (2.1)

Corollary 2.2. R[[x]]αβ is a linear subspace of R[[x]].

Remark 2.3. The expression in eq. (2.1) represents an asymptotic expansion or Poincaré expan-
sion with the asymptotic scale αnΓ(n+ β) [14, Ch. 1.5].

Remark 2.4. For fixed R, an expansion as above with R explicit summands will be called an
asymptotic expansion up to order R − 1.

Remark 2.5. The subspace R[[x]]αβ includes all (real) power series whose coefficients only grow
exponentially: R{x} ⊂ R[[x]]αβ .

Remark 2.6. These with other series, which are in o(αnΓ(n+ β − R)) for all fixed R ≥ 0, have

an asymptotic expansion of the form in eq. (2.1) with all the cfk = 0.

Remark 2.7. Definition 2.1 implies that fn ∈ O (αnΓ(n+ β)). Accordingly, the power series
in R[[x]]αβ are a subset of Gevrey-1 sequences [20, Ch XI-2]. Being Gevrey-1 is not sufficient
for a power series to be in R[[x]]αβ . For instance, a sequence which behaves for large n as

an ∼ n!(1 + 1√
n
+O( 1

n
)) is Gevrey-1, but not in R[[x]]αβ .
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Remark 2.8. In resurgence theory further restrictions on the allowed power series are imposed,
which ensure that the Borel transformations of the sequences have proper analytic continuations
or are ‘endless continuable’ [23, II.6]. These restrictions are analogous to the requirement that,
apart from fn, also ck has to have a well-behaved asymptotic expansion. The coefficients of this
asymptotic expansion are also required to have a well-behaved asymptotic expansion and so on.
These kind of restrictions will not be necessary for the presented algebraic considerations, which
are aimed at combinatorial applications.

The central theme of this article is to interpret the coefficients cfk of the asymptotic expansion
as another power series. In fact, Definition 2.1 immediately suggests to define the following map:

Definition 2.9. LetAα
β : R[[x]]αβ → R[[x]] be the map that associates a power seriesAα

βf ∈ R[[x]]
to every power series f ∈ R[[x]]αβ such that,

fn =

R−1
∑

k=0

αn+β−kΓ(n+ β − k)[xk](Aα
βf)(x) +O (αnΓ(n+ β −R)) ∀R ∈ N0. (2.2)

Corollary 2.10. Aα
β is linear.

Remark 2.11. In the realm of resurgence such an operator is called alien derivative or alien
operator [23, II.6].

Example 2.12. The power series f ∈ R[[x]] associated to the sequence fn = n! clearly fulfills the
requirements of Definition 2.1 with α = 1 and β = 1. Therefore, f ∈ R[[x]]11 and (A1

1f)(x) = 1.

The asymptotic expansion in eq. (2.2) is normalized such that shifts in n can be absorbed by
shifts in β. More specifically,

Proposition 2.13.

• If f ∈ R[[x]]αβ and the first m coefficients of f(x) vanish, then f(x)
xm ∈ R[[x]]αβ+m and

(Aα
βf)(x) =

(

Aα
β+m

f(x)

xm

)

(x). (2.3)

• If f ∈ R[[x]]αβ and m ∈ N0 with β > m, then xmf(x) ∈ R[[x]]αβ−m and

(Aα
βf)(x) =

(

Aα
β−mxmf(x)

)

(x). (2.4)

Proof. Suppose the first m coefficients of f vanish. Set g(x) = f(x)
xm or gn = fn+m. Eq. (2.2)

gives,

gn =

R−1
∑

k=0

αn+m+β−kΓ(n+m+ β − k)[xk](Aα
βf)(x) +O

(

αn+mΓ(n+m+ β −R)
)

∀R ∈ N0.

Therefore (Aα
β+mg)(x) =

(

Aα
β+m

f(x)
xm

)

(x) = (Aα
βf)(x). The second statement follows analo-

gously.

Remark 2.14. Note that this gives an ascending chain of subspaces of R[[x]]:

R[[x]]αβ ⊂ R[[x]]αβ+1 ⊂ R[[x]]αβ+2 ⊂ . . . ⊂ R[[x]]αβ+m ⊂ . . .

Remark 2.15. The requirement β > 0 is therefore only a spurious restriction. The ideal xmR[[x]]αβ
can be associated with R[[x]]αβ−m. An alternative way to think about R[[x]]αβ with β ≤ 0 is to use
the field of (formal) Laurent series R((x)) as the target space for Aα

β and demand that negative
powers of x commute with the Aα

β operator.
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3 A derivation for asymptotics

The following lemma forms the foundation for most conclusions in this article. It provides an
estimate for sums over Γ functions. Moreover, it ensures that the subspace R[[x]]αβ of formal
power series falls into a large class of sequences studied by Bender [6]. From another perspective
the lemma can be seen as an entry point to resurgence, which bypasses the necessity for analytic
continuations and Borel transformations.

Lemma 3.1. If β ∈ R>0, then there exists a C ∈ R such that

n
∑

m=0

Γ(m+ β)Γ(n−m+ β) ≤ CΓ(n+ β) ∀n ∈ N0. (3.1)

Proof. Recall that Γ is a log-convex function in R>0. The functions Γ(m+ β) and Γ(n−m+ β)
are also log-convex functions in m on the interval [0, n], as log-convexity is preserved under
shifts and reflections. Furthermore, log-convexity closes under multiplication. This implies that
Gn

m := Γ(m+ β)Γ(n −m+ β) is a log-convex function on the interval m ∈ [1, n− 1]. A convex
function always attains its maximum on the boundary of its domain. Accordingly, Gn

m ≤ Gn
1

for m ∈ [1, n − 1]. This way, the sum
∑n

m=0 G
n
m can be estimated after stripping off the two

boundary terms:

n
∑

m=0

Gn
m ≤ 2Gn

0 + (n− 1)Gn
1 ≤ 2Gn

0 + (n− 1 + β)Gn
1 ∀n ≥ 1.

