
ar
X

iv
:1

60
3.

01
46

8v
1

 [c
s.

IT
]

4
M

ar
 2

01
6

1

Edge Coloring and Stopping Sets Analysis in

Product Codes with MDS components

Fanny Jardel and Joseph J. Boutros

Abstract

We consider non-binary product codes with MDS components and their iterative row-column

algebraic decoding on the erasure channel. Both independent and block erasures are considered in this

paper. A compact graph representation is introduced on which we define double-diversity edge colorings

via the rootcheck concept. An upper bound of the number of decoding iterations is given as a function of

the graph size and the color palette sizeM . Stopping sets are defined in the context of MDS components

and a relationship is established with the graph representation. A full characterization of these stopping

sets is given up to a size(d1 + 1)(d2 + 1), whered1 and d2 are the minimum Hamming distances

of the column and row MDS components respectively. Then, we propose a differential evolution edge

coloring algorithm that produces colorings with a large population of minimal rootcheck order symbols.

The complexity of this algorithm per iteration iso(Mℵ), for a given differential evolution parameterℵ,

whereMℵ itself is small with respect to the huge cardinality of the coloring ensemble. The performance

of MDS-based product codes with and without double-diversity coloring is analyzed in presence of both

block and independent erasures. In the latter case, ML and iterative decoding are proven to coincide

at small channel erasure probability. Furthermore, numerical results show excellent performance in

presence of unequal erasure probability due to double-diversity colorings.

Index Terms

Product codes, MDS codes, iterative decoding, codes on graphs, differential evolution, distributive

storage, edge coloring, diversity, erasure channel, stopping sets.

This manuscript was submitted to the IEEE Transactions on Information Theory, paper IT-15-1104, Dec. 2015. Fanny Jardel is

with Telecom ParisTech, 75013 Paris, France (email: fannjard@gmail.com). She was with CEA, LIST, Communicating Systems

Laboratory BC 94, Gif Sur Yvette, F91191, France. Joseph J. Boutros is with the Dept. of Electrical and Computer Engineering,

Texas A&M University at Qatar, Education City, 23874 Doha, Qatar (email: boutros@tamu.edu).

March 7, 2016 DRAFT

http://arxiv.org/abs/1603.01468v1

2

I. INTRODUCTION

The colossal amount of data stored or conveyed by network nodes requires a special design of

coding structures to protect information against loss or errors and to facilitate its access. At the

end-user level, coding is essential for transmitting information towards the network whether it

is located in a single node or distributed over many nodes. Atthe network level, coding should

help nodes to reliably save a big amount of data and to efficiently communicate with each others.

Powerful capacity-achieving error-correcting codes developed in the last two decades are mainly

efficient at large or asymptotic block length, e.g. low-density parity-check codes (LDPC) [23]

and their spatially-coupled ensembles [35], parallel-concatenated convolutional (Turbo) codes [6]

[5], and polar codes derived from channel polarization [4].Data transmission and storage in

many nowadays networks may require short-length packets that are not suitable for capacity-

achieving codes. The current interest in finite-length channel coding rates [44] put back the light

on code design for short and moderate block length. Many potential candidates are available for

this non-asymptotic length context such as binary and non-binary BCH codes, including Reed-

Solomon (RS) codes, Reed-Muller (RM) codes, and tensor product codes of all these linear

block codes [40] [7] [39].

Product codes, introduced by Peter Elias in 1954 [19], are tensor products of two (or more)

simple codes with a structure that is well-suited to iterative decoding via its graphical description.

In the early decades after their invention, product codes received a great attention due to

their capability of correcting multiple burst errors [70] [64], the availability of erasure-error

bounded-distance decoding algorithms [66], the ability ofcorrecting many errors beyond the

guaranteed correction capacity [1], and their efficient implementation with a variable rate [68].

The pioneering work by Tanner [60] brought new tools to coding theory and put codes on graphs,

including product codes, and their iterative decoding in the heart of modern coding theory [33]

[32] [49]. The graph approach of coding led to new optimal cycle codes on Ramanujan/Cayley

graphs [61] and to Generalizations of LDPC and product codes, known as GLD codes, studied

for the binary symmetric channel (BSC) and the Gaussian channel [9]. The excellent performance

of iterative (turbo) decoding of product codes on the Gaussian channel [45] made them compete

with Turbo codes and LDPC codes for short and moderate block length. The convergence rate and

stability of product codes iterative decoding were studiedbased on a geometric framework [55].

March 7, 2016 DRAFT

3

Product codes with mixed convolutional and block components were also found efficient in

presence of impulsive noise [22]. In addition, iterated Reed-Muller product codes were shown

to exhibit good decoding thresholds for the binary erasure channel, but at high and low coding

rates only [65].

The class of product codes in which the row and the column codeare both Reed-Solomon

codes was extensively used since more than two decades in DVDstorage media and in mobile

cellular networks [69]. In these systems, the channel is modeled as a symbol-error channel

without soft information, i.e. suited to algebraic decoding. Improvements were suggested for

these RS-based product codes such as soft information provided by list decoding [52] within

the iterative process in a Reddy-Robinson framework [48]. Also, RS-based product codes were

directly decoded via a Guruswami-Sudan list decoder [28] after being generalized to bivariate

polynomials [3]. For general tensor products of codes and interleaved, a recent efficient list

decoding algorithm was published [24], with an improved list size in the binary case. On channels

with soft information, RS-based product codes may be row-column decoded with soft-decision

constituent decoders [20] [30].

Tolhuizen found the Hamming weight distribution of both binary and non-binary product codes

up to a weight less thand1d2 +max(d1⌈d2/q⌉, d2⌈d1/q⌉) [62]. Enumeration of erasure patterns

up to a weight less thand1d2 + min(d1, d2) was realized by Sendrier for product codes with

MDS components [56]. Rosnes studied stopping sets of binaryproduct codes under iterative

ML-component-wise decoding [51], where the defined stopping sets and their analysis are based

on the generalized Hamming distance [67] [29].

A. Paper content and structure

In this paper, we consider non-binary product codes with MDScomponents and their iterative

algebraic decoding on the erasure channel. Both independent and block erasures are considered

in our paper. The erasure channel is currently a major area ofresearch in coding theory [36] [37]

because of strong connections with theoretical computer science [37] and its model that easily

allows to understand the behavior of codes such as for LDPC codes [17], for general linear block

codes [54], and for turbo codes [50]. Coding for block erasures was examined by Lapidoth in

the context of convolutional codes [38]. This was a basis to later construct codes for the block-

fading channel with additive white Gaussian noise [27] [13]. The notion ofrootcheckintroduced

March 7, 2016 DRAFT

4

in [13] [12] for single-parity checknodes was applied to more general checknodes in GLD codes

[11] and product codes [10] to achieve diversity on non-ergodic block-fading channels. The

rootcheck concept is the main tool in this paper, in a way similar to [10], to define a compact

graph representation and study iterative decoding in presence of block erasures. Edge coloring

is one of the most interesting problems in modern graph theory [8]. In this paper, edge coloring

is a tool, when combined to the rootcheck concept, yields double-diversity product codes. Our

work is valid for finite-length MDS-based product codes only. Product codes for asymptotic

block length were studied for single-parity codes constituents [46] and for the erasure channel

with a standard regular structure [53] and MDS-based irregular structures [2].

Whether a product code is endowed with an edge coloring or not, the analysis of stopping

sets, their characterization and their enumeration is a fundamental task to be able to design

codes for erasure channels and determine the decoder performance. Our work in this sense is

an improvement to previous works cited above by Tolhuizen, Sendrier, and Rosnes. Besides this

objective of stopping sets characterization which is useful for independent channel erasures and

erasures occurring in blocks of symbols, recent works on locality [25] stimulated us to search for

edge colorings with a large population of edges that admit a minimal rootcheck order. Locality

is a concept encountered in distributive storage [34] [47] where classic coding theory is adapted

to the nature of a network with distributed nodes with its ownconstraints of load in bandwidth

and storage [18] [42]. Furthermore, product codes with MDS components appear to be suited

to distributive storage [21] owing to their simple and mature techniques of erasure resilience.

In our search for good edge colorings, we provide a new algorithm based on the concept of

differential evolution [59] [43]. We use no crossover in ourevolution loop, only a mutation

of the population of bad edges is made to search for a better edge coloring. Our MDS-based

product codes equipped with a double-diversity edge coloring are suited to distributed storage

applications and to wireless networks where diversity is a key parameter.

The paper is structured as follows. Section II gives a list ofmathematical notations. The graph

representation of product codes is given in Section III, including compact and non-compact

graphs. Also the rootcheck concept and its consequences arealso found in Section III. The

analysis of stopping sets is made in Section IV. Our edge coloring algorithm for bipartite graphs

of product codes is described in Section V. Finally, in Section VI, we study the performance of

March 7, 2016 DRAFT

5

product codes with MDS components on erasure channels and wegive theoretical and numerical

results before the conclusions in the last section.

B. Main results

The main results in this paper are:

• Establishing a new compact graph for product codes. The compact graph has many advan-

tages, the main one being its ability to imitate a Tanner graph with parity-check nodes. The

compact graph is also the basis for the differential evolution edge coloring. See Section III-B.

• Iterative decoding analysis of finite-length product codes, mainly the proof of new bounds

on the number of decoding iterations. See Theorem 1 and Corollary 1.

• Proving new properties of stopping sets for product codes with MDS components. See

Propositions 1&2, Corollaries 2-4, and Lemmas 1&2.

• Complete enumeration and characterization of stopping sets up to a size(d1 + 1)(d2 + 1),

whered1, d2 are the minimum Hamming distances of the component codes. This stopping

set enumeration goes beyond the weightd1d2 +max(d1, d2) of Tolhuizen’s Theorem 3 for

codeword enumeration in the MDS components case. See Lemmas3&4 and Theorems 2&3.

• A new edge coloring algorithm (DECA) capable of producing double-diversity colorings

despite the huge size of the coloring ensembles. See SectionV-B.

• Construction via the DECA algorithm of product codes maximizing the number of edges

with root order 1, i.e. minimizing the locality when the process of repairingnodes is

considered. See Section V-C.

• First numerical results for MDS-based product codes on erasure channels showing how

close iterative decoding is to ML decoding, mainly for smallǫ. We proved that iterative

decoding perform as well as ML decoding (the ratio of error probabilities tends to1) for

MDS-based product codes at smallǫ. See Proposition 3, Corollary 5, and other performance

results in Section VI-B.

• Great advantage of double-diversity colorings of product codes (with respect to codes with-

out coloring) in presence of unequal probability erasures.Thus, double-diversity colorings

are efficient on both ergodic and non-ergodic erasure channels. See Section VI-C.

March 7, 2016 DRAFT

6

II. M ATHEMATICAL NOTATION AND TERMINOLOGY

We start by the notation related to the product code and its row and column components. The

impatient reader may skip this entire section and then referto it later to clarify any notation

within the text. Basic notions on product codes and fundamental properties are found in main

textbooks [40] [7] [39] and the encyclopedia of telecommunications [32].

The column codeC1 is a linear block code over the finite fieldFq with parameters[n1, k1, d1]q

which may be summarized by[n1, k1] when no confusion is possible. The integerq is the code

alphabet size,n1 is the code length,k1 is the code dimension as a vector subspace ofFn1

q , andd1

is the minimum Hamming distance ofC1. Similarly, the row codeC2 is a linear block code with

parameters[n2, k2, d2]q. Let G1 andG2 be two matrices of sizek1 × n1 andk2 × n2 containing

in their row a basis for the subspacesC1 andC2 respectively. From the two generator matrices

G1 and G2 a product codeCP is constructed as a subspace ofFN
q with a generator matrix

GP = G1⊗G2, whereN = n1n2 and⊗ denotes the Kronecker product [40].CP has dimension

K = k1k2 and minimum Hamming distancedP = d1d2. C1 andC2 are also called component

codes, this is a terminology from concatenated codes. In [60] and [10], vertices associated to

component codes are called subcode nodes.

A linear [n, k, d]q code is said to be MDS, i.e. Maximum Distance Separable, if itsatisfies

d = n − k + 1. Binary MDS codes are the trivial repetition codes and the single parity-check

codes. In this paper, we only consider non-trivial non-binary MDS codes whereq > n > 2. A

linear code overFq of rateR = k/n is said to be MDS diversity-wise or MDS in the block-

fading/block-erasure sense if it achieves a diversity order L such thatL = 1 + ⌊M(1 − R)⌋,
whereM is the number of degrees of freedom in the channel. The right term1+⌊M(1−R)⌋ is

known as the block-fading Singleton bound [41] [31]. In thispaper,M shall denote the number

of colors, i.e. the palette size of an edge coloring. Assume that code symbols are partitioned

into M sub-blocks, a code is said to attain diversityL if it is capable of correct decoding when

L − 1 sub-blocks are erased by the channel. The reader should refer to [63], chapter 3, for an

exact definition of diversity on fading channels with additive white Gaussian noise.

A product code shall be represented by a non-compact graphG = (V1, V2, E). G is a complete

bipartite graph whereV1 is the set ofn2 right vertices,V2 is the set ofn1 left vertices, andE is

the set ofN edges representing the code symbols. A compact graphGc will also be introduced

March 7, 2016 DRAFT

7

in the next section withGc = (V c
1 , V

c
2 , E

c). The number of edges (also called super-edges) in

the compact graph is|Ec| = N c. A super-edge is equivalent to a super-symbol that represents

(n1 − k1)(n2 − k2) symbols fromFq. The ensemble of edge colorings is denotedΦ(E) and

Φ(Ec) for G andGc respectively. An edge coloring will be denoted byφ. Givenφ, the rootcheck

order of an edge isρ(e). The greatestρ(e) among all edges will be referred to asρmax(φ). The

number of edgese satisfyingρ(e) = 1 is η(φ), this is the number of good edges and will be

processed by the DECA algorithm in Section V. The DECA parameter ℵ shall represent the

number of edges to be mutated, i.e. those edges being chosen in the population of bad edges

satisfyingρ(e) > 1.

Under iterative row-column decoding, the rootcheck orderρ is equal to the number of decoding

iterations required to solve the edge value (or the symbol associated to that edge). In this paper,

one decoding iteration is equivalent to decoding all rows ordecoding all columns. A sequence

of n1 row decoders followed by a sequence ofn2 column decoders is counted as two decoding

iterations.

We give now a general definition of a stopping set. A detailed study is found in Section IV.

The notion of a stopping set is useful for iterative decodingin presence of erasures [17].

Definition 1: Let C[n, k]q be a linear code. Assume that the symbols of a codeword are

transmitted on an erasure channel. The decoderD is using some deterministic decoding method.

Consider a setS of s fixed positionsi1, i2, . . . , is where1 ≤ ij ≤ n. The setS is said to be

a Stopping Set ifD fails in retrieving the transmitted codeword when all symbols on thes

positions given byS are erased.

This paper focuses on stopping sets of a product code under iterative algebraic row-column

decoding, i.e. referred to as type II stopping sets. The number of stopping sets of sizew is τw.

The rectangular supportR(S) of a stopping setS can be seen as the smallest rectangle containing

S. After excluding rows and columns not involved inS, the rectangular support has sizeℓ1× ℓ2

wherew = |S| ≤ ℓ1ℓ2. The word error performance ofCP shall be estimated on erasure channels,

PML
ew is the word error probability under Maximum Likelihood decoding andP G

ew is the word

error probability under iterative row-column decoding. Three erasure channels are considered:

1- The Symbol Erasure Channel,SEC(q, ǫ), where code symbols are independently erased with

a probabilityǫ, 2- The Color Erasure Channel,CEC(q, ǫ), where all symbols associated to the

same color are block-erased with a probabilityǫ. On theCEC(q, ǫ), block-erasure events are

March 7, 2016 DRAFT

8

independent from one color to another. 3- The unequal probability Symbol Erasure Channel,

SEC(q, {ǫi}Mi=1), where symbol erasures are independent but their erasure probability varies

from one color to another.

III. GRAPH REPRESENTATIONS FOR DIVERSITY

Efficient graph representation of codes was established by Tanner for different types of coding

structures [60]. Bounds on the code parameters and iterative decoding algorithms were also

proposed for codes on graphs [60]. In this paper, we study theedge coloring of a product code

graph, where edges represent code symbols. As shown below, the original graph for a product

code is too complex, i.e. it leads to a large ensemble of colorings. Hence, we introduce a compact

graph where symbols are grouped together with the same colorin order to reduce the size of the

coloring ensemble. The compact graph also has another asset: grouping parity symbols together

renders check nodes similar to parity-check nodes found in standard low-density parity-check

codes [23] [49].

A. Non-compact graph

Consider a product codeC1[n1, k1]q ⊗C2[n2, k2]q whereC1 is the column code andC2 is the

row code. The product code is defined over the finite fieldFq and has lengthN and dimension

K given by [40]

N = n1n2, K = k1k2. (1)

Each code symbol simultaneously belongs to one row and to onecolumn. Product codes studied

in this paper are regular, in the sense that all columns are codewords ofC1 and all rows are

codewords ofC2. The graph ofC1[n1, k1]q ⊗ C2[n2, k2]q is built as follows. We use the same

terminology as in [49]:

• n1 check nodes are drawn on the left. A left check node represents the coding constraint

which states that a row belongs toC2. Then1 left check nodes are referred to asC2 check

nodes, or row check nodes, or equivalently left vertices.

• n2 check nodes are drawn on the right. A right check node represents the coding constraint

which states that a column belongs toC1. Then2 right check nodes are referred to asC1

check nodes, or column check nodes, or equivalently right vertices.

March 7, 2016 DRAFT

9

• An edge is drawn between a left vertex and right vertex. It represents a code symbol located

on the row of the left vertex and on the column of the right vertex. The code symbol belongs

to Fq.

n2 checknodesn1 checknodes

C1C2

C2

C2

C2

C1

C1

C1

EV2 V1

Figure 1: Non-compact bipartite graphG = (V1, V2, E) of a product code[4, 2]⊗2, i.e.n1 = n2 =

4, k1 = k2 = 2, |V1| = |V2| = 4, and |E| = N = n1n2 = 16 edges representing 16 symbols

in Fq.

In summary, the product code graph(V1, V2, E) is a complete biregular bipartite graph built

from n1 left vertices,n2 right vertices, andN = |E| = n1n2 edges representing code symbols.

The left degree isn2 and the right degree isn1. Irregular product codes can be found in [2].

Our paper is restricted to regular product codes. Figure 1 shows the bipartite graph of a square

regular symmetric product code[4, 2]⊗ [4, 2]. The graph structure revealsn1, n2, andN = n1n2.

The dimensionsk1 andk2 of the component codes have no effect on the number of vertices and

edges in the product code graph. Indeed, a[4, 3]⊗ [4, 3] code can also be defined by the graph

in Figure 1. The role of the dimensionsk1 andk2 is played within the check constraints inside

left and right vertices. Similarly, the size of the finite field defining the code cannot be revealed

March 7, 2016 DRAFT

10

from the graph structure, i.e. the product code graph does not depend onq.

Definition 2: The non-compact graphG = (V1, V2, E) for a [n1, k1]⊗ [n2, k2] product code is

a complete bipartite graph withn1 = |V2| left vertices andn2 = |V1| right vertices.

B. Compact graph

In [10] where the diversity of binary product codes was considered, vertices of the non-

compact graph were grouped together into super-vertices (or supernodes) because the different

channel states lead to multiple classes of check nodes as in root-LDPC codes [13]. To render

a graph-encodable code, supernodes in [10] were made by putting n − k nodes together for a

[n, k] component code. Also,n− k is not necessarily a divisor ofn.

Definition 3: The compact graphGc = (V c
1 , V

c
2 , E

c) for a [n1, k1]⊗ [n2, k2] product code is a

complete bipartite graph with⌈ n1

n1−k1
⌉ = |V c

2 | left vertices and⌈ n2

n2−k2
⌉ = |V c

1 | right vertices.

From the above definition, the number of edges in the compact graphGc is found to be

N c = |Ec| =
⌈

n1

n1 − k1

⌉

×
⌈

n2

n2 − k2

⌉

. (2)

Assuming that(n1−k1) dividesn1 and(n2−k2) dividesn2, a left check node inGc is equivalent

to n2−k2 row constraints and a right check node inGc is equivalent ton1−k1 column constraints.

An edge in the compact graph carries(n1 − k1)× (n2 − k2) code symbols. To avoid confusion

between edges ofG andGc, we may refer to those inGc as super-edges or equivalently as super-

symbols. Ifni is not multiple ofni − ki, then the last row or column supernode will contain

less thanni − ki check nodes. Figure 2 depicts the compact graph of the[4, 2]⊗2 product code.

All [n, n/2]⊗2 product codes have a compact graph identical to that of[4, 2]⊗2, for all n ≥ 2, n

even.

C. Diversity and codes on graphs

From a coding point of view, diversity is the art of creating many replicas of the same

information. From a channel point of view, diversity is the number of degrees of freedom

available while transmitting information. In distributive storage, independent failure of individual

March 7, 2016 DRAFT

11

2 supernodes 2 supernodes

V c
2 V c

1Ec

Figure 2: Compact bipartite graphGc = (V c
1 , V

c
2 , E

c) with two supernodes on each side for the

product code[n, n/2]⊗2, |V c
1 | = |V c

2 | = 2 and |Ec| = N c = 4 supersymbols. Each super-symbol

(i.e. super-edge) containsn2/4 symbols (i.e. edges).

machines is modeled by independent erasures of code symbols, while the outage of a cluster

of machines is modeled as block erasures of code symbols. Assuming a storage domain with a

large set of machines partitioned intoM clusters, diversity of distributed coding is defined as

follows:

Definition 4: Consider a product codeCP defined overFq. Assume that symbols are given

M different colors. Erasing one color is equivalent to erasing all symbols having this color. The

code is said to achieve a diversityL if it is capable of filling all erasures after erasingL − 1

colors. The code is full-diversity whenL = M .

The integerL may also be called the diversity order. For Gaussian channels with fading, the

diversity order appears as the slope of the error probability, i.e.L = limγ→∞− log Pe

log γ
[13]. In the

above definition, a cluster has been replaced by a color. We will use this terminology throughout

the paper. Notice that coloring symbols is equivalent to edge coloring of the product code graph.