It follows from nΓ(n) = Γ(n + 1) that Gn
1 = Gn

0
β

n−1+β
for all n ≥ 1. Substituting this into

eq. (3.2) gives the estimate in eq. (3.1) with C = (2 + β)Γ(β). The remaining case n = 0 is
trivial.

Corollary 3.2. If β ∈ R>0, then

n−R
∑

m=R

Γ(m+ β)Γ(n−m+ β) ∈ O(Γ(n−R+ β)) ∀R ∈ N0. (3.2)

Proof. Rewrite the left hand side as
∑n−2R

m=0 Γ(m+R+ β)Γ(n−R−m+ β). Lemma 3.1 can be
applied with the substitutions β → β +R, n → n− 2R to obtain the required estimate.

Corollary 3.3. If β ∈ R>0, C ∈ R and P ∈ R[m] some polynomial in m, then

n
∑

m=R

CmP (m)Γ(n−m+ β) ∈ O(Γ(n −R+ β)) ∀R ∈ N0. (3.3)

Proof. There is a C′ ∈ R such that |CmP (m)| is bounded by C′Γ(m + β) for all m ∈ N0.

Corollary 3.2 ensures that
∑n−R

m=R CmP (m)Γ(n − m + β) ∈ O(Γ(n − R + β)). The remainder
∑n

m=n−R+1 C
mP (m)Γ(n −m + β) =

∑R−1
m=0 C

n−mP (n −m)Γ(m + β) is obviously in O(Γ(n −
R+ β)).

Corollary 3.4. If β ∈ R>0, then there exists a C ∈ R such that

∑

m∈N
L
0

|m|=n

L
∏

l=1

Γ(ml + β) ≤ CLΓ(n+ β) ∀n, L ∈ N0 with L ≥ 1, (3.4)

where m∈N
L
0

|m|=n
denotes the simplex {(m1, . . . ,mL) ∈ NL

0 |
∑L

l=1 ml = n}.
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Proof. This inequality is merely an iterated version of Lemma 3.1. It can be proven by induction
in L. The case L = 1 is trivial. Lemma 3.1 guarantees the existence of a C ∈ R such that

CL

n
∑

mL+1=0

Γ(mL+1 + β)Γ(n −mL+1 + β) ≤ CL+1Γ(n+ β) ∀n, L ∈ N0.

Suppose the statement holds for L. Using the statement on CLΓ(n−mL+1+β) on the left hand
side results in

n
∑

mL+1=0

∑

m∈N
L
0

|m|=n−mL+1

L+1
∏

l=1

Γ(ml + β) ≤ CL+1Γ(n+ β) ∀n ∈ N0,

which is the statement for L+ 1.

An immediate consequence of Corollary 3.2 is

Proposition 3.5. R[[x]]αβ forms a subring of R[[x]]: If f, g ∈ R[[x]]αβ , then f(x)g(x) ∈ R[[x]]αβ .
Moreover, Aα

β is a derivation, that means it fulfills the Leibniz rule

(Aα
β (f · g))(x) = f(x)(Aα

βg)(x) + g(x)(Aα
βf)(x). (3.5)

Proof. Set h(x) = (f · g)(x) = f(x)g(x). The coefficients hn are given as a sum by the Cauchy
product formula. This sum can be written suggestively as

hn =

n
∑

m=0

fn−mgm =

R−1
∑

m=0

fn−mgm +

R−1
∑

m=0

fmgn−m +

n−R
∑

m=R

fmgn−m ∀n ≥ 2R. (3.6)

Definition 2.9 guarantees that the first two sums have sound asymptotic expansions for large
n. Together they constitute an asymptotic expansion of hn up to order R − 1. We verify this
exemplary on the first sum, where the asymptotic expansion from eq. (2.2) up to order R−m−1
of fn−m can be substituted:

R−1
∑

m=0

fn−mgm =

R−1
∑

m=0

gm

R−m−1
∑

k=0

αn−m+β−kΓ(n−m+ β − k)[xk](Aα
βf)(x) +O (αnΓ(n+ β −R))

=
R−1
∑

k=0

αn+β−kΓ(n+ β − k)
k
∑

m=0

gm[xk−m](Aα
βf)(x) +O (αnΓ(n+ β −R)) .

The inner sum
∑k

m=0 gm[xk−m](Aα
βf)(x) is the k-th coefficient of the product g(x)(Aα

βf)(x). It
remains to be shown that the last sum in eq. (3.6) is negligible. Because fn, gn ∈ O(αnΓ(n+β)),
there is a constant C such that |fn| ≤ CαnΓ(n + β) and |gn| ≤ CαnΓ(n + β) for all n ≥ 0.
Hence,

n−R
∑

m=R

|fmgn−m| ≤ C2αn

n−R
∑

m=R

Γ(m+ β)Γ(n−m+ β) ∀n ≥ 2R

shows that this sum is in O(αnΓ(n−R+ β)) by Corollary 3.2.
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Corollary 3.6. If g1, . . . , gL ∈ R[[x]]αβ , then

(

Aα
β

(

L
∏

l=1

gl(x)

))

(x) =

L
∑

l=1







L
∏

m=1
m 6=l

gm(x)






(Aα

βg
l)(x). (3.7)

Proof. Proof by induction on L using the Leibniz rule.

Corollary 3.7. If g1, . . . , gL ∈ R[[x]]αβ and t = (t1, . . . , tL) ∈ N
L
0 , then

(

Aα
β

(

L
∏

l=1

(gl(x))tl

))

(x) =

L
∑

l=1

tl(g
l(x))tl−1







L
∏

m=1
m 6=l

(gm(x))tm






(Aα

βg
l)(x). (3.8)

Corollary 3.8. If g1, . . . , gL ∈ R[[x]]αβ and p ∈ R[y1, . . . , yL] is polynomial in L variables, then

h(x) = p(g1(x), . . . , gL(x)) ∈ R[[x]]αβ and

(Aα
βh)(x) = (Aα

β (p(g
1, . . . , gL)))(x) =

L
∑

l=1

∂p

∂gl
(g1, . . . , gL)(Aα

βg
l)(x). (3.9)

Although the last three statements are only basic general properties of commutative deriva-
tion rings, they suggest that Aα

β fulfills a simple chain rule. In fact, Corollary 3.8 can still be
generalized from polynomials to analytic functions, but, as already mentioned, this intuition
turns out to be false in general.

4 Composition

4.1 Composition by analytic functions

Theorem 4.1. If g1, . . . , gL ∈ R[[x]]αβ with each gl0 = 0 and f ∈ R{y1, . . . , yL}, a function in L

variables, which is analytic at the origin, then h(x) = f(g1(x), . . . , gL(x)) ∈ R[[x]]αβ and

(Aα
βh)(x) = (Aα

β (f(g
1, . . . , gL)))(x) =

L
∑

l=1

∂f

∂gl
(g1, . . . , gL)(Aα

βg
l)(x). (4.1)

In [6] Edward Bender established this theorem for the case L = 1 in a less ‘generatingfunc-
tionology’ biased notation. If for example g ∈ R[[x]]αβ and f ∈ R{x, y}, then his Theorem 1
allows us to calculate the asymptotics of the power series f(g(x), x). In fact, Bender analyzed
more general power series including sequences with even more rapid than factorial growth.

The following proof of Theorem 4.1 is a straightforward generalization of Bender’s Lemma 2
and Theorem 1 in [6] to the multivariate case f ∈ R{y1, . . . , yL}.

Lemma 4.2. If g1, . . . , gL ∈ R[[x]]αβ , then there exists a constant C ∈ R such that

∣

∣

∣

∣

∣

[xn]

L
∏

l=1

(

gl(x)
)tl

∣

∣

∣

∣

∣

≤ C|t|αnΓ(n+ β) ∀t ∈ N
L
0 , |t| ≥ 1 and n ∈ N0. (4.2)

7



Proof. The proof is a straightforward application of Corollary 3.4. There is a constant C such
that gln ≤ CαnΓ(n+ β) for all n ∈ N0 and l ∈ [1, L]. Accordingly,

∣

∣

∣

∣

∣

[xn]
L
∏

l=1

(

gl(x)
)tl

∣

∣

∣

∣

∣

≤ αnC|t|
∑

m∈N
|t|
0

|m|=n

|t|
∏

r=1

Γ(mr + β) ∀t ∈ N
L
0 and n ∈ N0.

An application of Corollary 3.4 results in the lemma.

Corollary 4.3. If g1, . . . , gL ∈ R[[x]]αβ with gl0 = 0, then there exists a constant C ∈ R such that

∣

∣

∣

∣

∣

[xn]
L
∏

l=1

(

gl(x)
)tl

∣

∣

∣

∣

∣

≤ C|t|αnΓ(n+ β − |t|+ 1) ∀t ∈ N
L
0 , n ∈ N0 with 1 ≤ |t| ≤ n. (4.3)

Proof. As a consequence of Proposition 2.13, gl(x)
x

∈ R[[x]]αβ+1. Hence,

∣

∣

∣

∣

∣

[xn−|t|]
L
∏

l=1

(

gl(x)

x

)tl
∣

∣

∣

∣

∣

≤ C|t|αn−|t|Γ(n− |t|+ β + 1) ∀t ∈ N
L
0 , n ∈ N0 with 1 ≤ |t| ≤ n.

Proof of Theorem 4.1. The composition of two power series can be expressed as the sum

h(x) =
∑

t∈N
L
0

ft1,...,tL

L
∏

l=1

(

gl(x)
)tl

,

which can be split in preparation for the extraction of asymptotics:

=
∑

t∈N
L
0

|t|≤R

ft1,...,tL

L
∏

l=1

(

gl(x)
)tl

+
∑

t∈N
L
0

|t|>R

ft1,...,tL

L
∏

l=1

(

gl(x)
)tl ∀R ∈ N0.

The left sum is just the composition by a polynomial. Corollary 3.8 asserts that this sum is in
R[[x]]αβ . It has the asymptotic expansion given in eq. (3.9) which agrees with the right hand side
of eq. (4.1) up to order R − 1, because the partial derivative reduces the order of a polynomial
by one and gl = 0. It is left to prove that the coefficients of the power series given by the right
sum are in O(αnΓ(n−R+ β)). Corollary 4.3 and the fact that there is a constant C, such that
|ft1,...,tL | ≤ C|t| for all t ∈ NL

0 , due to the analyticity of f , ensure that there is a constant C′ ∈ R

such that

∑

t∈N
L
0

n≥|t|>R

∣

∣

∣

∣

∣

ft1,...,tL [x
n]

L
∏

l=1

(

gl(x)
)tl

∣

∣

∣

∣

∣

≤ αn

n
∑

t=R+1

C′tΓ(n+ β − t+ 1)
∑

t∈N
L
0

|t|=t

1,

for all n ≥ R+ 1. The result of the last sum |{t1, . . . , tL ∈ N0|t1 + . . .+ tL = t}| =
(

t+L−1
L−1

)

is a
polynomial in t. Corollary 3.3 asserts that the remainder sum is in O (αnΓ(n+ β −R)).
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4.2 Proof of the main theorem: Composition of power series in R[[x]]αβ

Despite the fact that Bender’s theorem applies to a broader range of compositions f ◦ g, where
f does not need to be analytic and g does not need to be an element of R[[x]]αβ , it cannot be
used in the case f, g ∈ R[[x]]αβ , where f /∈ kerAα

β . The problem is that we cannot truncate

the sum
∑∞

k=0 fkg(x)
k without losing significant information. In this section, this obstacle will

be confronted and the general chain rule for the asymptotic derivative will be proven. Let
Diff id(R, 0) := ({f ∈ R[[x]] : f0 = 0 and f1 = 1}, ◦) denote the group of formal diffeomorphisms
tangent to the identity. It is the group of all power series with f0 = 0 and f1 = 1 and with
composition as group operation. The restriction of this group to elements in R[[x]]αβ is of special
interest to us.