The number of edges isN in the non-compact graph andN c in the compact graph. In the

sequel, all colorings are supposed to be perfectly balanced, i.e. M divides bothN andN c and

the number of edges having the same color isN/M andN c/M for the non-compact graph and

the compact graph respectively. More formally, our edge coloring is defined as follows: an edge

March 7, 2016 DRAFT

12

coloring φ of G = (V1, V2, E) is a mapping associating one color to every edge inE,

φ : E → {1, 2, . . . ,M}, (3)

such that|φ−1(i)| = N/M for i = 1 . . .M , whereφ−1(i) is the inverse image ofi. Similarly,

φ : Ec → {1, 2, . . . ,M} for Gc = (V c
1 , V

c
2 , E

c) and|φ−1(i)| = N c/M . The set of such mappings

for G andGc is denotedΦ(E) andΦ(Ec) respectively.

Consider a coloringφ in Φ(Ec). It can be embedded intoΦ(E) by copying the color of a super-

edge to its associated(n1 − k1)× (n2 − k2) edges inE. Thus, letΦ(Ec → E) be the subset of

colorings inΦ(E) obtained by embedding all colorings ofΦ(Ec) into Φ(E). We have

Φ(Ec → E) ⊂ Φ(E) and |Φ(Ec → E)| = |Φ(Ec)|. (4)

The size of the edge coloring ensemblesΦ(E) andΦ(Ec) is obviously not the same when

N c < N , which occurs for both row and column component codes not equal to single parity-

check codes. Indeed, when a palette of sizeM is used to color edges, the total number of

colorings ofE is

|Φ(E)| = N !

((N/M)!)M
. (5)

This number for the compact graph is

|Φ(Ec)| = N c!

((N c/M)!)M
. (6)

As an example, for the[12, 10]⊗2 code andM = 4, there are2 ·1083 edge colorings for the non-

compact graph and2 ·1019 edge colorings for the compact graph. It is clear that the construction

of product codes for diversity is much easier when based onGc = (V c
1 , V

c
2 , E

c) because its

edge coloring ensemble is smaller. Furthermore, as described below, vertices inGc act in a way

similar to standard LDPC check nodes making the design very simple. Furthermore, we will see

in Section IV that edge colorings of the compact graph renderlarger stopping sets than colorings

of the non-compact graph.

The diversity orderL attained by a code can never exceedM , the latter being the diversity

from a channel point of view. A tighter upper bound ofL showing the rate-diversity tradeoff

is the block-fading Singleton bound. The Singleton bound for the maximal achievable diversity

March 7, 2016 DRAFT

13

order is valid for all types of non-ergodic channels, including block-erasure and block-fading

channels. The block-fading Singleton bound states that [31] [41]

L ≤ 1 + ⌊M(1 − R)⌋, (7)

whereR = K/N is the coding rate of the product code. Codes satisfying the equality in the

above Singleton bound are referred to as diversity-wise MDSor block-fading MDS codes. From

(7), we deduce thatR ≤ 1/M if L = M (full-diversity coding). For example, we getR ≤ 1/2

with an edge coloring usingL = M = 2 colors andR ≤ 1/4 for L = M = 4 colors. The

coding rate can exceed1/M whenL < M in applications where full diversity is not mandatory.

An example suited to distributed storage is an edge coloringwith a palette ofM = 4 colors, a

diversityL = 2, andR ≤ 3/4.

D. Rootcheck nodes and root symbols

In a way similar to root-LDPC codes and product codes built for block-fading channels [10]

[13], we introduce now the notion of root symbols and root-check nodes in product codes to be

designed for distributive storage. A linear[n, k]q code with parity-check matrixH can fill n− k

erasures at positions where the columns ofH are independent. Thesen−k symbols correspond

to n − k separate edges in the non-compact graph and to a unique edge (supersymbol) in the

compact graph. Therefore, for simplicity, we start by defining a root supersymbol in the compact

graph where supernodes are equivalent to standard LDPC parity-check nodes.

Definition 5: Let Gc be a compact graph of a product code, letφ be a given edge coloring,

and lete ∈ Ec be a supersymbol.e is a root supersymbolwith respect toφ(e) if it admits a

neighbor vertexυ, υ ∈ V c
1 or υ ∈ V c

2 , such that all adjacent edgesf in υ satisfyφ(f) 6= φ(e).

In Definition 5, if υ ∈ V c
1 then e is a root supersymbol thanks to the product code column to

which it belongs, i.e.e can be solved in one iteration by its column component code when the

color φ(e) is erased. Likewise,e is protected against erasures by its row component code if

υ ∈ V c
2 in the previous definition. Finally, a root supersymbol may be doubly protected by both

its row and its column if both right and left neighborsυ1 ∈ V c
1 andυ2 ∈ V c

2 satisfy the condition

of Definition 5.

March 7, 2016 DRAFT

14

Definition 6: Let G be a non-compact graph of a product code, letφ be a given edge coloring,

and lete ∈ E be a symbol.e is a root symbolwith respect toφ(e) if it admits a neighbor vertex

υ such that:

φ(f) = φ(e) for at mostn2 − k2 − 1 adjacent edgesf if υ ∈ V1, or

φ(f) = φ(e) for at mostn1 − k1 − 1 adjacent edgesf if υ ∈ V2.

As mentioned in the paragraph before Definition 5, Definition6 implies that theni − ki root

symbols with the same color should belong to positions of independent columns in the parity-

check matrix of the component codeCi. This constraint automatically disappears for MDS

component codes since any set ofni − ki columns ofHi has full rank.

E. The rootcheck order in product codes

Not all symbols of a product code are root symbols. Under iterative row-column decoding on

channels with block erasures, some symbols may be solved in two decoding iterations or more.

Some set of symbols may never be solved and are referred to as stopping sets [17] [54] [51]. Our

study is restricted to erasing the symbols of one color out ofM . Hence, the rest of this paper is

restricted to double diversity,L = 2. Absence of diversity is equivalent toL = 1. We establish

now the root orderρ of a symbol. For root symbols satisfying definitions 5 and 6, the root

order isρ = 1. For symbols that can be solved after two decoding iterations, we setρ = 2. The

formal definition of the root orderρ can be written in the following recursive manner (forρ ≥ 2).

Definition 7: Let Gc be a compact graph of a product code, letφ ∈ Φ(Ec) be an edge coloring,

and lete ∈ Ec be a super-symbol.e hasroot order ρ(e) = min(ρ1, ρ2) where:

1- Let υ1 ∈ V c
1 be the column neighbor vertex ofe. ∀f adjacent toe in υ1 andφ(f) = φ(e),

we haveρ(f) < ρ1.

2- Let υ2 ∈ V c
2 be the row neighbor vertex ofe. ∀f adjacent toe in υ2 andφ(f) = φ(e), we

haveρ(f) < ρ2.

The previous definition implies thatρ(e) = 1 if there exists no adjacent edge with the same

color. Also, for an edgee that does not admit a finiteρ(e), we setρ(e) = ∞. When color

φ(e) is erased, symbols belonging to the so-called stopping setscan never be solved (even after

March 7, 2016 DRAFT

15

an infinite number of decoding iterations) and hence their root order is infinite. In the next

section we review stopping sets as known in the literature and we study new stopping sets for

product codes based on MDS components under iterative algebraic decoding. Definition 7 can

be rephrased to make it suitable for the non-compact graphG. We pursue this section to establish

an upper bound of the largest finite root order valid for all edge coloringsφ.

Theorem 1:LetCP be a product code[n1, k1]⊗[n2, k2] with a compact graphGc = (V c
1 , V

c
2 , E

c).

∀φ ∈ Φ(Ec) and∀e ∈ Ec we have:

Case 1:∄f ∈ Ec such thatφ(f) = φ(e) andρ(f) =∞, then

1 ≤ ρ(e) ≤
⌈

N c

2M

⌉

= ρu.

Define the minimum number of good edges,

ηmin(φ) = min
i=1...M

|{f ∈ Ec : φ(f) = i, ρ(f) = 1}|.

Then, in Case 1,

2ρ(e) + ηmin(φ)− 3 ≤
⌈

N c

M

⌉

. (8)

Case 2:∃f ∈ Ec such thatφ(f) = φ(e) andρ(f) =∞, then

ρ(e) =∞ or 1 ≤ ρ(e) ≤
⌈

N c

M

⌉

− 4,

whereN c = |Ec| is given by (2).

Proof: Case 1 corresponds to a product code with diversityL = 2, for a given colorφ(e),

which is capable of solving all symbols when that color is erased. The graph has no infinite root

order symbols.ρ is recursively built by starting fromρ = 1 following two paths in the graph

until reaching a common edgee that has two neighboring vertices with edges of orderρ(e)− 1.

There are up to⌈N c/M⌉ edges, includinge, having color equal toφ(e). The largestρ(e) is

attained in the middle of the longest path of length⌈N c/M⌉, hence2ρ(e)−1 ≤ ⌈N c/M⌉ which

is translated into the stated result for Case 1. An illustrated instance is given for the reader in

Example 1. Back to the path of length2ρ(e)− 1 ending with edges of order1 on both sides, if

the population of order1 edges isη1 for the colorφ(e), then the path can only use a maximum

of ⌈N c/M⌉−(η1−2) edges. We get the inequality2ρ(e)−1 ≤ ⌈N c/M⌉−(η1−2). By plugging

ηmin(φ) instead ofη1, this inequality becomes independent from the particular color. The stated

March 7, 2016 DRAFT

16

inequality in (8) is obtained after groupingρ(e) andηmin(φ) on the left side.

Case 2 corresponds to bad edge coloring where the product code does not have double diversity,

i.e. stopping sets do exist for the colorφ(e). The order ofe may be infinite if e is involved

in a stopping set with another edgef having the same color. Otherwise, consider the smallest

stopping set of size four symbols (the smallest cycle inGc with edges of colorφ(e)), then there

remains⌈N c/M⌉−4 edges of colorφ(e). A path of length⌈N c/M⌉−4 starting withρ = 1 and

ending atρ = ∞ may exist. The largest finite order in this path before reaching the stopping

set isρ = ⌈N c/M⌉ − 4.

Corollary 1: Let CP be a product code[n1, k1] ⊗ [n2, k2] with a compact graphGc. Let

φ ∈ Φ(Ec) be an edge coloring. We define

ρmax(φ) = max
e∈Ec

ρ(e). (9)

CP attains double diversity under iterative row-column decoding if and only if ρmax(φ) < ∞.

In this case, we say thatφ is a double-diversity coloring and∀e ∈ Ec, e can be solved after at

mostρmax decoding iterations whereρmax(φ) ≤ ρu.

For colorings inΦ(E), we extend the same definition as in Corollary 1 and we say that

φ ∈ Φ(E) is double-diversity if all edges have a finite rootcheck order. The parameterρmax is

important in practical applications to bound from above theamount of conveyed information

within a network (whether it is a local-area or a wide-area network). In fact, in coding for

distributed storage, the locality of a product code per decoding iteration ismax(n1, n2) in G
under algebraic decoding of its row and column components. Here, the locality is the number

of symbols to be accessed in order to repair an erased symbol [25]. Locality ismax(k1, k2) for

MDS components under ML decoding of the product code components. Finally, for a product

code, the information transfer per symbol is bounded from above by

ρmax(φ)×max(n1, n2). (10)

The exact transfer cost to fill all erasures with iterative decoding can be determined by multiplying

each orderρ with the corresponding edge population size. This exact cost may vary in a wide

range from one coloring to another. The DECA algorithm presented in Section V dramatically

reducesρmax by enlarging the edge population with root order1. The interdependence between

March 7, 2016 DRAFT

17

ρ and the population of order1 was revealed in inequality (8). This inequality is useful in

intermediate cases whereρmax = 1 is not attained, i.e. outside the case where all edges have

order1. The influence of the component decoding method on the performance of a product code

via its stopping sets is discussed in Section IV.

Example 1:Consider a[12, 10]⊗2 product code and a coloringφ with M = 4 colors. The

compact graph has|Ec| = 6 × 6 edges. Instead of drawingGc, we draw the6 × 6 compact

matrix representation of the product code in Fig. 3. Supersymbols corresponding to a color

φ(e) = 1 are shaded. Fig. 3 also shows a path inGc such that a maximal orderρmax = ρu = 5 is

attained forφ(e) = 1. If φ has double diversity thenρmax will not exceedρu = 5 for all colors

φ(e) ∈ {1, 2, . . . ,M}. Note that the parameters of this product code are such thatN c/M − 4 is

also equal to 5 for aφ with a diversity defect.

1 1

2 2

3 3

4 4

5

ρ = 1

ρ = 5

ρ = 4

ρ = 2 ρ = 3

ρ = 4

ρ = 3

ρ = 2ρ = 1

Figure 3: Compact matrix (left) and path in compact graph (right) for a product code[12, 10]⊗2

showing a maximal root order of 5.

Example 2:Consider a[14, 12]⊗ [16, 14] product code and a coloringφ with M = 4 colors.

The compact graph has|Ec| = 7×8 edges. The compact matrix and a path attainingρ = 10 are

illustrated in Fig. 4.φ is chosen such that the first color has a cycle involving four supersymbols.

Starting from the root supersymbol (ρ = 1) it is possible to create a path in the graph such that

ρ = 10 is reached. Note that a double-diversityφ cannot exceed a root orderρu = 7.

March 7, 2016 DRAFT

18

1

2

3

4

8

5

6

7

9

10

ρ = 3

ρ =∞

ρ = 8

ρ = 7

ρ =∞

ρ =∞

ρ = 10

ρ = 9

ρ = 6

ρ = 4ρ = 5

ρ = 1

∞∞

∞ ∞

ρ = 2

ρ =∞

Figure 4: Compact matrix (left) and path in compact graph (right) for a product code[14, 12]⊗
[16, 14] showing a maximal finite root order of 10.

The ideal situation is to construct a product code and its edge coloring in order to obtain

ρ(e) = 1 for all edges. We investigate now the conditions on the product code rate and its

components rates in this ideal situation. The analysis based on ρu reveals the existence of a

trade-off between minimizing the number of decoding iterations and the valid range of both

coding rates for the product code components.

Firstly, let us look at the upper boundρu from Theorem 1. Without loss of generality, assume

that ni − ki dividesni. Then, we have

Ri = 1− ni − ki
ni

= 1− 1

|V c
i |
. (11)

The total coding rate becomes

R = R1R2 =

(

1− 1

|V c
1 |

)

·
(

1− 1

|V c
2 |

)

. (12)

UsingN c = |V c
1 | · |V c

2 |, we get

R1R2 = R1 +R2 − 1 +
1

N c
. (13)

March 7, 2016 DRAFT

19

Finally, from (13) and Theorem 1, the upper bound of the root order for double-diversity edge

coloring of the compact graph can be expressed as

ρu =

⌈

N c

2M

⌉

=

⌈

1

2M × (1 +R1R2 − R1 −R2)

⌉

. (14)

Fix the product code rateR, force the upper bound toρu = 1, and takeM = 4 colors. Then

the denominator in (14) should be less than1 or equivalently−8R2
1 + (7 + 8R)R1 − 8R > 0.

This second-degree polynomial inR1 is non-negative if and only if

R <
9

8
− 1√

2
≈ 0.4178, (15)

and

−
√
64R2 − 144R + 49 < 16R1 − 8R− 7 < +

√
64R2 − 144R + 49. (16)

As a result, with a palette of four colors, (15) tells us thatρ(e) = 1 for all edges is feasible

for a product code with a rate less than0.4178. It is obvious that (15) is a very constraining

condition becauseρu is an upper bound ofρmax(φ) for all φ ∈ Φ(Ec). It is worth noting that

R1 andR2 vary in a smaller range whenR approaches9
8
− 1√

2
, which corresponds to a product

code with balanced components.

In Section V-A, we will show unbalanced product codes where asufficient condition on the

component rates imposes order1 to all edges. The sufficient condition, not based onρu, is given

by Lemma 5. But before introducing an efficient edge coloringalgorithm in Section V, we

analyze stopping sets in product codes with MDS components in the next section, we describe

the relationship between stopping sets and the product codegraph representation, and finally

we enumerate obvious and non-obvious stopping sets. Stopping sets enumeration is useful to

determine the performance of a product code with and withoutedge coloring.

IV. STOPPING SETS FORMDS COMPONENTS

The purpose of this section is to prepare the way for determining the performance of iterative

decoding of non-binary product codes. The analysis of stopping sets in a product code will

yield a tight upper bound of its iterative decoding performance over a channel with independent

erasures. The same analysis will be useful to accurately estimate the performance under edge

coloring in presence of block and multiple erasure channels.

March 7, 2016 DRAFT

20

A. Decoding erasures

Definition 8: An erasure pattern is said to be ML-correctable if the ML decoder is capable

of solving all its erased symbols.

For an erasure pattern which is not correctable under ML or iterative decoding, the decoding

process may fill none or some of the erasures and then stay stuck on the remaining ones. Before

describing the stopping sets of a product code, let us recallsome fundamental results regarding

the decoding of its row and column component codes. The ML erasure-filling capability of a

linear code satisfies the following property.

Proposition 1: Let C[n, k, d]q be a linear code withq ≥ 2. Assume thatC is not MDS and

then symbols of a codeword are transmitted on an erasure channel.Then, there exists an erasure

pattern of weight greater thand− 1 that is ML-correctable.

Proof: Let H be an (n − k) × n parity-check matrix ofC with rank n − k > d − 1.

For any integerw in the range[d, n− k], there exists a set ofw linearly independent columns

in H. Choose an erasure pattern of weightw with erasures located at the positions of thew

independent columns. Then, the ML decoder is capable of solving all these erasures by simple

Gaussian reduction ofH.

For MDS codes, based on a proof similar to the proof of Proposition 1, we state a well-known

result in the following corollary.

Corollary 2: Let C[n, k, d]q be an MDS code. All erasure patterns of weight greater thand−1
are not ML-correctable.

We conclude from the previous corollary that an algebraic decoder for an MDS code attains

the word-error performance of its ML decoder. What about symbol-error performance? Indeed,

for general binary and non-binary codes, the ML decoder may outperform an algebraic decoder

since it is capable of filling some of the erasures when dealing with a pattern which is not

ML-correctable. In the MDS case, the answer comes from the absence of spectral holes for any

MDS code beyond its minimum distance. This basic result is proven via standard tools from

algebraic coding theory [40] [7]:

Proposition 2: Let C[n, k, d]q be a non-binary MDS code (q > n > 2). For anyw satisfying

d ≤ w ≤ n and any supportX = {i1, i2, . . . , iw}, where1 ≤ ij ≤ n, there exists a codeword in

C of weightw havingX as its own support.

March 7, 2016 DRAFT

21

Proof: By assumption we havew > r = n− k. Let H be a parity-check matrix ofC with

rank r = n− k. Recall that the MDS property makes full-rank any set ofn− k columns ofH

[40]. w is written asw = r+ℓ, whereℓ = 1 . . . k. Thew positions ofX are anywhere inside the

range[1, n], but for simplicity let us denoteh1 . . . hr ther columns ofH in the firstr positions.

The lastℓ columns are denotedζ1 . . . ζℓ. For anyj = 1 . . . ℓ, we have

ζj =

r
∑

i=1

ai,jhi,

whereai,j ∈ Fq \ {0} otherwise it contradictsd = n−k+1. Now, selectα1 . . . αℓ from Fq \ {0}
such that:α1 is arbitrary,α2 is chosen outside the set{−α1ai,1/ai,2}ri=1, then α3 is chosen

outside the set{(−α1ai,1 − α2ai,2)/ai,3}ri=1, and so on, up toαℓ which is chosen outside the

set {−
∑ℓ−1

u=1 αuai,u/ai,ℓ}ri=1. Here, the notationa/b in Fq \ {0} is equivalent to the standard

algebraic notationab−1. The equality

ℓ
∑

j=1

αjζj =

r
∑

i=1

ℓ
∑

j=1

αjai,jhi

produces a codeword of Hamming weightw. Hence, there exists a codeword of weightw with

non-zero symbols in all positions given byX .

Now, at the symbol level for an MDS code and an erasure patternwhich is not ML-correctable

(w > d − 1), we conclude from Proposition 2 that the ML decoder cannot solve any of thew

erasures because they are covered by a codeword. Consequently, an algebraic decoder for an

MDS code also attains the symbol-error performance of the MLdecoder. This behavior will

have a direct consequence on the iterative decoding of a product code with MDS components:

stopping sets are identical when dealing with algebraic andML-per-component decoders.

A general description of a stopping set was given by Definition 1. The exact definition of a

stopping set depends on the iterative decoding type. For product codes, four decoding methods

are known:

• Type I: ML decoder. This is a non-iterative decoder. It is based on a Gaussian reduction of

the parity-check matrix of the product code.

• Type II: Iterative algebraic decoder. At odd decoding iterations, component codesC1 on

each column are decoded via an algebraic decoder (bounded-distance) that fills up tod −

March 7, 2016 DRAFT

22

1 erasures. Similarly, at even decoding iterations, component codesC2 on each row are

decoded via an algebraic decoder.

• Type III: Iterative ML-per-component decoder. This decoder was considered by Rosnes in

[51] for binary product codes. At odd decoding iterations, column codesC1 are decoded via

an optimal decoder (ML forC1). At even decoding iterations, row codesC2 are decoded

via a similar optimal decoder (ML forC2).

• Type IV: Iterative belief-propagation decoder based on theTanner graph ofCP , as studied

by Schwartz et al. for general linear block codes [54] and by Di et al. for low-density

parity-check codes [17].

The three iterative decoders listed above give rise to threedifferent kinds of stopping sets. As

previously indicated, from Corollary 2 and Propositions 2,we concluded that type-II and type-III

stopping sets are identical if component codes are MDS.

B. Stopping set definition

Let C be aq-ary linear code of lengthn, i.e. C is a sub-space of dimensionk of Fn
q . The

support ofC, denoted byX (C), is the set ofℓ distinct positions{i1, i2, . . . , iℓ} = {ij}ℓj=1,

1 ≤ ij ≤ n, such that, for allj, there exists a codewordc = (c1 . . . cn) ∈ C with cij 6= 0.

This notion of supportX is applied to rows and columns in a product code.