Theorem 4.4. Diff id(R, 0)
α
β := ({f ∈ R[[x]]αβ : f0 = 0 and f1 = 1}, ◦) is a subgroup1 of

Diff id(R, 0). Moreover, Aα
β fulfills a chain rule: If f, g ∈ R[[x]]αβ with g0 = 0, g1 = 1, then

f ◦ g, g−1 ∈ R[[x]]αβ and

(Aα
β (f ◦ g))(x) = f ′(g(x))(Aα

βg)(x) +

(

x

g(x)

)β

e
g(x)−x

αxg(x) (Aα
βf)(g(x)), (4.4)

(Aα
βg

−1)(x) = −g−1′(x)

(

x

g−1(x)

)β

e
g−1(x)−x

αxg−1(x) (Aα
βg)(g

−1(x)). (4.5)

This theorem will be proven by ensuring that if f, g ∈ R[[x]]αβ , then f ◦ g−1 ∈ R[[x]]αβ and by

constructing the asymptotic expansion of f ◦ g−1. For this, it turns out to be convenient to work
in the ring R[[x]]αβ+2 that contains R[[x]]αβ as a subring.

Lemma 4.5. If f, g as above and A(x) :=
x

g(x)
−1

x
as well as B(x) := f(x)g′(x)

(

g(x)
x

)β

, then

A,B ∈ R[[x]]αβ+2 and

[xn]f(g−1(x)) =

n
∑

m=0

(

n+ β + 1

m

)

[xn−m]B(x)A(x)m ∀n ∈ N0. (4.6)

Proof. The statement A ∈ R[[x]]αβ+2 follows from g0 = 0, g1 = 1, Theorem 4.1 and Proposition
2.13. The fact that B ∈ R[[x]]αβ+2 follows additionally from the result f(x) ∈ R[[x]]αβ ⇒ f ′(x) ∈
R[[x]]αβ+2 from Proposition A.1. Eq. (4.6) can be derived using the Lagrange inversion theorem
[18, A.6]:

[xn]f(g−1(x)) =
1

n
[xn−1]f ′(x)

(

x

g(x)

)n

= [xn]f(x)

(

x

g(x)

)n−1(
x

g(x)
− x

∂

∂x

x

g(x)

)

= [xn]f(x)g′(x)

(

g(x)

x

)β (
x

g(x)

)n+β+1

= [xn]B(x) (1 + xA(x))n+β+1

=
n
∑

m=0

(

n+ β + 1

m

)

[xn−m]B(x)A(x)m .

1Julien Courtiel remarked that the statement f ∈ Diffid(R, 0)
α
β

⇒ f−1
∈ Diffid(R, 0)

α
β

was not obvious in a

previous version of this manuscript. The argument in this version was modified to be more transparent in this
respect.

9



The tail of the sum in eq. (4.6) over m turns out to be asymptotically negligible. However,
in contrast to the preceding arguments, the sum cannot be truncated at a fixed value of m
independent of n. A cutoff that grows slowly with n has to be introduced. More specifically,

Lemma 4.6. If f, g, A,B as above, then there is a constant C ∈ R such that

[xn]f(g−1(x)) =

s(n)
∑

m=0

(

n+ β + 1

m

)

[xn−m]B(x)A(x)m +O(αnΓ(n+ β + 2−R)) ∀R ∈ N0,

(4.7)

where s(n) = ⌈4(R logn+ C)⌉.
Proof. It needs to be proven that the partial sum overm ∈ (s(n),∞) in eq. (4.6) is in O(αnΓ(n+
β+2−R)) for an appropriate function s(n). Recall that A,B ∈ R[[x]]αβ+2. Lemma 4.2 guarantees
the existence of a C ∈ R such that

n
∑

m=s(n)

(

n+ β + 1

m

)

|[xn−m]B(x)A(x)m | ≤
n
∑

m=s(n)

(

n+ β + 1

m

)

Cm+1αnΓ(n−m+ β + 2),

for all n ≥ s(n) ≥ 0. The binomial can be expressed in terms of Γ-functions
(

n+β+1
m

)

=
Γ(n+β+2)

Γ(n−m+β+2)m! . Subsequently, an elementary inequality, which quantifies the fast convergence

of the Taylor expansion of the exponential, proven in Lemma B.1, can be applied with s(n) =
⌈4(R logn+ C)⌉:

=

n
∑

m=s(n)

Cm+1

m!
αnΓ(n+ β + 2) ≤ CαnΓ(n+ β + 2)

nR
∈ O(αnΓ(n+ β + 2−R)).