Now, we define a rectangular support which is useful to represent a stopping set in a bi-

dimensional product code. LetS ⊆ {1, . . . , n1} × {1, . . . , n2} be a set of symbol positions

in the product code. The set of row positions associated toS is R1(S) = {i1, . . . , iℓ1} where

|R1(S)| = ℓ1 and for alli ∈ R1(S) there exists(i, ℓ) ∈ S. The set of column positions associated

to S isR2(S) = {j1, . . . , jℓ2} where|R2(S)| = ℓ2 and for allj ∈ R2(S) there exists(ℓ, j) ∈ S.

The rectangular support ofS is

R(S) = R1(S)×R2(S), (17)

i.e. the smallestℓ1 × ℓ2 rectangle including all columns and all rows ofS.

March 7, 2016 DRAFT

23

Definition 9: Consider a product codeCP = C1 ⊗ C2. Let S ⊆ {1, . . . , n1} × {1, . . . , n2}
with |R1(S)| = ℓ1 and|R2(S)| = ℓ2. Consider theℓ1 rows ofS given byS(i)

r = {j : (i, j) ∈ S}
and theℓ2 columns ofS given byS(j)

c = {i : (i, j) ∈ S}. The setS is a stopping set of type III

for CP if there exist linear subcodesC(j)
c ⊆ C1 andC

(i)
r ⊆ C2 such thatX (C(j)

c) = S(j)
c and

X (C(i)
r) = S(i)

r for all i ∈ R1(S) and for all j ∈ R2(S).
The cardinality|S| is called the size of the stopping set and will also be referred to in the

sequel as the weight ofS. Recall that type II and type III stopping sets are identicalwhen both

C1 andC2 are MDS. Stopping sets of type III were studied for binary product codes by Rosnes

[51]. His analysis is based on the generalized Hamming distance [67] [29] because sub-codes

involved in Definition 9 may have a dimension greater than 1. In the non-binary MDS case,

according to Proposition 2, all these sub-codes have dimension 1, i.e. they are generated by

a single non-zero codeword. Consequently, the generalizedHamming distance is not relevant

when using MDS components. In such a case, the analysis of type II stopping sets is mainly

combinatorial and does not require algebraic tools.

Stopping sets for decoder types II-IV can be characterized by four main properties summarized

as follows.

• Obvious or not obvious sets, also known as rank-1 sets. A stopping setS is obvious if

S = R(S).
• Primitive or non-primitive stopping sets. A stopping set isprimitive if it cannot be partitioned

into two or more smaller stopping sets. Notice that all stopping sets, whether they are

primitive or not, are involved in the code performance.

• Codeword or non-codeword. A stopping setS is said to be a codeword stopping set if there

exists a codewordc in CP such thatX (c) = S.

• ML-correctable or non-ML-correctable. A stopping setS cannot be corrected via ML

decoding if it includes the support of a non-zero codeword.

In the remaining material of this paper, we restrict our study to type II stopping sets.

March 7, 2016 DRAFT

24

Example 3:Consider a[n1, n1 − 2, 3]q ⊗ [n2, n2 − 2, 3]q product code. A stopping setS of

sizew = 9 is shown as a weight-9 matrix of sizen1 × n2, where1 corresponds to an erased

position:

S =

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 1 1 0

0 0 0 0 0 0

0 1 0 1 1 0

0 1 0 1 1 0

0 0 0 0 0 0

. (18)

We tookn1 = n2 = 7 for illustration. The rectangular support is shown in a compact represen-

tation as a matrix of sizeℓ1 × ℓ2 = 3× 3,

R(S) =

1 1 1

1 1 1

1 1 1

. (19)

The stopping set in (18) is obvious, it has the same size as itsrectangular support. It corresponds

to a matrix of rank 1. Each row and each column ofS has weight3. Iterative row-column

decoding based on component algebraic decoders fails in decoding rows and columns since the

number of erasures exceeds the erasure-filling capacity of the MDS components. This stopping

set is not ML-correctable because it is a product-code codeword. In the sequel, all stopping sets

(type II) shall be represented in this compact manner by a smaller rectangle of sizeℓ1 × ℓ2.

Example 4:For the same[n1, n1 − 2, 3]q ⊗ [n2, n2 − 2, 3]q product code used in the previous

example, the following stopping sets of size12 are not obvious.

S1 =

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 1 1 0 0 0

0 0 1 1 1 0 0

0 1 0 1 1 0 0

0 1 1 0 1 0 0

0 0 0 0 0 0 0

, (20)

March 7, 2016 DRAFT

25

S2 =

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 0 1 1 0 0

0 0 0 1 1 1 0

0 1 0 0 1 1 0

0 1 0 1 0 1 0

0 0 0 0 0 0 0

. (21)

In compact form, their rectangular support is

R(S1) = R(S2) =

1 1 1 0

0 1 1 1

1 0 1 1

1 1 0 1

. (22)

These stopping sets have size12 and a4×4 rectangular support. Forw = 12, it is also possible

to build an obvious stopping set in a3 × 4 rectangle or a4 × 3 rectangle full of1. S1 is ML-

correctable since it does not cover a product code codeword.S2 covers a codeword hence it is

not ML-correctable.

C. Stopping sets and subgraphs of product codes

A stopping set as defined by Definition (9) corresponds to erased edges in the non-compact

graph G introduced in Section III-A. Indeed, consider the size-9 stopping set given by (18)

or (19). The nine symbol positions involve nine edges inG, three row checknodes, and three

column checknodes. Each of these six checknodes has three erased symbols making the[12, 10, 3]

decoder fail. This stopping set is equivalent to a subgraph of 9 edges inG as shown in Figure 5.

The subgraph in Figure 5 has three length-4 cycles and two length-6 cycles. The small cycles

of length-4 are associated to an erasure pattern with a2× 2 rectangular support which is not a

stopping set (d1 = d2 = 3). Similarly, length-6 cycles are not stopping sets and are associated

to erasure patterns with a2 × 3 rectangular support. We will see in the next section that the

minimum stopping set size isd1d2 = 9, i.e. it is equal to the minimum Hamming distance of

the product code.

March 7, 2016 DRAFT

26

C1C2

C2

C2

C2

C1

C1

C1

5

6

7

8

5

6

7

8

Figure 5: A sub-graph ofG representing the size-9 obvious stopping set. The graphG has

|E| = 144 edges,|V2| = 12 left (row) checknodes, and|V1| = 12 left (column) checknodes.

Only the stopping set edges are drawn.

A subgraph ofGc can be embedded intoG by splitting each super-edge into(n1−k1)×(n2−k1)
edges. The converse is not always true. The subgraph with nine edges in Figure 5 cannot be

compressed into a subgraph ofGc. For the [12, 10, 3]⊗2 product code, a supersymbol inGc

contains four edges. Hence, a necessary condition for a stopping set inG to become a valid

stopping set inGc is to erase edges in groups of4. Knowing that type II and type III stopping

sets are identical when row and column codesC1 andC2 are MDS, Definition (9) leads to the

following corollaries.

Corollary 3: Let CP = C1⊗C2 be a product code with MDS componentsC1 andC2 having

minimum Hamming distanced1 and d2 respectively. Assume that symbols (edges) ofG =

(V1, V2, E) are sent over an erasure channel. A stopping set for the iterative decoder is a subgraph

of G such that all column vertices inV1 have a degree greater than or equal tod1 and all row

vertices inV2 have a degree greater than or equal tod2.

Corollary 4: Let CP = C1⊗C2 be a product code with MDS componentsC1 andC2 having

March 7, 2016 DRAFT

27

minimum Hamming distanced1 and d2 respectively. Assume that supersymbols (super-edges)

of Gc = (V c
1 , V

c
2 , E

c) are sent over an erasure channel. A stopping set for the iterative decoder

is a subgraph ofGc such that all column vertices inV c
1 have a degree greater than or equal to

2 and all row vertices inV2 have a degree greater than or equal to2.

The above corollaries suppose a symbol (or a supersymbol) channel with independent erasures.

WhenG is endowed with an edge coloringφ, we get the same constraint on the validity of a

subgraph embedding fromGc into G. We know from Section III-A thatΦ(Ec → E) is a subset

of Φ(E), i.e. some edge colorings ofG are not edge colorings ofGc. Consequently, on a block-

erasure channel, if all super-edges of the same color are erased, stopping sets inGc are a subset

of those inG. The non-compact graphG has a larger ensemble of stopping sets, with or without

edge coloring. As an example, for the[12, 10, 3]⊗2 product code, the smallest stopping set inGc

has size2× 2 when four super-edges are erased which yields a stopping setof size16 in G.

Example 5:Consider the[9, 6, 4]⊗2
q product code whered1 = d2 = 4 and q > 9. As-

sume that our palette hasM = 3 colors. The non-compact graph admits an ensemble of

|Φ(E)| = 4490186382903298862950669893074864640 edge colorings! The compact graph

has |Φ(Ec)| = 1680 only. In Gc, each color is usedN c/M = 3 times. For a channel erasing

all symbols of the same color, the compact graph has no stopping sets (the2 × 2 rectangular

support cannot be filled by a single color). A compact matrix representation ofGc attaining

double diversity with all symbols of order 1 is given by the trivial matrix

R G B

B R G

G B R

, (23)

where the colorφ(e) = 1 is replaced by the letter ’R’,φ(e) = 2 is replaced by the letter ’G’, and

φ(e) = 3 is replaced by the letter ’B’. The non-compact graph has9×9 edges, each color is used

27 times. Double diversity is lost inG if one of the4× 4, 4× 5, or 5× 5 obvious stopping sets

is covered by a unique color. Clearly,Gc makes the design much easier. This double-diversity

product code has a relatively low coding rate. More challenging product code designs are given

in Section V with higher rates up to the one imposed by the block-fading/block-erasure Singleton

bound.

March 7, 2016 DRAFT

28

D. Enumeration of stopping sets

For a fixed non-zero integerw, the number of stopping sets of sizew, denoted asτw, falls

in two different cases. Firstly,τw = 0 if w is small with respect to the minimum Hamming

distance of the product code. Also,τw = 0 for special erasure patterns obtained by adding a small

neighborhood to a smaller obvious set. Secondly, for both obvious and non-obvious stopping

sets,τw is non-zero and the weightw may correspond to many rectangular supports of different

height and width. The code performance over erasure channels is dominated by not-so-large

stopping sets. Non-empty stopping sets of the second case satisfy the general property stated in

the following lemma.

Lemma 1:Given a weightw ≤ (d1 + 1)(d2 + 1) and assumingτw > 0, then∃S0 such that

∀S with |S| = w, we have‖R(S)‖ ≤ ‖R(S0)‖ = (ℓ01, ℓ
0
2), where

ℓ01 ≤ d1 + 1 +

⌊

d1 + 1

d2

⌋

, (24)

ℓ02 ≤ d2 + 1 +

⌊

d2 + 1

d1

⌋

. (25)

Proof: Let w be equal to(d1+1)(d2+1). In order to establish an upper bound of the height

ℓ1, we build the highest possible rectangular support for thisweightw. Assume the rectangle is

ℓ01× ℓ2, each of its rows should have at leastd2 erasures to make the type-II decoder fail. Then

d2ℓ
0
1 ≤ (d1 + 1)(d2 + 1) which becomes the upper bound given by (24). Now, ifw is less than

(d1 + 1)(d2 + 1), the rectangular support of the stopping set can only shrinkin size. The upper

bound of the width in (25) is proven in a similar way.

The above lemma states the existence of a maximal rectangular support for a given stopping set

size. The example given below cites stopping sets with a unique-size rectangular support and

stopping sets with multiple-size rectangular supports.

Example 6:Consider aC1⊗C2 product code whereC1 andC2 are both MDS with minimum

Hamming distance3. The stopping set given by (19) cannot have a large rectangular support.

In general, all stopping sets of sized1d2 have a rectangular support of fixed dimensionsd1×d2.

Now, let w = 12. As indicated in Example 4, stopping sets of size12 may be included in

rectangular supports of dimensions3× 4, 4× 3, and4× 4. Forw = 12, it is impossible to build

a 4× 5 rectangular support (reductio ad absurdum) makingℓ01 = 4 and ℓ02 = 4. A similar proof

by contradiction yieldsℓ01 = 5 and ℓ02 = 5 for w = 15.

March 7, 2016 DRAFT

29

The next lemma gives an obvious upper bound of the size ofR(S) by stating a simple limit on

the number of zeros (non-erased positions) insideR(S).
Lemma 2:Let R(S) be theℓ1 × ℓ2 rectangular support of a stopping setS of sizew. Let

β = ℓ1ℓ2−w be the number of zero positions, or equivalentlyβ is the size of the setR(S) \S.

Then

β ≤ min((ℓ1 − d1)ℓ2, ℓ1(ℓ2 − d2)). (26)

Before stating and proving Theorem 2, we announce two results in Lemma 3 and Lemma 4 on

bipartite graphs enumeration. We saw in the previous section that stopping sets are sub-graphs

of G andGc, see Corollary 3 and Corollary 4. In other words, the enumeration of stopping sets

represented as matrices of a given distribution of row weight and column weight is equivalent

to enumerating bipartite graphs where left vertices stand for rows and right vertices stand for

columns. An edge should be drawn between a left vertex and a right vertex according to some

rule, e.g. the rule used in the previous section draws an edgein the bipartite graph for each1

in the stopping set matrix. Stopping sets enumeration in thenext theorem is based onβ, the

number of zeros or the number of non-erased positions. Hence, we shall use the opposite rule.

A stopping set of weightw and having aℓ1 × ℓ2 rectangular support shall be represented by a

bipartite graph withℓ1 left vertices,ℓ2 right vertices, and a total ofβ = ℓ1ℓ2 −w edges. Notice

that these bipartite graphs have no length-2 cycles becauseparallel edges are forbidden.

For finite ℓ1 and ℓ2, given the left degree distribution and the right degree distribution, there

exists no exact formula for counting bipartite graphs. The best recent results are asymptotic in

the graph size for sparse and dense matrices [14] [16] and cannot be applied in our enumeration.

The following two lemmas solve two cases encountered in Theorem 2 forw = d(d + 2) and

w = (d+1)(d+1) both inside a(d+2)× (d+2) rectangular support. The definition of special

partitions is required before introducing the two lemmas.

Definition 10: Let ℓ ≥ 2 be an integer. Aspecial partitionof length j of ℓ is a partition

defined by a tuple(ℓ1, ℓ2, . . . , ℓj) such that its integer components satisfy:

• ℓ1 ≤ ℓ2 ≤ . . . ≤ ℓj .

•
∑j

i=1 ℓi = ℓ.

• ℓi ≥ 2, ∀j.
• 1 ≤ j ≤ ℓ/2.

March 7, 2016 DRAFT

30

A special partition shall be denoted by((ℓ1, . . . , ℓj)).

Definition 11: The group numberof a special partition, denoted byκ = κ(ℓ1, ℓ2, . . . , ℓj), is

the number of different integersℓj , for j = 1 . . . ℓ/2. In other words, following set theory, the

set including thej integersℓi’s is {ℓi1, ℓi2 , . . . , ℓiκ}. The group number divides the partition of

ℓ into κ groups where themth group includesℓim repeatedgm times, and
∑κ

m=1 gm = j.

Lemma 3:Consider bipartite graphs defined as follows:ℓ left vertices,ℓ right vertices, all

vertices have degree 2, and no length-2 cycles are allowed. For ℓ ≥ 2, the total numberxℓ of

such bipartite graphs is given by the expression

xℓ =
∑

((ℓ1,...,ℓj))

1
∏κ(ℓ1,...,ℓj)

m=1 gm!

j
∏

k=1

∏ℓk−1
u=0 (ℓ−

∑k−1
i=1 ℓi − u)2

2ℓk
(27)

where
∑

((ℓ1,...,ℓj))
is a summation over all special partitions of the integerℓ, κ(ℓ1, . . . , ℓj) is the

group number of the special partition((ℓ1, . . . , ℓj)), andgm is the size of themth group.

Proof: Firstly, let us find the number of Hamiltonian bipartite graphs havingℓk left vertices,

ℓk right vertices, all vertices of degree2, and no length-2 cycles allowed. There are(ℓk!)2 ways

to choose the order of all left and right vertices. If the Hamiltonian cycle is represented by

a sequence of2ℓk integers corresponding to the2ℓk vertices of the bipartite graph, then there

are2ℓk ways to shift the Hamiltonian cycle without changing the graph. Hence, the number of

Hamiltonian bipartite graphs of degree2 is

(ℓk!)
2

2ℓk
. (28)

Secondly, given the half-sizeℓ of the bipartite graph stated in this lemma, all special partitions of

ℓ are considered. For a fixed special partition((ℓ1, ℓ2, . . . , ℓj)) the bipartite graph is decomposed

into j Hamiltonian graphs each of lengthℓk, k = 1 . . . j. The number of choices for selecting

the vertices of thej Hamiltonian graphs is

j
∏

k=1

(

ℓ−
∑k−1

i=1 ℓi
ℓk

)2

. (29)

The above number should be multiplied by the number of Hamiltonian graphs for each selection

of vertices to get
j
∏

k=1

(

ℓ−
∑k−1

i=1 ℓi
ℓk

)2
(ℓk!)

2

2ℓk
. (30)

March 7, 2016 DRAFT

31

But for a given special partition, each group of sizegm is creatinggm! identical bipartite graphs.

Hence, the final result for a fixed partition becomes

1
∏κ(ℓ1,...,ℓj)

m=1 gm!

j
∏

k=1

(

ℓ−
∑k−1

i=1 ℓi
ℓk

)2
(ℓk!)

2

2ℓk
. (31)

Then,xℓ is obtained by summing (31) over all special partitions of the integerℓ to yield

xℓ =
∑

((ℓ1,...,ℓj))

1
∏κ(ℓ1,...,ℓj)

m=1 gm!

j
∏

k=1

(

ℓ−
∑k−1

i=1 ℓi
ℓk

)2
(ℓk!)

2

2ℓk
. (32)

The simplification of the factors(ℓk!)2 yields the expression stated by this lemma.

Lemma 4:Consider bipartite graphs defined as follows:ℓ left vertices,ℓ right vertices, all left

vertices have degree2 except one vertex of degree1, all right vertices have degree2 except one

vertex of degree1, and finally no length-2 cycles are allowed. Forℓ ≥ 3, the total numberyℓ of

such bipartite graphs is

yℓ = ℓ2 ·
(

(2ℓ− 1) · xℓ−1 + (ℓ− 1)2 · xℓ−2

)

, (33)

wherexℓ is determined via Lemma 3 andx1 = 0.

Proof: Let the first ℓ − 1 left vertices and the firstℓ − 1 right vertices be of degree2.

There exists two ways to complete this bipartite graph such that the two remaining vertices have

degree1.

• Each of thexℓ−1 sub-graphs has2(ℓ−1) edges. Break one edge into two edges and connect

them to the remaining left and right vertices, the number of such graphs is2(ℓ − 1)xℓ−1.

Another set ofxℓ−1 bipartite graphs is built by directly connecting the last two vertices

together without breaking any edge in the upper sub-graph. Now, we find2(ℓ − 1)xℓ−1 +

xℓ−1 = (2ℓ− 1)xℓ−1 bipartite graphs.

• Fix a vertex among theℓ − 1 upper left vertices and fix one among theℓ − 1 upper right

vertices ((ℓ − 1)2 choices). Consider a length-2 cycle including these two vertices. One

edge of this cycle can be broken into two edges and then attached to the degree-1 vertices

at the bottom. The remainingℓ − 2 left and right vertices may involvexℓ−2 sub-graphs.

Consequently, the number of graphs in this second case is(ℓ− 1)2xℓ−2.

The total number of bipartite graphs enumerated in the abovecases is

(2ℓ− 1)xℓ−1 + (ℓ− 1)2xℓ−2. (34)

March 7, 2016 DRAFT

32

Finally, the degree-1 left vertex hasℓ choices and so has the degree-1 right vertex. The number

of graphs in (34) should be multiplied byℓ2.

We make no claims about a possible generalization of Lemma 3 and Lemma 4 to finite bipartite

graphs with higher vertex degrees. As mentioned before, forgeneral degree distributions, results

on enumeration of asymptotic bipartite graphs were published by Brendan McKay and his co-

authors [14] [16]. Table I shows the number of special partitions for ℓ = 2 . . . 32. The number

of standard partitions (the partition function) can be found by a recursion resulting from the

pentagonal number theorem [15]. To our knowledge, there exists no such recursion for special

partitions. The number of bipartite graphs under the assumptions of Lemma 3 and Lemma 4 is

found in Table II for a graph half-size up to8. Finally, we are ready to state and prove the first

theorem on stopping sets enumeration.

1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 21, 24, 34, 41, 55, 66, 88, 105, 137,

165, 210, 253, 320, 383, 478, 574, 708, 847, 1039, 1238, 1507

Table I: Sequence of the number of special partitions of the integerℓ, for ℓ = 2 . . . 32. Special

partitions are described in Definition 10. The sequence for standard partitions can be found

in [57].

ℓ 2 3 4 5 6 7 8

xℓ 1 6 90 2040 67950 3110940 187530840

yℓ 0 45 816 22650 888840 46882710 3199593600

Table II: Number of bipartite graphs not including length-2cycles from Lemma 3 and Lemma 4.

In the sequel, the open interval between two real numbersa andb will be denoted]a, b[,

]a, b[= {x ∈ R : a < x < b}.

Theorem 2:Let CP be a product code[n1, k1, d1]q ⊗ [n2, k2, d2]q built from row and column

MDS component codes, where the alphabet sizeq is greater thanmax(n1, n2). Let τw be the

number of stopping sets of sizew. We write τw = τa + τ b, whereτa counts obvious stopping

sets andτ b counts non-obvious stopping sets. Under (type-II) iterative algebraic decoding and

for d1 = d2 = d ≥ 2, stopping sets are characterized as follows:

March 7, 2016 DRAFT

33

• For w < d2,

τa = τ b = 0.

• For w = d2,

τa =

(

n1

d

)(

n2

d

)

, τ b = 0.

• For w ∈]d2, d(d+ 1)[,

τa = τ b = 0.