Lemma 4.7. If f, g, A,B as above, then f ◦ g−1 ∈ R[[x]]αβ+2 and

[xk]
(

Aα
β+2f ◦ g−1

)

(x) = [xk]
(

Aα
β+2B(x)(1 + xA(x))k−1e

A(x)
α

)

(x) ∀k ∈ N0. (4.8)

Proof. The proof proceeds by substitution of the asymptotic expansion up to order R − 1 of
B(x)A(x)m into eq. (4.7). This can be done, because n−m is large. The result is [xn]f(g−1(x)) =

s(n)
∑

m=0

(

n+ β + 1

m

)R−1
∑

k=0

αn+β+2−k−mΓ(n+ β + 2− k −m)[xk]
(

Aα
β+2B(x)A(x)m

)

(x),

where the rest term, O(αnΓ(n + β + 2 − R)), was omitted. An elementary variant of the Chu-
Vandermonde identity (Lemma B.2) can be used to expand the product of the binomial and
Γ-function. This expansion allows us to perform the summation over m behind the coefficient
extraction:

=

R−1
∑

k=0

s(n)
∑

m=0

m
∑

l=0

αn+β+2−k

(

l + k − 1

l

)

Γ(n+ β + 2− k − l)

(m− l)!
[xk]

(

Aα
β+2B(x)

(

A(x)

α

)m)

(x)

=

R−1
∑

k=0

s(n)
∑

l=0

αn+β+2−k−l

(

l + k − 1

l

)

Γ(n+ β + 2− k − l)[xk]



Aα
β+2B(x)A(x)l

s(n)−l
∑

m=0

(

A(x)
α

)m

m!



 (x)
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The sum over l can be truncated at order R − 1 − k, because the summands can be estimated
by ClP (l)αnΓ(n+ β +2− k− l) with some C ∈ R and P ∈ R[l] each depending on k. Corollary
3.3 asserts that the truncated part is in O(αnΓ(n + β + 2 − R)). The subsequent change in
summation variables k → k + l gives rise to,

=

R−1
∑

k=0

αn+β+2−kΓ(n+ β + 2− k)[xk]



Aα
β+2B(x)

k
∑

l=0

(

k − 1

l

)

(xA(x))l
s(n)−l
∑

m=0

(

A(x)
α

)m

m!



 (x),

which results in the statement after noting that the sums over l and m can be completed, because
limn→∞ s(n) = ∞.

Proof of Theorem 4.4. The rest of the proof is merely an algebraic exercise. We start with the

expression from Lemma 4.7 for [xk]
(

Aα
β+2f ◦ g−1

)

(x) and use the chain and product rules

from Proposition 3.5, Theorem 4.1 as well as Aα
βx

2∂x = Aα
β+2∂x = (α−1 − xβ + x2∂x)Aα

β from

Proposition A.1 to expand it. Accordingly, for all k ∈ N0: [x
k]
(

Aα
β+2f ◦ g−1

)

(x) =

[

xk
]

(

Aα
β+2B(x)(1 + xA(x))k−1e

A(x)
α

)

(x) =
[

xk
]

(

Aα
β+2f(x)g

′(x)

(

g(x)

x

)β−k+1

e
x

g(x)
−1

αx

)

(x)

=
[

xk
]

e
x

g(x)
−1

αx

(

g(x)

x

)β−k+1
(

g′(x)(Aα
β+2f)(x)

+f(x)g′(x)
1

g(x)

(

(β − k + 1)− α−1 1

g(x)

)

(Aα
β+2g)(x) + f(x)(α−1 − βx + x2 ∂

∂x
)(Aα

βg)(x)

)

.

UsingAα
β+2 = x2Aα

β (Proposition 2.13) as well as [xk]f(x)
(

x ∂
∂x

g(x)
)

= k[xk]f(x)g(x)−[xk]
(

x ∂
∂x

f(x)
)

g(x)
to reexpress the derivative of (Aα

βg)(x) gives,

= [xk]x2e

x
g(x)

−1

αx

(

g(x)

x

)β−k+1
(

g′(x)(Aα
βf)(x) − f ′(x)(Aα

βg)(x)
)

.

The x2 prefactor shows that f ◦ g−1 is actually in the subspace R[[x]]αβ ⊂ R[[x]]αβ+2. In accord
with Proposition 2.13:

[

xk
] (

Aα
βf ◦ g−1

)

(x) = [xk]e

x
g(x)

−1

αx

(

g(x)

x

)β−k−1
(

g′(x)(Aα
βf)(x)− f ′(x)(Aα

βg)(x)
)

.

As f ◦ g−1 ∈ R[[x]]αβ , the subset Diff id(R, 0)
α
β is a subgroup of Diff id(R, 0). Another application

of the Lagrange inversion theorem, [xn]p(q−1(x)) = [xn]p(x)q′(x)
(

x
q(x)

)n+1

, transforms the

expression for
[

xk
]

(

Aα
βf ◦ g−1

)

(x) into an explicit generating function:

(Aα
βf ◦ g−1)(x) = e

g−1(x)
x

−1

αg−1(x)

(

x

g−1(x)

)β (

(Aα
βf)(g

−1(x))− f ′(g−1(x))

g′(g−1(x))
(Aα

βg)(g
−1(x))

)

. (4.9)

The special case f(x) = x with application of g′(g−1(x)) = 1
g−1′(x) results in eq. (4.5). Solving

eq. (4.5) for (Aα
βg)(g

−1(x)) and substituting the result into eq. (4.9) gives eq. (4.4) with the

substitution g → g−1.
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Remark 4.8. Bender and Richmond [8] established that [xn](1 + g(x))γn+δ = nγe
γg1
α gn +O(gn)

if gn ∼ αngn−1 and g0 = 0. Using Lagrange inversion the first coefficient in the expansion of
the compositional inverse in eq. (4.5) can be obtained from this. In this way, Theorem 4.4 is
a generalization of Bender and Richmond’s result. In the same article Bender and Richmond
proved a theorem similar to Theorem 4.4 for the class of power series f which grow more rapidly
than factorial such that nfn−1 ∈ o(fn). Theorem 4.4 establishes a link to the excluded case
nfn−1 = O(fn).