• For w = d(d+ 1),

τa =

(

n1

d

)(

n2

d+ 1

)

+

(

n1

d+ 1

)(

n2

d

)

,

τ b = (d+ 1)!

(

n1

d+ 1

)(

n2

d+ 1

)

.

• For w ∈]d(d+ 1), d(d+ 2)[.

Let us writew = d2 + d+ λ, whereλ ∈ [1, d− 1].

τa = 0,

τ b = (d+ 1− λ)!

(

d+ 1

λ

)2(
n1

d+ 1

)(

n2

d+ 1

)

.

• For w = d(d+ 2),

τa =

(

n1

d

)(

n2

d+ 2

)

+

(

n1

d+ 2

)(

n2

d

)

,

τ b = (d+ 1)2
(

n1

d+ 1

)(

n2

d+ 1

)

+
∑

2r0+r1=d

(

d+ 1

r0

)(

d+ 1− r0
r1

)

(d+ 2)!

2r2

[(

n1

d+ 1

)(

n2

d+ 2

)

+

(

n1

d+ 2

)(

n2

d+ 1

)]

+ xd+2

(

n1

d+ 2

)(

n2

d+ 2

)

,

where
∑

2r0+r1=d is a summation overr0 and r1, both being non-negative and satisfying

2r0 + r1 = d, r2 = d+ 1− r0 − r1, andxd+2 is determined from Lemma 3.

March 7, 2016 DRAFT

34

• For w = (d+ 1)(d+ 1)

τa =

(

n1

d+ 1

)(

n2

d+ 1

)

,

τ b =
∑

2r0+r1=d+1

(

d+ 1

r0

)(

d+ 1− r0
r1

)

(d+ 2)!

2r0

[(

n1

d+ 1

)(

n2

d+ 2

)

+

(

n1

d+ 2

)(

n2

d+ 1

)]

+ yd+2

(

n1

d+ 2

)(

n2

d+ 2

)

,

whereyd+2 is determined from Lemma 4.

Proof: For w satisfyingd2 ≤ w ≤ (d + 1)2, the admissible size ofR(S) varies fromd2

up to (d + 2)2 as given by Lemma 1. All cases stated in the theorem shall use the following

sequence ofR(S) listed in the order of increasing sizeℓ1ℓ2: d2, d(d + 1), d(d + 2), (d + 1)2,

(d + 1)(d + 2), and (d + 2)2. For these rectangular supports, the stopping set weight also has

six cases to be considered, wherew takes the following values (or ranges) in increasing order:

w = d2, w ∈]d2, d(d+1)[, w = d(d+1), w ∈]d(d+1), d(d+2)[, w = d(d+2), andw = (d+1)2.

• The casew < d2.

Consider a stopping set of sizew < d2. Its rectangular supportR(S) has sizeℓ1ℓ2 ≥ w. All

columns should have a weight greater than or equal tod, we find thatw ≥ dℓ2. Similarly,

all rows must have a weight greater than or equal tod, thenw ≥ dℓ1. By combining the two

inequalities, we findw2 ≥ d2ℓ1ℓ2 ≥ d2w, so we getw ≥ d2 which is a contradiction unless

these stopping sets do not exist, i.e.τw = 0 for w < d2 under type II iterative decoding.

• The casew = d2.

We use similar inequalities as in the previous case. We havew = d2 ≥ dℓ2 because column

decoding must fail. We obtainℓ2 ≤ d. In a symmetric way,w = d2 ≥ dℓ1 because row

decoding must fail. We obtainℓ1 ≤ d. But R(S) cannot be smaller thanS, i.e. we get

ℓ1 = d and ℓ2 = d. We just proved that all stopping set of sized2 are obvious. Their

number is given by choosingd rows out ofn1 andd columns out ofn2.

• The cased2 < w < d(d+ 1).

Given thatℓ1ℓ2 ≥ w > d2, we getℓ1 ≥ d andℓ2 ≥ d since the supportR(S) is larger than

a d× d rectangle, the latter being the smallest stopping set as proven in the previous case.

Takeℓ1 = d, thenℓ2 ≥ d+1 becausew > d2. The weight of each column must be at least

March 7, 2016 DRAFT

35

d giving usw ≥ dℓ2 ≥ d(d + 1), which is a contradiction unlessτw = 0. For ℓ1 > d, the

same arguments hold.

• The casew = d(d+ 1).

– The smallestR(S) is d × (d + 1) or (d + 1) × d. According to Lemma 2, we have

β = 0. All these stopping sets are obvious. Their number is
(

n1

d

)(

n2

d+ 1

)

+

(

n1

d+ 1

)(

n2

d

)

.

– R(S) has sized(d+ 2). Each column must have at leastd erasures. ThenS can only

be obvious with weightd(d+ 2) which contradictsw = d(d+ 1). Hence, this size of

rectangular support yields no stopping sets,τw = 0 in this sub-case.

– R(S) has size(d+1)(d+1). Let β be the number of zeros inR(S), β = (d+1)2−w =

d+1. All these stopping sets are found by considering the(d+1)! permutations where

a unique0 is placed per row and per column. Then, the binomial coefficient must be

multiplied by (d+1)! which yields theτ b announced in the theorem forw = d(d+1).

– R(S) has size(d+1)(d+2). The number of zeros isβ = (d+1)(d+2)−w = 2d+2.

Then β > d + 2 = (ℓ1 − d)ℓ2 which contradicts Lemma 2. We getτw = 0 in this

sub-case. The same arguments are valid for larger rectangles.

• The cased(d+ 1) < w < d(d+ 2).

Let us writew = d2 + d + λ, whereλ ∈ [1, d − 1]. We consider below three sub-cases

corresponding to admissible sizes ofR(S).

– The smallestR(S) is d× (d+2) or (d+2)×d. Take the rectangle of sized× (d+2).

Each column must have at leastd erasures. ThenS can only be obvious with weight

d(d+2) which is outside the range forw in this case. Hence, this size of the rectangular

support yields no stopping sets,τw = 0 in this sub-case.

– R(S) has size(d+1)× (d+1). The number of zeros isβ = (d+1)2−w = d+1−λ,

whereβ ∈ [2, d].

Put the zeros inR(S) not exceeding one per column and not exceeding one per row.

The enumeration of these stopping sets is given by selectingthe β rows and theβ

columns, then filling allβ×β permutation matrices in the zero positions. Hence, given

March 7, 2016 DRAFT

36

that
(

d+1
β

)

=
(

d+1
λ

)

, we get for this sub-case

τw = β!

(

d+ 1

λ

)2(
n1

d+ 1

)(

n2

d+ 1

)

.

All corresponding stopping sets are not obvious (the rank isgreater than 1).

– R(S) has size(d + 1)(d + 2). The number of zeros isβ = (d + 1)(d + 2) − w =

2d+2−λ ∈ [d+3, 2d+1]. Thenβ > d+2 = (ℓ1− d)ℓ2 which contradicts Lemma 2.

In a similar way, it can be proven thatτw = 0 in the sub-caseR(S) with size(d+2)2.

• The casew = d(d+ 2).

The admissible rectangular support can have four sizes:d(d+2), (d+1)(d+1), (d+1)(d+2),

and (d+ 2)(d+ 2).

– R(S) has sized(d + 2). According to Lemma 2, we haveβ = 0. All these stopping

sets are obvious. Their number is
(

n1

d

)(

n2

d+ 2

)

+

(

n1

d+ 2

)(

n2

d

)

.

– R(S) has size(d+ 1)(d+ 1). We haveβ = 1. The number of these stopping sets is

(d+ 1)2
(

n1

d+ 1

)(

n2

d+ 1

)

.

– R(S) has size(d+1)(d+2). The number of zeros isβ = d+2. Each column must have

a unique zero and each row cannot have more than two zeros. Letri be the number

of rows containingi zeros,i = 0, 1, 2. Thenr0 + r1 + r2 = d + 1 andβ = 2r2 + r1,

so the constraint is2r0 + r1 = d. Given a stopping set satisfying this constraint, a

permutation can be applied on the(d+ 2) columns to create another stopping set. But

a row with two zeros creates two identical columns, so the number of stopping sets

should be divided by2r2 , wherer2 = d+ 1− r0 − r1. The number of stopping sets in

this sub-case is

∑

2r0+r1=d

(

d+ 1

r0

)(

d+ 1− r0
r1

)

(d+ 2)!

2r2

[(

n1

d+ 1

)(

n2

d+ 2

)

+

(

n1

d+ 2

)(

n2

d+ 1

)]

.

– R(S) has size(d + 2)(d + 2). We haveβ = 2d + 4 reaching the upper bound in

Lemma 2.R(S) must have two zeros in each column and two zeros in each row. A

first group of these stopping sets can be enumerated by buildingR(S) with two zero

length-(d + 2) diagonals (to be folded if not the main diagonal) and then applying

March 7, 2016 DRAFT

37

all row and column permutations. This generates all Hamiltonian bipartite graphs with

d+ 2 left vertices andd+ 2 right vertices, their number is

((d+ 2)!)2

2(d+ 2)
,

as known from Lemma 3. In fact, the full exact enumeration of stopping sets in this

case is already made by Lemma 3 and its proof, just takeℓ = d + 2. Then, in this

sub-case, the number of stopping sets is given by

xd+2

(

n1

d+ 2

)(

n2

d+ 2

)

.

• The casew = (d+ 1)(d+ 1).

The admissible rectangular support can have three possiblesizes(d+1)(d+1), (d+1)(d+2),

and (d+ 2)(d+ 2).

– R(S) has size(d + 1)(d + 1). We haveβ = 0, i.e.R(S) = S. The number of these

obvious stopping sets is
(

n1

d+ 1

)(

n2

d+ 1

)

.

– R(S) has size(d+ 1)(d+ 2). We haveβ = d+ 1. A column ofR(S) should contain

at most one zero and a row should contain at most two zeros. Letri be the number

of rows containingi zeros,i = 0, 1, 2. Thenr0 + r1 + r2 = d + 1 andβ = 2r2 + r1,

so the constraint is2r0 + r1 = d+ 1. Given a stopping set satisfying this constraint, a

permutation can be applied on the(d+2) columns to create another stopping set. The

number of stopping sets in this sub-case is

∑

2r0+r1=d+1

(

d+ 1

r0

)(

d+ 1− r0
r1

)

(d+ 2)!

2r2

[(

n1

d+ 1

)(

n2

d+ 2

)

+

(

n1

d+ 2

)(

n2

d+ 1

)]

,

wherer2 = r0.

– R(S) has size(d+2)(d+2). β = 2d+3 which is less than the upper bound in Lemma 2.

These stopping sets are equivalent to bipartite graphs considered in Lemma 4. Then,

in this sub-case, the number of stopping sets is given by

yd+2

(

n1

d+ 2

)(

n2

d+ 2

)

.

March 7, 2016 DRAFT

38

From the proof of Theorem 2, in the casew = d(d + 2) with a (d + 1) × (d + 2) rectangular

support, the enumeration of stopping sets is directly converted into enumeration of trivial bipartite

graphs defined by: a-ℓ left vertices and a left degree0, 1, or 2, and b-ℓ + 1 right vertices all

of degree1. Similarly, the proof for the casew = d(d+ 2) with a (d+ 1)× (d+ 2) rectangular

support is directly related to the enumeration of bipartitegraphs with one edge less.

Theorem 3:Let CP be a product code[n1, k1, d1]q ⊗ [n2, k2, d2]q built from row and column

MDS components, where the alphabet sizeq is greater thanmax(n1, n2). Let τw be the number

of stopping sets of Hamming weightw. We write τw = τa + τ b, where τa counts obvious

stopping sets andτ b counts non-obvious stopping sets. It is assumed that2 < d1 < d2 < 3d1−1

or 2 = d1 < d2 < 4d1 − 1. Under iterative algebraic decoding, stopping sets are characterized

as follows.

• For w < d1d2,

τa = τ b = 0.

• For w = d1d2,

τa =

(

n1

d1

)(

n2

d2

)

, τ b = 0.

• For w ∈]d1d2, d1(d2 + 1)[,

τa = τ b = 0.

• For w = d1(d2 + 1),

τa =

(

n1

d1

)(

n2

d2 + 1

)

, τ b = 0.

For larger weights, the enumeration of stopping sets distinguishes three cases: A, B, and C.

Case A: d2 < 2d1.

• For w ∈]d1(d2 + 1), (d1 + 1)d2[.

τa = τ b = 0.

• For w = (d1 + 1)d2.

τa =

(

n1

d1 + 1

)(

n2

d2

)

,

τ b = (d1 + 1)!

(

d2 + 1

d2 − d1

)(

n1

d1 + 1

)(

n2

d2 + 1

)

.

March 7, 2016 DRAFT

39

• For w ∈](d1 + 1)d2, d1(d2 + 2)[, write w = (d1 + 1)d2 + λ.

τ b = 1{d2<2d1−1} × (d1 + 1− λ)!

(

d1 + 1

λ

)(

d2 + 1

d1 + 1− λ

)(

n1

d1 + 1

)(

n2

d2 + 1

)

.

• For w = d1(d2 + 2).

τa =

(

n1

d1

)(

n2

d2 + 2

)

,

τ b = (d2 − d1 + 1)!

(

d1 + 1

d2 − d1 + 1

)(

d2 + 1

d2 − d1 + 1

)(

n1

d1 + 1

)(

n2

d2 + 1

)

+
∑

2r0+r1=2d1−d2

(

d1 + 1

r0

)(

d1 + 1− r0
r1

)

(d2 + 2)!

2r0+d2−d1+1

(

n1

d1 + 1

)(

n2

d2 + 2

)

.

• For w ∈]d1(d2 + 2), (d1 + 1)(d2 + 1)[, write w = d1(d2 + 2) + λ.

τ b = (d2 − d1 + 1− λ)!

(

d1 + 1

2d1 − d2 + λ

)(

d2 + 1

d1 + λ

)(

n1

d1 + 1

)(

n2

d2 + 1

)

+
∑

2r0+r1=2d1−d2+λ

(

d1 + 1

r0

)(

d1 + 1− r0
r1

)

(d2 + 2)!

2r2λ!

(

n1

d1 + 1

)(

n2

d2 + 2

)

,

wherer2 = r0 + λ− d1 − 1.

• For w = (d1 + 1)(d2 + 1).

τa =

(

n1

d1 + 1

)(

n2

d2 + 1

)

+ 1{d2=2d1−1}

(

n1

d1

)(

n2

d2 + 3

)

+ 1{d2=d1+1}

(

n1

d1 + 2

)(

n2

d2

)

,

τ b =
∑

2r0+r1=d1+1

(

d1 + 1

r0

)(

d1 + 1− r0
r1

)

(d2 + 2)!

2r0(d2 − d1 + 1)!

(

n1

d1 + 1

)(

n2

d2 + 2

)

+ 1{d2=d1+1} ×
∑

2r0+r1=d2+1

(

d2 + 1

r0

)(

d2 + 1− r0
r1

)

(d1 + 2)!

2r0

(

n1

d1 + 2

)(

n2

d2 + 1

)

+ 1{d2=2d1−1} ×
∑

3r0+2r1+r2=d1+1

(

d1 + 1

r0

)(

d1 + 1− r0
r1

)(

d1 + 1− r0 − r1
r2

)

×

(d2 + 3)!

2r26r3

(

n1

d1 + 1

)(

n2

d2 + 3

)

+ 1{d2=d1+1}

(

(d2 + 2)xd1+2 +
(d2 + 2)yd1+2

2

)(

n1

d1 + 2

)(

n2

d2 + 2

)

+ 1{d1=2,d2=3} × 1860

(

n1

d1 + 2

)(

n2

d2 + 3

)

.

March 7, 2016 DRAFT

40

wherer3 = d1 + 1− r0 − r1 − r2, andxd1+2 andyd1+2 are determined from Lemma 3 and

Lemma 4 respectively.

Case B: d2 = 2d1.

• For w ∈]d1(d2 + 1), (d1 + 1)d2[.

τa = τ b = 0.

• For w = (d1 + 1)d2 = d1(d2 + 2).

τa =

(

n1

d1 + 1

)(

n2

d2

)

+

(

n1

d1

)(

n2

d2 + 2

)

,

τ b = (d1 + 1)!

(

d2 + 1

d1 + 1

)(

n1

d1 + 1

)(

n2

d2 + 1

)

+
(d2 + 2)!

2d1+1

(

n1

d1 + 1

)(

n2

d2 + 2

)

.

• For w ∈](d1 + 1)d2, d1(d2 + 3)[, write w = (d1 + 1)d2 + λ.

τ b = (d1 + 1− λ)!

(

d1 + 1

λ

)(

d2 + 1

d1 + λ

)(

n1

d1 + 1

)(

n2

d2 + 1

)

+
∑

2r0+r1=λ

(

d1 + 1

r0

)(

d1 + 1− r0
r1

)

(d2 + 2)!

2r2λ!

(

n1

d1 + 1

)(

n2

d2 + 2

)

,

wherer2 = d1 + 1− r0 − r1 = d1 + 1 + r0 − λ.

• For w = d1(d2 + 3).

τa =

(

n1

d1

)(

n2

d2 + 3

)

,

τ b = (d1 + 1)(d2 + 1)

(

n1

d1 + 1

)(

n2

d2 + 1

)

+
∑

2r0+r1=d1

(

d1 + 1

r0

)(

d1 + 1− r0
r1

)

(d2 + 2)!

2r2d1!

(

n1

d1 + 1

)(

n2

d2 + 2

)

+
∑

3r0+2r1+r2=d1

(

d1 + 1

r0

)(

d1 + 1− r0
r1

)(

d1 + 1− r0 − r1
r2

)

(d2 + 3)!

2r26r3

(

n1

d1 + 1

)(

n2

d2 + 3

)

,

wherer3 = d1 + 1− r0 − r1 − r2 = 2r0 + r1 + 1.

March 7, 2016 DRAFT

41

• For w = (d1 + 1)(d2 + 1).

τa =

(

n1

d1 + 1

)(

n2

d2 + 1

)

,

τ b =
∑

2r0+r1=d1+1

(

d1 + 1

r0

)(

d1 + 1− r0
r1

)

(d2 + 2)!

2r0(d1 + 1)!

(

n1

d1 + 1

)(

n2

d2 + 2

)

+
∑

3r0+2r1+r2=d1+1

(

d1 + 1

r0

)(

d1 + 1− r0
r1

)(

d1 + 1− r0 − r1
r2

)

(d2 + 3)!

2r262r0+r1

(

n1

d1 + 1

)(

n2

d2 + 3

)

.

Case C: 4 < 2d1 < d2 < 3d1 − 1

or 4 = 2d1 < d2 < 4d1 − 1.

• For w ∈]d1(d2 + 1), d1(d2 + 2)[.

τa = τ b = 0.

• For w = d1(d2 + 2).

τa =

(

n1

d1

)(

n2

d2 + 2

)

.

• For w ∈]d1(d2 + 2), (d1 + 1)d2[.

τa = τ b = 0.

• For w = (d1 + 1)d2.

τa =

(

n1

d1 + 1

)(

n2

d2

)

,

τ b = (d1 + 1)!

(

d2 + 1

d1 + 1

)(

n1

d1 + 1

)(

n2

d2 + 1

)

+
(d2 + 2)!

2d1+1(d2 − 2d1)!

(

n1

d1 + 1

)(

n2

d2 + 2

)

+ 1{d1=2,d2=6} × 1680

(

n1

d1 + 1

)(

n2

d2 + 3

)

.

March 7, 2016 DRAFT

42

• For w ∈](d1 + 1)d2, d1(d2 + 3)[, write w = (d1 + 1)d2 + λ.

τ b = 1{d1>2} ×
[

(d1 + 1− λ)!

(

d2 + 1

d1 + 1− λ

)(

d1 + 1

λ

)(

n1

d1 + 1

)(

n2

d2 + 1

)

+
∑

2r0+r1=λ

(

d1 + 1

r0

)(

d1 + 1− r0
r1

)

(d2 + 2)!

2r2(d2 − 2d1 + λ)!

(

n1

d1 + 1

)(

n2

d2 + 2

)

]

.

wherer2 = d1 + 1 + r0 − λ.

• For w = d1(d2 + 3).

τa =

(

n1

d1

)(

n2

d2 + 3

)

,

τ b = 1{d1=2,d2=6}
⋃
{d1>2} ×

[

(d2 − 2d1 + 1)!

(

d1 + 1

3d1 − d2

)(

d2 + 1

2d1

)(

n1

d1 + 1

)(

n2

d2 + 1

)

+
∑

2r0+r1=3d1−d2

(

d1 + 1

r0

)(

d1 + 1− r0
r1

)

(d2 + 2)!

2r2d1!

(

n1

d1 + 1

)(

n2

d2 + 2

)

+
∑

3r0+2r1+r2=3d1−d2

(

d1 + 1

r0

)(

d1 + 1− r0
r1

)(

d1 + 1− r0 − r1
r2

)

(d2 + 3)!

2r26r3

(

n1

d1 + 1

)(

n2

d2 + 3

)

]

,

wherer2 = d2 − 2d1 + 1 + r0 andr3 = d1 + 1− r0 − r1 − r2.

• For w = d1(d2 + 4).

τa = 1{d1=2} ×
(

n1

d1

)(

n2

d2 + 4

)

.

• For w ∈]d1(d2 + 3), (d1 + 1)(d2 + 1)[, write w = d1(d2 + 3) + λ.

τ b = (d2 − 2d1 + 1− λ)!

(

d1 + 1

3d1 − d2 + λ

)(

d2 + 1

2d1 + λ

)(

n1

d1 + 1

)(

n2

d2 + 1

)

+
∑

2r0+r1=3d1−d2+λ

(

d1 + 1

r0

)(

d1 + 1− r0
r1

)

(d2 + 2)!

2r2(d1 + λ)!

(

n1

d1 + 1

)(

n2

d2 + 2

)

+
∑

3r0+2r1+r2=3d1−d2+λ

(

d1 + 1

r0

)(

d1 + 1− r0
r1

)(

d1 + 1− r0 − r1
r2

)

(d2 + 3)!

2r26r3λ!

(

n1

d1 + 1

)(

n2

d2 + 3

)

+ 1{d1=2,d2=6} × 22050

(

n1

d1 + 1

)(

n2

d2 + 4

)

,

wherer2 = d1 + 1− r0 − r1 andr3 = d1 + 1− r0 − r1 − r2.

March 7, 2016 DRAFT

43

• For w = (d1 + 1)(d2 + 1).

τa =

(

n1

d1 + 1

)(

n2

d2 + 1

)

,

τ b = (d1 + 1)!

(

d2 + 2

d1 + 1

)(

n1

d1 + 1

)(

n2

d2 + 2

)

+
∑

3r0+2r1+r2=d1+1

(

d1 + 1

r0

)(

d1 + 1− r0
r1

)(

d1 + 1− r0 − r1
r2

)

(d2 + 3)!

2r26r3(d2 − 2d1 + 1)!
×

(

n1

d1 + 1

)(

n2

d2 + 3

)

+ 1{d1=2,d2=5} × 11130

(

n1

d1 + 1

)(

n2

d2 + 4

)

+ 1{d1=2,d2=6} × 111300

(

n1

d1 + 1

)(

n2

d2 + 4

)

,

wherer3 = d1 + 1− r0 − r1 − r2.

The detailed proof of Theorem 3 is found in Appendix A. From a stopping set perspective, both

theorems 2&3 match Tolhuizen’s results on weight distribution for a weight less thand1d2 + d2

[62]. Our theorems found stopping sets that are only obviousfor w in the range[d1d2, d1d2+d2[.

For any weightw, there exists an equivalence in support between codewords and obvious stopping

sets (thanks to Proposition 3). Trivial lower and upper bounds of the number of obvious weight-w

product code codewords are

(q − 1)τw ≤ Aw ≤ 1{τw 6=0}Aw.

For non-obvious stopping sets and non-obvious codewords, establishing a clear relationship

is still an open problem. This is directly related to solvingthe weight enumeration beyond

d1d2+max(d1, d2). In the special cased1 = d2 = d, Sendrier gave upper bounds of the number

of erasure patterns for a weight up tod2 + 2d− 1 [56].

V. EDGE COLORING ALGORITHM UNDER CONSTRAINTS

In section III, we described graph representations of product codes and we introduced the root

orderρ(e) of an edge with respect to its colorφ(e). Our objective is to find a coloringφ such

that the maximum diversity order is reached under block erasures. The notion of root order in

March 7, 2016 DRAFT

44

Definition (7) is for double diversity (L = 2) because it indirectly assumes that all symbols of

one color out ofM can be erased by the channel. Given the Singleton bound tradeoff stated in

(7), double diversity is sufficient in distributed storage applications where the required coding

rate should be sufficiently high. Definition (7) may be generalized to take into account two or

more erased colors, e.g. see Figure 11 in [13] forL = 3 with M = 3 colors where an information

symbol is protected by multiple root checknodes. In this paper, we restrict both Definition (7)

and the design in this section to a double-diversity productcode. This double diversity on a

block-erasure channel is achieved if all stopping sets, as defined and counted in the previous

section, can be colored in a way such that at least two distinct colors are found within the

symbols of a stopping set (valid for bothG andGc). This task is intractable. Imagine an edge

coloring φ designed in a way to guarantee that all weight-w stopping sets include at least two

colors. This task is already very hard (or almost impossible) for a fixedw. There is no coloring

design tool for non-trivial product codes to ensure that allstopping sets of all weights incorporate

at least two distinct colors.

A. Hand-made edge coloring and its limitations

The aim of this section is to give more insight on designing edge coloring, before introducing

the differential evolution algorithm.

The compact graphGc makes the design much simpler, as we saw in Section IV-C. The

number of super-edges with the same color isN c/M . We also know from (11)-(13) that the

size, height, and width ofGc are directly related to the component and total coding rates.

Lemma 5:Let CP = C1 ⊗ C2 be a product code with a column componentC1[n1, k1]q and

a row componentC2[n2, k2]q whose coding rates areR1 = k1/n1 andR2 = k2/n2 respectively.

Assume thatni− ki dividesni, for i = 1, 2, and assume thatM dividesN c. Gc admits an edge

coloring φ such thatρmax(φ) = 1 if the coding rates satisfy

min(R1, R2) ≤ 1− 1

M
. (35)

Proof: Consider the|V c
1 | × |V c

2 | matrix representation ofGc. A sufficient condition to get

ρmax(φ) = 1 is to assign theN c/M edges having the same color to a single row or a single

column. The sufficient condition forρmax(φ) = 1 is expressed asN c/M ≤ max(n1/(n1 −

March 7, 2016 DRAFT

45

k1), n2/(n2− k2)), themax let us select the longest item among a row or a column. Recall also

that |V c
i | = ni/(ni − ki). Using (2), the sufficient condition becomesn1n2 ≤M ·max(n1(n2 −

k2), n2(n1 − k1)). Divide by n1n2 to get the inequality announced in the Lemma statement.

When the palette hasM = 4 colors, the sufficient condition in Lemma 5 is written as

min(R1, R2) ≤ 3/4. In order to achieve the block-fading Singleton bound forM = 4, we

should takeR1 = 3/4 and R2 = 1, i.e. the product code degenerates to a single component

code. It is possible to approachR = 3/4 by keepingR1 = 3/4 and lettingR2 = n2−1
n2

be very

close to1. In this case, the row codeC2 is a single-parity check code overFq. The product code

is very unbalanced. An example of such an unbalanced productcode is

CP = [12, 9, 4]q ⊗ [14, 13, 2]q.

From the proof of Lemma 5, the edge coloring ofGc satisfying ρmax = 1 is given by the

following 4× 14 matrix:

R R R . . . R R

G G G . . . G G

B B B . . . B B

Y Y Y . . . Y Y

, (36)

where the colorsφ(e) = 1, 2, 3, 4 are replaced by the four letters ’R’, ’G’, ’B’, and ’Y’. The

rate of [12, 9, 4]q ⊗ [14, 13, 2]q is comparable to the rate of[12, 10, 3]⊗2
q , R ≈ 0.69 but it is sill

far from reaching three quarters as the product code[14, 12, 3]q ⊗ [16, 14, 3]q. Of course, if the

practical constraints allow for it, it is possible to consider an extremely unbalanced code such

as [12, 9, 4]q ⊗ [100, 99, 2]q!

Let us build balanced product codes by relaxing the constraint ρmax = 1. We may authorize

a ρmax greater than1 but not too large in order to limit the number of decoding iterations. On

the other hand, the double diversity condition on the edge coloring is maintained. Firstly, let us

find a hand-made edge coloring for the[12, 10, 3]⊗2
q product code withM = 4 colors.Gc has

6 left supernodes,6 right supernodes, and a total of36 edges. Each color is usedN c/M = 9

times. The hint is to place a color on the rows of the matrix representation ofGc, row by row

from the top to the bottom in a way that avoids stopping sets. The smallest stopping set is the

2× 2 square. Other non-obvious stopping sets may not be visible without a tedious row-column

March 7, 2016 DRAFT

46

decoding which is equivalent to determining the root order of all edges. We start with the first

color ’R’ and use the following number of letters per row:

R R R G B Y

R R

R

R

R

R

. (37)

As seen above, we completed the first row with the three other colors. On the second row, we

moved the second ’R’ to the right to avoid a2 × 2 stopping set. Next, we can start filling the

second color ’G’ from the third row, then the third color ’B’ from the fifth row. There will be

no choice for the9 positions of ’Y’. We allow some extra permutations to avoid small stopping

sets. After filling the36 positions, we found the following hand-made edge coloring for the

[12, 10, 3]⊗2
q product code:

R R R G B Y

R B Y R Y G

B G G G R Y

Y G B Y G R

R G B B B Y

R G B Y Y B

. (38)

This coloringφ gives 24 super-edges of order1 (96 edges in the non-compact graphG) and

ρmax(φ) = 3. Can we find a betterφ? Yes, in Section V-C, the DECA algorithm outputs an edge

coloring with a population of32 super-edges of order1 (128 edges in the non-compact graph

G) and reachingρmax(φ) = 2 only.

In a similar way, we attempt to build a double-diversity coloring for a well-balanced rate-3/4

product code, e.g. the[14, 12, 3]q ⊗ [16, 14, 3]q product code whereR1 = 6/7, R2 = 7/8, and

R = 3/4. The compact graphGc has7 left vertices and8 right vertices. ForM = 4 colors, each

color is usedN c/M = 56/4 = 14 times. Again, we try to avoid small obvious stopping sets like

2 × 2, 2 × 3, 3 × 3, etc. We start by putting five ’R’ on the first row, three ’R’ on the second

March 7, 2016 DRAFT

47

row, two ’R’ on the third row, and one ’R’ on the remaining rowsas follows:

R R R R R G B Y

R R R

R R

R

R

R

R

. (39)

We repeat the same number of color entries ’G’ starting on thefourth row. The color ’B’ starts

with five entries on the seventh row. We allow some extra permutations to avoid small stopping

sets. Colors were exchanged within a row or within a column. The coloring process was tedious.

Many permutations had to be applied. Some non-obvious stopping sets appeared, a computer

software was used to reveal those sets (only for this task). We reached the following hand-made

double-diversity edge coloring for the[14, 12, 3]q ⊗ [16, 14, 3]q product code:

Y R R Y R G B R

R Y B G Y R R B

B B B Y Y R G R

R G G G G G B Y

R G Y Y B Y G G

G G R R B Y Y Y

R G B B B B B Y

. (40)

This coloring gives30 super-edges of order1 in Gc (120 edges in the non-compact graphG) and

ρmax(φ) = 5. In Section V-C, for the same rate-3/4 product code, the DECA algorithm outputs

an edge coloring with a population of40 super-edges of order1 (160 edges in the non-compact

graphG) and reachingρmax(φ) = 3 only.

B. The algorithm

We propose in this section an algorithm for product codes that searches for an edge coloring

with a large number of root-order-1 edges (good edges) and achieving double diversity. The

March 7, 2016 DRAFT

48

search is made in the ensemble of edge coloringsΦ(Ec) of the compact graphGc. A necessary

condition on the coding rateR to get double diversity is

R ≤ 1− 1

M
, (41)

i.e. those satisfying inequality (7), whereM is the color palette size. Codes attaining equality

in (7) are referred to as MDS in the block-fading/block-erasure sense [27] [13]. The main loop

of our algorithm is a differential evolution loop that mutates a fraction of the population of bad

edges. The algorithm will be referred to as the DifferentialEdge Coloring Algorithm (DECA).

The population of bad edges is defined by the following set

B = {e ∈ Ec : ρ(e) > 1}. (42)

It should be remembered thatB = B(φ) because of Definition (7), butφ is dropped here for

the sake of simplifying the notations. The number of good edges is given by

η(φ) = |Ec \B| = |{e ∈ Ec : ρ(e) = 1}| . (43)

Among the|B| bad edges, colors of a fraction ofℵ edges are modified in order to maximize

η(φ), ℵ ∈ N. The fractionℵ/|B| should be large enough to allow for a population evolution but

it should stay small enough in order to limit the algorithm complexity. The DECA algorithm

proceeds as follows.

Initialization. The compact graph(V c
1 , V

c
2 , E

c), the number of colorsM , the differential evolu-

tion parameterℵ, a maximum number of roundsMaxIter, and an initial edge coloringφ0 are

made ready as an input to DECA.

Pre-processing.Build all weak compositions ofℵ with M parts, i.e. writeℵ as the some ofM

non-negative integers,

ℵ = γ1 + γ2 + . . .+ γM , (44)

the number of weak compositions being

Γ =

(ℵ −M + 1

M − 1

)

. (45)

March 7, 2016 DRAFT

49

For each weak composition, prepare theΛ permutations that permute colors among theℵ edges,

the total number of these permutations is

Λ(γ1, . . . , γM) =
(γ1 + . . .+ γM)!

∏M

i=1 γi!
. (46)

This pre-processing step is completed by setting a loop counter to zero.

Differential evolution loop. This looping phase of DECA includes three main steps.

• Edge sets initialization. Set φ = φ0 and ηmax = 0. Build B = B(φ) and randomly

select a subsetBℵ. There is a unique weak composition(γ1, . . . , γM) of ℵ associated toBℵ

determined by

γi = |{e ∈ Bℵ : φ(e) = i}| . (47)

• Color permutations. For λ = 1 . . .Λ(γ1, . . . , γM), replace the image ofBℵ in the mapping

φ by a permutation ofφ0(Bℵ). The color permutation is denoted byπλ. This step is a

modification of the mappingφ0 at theℵ bad edges, i.e.φ(Bℵ)← πλ(φ0(Bℵ)). Record the

mapping with the largest number of good edges, i.e. the edge coloring with the bestη(φ),

in φ1 and updateηmax.

• Termination. Increment the counter of evolution loops. Stop and outputφ1 if this counter

reachesMaxIter, otherwise setφ0 = φ1 and go back to the edge sets initialization.

A detailed functional flowchart of DECA is drawn in Figure 6. The complexity of DECA is

mainly due to the differential evolution loop. The complexity is proportional toΛ(γ1, . . . , γM)

per round. Hence, the number of operations in DECA behaves as

Λ ≤ Λmax(ℵ,M) =
ℵ!

((ℵ/M)!)M
. (48)

Whenℵ is not multiple ofM , the denominator in the right term should be rewritten as
∏i0

i=1⌊ℵ/M⌋×
∏M

i=i0+1⌈ℵ/M⌉, wherei0 is chosen such that the sum of all elements involved in both products

is equal toℵ. All Γ compositions ofℵ are not considered by the algorithm. In fact, the total

number of permutations for all weak compositions is

Γ
∑

j=1

(γ1(j) + . . .+ γM(j))!
∏M

i=1 γi(j)!
= Mℵ. (49)

March 7, 2016 DRAFT

50

Subroutine

(optional)

Max Diversity

NO

iter = 0

M , ℵ, MaxIter

(V c

1
, V c

2
, Ec)

φ0 ∈ Φ(Ec)

Precompute Γ weak compositions

For each composition γ1 + . . . + γM = ℵ

precompute the Λ color permutations

λ < Λ

φ(Bℵ)← πλ(φ0(Bℵ))

η(φ) > ηmax

YES

YES

NO

Select Bℵ ⊂ B

ηmax = η(φ)

φ1 = φ

λ← λ + 1

φ = φ0, ηmax = 0, λ = 1

Build B = {e ∈ Ec : ρ(e) 6= 1}

φ1

iter < MaxIter iter ← iter + 1

YES

NO

φ0 = φ1

Figure 6: Flowchart of the edge coloring algorithm (DECA) for designing double-diversity

product codes.

March 7, 2016 DRAFT

51

Fortunately, the per-round complexity of DECA given in (48)is much smaller thatMℵ, i.e.

Λmax = o(Mℵ). In practical product code design, we will also haveΛmax ≪Mℵ ≪MNc

.

The proposed edge coloring algorithm aims at maximizingη(φ) but does not guarantee that

∀e ∈ Ec, ρ(e) <∞. In some cases, the algorithm may terminate all its rounds with some edges

having an infinite order, i.e. the coloring is not double-diversity. This occurs when trying to design

a product code with a coding rate very close or equal to1−1/M , the block-fading/block-erasure

Singleton bound rate. To remedy for this weakness, DECA is endowed with an extra subroutine

calledMax Diversity, as shown in Figure 6. Likewise the second step in the differential evolution

loop, this subroutine applies color permutations to a subset Bℵ1
of edges,|Bℵ1

| = ℵ1, Bℵ1
⊂ B∞,

and

B∞ = {e ∈ Ec : ρ(e) =∞}. (50)

C. Applications

Now, let us apply DECA to design two double-diversity product codes with MDS components.

Numerical values are selected to make these codes suitable to distributed storage applications

and to diversity systems in wireless networks. The parameter MaxIter is 100. DECA with its

hundred iterations runs in a small fraction of a second on a standard computer machine.

Example 7:The first application of DECA is to color edges in the compact graph ofCP1 =

[n, k, d]⊗2
q , wheren = 12, k = 10, d = 3, and the finite-field alphabet size isq > 12. The coding

rate ofCP1 is R(CP1) = 25/36 < 1 − 1/M = 3/4, i.e. the gap to (7) is1/18. This small gap

is enough to render an uncomplicated double-diversity design. The coloring inΦ(Ec) can be

easily converted into its counterpart inΦ(E) by replacing each supersymbol with4 symbols.

From (5) and (6), the total number of edge colorings is|Φ(E)| ≈ 1083 in the non-compact graph

and |Φ(Ec)| ≈ 1019 in the compact graph. The differential evolution parameterℵ is set to8.

The diversity subroutine is deactivated. We have

Λmax(8, 4) = 2520≪ |Φ(Ec)| ≪ |Φ(E)|.

For almost any choice of the initial coloringφ0 uniformly distributed inΦ(Ec), DECA yields a

double-diversity coloringφ1. For roughly one choice out of three forφ0, the algorithm outputs a

March 7, 2016 DRAFT

52

coloringφ1 such thatη(φ1) ≥ 28. Figure 7a shows the matrix representation of a specialφ1 found

by DECA. It hasη(φ1) = 32 which corresponds toη = 128 in (V1, V2, E). The corresponding

rootcheck order matrix is shown in Figure 7b. The highest attained order for this coloring is

ρmax(φ) = 2. The maximal order for all colorings inΦ(Ec) from Theorem 1 isρu = 5. This

coloring satisfies equality in (8) since2ρmax(φ) + ηmin(φ) = 12.

G B R

G

B

Y

Y

GR

B

B R Y

Y

G B

Y

B

G

G R

RY

R

R

Y

G

G

R

GBY

BY

B

R

(a)

1r 1c 1r

1c

1c

1c

1c

1r2b

2b

1r 1r 1r

1r

1r 1r

2b

1c

2b

1c 1r

1c1c

1r

1c

1r

1c

1c

1c

1r1r1c

1r1r

1c

1c

(b)

Figure 7: Compact coloring matrix (figure a) and the corresponding rootcheck-order matrix

(figure b) for the[12, 10]⊗2 product codeCP1 found by DECA,η(φ) = 32 andρmax = 2.

Example 8:The second more challenging application of DECA is the design of a double-

diversity product code attaining the block-fading/block-erasure Singleton bound. Let us consider

CP2 = [n1, k1, d1]q ⊗ [n2, k2, d2]q, wheren1 = 14, k1 = 12, n2 = 16, k2 = 14, d1 = d2 = 3, and

the finite-field alphabet size isq > 16. The coding rate isR(CP2) = 1− 1/M = 3/4. From (5)

and (6), the total number of edge colorings is|Φ(E)| ≈ 10131 in the non-compact graph and

|Φ(Ec)| ≈ 1031 in the compact graph. The differential evolution parameterℵ is set to7. The

diversity subroutine is activated withℵ1 = 8. We have

Λmax(7, 4) + Λmax(8, 4) = 3150≪ |Φ(Ec)| ≪ |Φ(E)|.

The initial coloringφ0 is taken to be uniformly distributed inΦ(Ec). For almost threeφ0 choices

out of four, DECA yields a double-diversity coloringφ1. Roughly oneφ0 choice out of two

March 7, 2016 DRAFT

53

guaranteesη(φ1) ≥ 34. Figure 8a shows the matrix representation of a specialφ1 found by

DECA. It hasη(φ1) = 40 which corresponds toη = 160 in (V1, V2, E). The rootcheck order

matrix is shown in Figure 8b. The highest attained order for this coloring isρmax(φ) = 3. The

maximal order for all colorings inΦ(Ec) from Theorem 1 isρu = 7. This coloring satisfies

2ρmax(φ) + ηmin(φ) = 16 while the right term in (8) is17.

R

G

R

R

R

R

R

R

R

G

Y

Y

B

B

R

B

G

G

G

B

Y

G

G

G

G

G G

G G

G

Y

Y

Y

Y

BB

B

B

B

B

B

B B B

Y

Y

Y

Y

Y

Y Y

R

R R

RR

(a)

2c

1c

3b

2r

1r

1r

1r

1r

2r

1c

1c

1c

1c

1c

1c

1r

1r

1r

2c

2c

1c

3r

1r

1r

1c 1c

2c 1c

1r

1r

2c

1r

1r

1c2r

1r

1c

1r

1r

1r

2c 1c

2r

1c

1c

1r

2r

3b 1c

1c

1c 1c

1c1c

3b

3r

(b)

Figure 8: Compact coloring matrix (figure a) and the corresponding rootcheck-order matrix

(figure b) for the[14, 12]⊗ [16, 14] product codeCP2 found by DECA,η(φ) = 40 andρmax = 3.

Example 9:A third example suitable for nowadays distributed storage warehouses isCP3 =

[10, 8, 3]q ⊗ [10, 9, 2]q. The coding rate isR = 18/25 with a minimum distanced1d2 = 6 and

the locality is n1 = n2 = 10, i.e. this code is an improvement to the standardRS[14, 10]

used by Facebook [47]. The coloring ensembles have sizes|Φ(E)| ≈ 1057 and |Φ(Ec)| ≈
1027 respectively. The DECA algorithm produced double-diversity edge colorings where we

distinguish two classes: a first class of colorings withρmax = 3 andη(φ) = 41, and a second

class withρmax = 2 andη(φ) = 40. An edge coloring of the second class is shown in Figure 9.

The reader is invited to determine the rootcheck order matrix and verify that40 super-edges have

root order1 and10 super-edges have a root order equal to2.

March 7, 2016 DRAFT

54

G

R

Y

G

B

Y

R

B

G

B

R

R

Y

G

B

B

Y

R

B

G

Y

G

R

G

B

B

Y

R

R

G

B

Y

R

G

Y

Y

B

R

G

R

Y

R

G

G

B

B

R

Y

Y

G

Figure 9: Compact coloring matrix for the[10, 8]⊗ [10, 9] product code found by DECA,η(φ) =

40 andρmax = 2.

In figures of the previous examples, the four colors were alsoindicated by the first letter of the

color name, Red, Green, Blue, and Yellow. The rootcheck order ρ(e) for an edgee in Ec (which

is also the order of the four code symbols associated to that edge) is indicated by an integer in

the right part of each figure for the first two examples. In the rootcheck order matrix,2r means

that this supersymbol has order2 and its root checknode is a row. Similarly,2c designates a

supersymbol with order2 and a column rootcheck. The letter ’b’ is written when a supersymbol

has both rootchecks, a row and a column rootcheck.