Remark 4.9. The chain rule in eq. (4.4) exposes a peculiar algebraic structure. It would be useful

to have a combinatorial interpretation of the e
g(x)−x

αxg(x) term.

5 Applications

5.1 Connected chord diagrams

A chord diagram with n-chords is a circle with 2n points, which are labeled by integers 1, . . . , 2n
and connected in disjoint pairs by n-chords. There are (2n − 1)!! of such diagrams. A chord
diagram is connected if no set of chords can be separated from the remaining chords by a line
which does not cross any chords. Let I(x) =

∑

n=0(2n− 1)!!xn and C(x) =
∑

n=0 Cnx
n, where

Cn is the number of connected chord diagrams with n chords. Following [17], the power series
I(x) and C(x) are related by,

I(x) = 1 + C(xI(x)2). (5.1)

This functional equation can be solved for the coefficients of C(x) by basic iterative methods.
The first few terms are,

C(x) = x+ x2 + 4x3 + 27x4 + 248x5 + . . . (5.2)

This sequence is entry A000699 in Neil Sloane’s integer sequence on-line encyclopedia [26]. Be-

cause (2n− 1)!! = 2n+1
2√

2π
Γ(n+ 1

2 ), the power series I is in R[[x]]21
2

and (A2
1
2

I)(x) = 1√
2π

. Theorem

4.4 guarantees that also C ∈ R[[x]]21
2

, because of the closure properties of R[[x]]21
2

. Moreover, an

application of the general chain rule from Theorem 4.4 on the functional eq. (5.1) results in

(A2
1
2
I)(x) = A2

1
2
(1 + C(xI(x)2)) = A2

1
2
C(xI(x)2)

= 2xI(x)C′(xI(x)2)(A2
1
2
I)(x) +

(

x

xI(x)2

)
1
2

e
xI(x)2−x

2x2I(x)2 (A2
1
2
C)(xI(x)2),

(5.3)

which can be solved for (A2
1
2

C)(x) and simplified using eq. (5.1),

(A2
1
2
C)(x) =

1 + C(x) − 2xC′(x)√
2π

e−
1
2x (2C(x)+C(x)2). (5.4)

A further simplification can be achieved by utilizing the linear differential equation 2x2I ′(x) +

xI(x)+1 = I(x) from which the differential equation C′(x) = C(x)(1+C(x))−x

2xC(x) [17] can be deduced:

(A2
1
2
C)(x) =

1√
2π

x

C(x)
e−

1
2x (2C(x)+C(x)2). (5.5)
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sequence 0 1 2 3 4 5 6 7 8
√

2π
e−1

(A2
1
2

C) 1 − 5
2

− 43
8

− 579
16

− 44477
128

− 5326191
1280

− 180306541
3072

− 203331297947
215040

− 58726239094693
3440640

√
2π

e−1 (A2
1
2

M) 1 −4 −6 − 154
3

− 1610
3

− 34588
5

− 4666292
45

− 553625626
315

− 1158735422
35

Table 1: First coefficients of the asymptotic expansions of Cn and Mn.

This is the generating function of the full asymptotic expansion of Cn. The first few terms are,

(A2
1
2
C)(x) =

e−1

√
2π

(

1− 5

2
x− 43

8
x2 − 579

16
x3 − 44477

128
x4 − 5326191

1280
x5 + . . .

)

. (5.6)

Expressed in the traditional way using eq. (2.2) from Definition 2.9 this becomes

Cn ∼
∑

k≥0

2n+
1
2−kΓ(n+

1

2
− k)[xk](A2

1
2
C)(x) =

√
2π
∑

k≥0

(2(n− k)− 1)!![xk](A2
1
2
C)(x)

= e−1

(

(2n− 1)!!− 5

2
(2n− 3)!!− 43

8
(2n− 5)!!− 579

16
(2n− 7)!! + . . .

)

(5.7)

The first term, e−1, in this expansion has been computed by Kleitman [21], Stein and Everett
[28] and Bender and Richmond [8] each using different methods. With the presented method
an arbitrary number of coefficients can be computed. Some additional coefficients are given in
Table 1.

The probability of a random chord diagram with n chords to be connected is therefore e−1(1−
5
4n ) +O( 1

n2 ).

5.2 Monolithic chord diagrams

A chord diagram is called monolithic if it consists only of a connected component and of isolated
chords which do not ‘contain’ each other [17]. That means with (a, b) and (c, d) the labels of two
chords, it is not allowed that a < c < d < b and c < a < b < d. Let M(x) =

∑

n=0 Mnx
n be the

generating function of monolithic chord diagrams. Following [17], M(x) fulfills

M(x) = C

(

x

(1 − x)2

)

. (5.8)

Using the A2
1
2

derivative on both sides of this equation together with the result for (A2
1
2

C)(x) in

eq. (5.5) gives

(A2
1
2
M)(x) =

1√
2π

1

(1− x)

x

M(x)
e1−

x
2 −

(1−x)2

2x (2M(x)+M(x)2)

=
1√
2π

(

1− 4x− 6x2 − 154

3
x3 − 1610

3
x4 − 34588

5
x5 + . . .

)

.

(5.9)

Some additional coefficients are given in Table 1. The probability of a random chord diagram

with n chords to be non-monolithic is therefore 1−
(

1− 4
2n−1 +O( 1

n2 )
)

= 2
n
+O( 1

n2 ).