Product codes in Examples 7-9 do not satisfy theρu condition given in (15) and the sufficient

condition of Lemma 5 either. An interesting question arises. Does an edge coloring withρmax = 1

exist for a6 × 6 compact graph? We provide a partial answer in the sequel. A similar answer

is valid for the7× 8 compact graph.

The6×6 compact graph is perfectly balanced. Let us start with the first color ’R’. The unique

solution to getρ(e) = 1 for all edgese with φ(e) = R is to place ’R’ entries separately on the

first row and the first column. Hence, no row or a column containthe same color twice. The

first 9 edges are located as follows:

March 7, 2016 DRAFT

55

R R R R R

R

R

R

R

. (51)

We start over with the second color ’G’ using the same rule. Given the lack of space on the

second row and the second column, the ninth green edge is placed on the top left corner. We

get

G R R R R R

R G G G G

R G

R G

R G

G

. (52)

At this point, 18 super-edges have a rootcheck orderρ = 1. Seven edges only can be colored

in blue, three edges on the third row, three edges on the thirdcolumn, and one edge at the

intersection of the second row and the second column. One color ’R’ can be moved down to

the last row leading to the following coloring:

G R R R R B

R B G G G G

R G B B B

R G B

R G B

B G B R

. (53)

Finally, we reached an edge coloring where all edges of threecolors satisfyρ(e) = 1. Unfortu-

nately, there is no space left for edges of ’Y’ to achieveρ(e) = 1. The situation is even worse,

the remaining edges for ’Y’ make five primitive stopping sets(three2× 2, one2× 3, and one

3× 2). This edge coloring has no diversity.

March 7, 2016 DRAFT

56

D. Random edge coloring

The efficiency of the DECA algorithm was validated in the previous section in terms of number

of edges of first order and the maximal order over all edges. Clearly, while evolving from one

coloring to another in order to get a largeη(φ), DECA also produced a very small maximal

orderρmax(φ). Any deterministic construction seems to be destined to fail given the huge size

of the ensemblesΦ(E) andΦ(Ec).

In this sub-section, another way to show the efficiency of ourcoloring algorithm is to make

random selections fromΦ(E) and Φ(Ec) and get an estimate of the probability distributions

of η(φ) and ρmax(φ). Indeed, a uniformly distributed permutation in the symmetric group of

orderN yields a uniformly distributed edge coloringφ in Φ(E). This is also true forΦ(Ec)

when the symmetric group has orderN c. Thus, in a uniform manner, we selected 2 billion

edge colorings through our computer application fromΦ(E) andΦ(Ec) respectively. For each

coloring, rootcheck orders of all edges were computed, i.e.for theN edges in the non-compact

graph and theN c edges in the compact graph. Only double-diversity colorings are counted in

this comparison, i.e. colorings with at least one edge of infinite rootcheck order are excluded.

As an illustration, the characteristics of double-diversity random coloring forCP1 are plotted in

Figure 10 where numerical estimations of all probability distributions are compared to colorings

designed via DECA.

Double diversity design is more arduous for the rate-3/4 CP2 product code than for the rate-

25/36 CP1 product code because of the rate-diversity tradeoff given by the Singleton bound.

For CP1, the [12, 10]⊗2 code,8.97% of uniformly sampled colorings have double diversity in

Φ(Ec), whereas this fraction is43.6% in Φ(E). For CP2, the [14, 12] ⊗ [16, 14] code, only

0.00039% of uniformly sampled colorings have double diversity inΦ(Ec), and we found no

double-diversity colorings inΦ(E) despite the 2 billion samples. As expected, compact graphs

exhibit better characteristics than non-compact graphs thanks to their simpler structure, i.e.ni−ki
parity symbols are grouped inside a unique supersymbol: forCP1, one double-diversity random

coloring hasη(φ) = 88, ρmax(φ) = 4 for non-compact graphs, seven double-diversity colorings

haveη(φ) = 120, andρmax(φ) = 2 for compact graphs. There exists a double-diversity coloring

in Φ(E) with ρmax(φ) = 3 but its η is 85. The estimated probability mass functions forCP1

March 7, 2016 DRAFT

57

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

 20 40 60 80 100 120 140

P
ro

ba
bi

lit
y

M
as

s
F

un
ct

io
n

Number of edges of order 1

DECA, Example 6, eta=128

Non-Compact Graph

Compact Graph

(a)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

 0 2 4 6 8 10 12

P
ro

ba
bi

lit
y

M
as

s
F

un
ct

io
n

Largest rootcheck order in a graph

DECA, Example 6
Max(rho)=2

Non-Compact Graph

Compact Graph

(b)

Figure 10: Distribution ofη(φ) (figure a) andρmax(φ) (figure b) for double-diversity random

edge colorings uniformly distributed inΦ(E) andΦ(Ec). Product code[12, 10]⊗2.

are plotted in Figures 10a and 10b. ForCP2, one double-diversity random coloring reached

η(φ) = 128 andρmax(φ) = 4 out of the 2 billion samples fromΦ(Ec). In all cases, for bothη

andρ, double-diversity random colorings are not as efficient as colorings designed via the DECA

algorithm. The situation is worse for random colorings if a double-diversity code with maximal

rate 1 − 1/M is to be designed. The DECA algorithm exhibits excellent values,η = 160 and

ρ = 3, for the rate-3/4 [14, 12]⊗ [16, 14] product code.

VI. CODE PERFORMANCE IN PRESENCE OF ERASURES

Iterative decoding performance ofCP = C1 ⊗ C2 is studied in presence of channel erasures,

with and without edge coloring. The iterative decoder makesrow and column iterations where

the component decoder ofCi can be an algebraic erasure-filling decoder (limited bydi−1) or a

maximum-likelihood decoder ofCi. As stated in Section IV-A, type II and type III stopping sets

are identical because the non-binary codesC1 andC2 are MDS. The word error probability of the

iterative decoder is denoted byP G
ew. The product code can also be decoded via an ML decoder,

i.e. maximum likelihood decoding ofCP based on a Gaussian reduction of its parity-check

matrix. The word error probability under ML decoding ofCP is denoted byPML
ew .

March 7, 2016 DRAFT

58

A. Block erasures

Consider the block-erasure channelCEC(q, ǫ). TheN symbols of a codeword are partitioned

into M blocks, each block contains symbols associated to edges inG with the same color. The

CEC(q, ǫ) channel erases a block with a probabilityǫ. The block is correctly received with

a probability1 − ǫ. Erasure events are independent from one block to another. We say that a

color is erasedif the associated block ofN/M symbols is erased. Assume thatG is endowed

with a double-diversity edge coloringφ (i.e. L(φ) = 2) as defined in Corollary 1. Then, on the

block-erasure channelCEC(q, ǫ), for a rate satisfying

1− 2

M
< R ≤ 1− 1

M
, (54)

we have

ǫ2 ≤ PML
ew ≤ P G

ew ≤
M
∑

i=2

(

M

i

)

ǫi(1− ǫ)M−i. (55)

Sinceφ has a double diversity, there exist two colors among theM colors such that the iterative

decoder must fail if both colors are erased. This explains the upper bound ofP G
ew in (55). The

upper bound is valid for any rate less than the maximal achievable rate for double diversity,

i.e. 1 − 1
M

. Now, sinceR > 1 − 2
M

, the ML decoder forCP cannot attain a diversityL = 3

otherwise the block-fading/block-erasure Singleton bound would be violated. Consequently, the

ML decoder ofCP can only reachL = 2 and so there exists a pair of erased colors that cannot

be solved by the ML decoder. This explains the lower bound in (55). The reader can easily

verify that

lim
ǫ→0

logPML
ew

log ǫ
= lim

ǫ→0

logP G
ew

log ǫ
= L = 2. (56)

The slope ofPew versus the erasure probabilityǫ in a double-logarithmic scale is equal to2.

Under the stated constraint onR, the upper bound in (55) is the exact expression of the outage

probability on a block-erasure channel valid forq-ary codes with asymptotic length [26]. For

double-diversity edge colorings found by DECA in Examples 7and 8,P G
ew equals its upper

bound in (55). These examples achieve the outage probability although a code may perform

better than the outage probability at finite length. For these colorings whereM = 4, the error

probability onCEC(q, ǫ) behaves likeP G
ew = 6ǫ2 + O(ǫ3). One possible interpretation of this

behavior is: the optimization ofη(φ) (equivalent in some sense to minimizingρ(φ)) pushed the

performance of edge colorings found by the DECA algorithm asfar as possible from the lower

March 7, 2016 DRAFT

59

bound ǫ2. As can be observed in Figures 7 and 8, all rows and all columnsinclude the four

colors. When any two colors out of four are erased, the iterative decoder will completely fail

without correcting a single supersymbol. A double-diversity edge coloring guarantees that all

stopping sets are covered by at least two colors but it cannotcover all stopping sets with three

colors or more otherwise we getL = 3 which contradictsR > 1− 2
M

. Fortunately, these product

codes are diversity-wise MDS and the second code in Example 8has the maximal coding rate

for double diversity. In the sequel, we will see that these codes also perform well in presence

of independent erasures.

B. Independent erasures

Consider the i.i.d. erasure channelSEC(q, ǫ). TheN symbols of a codeword are independently

erased by the channel. A symbol is erased with a probabilityǫ and is correctly received with a

probability1−ǫ. Edge coloring has no effect on the performance ofCP on theSEC(q, ǫ) channel.

Before studying the performance on theSEC(q, ǫ), following Examples 3 & 4 and Theorems

2 & 3, we state an obvious result about obvious stopping sets in the following proposition.

Proposition 3: Let CP = C1 ⊗C2 be a product code with non-binary MDS components. All

obvious stopping sets are supports of product code codewords.

Proof: Consider anℓ1×ℓ2 obvious stopping set. Its rectangular support isR(S) = R1(S)×
R2(S). We haveℓ1 ≥ d1 and ℓ2 ≥ d2. From Proposition 2, there exists a column codeword

x = (x1, x2, . . . , xn1
) ∈ C1 of weightℓ1 with supportR1(S)×{j1}, wherej1 ∈ R2(S). Similarly,

there exists a row codewordy = (y1, y2, . . . , yn2
) ∈ C2 of weight ℓ2 with support{i1}×R2(S),

wherei1 ∈ R1(S). Now, the Kronecker product ofx andy satisfiesX (x⊗ y) = S.

Corollary 5: Consider a product codeCP = C1⊗C2 with non-binary MDS component codes.

Assume the symbols ofCP are transmitted over aSEC(q, ǫ) channel. Then, forǫ ≪ 1, the

error probabilities satisfyP G
ew ∼ PML

ew .

Proof: On theSEC(q, ǫ), the word error probabilities are given by [54],

PML
ew =

N
∑

i=d1d2

Ψi(ML)ǫi(1− ǫ)N−i, (57)

whereΨi(ML) is the number of weight-i erasure patterns covering a product code codeword,

and

P G
ew =

N
∑

i=d1d2

Ψi(G)ǫi(1− ǫ)N−i, (58)

March 7, 2016 DRAFT

60

whereΨi(G) is the number of weight-i erasure patterns covering a stopping set. Of course, here

we refer to stopping sets in the non-compact graphG, i.e. in then1 × n2 product code matrix.

Next, sinceN is fixed (asymptotic length analysis is not considered in this paper) we write

PML
ew = Ψd1d2(ML)ǫd1d2 + o(ǫd1d2) andP G

ew = Ψd1d2(G)ǫd1d2 + o(ǫd1d2). From Proposition 3, we

get the equalityΨd1d2(G) = Ψd1d2(ML) and so we obtainlimǫ→0 P
G
ew/P

ML
ew = 1.

The erasure patterns can be decomposed according to the sizeof the covered stopping set.

The coefficientΨi(G) becomesΨi(G) =
∑i

w=d1d2
Ψi,w(G), whereΨi,w(G) is the number of

weight-i patterns covering a stopping set of sizew. It is clear thatΨw,w(G) = τw. For small

i− w, Ψi,w(G) can be approximated by
∑

A
(

N−A
i−w

)

τw,A, whereτw,A is the number of stopping

sets of sizew having |R(S)| = A. For w ≤ d1d2 + d1 + d2 + 1, the areaA is bounded from

above by the productℓ01 × ℓ02 from Lemma 1. Numerical evaluations ofΨi(G) are tractable for

very short codes (N ≤ 25) and become very difficult for codes of moderate size and beyond,

e.g.N = 144 andN = 224 for the [12, 10]⊗2 and the[14, 12]⊗ [16, 14] codes respectively. For

this reason, expressions (57) and (58) are not practical to predict theSEC(q, ǫ) performance of

product codes with significant characteristics.

For P G
ew, thanks to Theorems 2 and 3, a union bound can be easily established. Indeed, we

have

P G
ew = Prob(∃S covered)

≤
∑

w

Prob(∃S : |S| = w,S covered),

leading to

P G
ew ≤ PU(ǫ) =

N
∑

w=d1d2

τwǫ
w. (59)

From Theorem 2, the union boundPU(ǫ) for the [12, 10, 3]⊗2
q product code is

PU(ǫ) =48400ǫ9 + 6098400ǫ12 + 23522400ǫ13 + 17641800ǫ14

+ 1754335440ǫ15 + 9126691200ǫ16 + o(ǫ16).

The performance of this code on theSEC(q, ǫ) channel is shown in Figure 11. We used the

standard finite field of sizeq = 256. The union bound for the symbol error probabilityP G
es

is derived by weighting the summation term in (59) withw/N , i.e. P G
es ≤

∑N

w=d1d2

w
N
τwǫ

w.

March 7, 2016 DRAFT

61

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

0.05 0.10 0.15 0.20 0.25 0.30 0.35

P
ro

ba
bi

lit
y

of
 E

rr
or

 a
fte

r
D

ec
od

in
g

Channel Erasure Probability

Pew, Iterative alg. decoding

Pes, Iterative alg. decoding

Pew, ML decoding

Pes, ML decoding

Union bound on Pew (iterative)

Union bound on Pes (iterative)

Figure 11: Product code[12, 10]⊗2
q , no edge coloring. Word and symbol error rate performance

for iterative decoding versus its union bound and ML decoding.

As observed in the plot of Figure 11, the union bound is sufficiently tight. Furthermore, the

performance of the iterative algebraic row-column decoderis very close to that of ML decoding

in the whole range ofǫ. For smallǫ, the curves are superimposed as predicted by Corollary 5.

The union boundPU(ǫ) for the [14, 12, 3]q ⊗ [16, 14, 3]q product code is

PU(ǫ) =203840ǫ9 + 44946720ǫ12 + 174894720ǫ13 + 131171040ǫ14

+ 17839261440ǫ15 + 126887941180ǫ16 + o(ǫ16).

The performance of this code on theSEC(q, ǫ) channel is shown in Figure 12. Similar to the

previous code, the union bound is tight enough and iterativedecoding performs very close to ML

decoding. Finally, let us interpret these results from a finite-length information theoretical point

March 7, 2016 DRAFT

62

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

0.05 0.10 0.15 0.20 0.25 0.30

P
ro

ba
bi

lit
y

of
 E

rr
or

 a
fte

r
D

ec
od

in
g

Channel Erasure Probability

Pew, Iterative alg. decoding

Pes, Iterative alg. decoding

Pew, ML decoding

Pes, ML decoding

Union bound on Pew (iterative)

Union bound on Pes (iterative)

Figure 12: Product code[14, 12]q ⊗ [16, 14]q, no edge coloring. Word and symbol error rate

performance for iterative decoding versus its union bound and ML decoding.

of view [44]. TheSEC(q, ǫ) of Shannon capacitylog2(q)(1− ǫ) behaves exactly like aBEC(ǫ)

of capacity(1− ǫ) but erasures in theSEC occur at the symbol level instead of the binary digit

level. Finite-regime BEC bounds from [44] are directly applicable to our product codes over

theSEC(q, ǫ). The BEC channel dispersion isV = ǫ(1− ǫ) and its maximal achievable rate is

given by [44], Theorem 53,

R = (1− ǫ)−
√

V

n
Q−1(Pew) +O(

1

n
), (60)

wheren is the code length,Q(x) is the Gaussian tail function,ǫ is the channel erasure probability,

andPew is the target word error probability. The next table shows how good is the proposed

product code based on MDS components.

March 7, 2016 DRAFT

63

Coding RateR Erasure Prob.ǫ

for ǫ = 0.15 for R = 0.75

Polyanskiy-Poor-Verdú 0.794 : Pew = 1.0 · 10−2 0.189

[14, 12]q ⊗ [16, 14]q 0.750 : Pew = 1.0 · 10−2 0.150

Regular-(3, 12) LDPC 0.750 : Pew = 2.9 · 10−2 0.135

Table III: Finite-length performance of the[14, 12]q ⊗ [16, 14]q product code. The value ofǫ in

the third column is given forPew = 10−2 at all rows.

C. Unequal probability erasures

In communication and storage systems, erasure events of unequal probabilities may occur.

In order to observe the effect of a double-diversity coloring on the performance in multiple

erasure channels, we define theSEC(q, {ǫi}Mi=1). On this channel, symbol erasure events are

independent but the probability of erasing a symbol isǫi if it is associated to an edge inG with

color φ(e) = i. The union bound is easily modified to get

P G
ew ≤ PU(ǫ1, . . . , ǫM), (61)

where

PU(ǫ1, . . . , ǫM) =

N
∑

w=d1d2

∑

w1, . . . , wM

:
∑

i wi = w

τ(w1, . . . , wM)

M
∏

i=1

ǫwi

i . (62)

The coefficientτ(w1, . . . , wM) is the number of stopping sets of sizew =
∑M

i=1wi, where

i symbol edges have colori, i = 1 . . .M . Clearly, the coefficientsτ(w1, . . . , wM) depend on

the edge coloringφ. For double-diversity colorings andM ≥ 2, these coefficients satisfy the

following property:

For any stopping setS such that|S| = w, τ(w1, . . . , wM) does exist for
∑M

i=1wi = w and

wi > 0 only, i.e. no weak compositions ofw are authorized byφ.

Hence, the product code should perform well if one of theǫi is close to1 and the remainingǫi are

small enough. The extreme case is true thanks to double diversity yielding PU(0M−1, 11) = 0,

where(0M−1, 11) represents all vectors with all positions at0 except for one position set to1.

Figure 13 shows the performance of[12, 10]⊗2
q on theSEC(q, {ǫi}Mi=1) channel withM = 4

March 7, 2016 DRAFT

64

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

W
or

d
E

rr
or

 P
ro

ba
bi

lit
y

Channel Erasure Probability (epsilon4)

epsilon1=0.002 (Union Bound)
epsilon1=0.010 (Union Bound)
epsilon1=0.050 (Union Bound)
epsilon1=0.050 (Monte Carlo)
epsilon1=0.100 (Union Bound)

No Coloring

Figure 13: Product code[12, 10]⊗2
q with double-diversity edge coloring. Word error rate

performance versusǫ4, for iterative decoding on theSEC(q, {ǫi}4i=1) channel withǫ1 = ǫ2 = ǫ3.

colors. The edge coloring is the double-diversity coloringproduced by the DECA algorithm and

drawn in Figure 7. The expression ofPU(ǫ1, . . . , ǫM) is determined by stopping sets enumeration

as in Theorems 2 and 3. Details are omitted and the very long expression ofPU(ǫ1, . . . , ǫM)

is not shown. The special caseǫ1 = ǫ2 = ǫ3 is considered and the performance is plotted as

a function ofǫ4. For a fixedǫ1, double diversity dramatically improves the performance with

respect toǫ4.

VII. CONCLUSIONS

Non-binary product codes with MDS components are studied inthis paper in the context of

iterative row-column algebraic decoding. Channels with both independent and block erasures are

considered. The rootcheck concept and associated double-diversity edge colorings were described

March 7, 2016 DRAFT

65

after introducing a compact graph representation for product codes. For solving erased symbols,

an upper bound of the number of decoding iterations is given as a function of the graph size

and the color palette sizeM . Stopping sets are defined in the context of MDS components

and a relationship is established with the graph representation of the product code. A full

characterization of these stopping sets is given up to a weight (d1+1)(d2+1). Then, we proposed

a differential evolution edge coloring algorithm to designcolorings with a large population of

minimal rootcheck order symbols. The complexity of this algorithm per iteration iso(Mℵ),

whereℵ is the differential evolution parameter. The performance of MDS-based product codes

with and without double-diversity coloring is analyzed. Inaddition, ML and iterative decoding

are proven to coincide at small channel erasure probability. Original results found in this paper

are listed in Section I-B.

A complete enumeration of product code codewords is still anopen problem in coding theory.

Following the enumeration of bipartite graphs in Section IV-D (see also Table I) and following

the DECA algorithm that aims at improvingη(φ) in Section V-B, two open problems can be

stated.

• In number theory. There exists no recursive or closed form expression for the special partition

function, i.e. the number of special partitions of an integer. Also, in a way similar to the Hardy-

Ramanujan formula, the asymptotic behavior is unknown for the number of special partitions.

Special partitions are introduced in Definition 10.

• In graph theory and combinatorics. Consider a matrix of sizeH ×W and a coloring palette

of sizeM . For simplicity, assume thatH ·W is multiple ofM . A matrix entry is callededge. A

color is assigned to each edge in the matrix. AllM colors are equally used. A matrix edge/entry

(i, j) of color c is said to begood if it is the unique entry with colorc either on rowi or on

columnj. The number of good entries is denoted byη(φ), see also (43). Given the matrix height

H, width W , and the palette sizeM , find the maximum achievable number of good entriesη(φ)

over the set of all edge coloringsφ. A simpler problem would be to find an upper bound of

η(φ).

March 7, 2016 DRAFT

66

APPENDIX A

PROOF OFTHEOREM 3

Of course,C1 and C2 are interchangeable which explains why we stated the theorem for

d1 < d2. From Lemma 1, the maximal rectangle height satisfiesℓ01 ≤ (d1 + 2). Similarly, under

the conditiond2 < 3d1 − 1, the maximal rectangle width satisfiesℓ02 ≤ (d2 + 3). From d1 × d2

up to the maximal size(d1 + 2)× (d2 + 3), there are twelve different sizes listed in Figure 14.