5.3 Simple permutations

A permutation is called simple if it does not map a non-trivial interval to another interval.
Expressed formally, the permutation π ∈ Ssimple

n ⊂ Sn if and only if π([i, j]) 6= [k, l] for all
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sequence 0 1 2 3 4 5 6 7 8 9

1
e−2

(A1
1S) 1 −4 2 − 40

3
− 182

3
− 7624

15
− 202652

45
− 14115088

315
− 30800534

63
− 16435427656

2835

Table 2: First coefficients of the asymptotic expansion of Sn.

i, j, k, l ∈ [0, n] with 2 ≤ |[i, j]| ≤ n − 1. See Albert et al. [1] for a detailed exposition of simple
permutations. Set S(x) =

∑∞
n=4 |Ssimple

n |xn, the generating function of simple permutations,
and F (x) =

∑∞
n=1 n!x

n, the generating function of all permutations. Following [1], S(x) and
F (x) are related by the equation,

F (x)− F (x)2

1 + F (x)
= x+ S(F (x)). (5.10)

This can be solved iteratively for the coefficients of S(x):

S(x) = 2x4 + 6x5 + 46x6 + 338x7 + 2926x8 + . . . (5.11)

This sequence is entry A111111 [27] with the slightly different convention, A111111 = 1 + 2x +
S(x)/x of Neil Sloane’s online encyclopedia.

As F (x) ∈ R[[x]]11 and (A1
1F ) = 1, the full asymptotic expansion of S(x) can be obtained by

applying the chain rule (Theorem 4.4) to both side of eq. (5.10). Alternatively, eq. (5.10) implies
x−x2

1+x
= F−1(x) + S(x) with F−1(F (x)) = x. Using A1

1
x−x2

1+x
= 0 together with the expression

for the asymptotic expansion of F−1(x) in terms of (A1
1F )(x) from eq. (4.5) shows that,

(A1
1S)(x) = −(A1

1F
−1)(x) = F−1′(x)

x

F−1(x)
e

F−1(x)−x

xF−1(x) . (5.12)

This can be reexpressed using the functional equation (5.10), F−1(F (x)) = x as well as the
differential equation x2F ′(x) + (x− 1)F (x) + x = 0:

(A1
1S)(x) =

xF−1(x)

x− (1 + x)F−1(x)
e

F−1(x)−x

xF−1(x) =
1

1 + x

1− x− (1 + x)S(x)
x

1 + (1 + x)S(x)
x2

e
−

2+(1+x)
S(x)

x2

1−x−(1+x)
S(x)

x . (5.13)

The coefficients of (A1
1S)(x) can be computed iteratively. The first few terms are

(A1
1S)(x) = e−2

(

1− 4x+ 2x2 − 40

3
x3 − 182

3
x4 − 7624

15
x5 + . . .

)

. (5.14)

By Definition 2.9, this is an expression of the asymptotics of the number of simple permutations:

|Ssimple
n | ∼ e−2

(

n!− 4(n− 1)! + 2(n− 2)!− 40

3
(n− 3)!− 182

3
(n− 4)! + . . .

)

. (5.15)

Albert et al. [1] calculated the first three terms of this expansion. With the presented methods
the calculation of the asymptotic expansion (A1

1S)(x) = −(A1
1F

−1)(x) up to order n is as easy
as calculating the expansion of S(x) or F−1(x) up to order n + 2. Some additional coefficients
are given in Table 2.

Remark 5.1. The examples above are chosen to demonstrate that given a (functional) equation
which relates two power series in R[[x]]αβ , it is an easy task to calculate the full asymptotic
expansion of one of the power series from the asymptotic expansion of the other power series.

Applications include functional equations for ‘irreducible combinatorial objects’. The two
examples fall into this category. Irreducible combinatorial objects were studied in general by
Beissinger [3].
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Remark 5.2. Eqs. (5.5), (5.9) and (5.13) expose another interesting algebraic property. Proposi-
tion 2.13 and the chain rule imply that (A2

1
2

C)(x) ∈ R[[x]]23
2

, (A2
1
2

M)(x) ∈ R[[x]]23
2

and (A1
1S)(x) ∈

R[[x]]13. This way, the ‘higher-order’ asymptotics of the asymptotic sequence can be calculated
by iterating the application of the A map. With the powerful techniques of resurgence, it might
be possible to construct convergent large-order expansions for these cases.

Furthermore, the fact that the asymptotics of each sequence may be expressed as a combina-
tion of polynomial and exponential expressions of the original sequence can be seen as an avatar
of resurgence.

Remark 5.3. In quantum field theory the coupling, an expansion parameter, needs to be reparametrized
in the process of renormalization [12]. Those reparametrizations are merely compositions of
power series which are believed to be Gevrey-1. Theorem 4.4 might be useful for the resum-
mation of renormalized quantities in quantum field theory. In fact, Dyson-Schwinger equations
in quantum field theory can be stated as functional equations of a form similar to the above
[11, 9]. These considerations will be the subject of a future publication [10], where the presented
formalism will be applied to zero-dimensional quantum field theory.
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A Some remarks on differential equations

Differential equations arising from physical systems form an active field of research in the scope
of resurgence [19, 25]. A detailed exposition of the application of resurgence theory to differential
equations can be found in [13]. Unfortunately, the exact calculation of an overall factor of the
asymptotic expansion of a solution of an ODE, called Stokes constant, turns out to be difficult
for many problems. This fact severely limits the utility of the method for enumeration problems,
as the dominant factor of the asymptotic expansion is of most interest and the detailed structure
of the asymptotic expansion is secondary.

In this section it will be sketched, for the sake of completeness, how the presented combina-
torial framework fits into the realm of differential equations. The given elementary properties
each have their counterpart in resurgence’s alien calculus [23, II.6].

Theorem 4.1 serves as a good starting point to analyze differential equations with power series
solutions in R[[x]]αβ . Given an analytic function F ∈ R{x, y0, . . . , yL}, the Aα

β -derivation can be
applied on the ordinary differential equation

0 = F (x, f(x), f ′(x), f ′′(x), . . . , f (L)(x)).

The chain rule for analytic functions (Theorem 4.1) gives

0 =
L
∑

l=0

∂F

∂yl
(x, y0, . . . , yL)

∣

∣

∣

ym=f(m)(x)
m∈{0,...,L}

(Aα
βf

(l))(x). (A.1)

The differential equation becomes a linear equation for the asymptotic expansions of the deriva-
tives f (l). This raises the question how these different asymptotic expansions relate to each
other.

Proposition A.1. If f ∈ R[[x]]αβ , then f ′(x) ∈ R[[x]]αβ+2 and

(Aα
βx

2f ′(x))(x) =

(

α−1 − xβ + x2 ∂

∂x

)

(Aα
βf)(x). (A.2)

Proof. The statements can be verified by using f ′(x) =
∑∞

n=0 nfnx
n−1 and substituting an

asymptotic expansion up to order R− 1 from eq. (2.2). Set h(x) = x2f ′(x) such that, for n ≥ 1

hn = (n− 1)fn−1 =

=

R−1
∑

k=0

αn−1+β−k(n− 1)Γ(n− 1 + β − k)[xk](Aα
βf)(x) +O (αnΓ(n+ β −R)) .
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An elementary calculation using xΓ(x) = Γ(x+ 1) and k[xk] = [xk]x∂x reveals,

hn =

R−1
∑

k=0

αn+β−kΓ(n+ β − k)[xk](α−1 − xβ + x2∂x)(Aα
βf)(x) +O (αnΓ(n+ β −R)) ,

which verifies eq. (A.2) and shows that h ∈ R[[x]]αβ . Since x2f ′(x) = h(x), it follows from
Proposition 2.13 that f ′(x) ∈ R[[x]]αβ+2.

Corollary A.2. If F ∈ R{x, y0, . . . , yL} and f ∈ R[[x]]αβ is a solution of the differential equation

0 = F (x, f(x), f ′(x), f ′′(x), . . . , f (L)(x)), (A.3)

then (Aα
βf)(x) is a solution of the linear differential equation

0 =

L
∑

l=0

x2L−2l ∂F

∂yl
(x, y0, . . . , yL)

∣

∣

∣

ym=f(m)(x)
m∈{0,...,L}

(α−1 − xβ + x2∂x)
l(Aα

βf)(x). (A.4)

Remark A.3. Even if it is known that the solution to a differential equation has a well-behaved
asymptotic expansion, Corollary A.2 provides this asymptotic expansion only up to the initial
values for the linear differential equation (A.4). Note that the form of the asymptotic expansion
can still depend non-trivially on the initial values of the solution f of the nonlinear differential
equation.

Remark A.4. The linear differential equation (A.4) only has a non-trivial solution if α−1 is the
root of a certain polynomial. If this root is not real or if two roots have the same modulus, the
present formalism has to be generalized to complex and multiple α to express the asymptotic
expansion of a general solution. This generalization is straightforward. We merely need to
generalize Definition 2.1 of suitable sequences to:

Definition A.5. For given β ∈ R>0 and α1, . . . , αL ∈ C with |α1| = |α2| = . . . = |αL| =: α > 0
let C[[x]]α1,...,αL

β ⊂ C[[x]] be the subspace of complex power series, such that f ∈ C[[x]]α1,...,αL

β if

and only if there exist sequences of complex numbers (cfk,l)k∈N0,l∈[1,L], which fulfill

fn =

R−1
∑

k=0

L
∑

l=1

cfk,lα
n+β−k
l Γ(n+ β − k) +O (αnΓ(n+ β −R)) ∀R ∈ N0. (A.5)

B Technical inequalities and identities

Lemma B.1. If C ∈ R>0, u ∈ R≥1, and R, s ∈ N0 such that s ≥ 4 (R log u+ C) ≥ 1, then

∞
∑

m=s

Cm

m!
≤ 1

uR
. (B.1)

Proof. It follows from
(

s+m
m

)

≥ 1 ⇒ s!m! ≤ (s+m)! that

∞
∑

m=s

Cm

m!
= Cs

∞
∑

m=0

Cm

(m+ s)!
≤ Cs

s!

∞
∑

m=0

Cm

m!
= eC

Cs

s!
. (B.2)
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Observe that 1
s! ≤

(

e
s

)s
, because es ≥ ss

s! and that
(

eC
s

)s
is monotonically decreasing, seen as a

function in s, since eC
s

≤ 1. Accordingly,

≤ eC
(

eC

s

)s

≤
(

eC

4 (R log u+ C)

)4(R log u+C)

= eC
(

e1−log 4C

R log u+ C

)4(R log u+C)

. (B.3)

Finally, because R log u ≥ 0 and (1 − log 4) ≈ −0.39 ≤ − 1
4

≤ eC
(

e1−log 4
)4(R log u+C) ≤ e−R log u =

1

uR
. (B.4)

Lemma B.2. If a ∈ R>0 and m, k ∈ N0 with a > m+ k, then

(

a− 1

m

)

Γ(a−m− k) =

m
∑

l=0

(

k + l − 1

l

)

Γ(a− k − l)

(m− l)!
. (B.5)

Proof. This is an exercise in binomial identities. Negating upper indices, using the Chu-Vandermonde
identity and negating upper indices again gives,

(

a− 1

m

)

= (−1)m
(

m− a

m

)

= (−1)m
m
∑

l=0

(−k

l

)(

m− a+ k

m− l

)

(B.6)

=
m
∑

l=0

(

k + l − 1

l

)(

a− k − l − 1

m− l

)

. (B.7)

The statement follows by writing the second binomial coefficient on the right hand side as a
product of Γ-functions and requiring that a > m+ k.
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