The most right column tells us when sizes located on the same row are equal. Also, the first

entries on rows4 and5 are equal ifd2 = d1+1. For these rectangular supports, the stopping set

weightw takes values from rows1-4 (and the ranges between these values) in the table drawn

in Figure 14, i.e.d1d2 ≤ w ≤ (d1 + 1)(d2 + 1).

(d1 + 2)(d2 + 3)

(d1 + 2)(d2 + 2)

(d1 + 2)(d2 + 1)

(d1 + 2)d2 (d1 + 1)(d2 + 2)

(d1 + 1)(d2 + 1)

(d1 + 1)d2 d1(d2 + 2)

d1(d2 + 1)

d1d2

(d1 + 1)(d2 + 3)

d1(d2 + 3)

d2 = 2d1

d2 = 2d1 − 1

d2 = 2d1 + 2

d2 = 2d1 + 1

Figure 14: Size of the rectangular supportR(S) given in the three left columns. The twelve

different sizes are listed in increasing order within each column. The right column of this table

indicates when sizes on the same row are equal.

March 7, 2016 DRAFT

67

The proof shall considerd2 > 2d1 in its sub-section C. There exists no integerd2 in the range

]2d1, 3d1− 1[for d1 = 2. Only for sub-section C andd1 = 2, we consider a rectangular support

with a width up tod2 + 4 which enlarges the range ofd2 to 2d1 < d2 < 4d1− 1 and permits to

keep the cased1 = 2 valid in sub-section C.

• The casew < d1d2.

The proof is similar tow < d2 in Theorem 2. Here, we just deduce thatw ≥ d1ℓ2 and

w ≥ d1ℓ2 leading to the contradictionw ≥ d1d2. Thereforeτw = 0 for w < d1d2 under type

II iterative decoding.

• The casew = d1d2.

We use similar inequalities as in the previous case which resembles the proof in Theorem 2

for w = d2. We get thatR(S) = S. All stopping set of sized1d2 are obvious. Their number

is given by choosingd1 rows out ofn1 andd2 columns out ofn2.

• The cased1d2 < w < d1(d2 + 1).

Given thatℓ1ℓ2 ≥ w > d1d2, we getℓ1 ≥ d1 and ℓ2 ≥ d2, sinced1 × d2 is the smallest

R(S). Takeℓ1 = d1, thenℓ2 ≥ d2 +1 becausew > d1d2. The weight of each column must

be at leastd1 giving usw ≥ d1ℓ2 ≥ d1(d2 + 1), which is a contradiction unlessτw = 0.

The same arguments hold forℓ1 > d1.

• The casew = d1(d2 + 1).

The admissible rectangular support can have all sizesℓ1 × ℓ2 listed in Figure 14 starting

from d1 × (d2 + 1).

– The smallestR(S) is d1× (d2+1). All corresponding stopping sets are obvious. Their

number is
(

n1

d1

)(

n2

d2 + 1

)

.

– The nextR(S) has size(d1+1)×d2. The number of zeros isβ = (d1+1)d2−d1(d2+

1) = d2 − d1 > 0. This result contradicts Lemma 2 whereβ = 0. Hence, this size of

the rectangular support yields no stopping sets,τw = 0 in this sub-case.

– The nextR(S) has sized1× (d2+2). Again, Lemma 2 on the existence of a stopping

set tells us thatβ = 0, but β = d1(d2 + 2)− d1(d2 + 1) = d1 > 0. Thenτw = 0.

March 7, 2016 DRAFT

68

– All rectangle sizes from rows4−8 in the table in Figure 14 are larger than the previous

case and make a contradiction onβ unlessτw = 0.

Starting from this point,d2 should be compared to2d1 in order to sort the values of the stopping

set size as given in the table in Figure 14.

A. Minimum distances satisfyingd2 < 2d1

• The cased1(d2 + 1) < w < (d1 + 1)d2.

The smallestR(S) has size(d1 + 1)× d2 and the largest has size(d1 + 2)× (d2 + 3). All

these stopping sets contradict Lemma 2 ifβ is computed from the size ofR(S) andw.

Thenτw = 0.

• The casew = (d1 + 1)d2.

– R(S) has size(d1 + 1)× d2. Stopping sets are obvious and their number is
(

n1

d1 + 1

)(

n2

d2

)

.

– R(S) has sized1× (d2 +2). Lemma 2 givesβ = 0 but β = d1(d2+2)− (d1 +1)d2 =

2d1 − d2 ≥ 1. Thenτw = 0 in this sub-case.

– R(S) has size(d1 + 1)× (d2 + 1). We haveβ = d1 + 1 andd2 − d1 columns have no

0. Theβ zeros should be in a(d1 +1)× (d1 +1) permutation matrix in the remaining

β columns. These stopping sets are not obvious and their number is

(d1 + 1)!

(

d2 + 1

d2 − d1

)(

n1

d1 + 1

)(

n2

d2 + 1

)

.

– All other R(S) greater than the previous case haveτw = 0 because of a contradiction

on β.

• The case(d1 + 1)d2 < w < d1(d2 + 2).

Let us writew = (d1 +1)d2 + λ, whereλ belongs to[1, 2d1− d2− 1]. If d2 = 2d1− 1 this

range forλ is empty and we obtainτw = 0. Then, we considerd2 < 2d1 − 1.

– R(S) has sized1 × (d2 + 2). The number of zeros isβ = d1(d2 + 2)− w > 0 which

contradicts Lemma 2. There are no stopping sets for this rectangular size.

– R(S) has size(d1 + 1) × (d2 + 1). We haveβ = d1 + 1 − λ ∈ [d2 − d1 + 2, d1].

The non-obvious stopping sets are built by selectingβ columns andβ rows and then

March 7, 2016 DRAFT

69

embedding any0-permutation matrix, their number is

(d1 + 1− λ)!

(

d1 + 1

λ

)(

d2 + 1

d1 + 1− λ

)(

n1

d1 + 1

)(

n2

d2 + 1

)

.

– All other R(S) greater than the previous case haveτw = 0 because of a contradiction

on β.

• The casew = d1(d2 + 2).

– ForR(S) with sized1(d2 + 2), we the following number of obvious stopping sets
(

n1

d1

)(

n2

d2 + 2

)

.

– The next size forR(S) to be considered is(d1 + 1)× (d2 + 1). The number of zeros

is β = d2 − d1 + 1. As usual, these non-obvious stopping sets are constructedby a

0-permutation matrix of sizeβ insideR(S). Their number is

(d2 − d1 + 1)!

(

d1 + 1

d2 − d1 + 1

)(

d2 + 1

d2 − d1 + 1

)(

n1

d1 + 1

)(

n2

d2 + 1

)

.

– Both d1× (d2+3) and(d1+2)×d2 lead to a contradiction onβ. Now we consider the

rectangle of size(d1+1)×(d2+2). The number of zeros isβ = d2+2. All columns must

have a single0. Regarding the rows, letr0, r1, andr2 be the number of rows with0, 1,

and2 zeros respectively. We haver0 + r1 + r2 = d1 + 1 andβ = 2r2 + r1. Combining

the two previous equalities yields2r0 + r1 = 2d1 − d2. Many similar cases where

encountered in the proof of Theorem 2. The number of these non-obvious stopping

sets becomes

∑

2r0+r1=2d1−d2

(

d1 + 1

r0

)(

d1 + 1− r0
r1

)

(d2 + 2)!

2r0+d2−d1+1

(

n1

d1 + 1

)(

n2

d2 + 2

)

.

• The cased1(d2 + 2) < w < (d1 + 1)(d2 + 1).

Let us writew = d1(d2 + 2) + λ, whereλ belongs to the interval[1, d2 − d1].

– The smallest rectangle has size(d1 + 1)(d2 + 1). The number of zeros isβ = d2 −
d1 + 1− λ ∈ [1, d2 − d1]. The number of these non-obvious stopping sets is found by

counting allβ × β permutation matrices in all positions,

(d2 − d1 + 1− λ)!

(

d1 + 1

2d1 − d2 + λ

)(

d2 + 1

d1 + λ

)(

n1

d1 + 1

)(

n2

d2 + 1

)

.

– The nextR(S) has size(d1 + 1)(d2 + 2) according to the table in Figure 14, since

both sizesd1(d2 + 3) and (d1 + 2)d2 lead to a contradiction onβ. The number of

March 7, 2016 DRAFT

70

zeros for this rectangular support isβ = d2 + 2 − λ ∈ [d1 + 2, d2 + 1]. The (d2 + 2)

columns satisfy:λ columns have no zero andβ columns have a unique zero. As usual,

we solveβ = 2r2 + r1 andr0 + r1 + r2 = d1 + 1 to get2r0 + r1 = 2d1 − d2 + λ and

r2 = r0 + λ− d1 − 1. The number of non-obvious stopping sets in this case is
∑

2r0+r1=2d1−d2+λ

(

d1 + 1

r0

)(

d1 + 1− r0
r1

)

(d2 + 2)!

2r2λ!

(

n1

d1 + 1

)(

n2

d2 + 2

)

.

– Rectangular supports larger than(d1 + 1)(d2 + 2) do not correspond to stopping sets

for the given range ofw, i.e. τw = 0.

• The last casew = (d1 + 1)(d2 + 1) ≤ d1(d2 + 3).

– The number of obvious stopping sets for the smallestR(S) is
(

n1

d1 + 1

)(

n2

d2 + 1

)

.

If d2 = 2d1 − 1 then (d1 + 1)(d2 + 1) = d1(d2 + 3) and corresponds to the following

obvious stopping sets
(

n1

d1

)(

n2

d2 + 3

)

.

Similarly, if d2 = d1 + 1 then (d1 + 1)(d2 + 1) = (d1 + 2)d2 and corresponds to the

obvious stopping sets with number
(

n1

d1 + 2

)(

n2

d2

)

.

Notice thatd1 × (d2 + 3) and (d1 + 2)× d2 have no non-obvious stopping sets (from

Lemma 2).

– The nextR(S) is (d1 + 1)(d2 + 2). The corresponding number of zeros isβ = d1 +1.

Similar cases were encountered before. The number of these non-obvious stopping sets

is
∑

2r0+r1=d1+1

(

d1 + 1

r0

)(

d1 + 1− r0
r1

)

(d2 + 2)!

2r0(d2 − d1 + 1)!

(

n1

d1 + 1

)(

n2

d2 + 2

)

.

– ConsiderR(S) with size (d1 + 2)(d2 + 1). We haveβ = d2 + 1. If d2 > d1 + 1, then

we find τw = 0 by contradicting arguments onβ. But if d2 = d1 + 1, the number of

non-obvious stopping sets becomes
∑

2r0+r1=d2+1

(

d2 + 1

r0

)(

d2 + 1− r0
r1

)

(d1 + 2)!

2r0

(

n1

d1 + 2

)(

n2

d2 + 1

)

.

March 7, 2016 DRAFT

71

– ConsiderR(S) with size (d1 + 1)(d2 + 3). We haveβ = 2(d1 + 1). If d2 < 2d1 − 1

there are no stopping sets. Whend2 = 2d1 − 1, we getβ = 2(d1 + 1) = d2 + 3. The

number of non-obvious stopping sets is found to be (method asin previous cases)

∑

3r0+2r1+r2=d1+1

(

d1 + 1

r0

)(

d1 + 1− r0
r1

)(

d1 + 1− r0 − r1
r2

)

(d2 + 3)!

2r26r3

(

n1

d1 + 1

)(

n2

d2 + 3

)

,

wherer3 = d1 + 1− r0 − r1 − r2.

– Consider the nextR(S) with size (d1 + 2)(d2 + 2) as given in the table in Figure 14.

We haveβ = d1 + d2 + 3. No stopping sets are found (by contradiction onβ) except

for d2 = d1 + 1. In this case, we getβ = 2(d1 + 2). The rectangle has two zeros in

each row. This problem is solved in a similar method as in the proofs of Lemma 3 and

Lemma 4. Indeed, we have to enumerate bipartite graphs withd1+2 left vertices all of

degree2. These graphs haved1 + 3 right vertices. Two cases should be distinguished:

a- The extra vertex on the right has no edges, b- The extra vertex at the right has one

edge. The number of these stopping sets is
(

(d2 + 2)xd1+2 +
(d2 + 2)yd1+2

2

)(

n1

d1 + 2

)(

n2

d2 + 2

)

,

wherexd1+2 andyd1+2 are determined from Lemma 3 and Lemma 4.

– The largest rectangular support forw = (d1+1)(d2+1) is (d1+2)(d2+3). The number

of zeros isβ = d2+2d1+5. From Lemma 2 we get thatβ must be less than or equal to

both2(d2+3) and3(d1+2). The first condition is satisfied ifd2 = d1+1 andd1 = 2,

also the second condition is satisfied ifd2 = 2d1 − 1 and d1 = 2. Consequently, for

this w and this size ofR(S), non-obvious stopping sets exist only ford1 = 2, d2 = 3,

andβ = 12 in a rectangle of size4× 6. Their number is

1860

(

n1

d1 + 2

)(

n2

d2 + 3

)

.

B. Minimum distances satisfyingd2 = 2d1

• The cased1(d2 + 1) < w < (d1 + 1)d2 = d1(d2 + 2).

Write w = d1(d2 + 1) + λ, whereλ is in the range[1, d1− 1]. For all sizes ofR(S) in the

table in Figure 14, we findβ = ℓ1ℓ2−w and we notice that it contradicts Lemma 2. Thus,

there are no stopping sets forw in the range]d1(d2 + 1), (d1 + 1)d2[.

March 7, 2016 DRAFT

72

• The casew = (d1 + 1)d2 = d1(d2 + 2).

– Obvious stopping sets do exist and their number is
(

n1

d1 + 1

)(

n2

d2

)

+

(

n1

d1

)(

n2

d2 + 2

)

.

– For rectangles larger than(d1 + 1)× d2 andd1 × (d2 + 2), all sizes yield no stopping

sets (by contradiction onβ) except for(d1 + 1) × (d2 + 1) and (d1 + 1) × (d2 + 2)

where the number of non-obvious stopping sets is respectively

(d1 + 1)!

(

d2 + 1

d1 + 1

)(

n1

d1 + 1

)(

n2

d2 + 1

)

,

and
(d2 + 2)!

2d1+1

(

n1

d1 + 1

)(

n2

d2 + 2

)

.

• The case(d1 + 1)d2 = d1(d2 + 2) < w < d1(d2 + 3).

Write w = (d1 + 1)d2 + λ, whereλ is in the range[1, d1 − 1].

– The smallest rectangular support with a non-zero number of stopping sets is(d1 +

1)× (d2 + 1). We haveβ = d1 + 1− λ belonging to the range[2, d1]. The number of

corresponding non-obvious stopping sets is

(d1 + 1− λ)!

(

d1 + 1

λ

)(

d2 + 1

d1 + λ

)(

n1

d1 + 1

)(

n2

d2 + 1

)

.

– ForR(S) with size (d1 + 1)× (d2 + 2), we haveβ = d2 + 2− λ varying in the range

[d1+3, d2+1]. The rectangle haveλ columns without zeros. Givenr2 = d1+1−r0−r1 =
d1 + 1 + r0 − λ, the number of non-obvious stopping sets is

∑

2r0+r1=λ

(

d1 + 1

r0

)(

d1 + 1− r0
r1

)

(d2 + 2)!

2r2λ!

(

n1

d1 + 1

)(

n2

d2 + 2

)

.

Larger rectanglesR(S) lead to a contradiction onβ, so they do not create stopping

sets for this given weightw.

• The casew = d1(d2 + 3).

Obvious stopping sets are given by
(

n1

d1

)(

n2

d2 + 3

)

.

March 7, 2016 DRAFT

73

– TakeR(S) with size (d1 + 1)(d2 + 1). Then β = 1 (recall thatd2 = 2d1 in this

sub-section). The number of non-obvious stopping sets witha unique zero in their

rectangular support is

(d1 + 1)(d2 + 1)

(

n1

d1 + 1

)(

n2

d2 + 1

)

.

– TakeR(S) with size (d1 + 1)(d2 + 2). Thenβ = d1 + 2. The number of stopping sets

is given by (VII) after settingλ = d1.

– TakeR(S) with size (d1 + 1)(d2 + 3). Thenβ = d2 + 3. In R(S), all columns have

a unique zero. Definer3 = d1 + 1 − r0 − r1 − r2 = 2r0 + r1 + 1, then the number of

non-obvious stopping sets in this sub-case becomes
∑

3r0+2r1+r2=d1

(

d1 + 1

r0

)(

d1 + 1− r0
r1

)(

d1 + 1− r0 − r1
r2

)

(d2 + 3)!

2r26r3

(

n1

d1 + 1

)(

n2

d2 + 3

)

All remaining rectangle sizes (smaller or larger) have no stopping sets.

• For d2 = 2d1 the range]d1(d2+3), (d1+1)(d2+1)[is empty. We complete this sub-section

with the last casew = (d1 + 1)(d2 + 1).

– The number of obvious stopping sets for the smallestR(S) is
(

n1

d1 + 1

)(

n2

d2 + 1

)

.

The size(d1 + 2)× d2 rectangle has no stopping sets.

– The nextR(S) is (d1+1)(d2+2). The corresponding number of zeros isβ = d1+1. The

number of non-obvious stopping sets is (expression identical to the cased2 ≤ 2d1−1):
∑

2r0+r1=d1+1

(

d1 + 1

r0

)(

d1 + 1− r0
r1

)

(d2 + 2)!

2r0(d1 + 1)!

(

n1

d1 + 1

)(

n2

d2 + 2

)

.

– ConsiderR(S) with size (d1 + 2)(d2 + 1). We haveβ = d2 + 1. For d2 = 2d1 this β

contradicts the upper bound in Lemma 2. Thenτw = 0.

– ConsiderR(S) with size(d1 +1)(d2 +3). We haveβ = 2(d1 +1) = d2 +2. In R(S),
all columns must have at most one zero but rows can afford up tothree zeros. The

number of non-obvious stopping sets is found to be (method asin previous cases)
∑

3r0+2r1+r2=d1+1

(

d1 + 1

r0

)(

d1 + 1− r0
r1

)(

d1 + 1− r0 − r1
r2

)

(d2 + 3)!

2r262r0+r1

(

n1

d1 + 1

)(

n2

d2 + 3

)

.

– Consider the next supportsR(S) with size (d1 + 2)(d2 + 2) and (d1 + 2)(d2 + 3) as

given in the table in Figure 14. Theβ for both sizes contradicts the upper bound in

Lemma 2. We deduce thatτw = 0 in these cases.

March 7, 2016 DRAFT

74

C. Minimum distances satisfyingd2 > 2d1

For 2 < d1 < d2 < 3d1 − 1, the width ofR(S) cannot exceedd2 + 3. In the special case

d1 = 2, as stated earlier, a width up tod2 + 4 should be considered. Then, ford1 = 2, the

rectangular supports are ordered in increasing size according to Table IV. The first and second

rows list the stopping set weightw in increasing order.

d1d2 < d1(d2 + 1) < d1(d2 + 2) < (d1 + 1)d2

< d1(d2 + 3) < d1(d2 + 4) ≤ (d1 + 1)(d2 + 1)

< (d1 + 2)d2 ≤ (d1 + 1)(d2 + 2) < (d1 + 1)(d2 + 3)

≤ (d1 + 2)(d2 + 1) < (d1 + 1)(d2 + 4) < (d1 + 2)(d2 + 2)

< (d1 + 2)(d2 + 3) < (d1 + 2)(d2 + 4)

Table IV: Table of rectangular sizes for the special case where the first component code has

d1 = 2.

• The cased1(d2 + 1) < w < d1(d2 + 2) < (d1 + 1)d2.

Write w = d1(d2 + 1) + λ, whereλ is in the range[1, d1− 1]. For all sizes ofR(S) in the

table in Figure 14, we findβ = ℓ1ℓ2−w and we notice that it contradicts Lemma 2. There

are no stopping sets forw in the range]d1(d2 + 1), d1(d2 + 2)[.

• The casew = d1(d2 + 2).

– Obvious stopping sets do exist and their number is
(

n1

d1

)(

n2

d2 + 2

)

.

– For rectangles larger thand1(d2+2) we found no other stopping sets, by contradiction

on β.

• The cased1(d2 + 2) < w < (d1 + 1)d2.

Write w = d1(d2 + 2) + λ, whereλ is in the range[1, d2 − 2d1 − 1]. For all rectangular

supports, fromβ we deduce thatτw = 0.

March 7, 2016 DRAFT

75

• The casew = (d1 + 1)d2.

Obvious stopping sets are given by
(

n1

d1 + 1

)(

n2

d2

)

.

– TakeR(S) with size (d1 + 1)(d2 + 1). Thenβ = d1 + 1. The number of non-obvious

stopping sets for this sub-case is

(d1 + 1)!

(

d2 + 1

d1 + 1

)(

n1

d1 + 1

)(

n2

d2 + 1

)

.

– TakeR(S) with size (d1 + 1)(d2 + 2). Thenβ = 2d1 + 2. All rows have two zeros.

Also, d2 − 2d1 columns have no zeros, while the remaining columns include aunique

zero. The number of non-obvious stopping sets in this sub-case is

(d2 + 2)!

2d1+1(d2 − 2d1)!

(

n1

d1 + 1

)(

n2

d2 + 2

)

.

– TakeR(S) with size (d1 + 1)(d2 + 3). From Lemma 2 we find that no stopping sets

exist, except ford1 = 2 andd2 = 6. In this case,β = 3d1 + 3 = 9. Each row in the

rectangle have three zeros. The number of stopping sets isτw = 9!
63

= 1680 for d1 = 2

andd2 = 6.

– TakeR(S) with size (d1 + 2)(d2 + 1). Thenβ = d2 + d1 + 2. The reader can easily

check that the bound in Lemma 2 is not satisfied. We deduce thatτw = 0 for this

rectangle size and this weightw. All remaining rectangle sizes have no stopping sets.

• The case(d1 + 1)d2 < w < d1(d2 + 3).

τw = 0 for d1 = 2. We pursue this case ford1 > 2.

Write w = (d1 + 1)d2 + λ whereλ belongs to the non-empty interval[1, 3d1 − d2 − 1].

– The next rectangular support with a non-zero number of stopping sets is(d1+1)(d2+1).

The number of zeros isβ = d1 + 1 − λ varying in the range[d2 − 2d1 + 2, d1]. Non-

obvious stopping sets are enumerated by selecting the location and permuting theβ

zeros insideR(S). Their number is

(d1 + 1− λ)!

(

d2 + 1

d1 + 1− λ

)(

d1 + 1

λ

)(

n1

d1 + 1

)(

n2

d2 + 1

)

.

– TakeR(S) with size (d1 + 1)(d2 + 2). We haveβ = 2d1 + 2 − λ inside the interval

[d2− d1+3, 2d1+1]. As made before, we find2r0 + r1 = λ andr2 = d1+1+ r0− λ.

March 7, 2016 DRAFT

76

The columns inR(S) have at most one zero and rows have at most two zeros. The

number of these non-obvious stopping sets is
∑

2r0+r1=λ

(

d1 + 1

r0

)(

d1 + 1− r0
r1

)

(d2 + 2)!

2r2(d2 − 2d1 + λ)!

(

n1

d1 + 1

)(

n2

d2 + 2

)

.

– ConsiderR(S) with size(d1+2)(d2+1). Hereβ = d2+d1+2−λ contradicts Lemma 2

becaused2 > 2d1. We haveτw = 0. All remaining rectangles (smaller or larger) have

no stopping sets.

• The casew = d1(d2 + 3).

– The number of obvious stopping sets in ad1 × (d2 + 3) rectangular support is
(

n1

d1

)(

n2

d2 + 3

)

.

– ConsiderR(S) with size (d1 + 1)(d2 + 1). Hereβ = d2 − 2d1 + 1 is restricted to the

interval]1, d1[given the constraints2d1 < d2 < 3d1−1 for d1 > 2. For d1 = 2, d2 = 6

is the only valid value, withβ = 3. The number of non-obvious stopping sets is (for

d1 ≥ 2)

β!

(

d1 + 1

3d1 − d2

)(

d2 + 1

2d1

)(

n1

d1 + 1

)(

n2

d2 + 1

)

.

– ConsiderR(S) with size (d1 + 1)(d2 + 2). The number of zeros isβ = d2 − d1 + 2 ∈
]d1 + 2, 2d1 + 1[. The number of non-obvious stopping sets is given by

∑

2r0+r1=3d1−d2

(

d1 + 1

r0

)(

d1 + 1− r0
r1

)

(d2 + 2)!

2r2d1!

(

n1

d1 + 1

)(

n2

d2 + 2

)

,

wherer2 = d2 − 2d1 + 1 + r0. For d2 = 2, the above expression is valid ford2 = 6 only.

– ConsiderR(S) with size(d1+1)(d2+3). Hereβ = d2+3. All columns in the rectangle

have one zero. Rows can have up to three zeros. The number of non-obvious stopping

sets is

∑

3r0+2r1+r2=3d1−d2

(

d1 + 1

r0

)(

d1 + 1− r0
r1

)(

d1 + 1− r0 − r1
r2

)

(d2 + 3)!

2r26r3

(

n1

d1 + 1

)(

n2

d2 + 3

)

,

wherer3 = d1+1−r0−r1−r2. The above expression is also valid for(d1, d2) = (2, 6).

– The rectangular supportR(S) of size (d1 + 2)(d2 + 1) gives no stopping sets. The

remaining rectangular supports from Figure 14 and Table IV yield no stopping sets for

w = d1(d2 + 3).

March 7, 2016 DRAFT

77

Recall that a maximal rectangle width ofd2 + 3 should be considered ford1 > 2 and it

goes up tod2 + 4 for d1 = 2 as shown in Table IV. New obvious stopping sets are found,

they appear ford1 = 2 only with a rectangular width equal tod2 + 4. Their rectangular

support corresponds to the sizes in boldface in Table IV forw > d1(d2 + 3):
(

n1

d1

)(

n2

d2+4

)

obvious stopping sets of sized1 × (d2 + 4),
(

n1

d1+1

)(

n2

d2+4

)

obvious stopping sets of size

(d1 + 1) × (d2 + 4), and
(

n1

d1+2

)(

n2

d2+4

)

obvious stopping sets of size(d1 + 2) × (d2 + 4).

Given that this theorem enumerates stopping sets forw ≤ (d1+1)(d2+1), one should only

count obviousd1 × (d2 + 4) sets.

• The cased1(d2 + 3) < w < (d1 + 1)(d2 + 1).

Write w = d1(d2+3)+λ whereλ ∈ [1, d2−2d1]. The results for the three rectangles listed

below are valid ford1 ≥ 2.

– ConsiderR(S) of size(d1 + 1)(d2 + 1). We haveβ = d2− 2d1 + 1− λ varying in the

range[1, d2 − 2d1]. The number of non-obvious stopping sets is

(d2 − 2d1 + 1− λ)!

(

d1 + 1

3d1 − d2 + λ

)(

d2 + 1

2d1 + λ

)(

n1

d1 + 1

)(

n2

d2 + 1

)

.

– Now considerR(S) of size (d1 + 1)(d2 + 2). We haveβ = d2 − d1 + 2 − λ ∈
[d1 + 2, d2 − d1 + 1]. As done before, the expression of the number of non-obvious

stopping sets involvesr0 andr1 as follows.
∑

2r0+r1=3d1−d2+λ

(

d1 + 1

r0

)(

d1 + 1− r0
r1

)

(d2 + 2)!

2r2(d1 + λ)!

(

n1

d1 + 1

)(

n2

d2 + 2

)

,

wherer2 = d1 + 1− r0 − r1.

– We consider the next(d1 + 1)(d2 + 3) rectangular support. Nowβ = d2 + 3 − λ ∈
[2d1 + 3, d2 + 2]. The number of non-obvious stopping sets is

∑

3r0+2r1+r2=3d1−d2+λ

(

d1 + 1

r0

)(

d1 + 1− r0
r1

)(

d1 + 1− r0 − r1
r2

)

(d2 + 3)!

2r26r3λ!

(

n1

d1 + 1

)(

n2

d2 + 3

)

,

wherer3 = d1 + 1− r0 − r1 − r2.

– The remaining larger rectangular supports give no stoppingsets, except for(d1+1)(d2+

4) for d1 = 2 andd2 = 6 whereτw = 22050. These22050 rectangles of size3 × 10,

whereβ = 10 andw = 20, have one zero in each column but a row may have up to

four zeros.

March 7, 2016 DRAFT

78

• The last casew = (d1 + 1)(d2 + 1).

– Obvious stopping sets are given by
(

n1

d1 + 1

)(

n2

d2 + 1

)

.

– The nextR(S) from the table is(d1+1)× (d2+2). We haveβ = d1+1. The number

of stopping sets is

(d1 + 1)!

(

d2 + 2

d1 + 1

)(

n1

d1 + 1

)(

n2

d2 + 2

)

.

– Now consider the(d1 + 1)× (d2 + 3) rectangle. We haveβ = 2d1 +2. The number of

stopping sets is

∑

3r0+2r1+r2=d1+1

(

d1 + 1

r0

)(

d1 + 1− r0
r1

)(

d1 + 1− r0 − r1
r2

)

(d2 + 3)!

2r26r3(d2 − 2d1 + 1)!

(

n1

d1 + 1

)(

n2

d2 + 3

)

,

wherer3 = d1 + 1− r0 − r1 − r2, the above expression being valid ford1 ≥ 2.

– No stopping sets are found for the remaining three rectangular supports ford1 > 2. On

the other hand, ford1 = 2, stopping sets are found only with a rectangle(d1+1)(d2+4).

In this case, we haveβ = 3(d1 + 1). The number of non-obvious stopping sets is

τw = 11130 for (d1, d2) = (2, 5) and τw = 111300 for (d1, d2) = (2, 6).

Q.E.D.

ACKNOWLEDGMENT

The work of Joseph J. Boutros was supported by the Qatar National Research Fund (QNRF),

a member of Qatar Foundation, under NPRP project 5-401-2-161 on layered coding. The authors

would like to thank Dr. Mireille Sarkiss, from CEA-LIST Paris, for her precious support.

March 7, 2016 DRAFT

79

REFERENCES

[1] N. Abramson, “Cascade decoding of cyclic product codes,” IEEE Trans. on Comm. Technology, vol. 16, no. 3, pp. 398-402,

June 1968.

[2] M. Alipour, O. Etesami, G. Maatouk, and A. Shokrollahi, “Irregular product codes,”IEEE Information Theory Workshop,

pp 197-201, Lausanne, Sept. 2012.

[3] D. Augot, M. El-Khamy, R.J. McEliece, F. Parvaresh, M. Stepanov, and A. Vardy, “Algebraic list decoding of Reed-Solomon

product codes,”Algebraic and Combinatorial Coding Workshop, pp. 210-213, Sept. 2006.

[4] E. Arıkan, “Channel polarization: A method for constructing capacity achieving codes for symmetric binary-input

memoryless channels,”IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 3051-3073, July 2009.

[5] S. Benedetto and G. Montorsi, “Unveiling turbo-codes: some results on parallel concatenated coding schemes,”IEEE Trans.

on Inf. Theory, vol. 42, no. 2, pp. 409-428, March 1996.

[6] C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding: Turbo-codes,”IEEE Trans. on

Communications, vol. 44, pp. 1261-1271, Oct. 1996.

[7] R.E. Blahut,Algebraic codes for data transmission, Cambridge University Press, 2003.

[8] B. Bollobás,Modern graph theory, Springer, 1998.

[9] J.J. Boutros, O. Pothier, and G. Zémor, “Generalized low density (Tanner) codes,”IEEE Intern. Conf. on Comm. (ICC),

vol. 1, pp. 441-445, Vancouver, June 1999.

[10] J.J. Boutros, G. Zémor, A. Guillén i Fàbregas, and E.Biglieri, “Full-diversity product codes for block erasureand block

fading channels,”Information Theory Workshop, pp. 313-317, Porto, May 2008.

[11] J.J. Boutros, G. Zémor, A. Guillén I Fàbregas, and E.Biglieri, “Generalized low-density codes with BCH constituents for

full-diversity near-outage performance,”IEEE Intern. Symp. on Inform. Theory (ISIT), pp. 787-791, Toronto, July 2008.

[12] J.J. Boutros, “Diversity and coding gain evolution in graph codes,”Information Theory and Applications Workshop, pp. 34-

43, San Diego, Feb. 2009.

[13] J.J. Boutros, A. Guillén i Fàbregas, E. Biglieri, andG. Zémor, “Low-density parity-check codes for nonergodicblock-fading

channels,”IEEE Trans. Inf. Theory, vol. 56, no. 9, pp. 4286-4300, Sept. 2010.

[14] E.R. Canfield and B.D. McKay, “Asymptotic enumeration of integer matrices with constant row and column sums”,

Combinatorics, arXiv:math/0703600, revised June 2009.

[15] J.H. Conway and R.K. Guy.The Book of Numbers. New York: Springer-Verlag, pp. 94-96, 1996.

[16] C. Greenhill and B.D. McKay, “Asymptotic enumeration of sparse nonnegative integer matrices with specified row and

column sums,” Advances in Applied Mathematics, vol. 41, pp.459-481, 2008, revised April 2012.

[17] C. Di, D. Proietti, I.E. Telatar, T.J. Richardson, and R.L. Urbanke, “Finite-length analysis of low-density parity-check

codes on the binary erasure channel,”IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1570-1579, Jun. 2002.

[18] A.G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey on network codes for distributed storage,”IEEE Proceedings,

vol. 99, pp. 476-489, March 2011.

[19] P. Elias, “Error-free coding,”IRE Trans. Inf. Theory, vol. 4, no. 4, pp. 29-39, Sept. 1954.

[20] M. El-Khamy and R.J. McEliece, “Iterative algebraic soft-decision list decoding of Reed-Solomon codes,”IEEE Journal

on Selected Areas in Communications, vol. 24, no. 3, pp. 481-490, March 2006.

[21] K.S. Esmaili, L. Pamies-Juarez, and A. Datta, “CORE: Cross-object redundancy for efficient data repair in storage systems,”

IEEE Big Data, pp. 246-254, Oct. 2013.

March 7, 2016 DRAFT

http://arxiv.org/abs/math/0703600

80

[22] D.F. Freeman and A.M. Michelson, “A two-dimensional product code with robust soft-decision decoding,”IEEE Trans.

Comm., vol. 44, no. 10, pp. 1222-1226, Oct. 1996.

[23] R.G. Gallager,Low-density parity-check codes, Ph.D. thesis, Massachussets Institute of Technology Press, 1963.

[24] P. Gopalan, V. Guruswami, and P. Raghavendra, “List decoding tensor products and interleaved codes,”SIAM J. Comput.,

vol. 40, no. 5, pp. 1432-1462, Oct. 2011.

[25] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the locality of codeword symbols,”IEEE Trans. Inf. Theory,

vol. 58, no. 11, pp. 6925-6934, Nov. 2012.

[26] A. Guillén i Fàbregas, “Coding in the block-erasure channel,” IEEE Trans. Inf. Theory, vol. 52, no. 11, pp. 5116-5121,

Nov. 2006.

[27] A. Guillén i Fàbregas and G. Caire, “Coded modulationin the block-fading channel: Coding theorems and code

construction,”IEEE Trans. Inf. Theory, vol. 52, no. 1, pp. 91-114, Jan. 2006.

[28] V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon and algebraic-geometry codes,”IEEE Trans. Inf.

Theory, vol. 45, no. 6, pp. 17571767, June 1999.

[29] T. Helleseth, T. Klove, and O. Ytrehus, “Generalized Hamming weights of linear codes,”IEEE Trans. Inf. Theory, vol. 38,

no. 3, pp. 1133-1140, May 1992.

[30] J. Jiang, K.R. Narayanan, “Iterative soft decoding of Reed-Solomon codes,”IEEE Communications Letters, vol. 8, no. 4,

pp. 244-246, April 2004.

[31] R. Knopp and P.A. Humblet, “On coding for block fading channels,”IEEE Trans. Inf. Theory, vol. 46, no. 1, pp. 189-205,

Jan. 2000.

[32] F.R. Kschischang, Product Codes, J.G. Proakis (ed),Wiley encyclopedia of telecommunications, pp. 2007-2012, vol. 4,

Hoboken, NJ, 2003.

[33] F.R. Kschischang, B.J. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product algorithm,”IEEE Trans. Inf. Theory,

vol. 47, pp. 498-519, Feb. 2001.

[34] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi and S. Rhea, H. Weatherspoon,

W. Weimer, C. Wells, and B. Zhao, “Oceanstore: An architecture for global-scale persistent storage,”9th Int. Conf. on

Architectural Support Programm, pp. 190-201, Cambridge, Massachusetts, 2000.

[35] S. Kudekar, T. Richardson, and R.L. Urbanke, “Spatially coupled ensembles universally achieve capacity under belief

propagation,”IEEE Trans. Inf. Theory, vol. 59, no. 12, pp. 7761-7813, Dec. 2013.

[36] S. Kudekar, M. Mondelli, E. Sasoglu, and R. Urbanke, “Reed-Muller codes achieve capacity on the binary erasure channel

under MAP decoding,” ArXiv 1505.05831, 2015.

[37] S. Kumar and H.D. Pfister, “Reed-Muller codes achieve capacity on erasure channels,” ArXiv 1505.05123, 2015.

[38] A. Lapidoth, “Convolutional codes and finite interleavers for the block erasure channel,”Mobile Communications Advanced

Systems and Components, Lecture Notes in Computer Science, Springer Berlin Heidelberg, vol. 783, pp. 113-120, May 2005.

[39] S. Lin and D.J. Costello,Error control coding, Prentice Hall, 2nd edition, 2004.

[40] F.J. MacWilliams and N.J.A. Sloane,The theory of error-correcting codes, North-Holland, 1977.

[41] E. Malkamaki and H. Leib, “Evaluating the performance of convolutional codes over block fading channels,”IEEE Trans.

Inf. Theory, vol. 45, no. 5, pp. 1643-1646, July 1999.

[42] F. Oggier and A. Datta, “Coding techniques for repairability in networked distributed storage systems,”Foundations and

Trends in Communications and Information Theory, vol. 9, pp. 383-466, 2013.

March 7, 2016 DRAFT

81

[43] G.C. Onwubolu and D. Davendra,Differential evolution: a handbook for global permutation-based combinatorial

optimization, Springer, 2009.

[44] Y. Polyanskiy, H.V. Poor, and S. Verdú, “Channel coding rate in the finite blocklength regime,”IEEE Trans. Inf. Theory,

vol. 56, no. 5, pp. 2307-2359, May 2010.

[45] R. Pyndiah, “Near-optimum decoding of product codes: Block turbo codes,”IEEE Trans. Comm., vol. 46, no. 8, pp. 1003-

1010, Aug. 1998.

[46] D. Rankin and T.A. Gulliver, “Asymptotic performance of product codes,”IEEE International Conference on Communi-

cations, pp. 431-435, Vancouver, June 1999.

[47] K.V. Rashmi, N.B. Shah, D. Gu, H. Kuang, D. Borthakur, and K. Ramchandran, “A solution to the network challenges

of data recovery in erasure-coded distributed storage systems: A study on the Facebook warehouse cluster,”Proc. USENIX

HotStorage, June 2013.

[48] S.R. Reddy and J.P. Robinson, “Random Error and Burst Correction by Iterated Codes,”IEEE Trans. Inf. Theory, vol. 18,

no. 1, pp. 182-185, Jan. 1972.

[49] T.J. Richardson and R.L. Urbanke,Modern coding theory, Cambridge University Press, 2008.

[50] E. Rosnes and O. Ytrehus, “Turbo decoding on the binary erasure channel: Finite-length analysis and turbo stoppingsets,”

IEEE Trans. Inf. Theory, vol. 53, no. 11, pp. 4059-4075, Nov. 2007.

[51] E. Rosnes, “Stopping set analysis of iterative row-column decoding of product codes,”IEEE Trans. Inf. Theory, vol. 54,

no. 4, pp. 1551-1560, April 2008.

[52] A. Sarwate, “Soft decision decoding of Reed-Solomon product codes,”EECS 229B Final Project Report, May 2005.

[53] M. Schwartz, P.H. Siegel, and A. Vardy, “On the asymptotic performance of iterative decoders for product codes,”IEEE

International Symposium on Information Theory, pp. 1758-1762, Sept. 2005.

[54] M. Schwartz and A. Vardy, “On the stopping distance and the stopping redundancy of codes,”IEEE Trans. Inf. Theory,

vol. 52, no. 3, pp. 922-932, March 2006.

[55] A. Sella and Y. Be’ery, “Convergence analysis of turbo decoding of product codes,”IEEE Trans. Inf. Theory, vol. 47, no.

2, pp. 723-735, Feb. 2001.

[56] N. Sendrier, “Codes correcteurs d’erreurs à haut pouvoir de correction,” Thèse de Doctorat de l’Université Paris 6, in

French, Dec. 1991.

[57] N.J.A Sloane, The On-Line Encyclopedia of Integer Sequences. See sequence A000041 at oeis.org/A000041.

[58] R.P. Stanley,Enumerative combinatorics, Cambridge Univ. Press, vol. 1, 2nd edition, 2012.

[59] R. Storn and K. Price, “Differential evolution - A simple and efficient heuristic for global optimization over continuous

spaces,”Journal of Global Optimization, vol. 11, pp. 341-359, 1997.

[60] R.M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inf. Theory, vol. 27, no. 5, pp. 533-547,

Sept. 1981.

[61] J.-P. Tillich and G. Zémor, “Optimal cycle codes constructed from Ramanujan graphs,”SIAM J. Discrete Mathematics,

vol. 10, no. 3, pp. 447-459, 1997.

[62] L.M.G.M. Tolhuizen, “More results on the weight enumerator of product codes,”IEEE Trans. Inf. Theory, vol. 48, no. 9,

pp. 2537-2577, Sept. 2002.

[63] D.N.C. Tse and P. Viswanath,Fundamentals of Wireless Communication, Cambridge University Press, 2005.

[64] W.M.C.J. Van Overveld, “Multiple-burst error-correcting cyclic product codes (Corresp.),”IEEE Trans. Inf. Theory, vol. 33,

no. 6, pp. 919-923, Nov. 1987.

March 7, 2016 DRAFT

82

[65] D.P. Varodayan, “Investigation of the Elias product code construction for the binary erasure channel”, B.A.S. Thesis,

University of Toronto, Dec. 2002.

[66] S. Wainberg, “Error-erasure decoding of product codes(Corresp.),”IEEE Trans. on Inf. Theory, vol. 18, no. 6, pp. 821-823,

Nov. 1972.

[67] V.K. Wei, “Generalized Hamming weights for linear codes,” IEEE Trans. Inf. Theory, vol. 37, no. 5, pp. 1412-1418,

Sept. 1991.

[68] L.-J. Weng and G. Sollman, “Variable redundancy product codes,” IEEE Trans. on Comm. Technology, vol. 15, no. 6,

pp. 835-838, Dec. 1967.

[69] S.B. Wicker and V.K. Bhargava, eds.,Reed-Solomon Codes and their Applications. New York: IEEE Press, 1994.

[70] J.K. Wolf, “On codes derivable from the tensor product of check matrices,”IEEE Trans. Inf. Theory, vol. 11, no. 2,

pp. 281-284, April 1965.

March 7, 2016 DRAFT

	I Introduction
	I-A Paper content and structure
	I-B Main results

	II Mathematical notation and Terminology
	III Graph representations for diversity
	III-A Non-compact graph
	III-B Compact graph
	III-C Diversity and codes on graphs
	III-D Rootcheck nodes and root symbols
	III-E The rootcheck order in product codes

	IV Stopping sets for MDS components
	IV-A Decoding erasures
	IV-B Stopping set definition
	IV-C Stopping sets and subgraphs of product codes
	IV-D Enumeration of stopping sets

	V Edge coloring algorithm under constraints
	V-A Hand-made edge coloring and its limitations
	V-B The algorithm
	V-C Applications
	V-D Random edge coloring

	VI Code performance in presence of erasures
	VI-A Block erasures
	VI-B Independent erasures
	VI-C Unequal probability erasures

	VII Conclusions
	References

