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Abstract

There is a sizable literature on investigating the minimum and
maximum numbers of cycles in a class of graphs. However, the answer
is known only for special classes. This paper presents a result on the
smallest number of cycles in hamiltonian 3-connected cubic graphs.
Further, it describes a proof technique that could improve an upper
bound of the largest number of cycles in a hamiltonian graph.

1 Introduction

One of the oldest problems in graph theory that in fact goes back to the end
of the 19th century, see [1], is the question: “What are the smallest and the
largest number of cycles in a class of graphs?”

It turns out that it is most convenient to study the largest number of
cycles in a graph G = (V, E) with respect to its cyclomatic number r(G) =
|E| —|V| + 1. Let M(r) be the largest number of cycles among all graphs
with the cyclomatic number r. In 1897 Ahrens showed that M(r) < 2" —
1 [1]. A big step forward is due to Entringer and Slater [6]. They showed
that when studying the value of M(r) one can confine himself/herself to
cubic graphs. Namely, they proved that there is a cubic graph with the
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cyclomatic number r and M(r) cycles. Also they conjectured that M(r) is
asymptotically equal to 277!, There are upper bounds on M(r) where the
error-term is not exponential, see for example [12] and the references given
there. Aldred and Thomassen [3] proved that M(r) < 122" + o(2"). This
is still the only upper bound that improves on the coefficient of the leading
term. As to the lower bounds, the best one so far was published recently
in [8], where the error term is exponential.

As for the smallest number of cycles, it has been shown in [4] that a
2-connected cubic graph of n vertices contains at least (n? + 14n)/8 cycles,
and that the bound is best possible. In the same paper, it was conjectured
that the difference between the 2-connected and 3-connected cubic graphs,
in a sense, is dramatic. More precisely, it was conjectured that f(n), the
minimum number of cycles in a 3-connected cubic graph, is superpolynomial.
The conjecture was proved in [2]. It is shown there that, for n sufficiently
large, o’ < f(n) < 27" In the same paper, it is suggested that replacing
the condition 3-connected by the condition cyclically 4-edge-connected may
increase the growth of cycles’ number to be exponential in terms of n. R.
Aldred has conjectured (unpublished) that restricting the graphs to be cubic
hamiltonian 3-connected might lead to the same property. The first main
result of this paper supports Aldred’s conjecture. We conjecture that a graph
H,,,, defined in this paper, has the smallest number of cycles among all cubic
hamiltonian 3-connected graphs. Then we show that the number of cycles
in H,, grows faster than Fibonacci sequence. The second result provides a
proof technique whose refinement could lead to an improvement of the upper
bound on the largest number of cycles in a graph.

Our research has been motivated by a computer science application. Cy-
clomatic complexity is a software metric used to quantify the structure of
a computer program. A program source code can be modeled by a Flow
Control Graph (FCG) in which nodes and edges represent code blocks and
the possible execution paths among them [I0]. The cyclomatic complexity
is based on the cyclomatic number of a program FCG. A software of high
cyclomatic complexity indicates a large number of possible execution paths.
Such a software would be difficult to test and expensive to maintain. As
pointed out in [11] and [13], one should estimate cyclomatic complexity in
advance during the software design to avoid a complex code structure. There-
fore, investigating the number of cycles in graphs could help developers and
automated code generators in avoiding structures that may lead to high cy-
clomatic complexity. It also could help in defining software design templates



that lead to building low cyclomatic complexity software.

2 Preliminaries

In what follows it is assumed that G = (V, E) is a cubic hamiltonian 3-
connected graph, where V' = {vg, ..., v,_1}, H = vgv1v3...v,_109 is a hamilto-
nian cycle of G. The set of edges in GG but not in H will be denoted by S, and
called spokes. We will say that a set of spokes F' C S forms a cycle if there
is a cycle C' in G so that all spokes of F' belong to C' and no other spoke is in
C. Such cycle C will be called an F-cycle. v; —v; denotes the path v;v;1;...v;,
which is a part of H, indices taken modulo n. E(T) stand for the edge set of
a graph T'. The fact that a vertex vy is an internal vertex of the path v; —v;
will be denoted by v; < v; < v;. The expression v; < vy < v; < vy, is a
shorthand for v; < vx, < v; and v < v; < vp,. The next lemma constitutes a
simple but useful observation.

Lemma 1. Let F' be a non-empty set of spokes, |F| = k, and let the spokes
of ' be incident with vertices v;,, ..., Vi, , 11 < ... < ig. If F' forms a cycle C
in G, then E(C) = E; or E(C) = Es, where

k
Ey=FU U E(/Ui2j71 - Ui2j)7 and
j=1

k—1

E2 =FU Ul E('Uin — ’Ui2j+1) U E('Ui% — Ui1)'
]:

In particular, F' forms at most two cycles in G.

Proof. Let F be a non-empty set of spokes. It is worth noting that no vertex
is incident with both an edge in F; — F' and an edge in F, — F. Clearly, both
FE and F5 induce 2-regular graphs. The set F' forms a cycle in G if E; or Ey
induces a cycle.

It will be shown that there are at most two ways how to choose the set
H' of edges from the hamiltonian cycle H so that F' U H' forms a cycle of
G. Suppose that v;, v;, and v,,, are vertices of G, v; < v; < v, so that each
of the three vertices is incident to a spoke of F, and for all k,7 < k < j, and
j < k < m, the vertex v is not incident to a spoke of F. Then either all the
edges of the path v; — v; belong to H' and no edge of the path v; — v, is in
H' or no edge of the path v; — v; is in H’ and the path v; — vy is in H'. In
general, if v;,, ..., v, , %91 < ... < ig, were vertices of G incident to a spoke of
F, then either all the edges of paths v;, — vi,, Vi, — Viy, ..., Uiy, _, — Vi, , Would
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be in H’', or all the edges of the paths v;, — vy, vi, — Vg, ..., Uiy, — ¥4y, Would
be in H'. Thus, if F forms a cycle in GG, then the edge set of C' is either E;
or E,, and consequently, F' forms at most two cycles in G. O

3 Smallest Number of Cycles

Let Hy, = (V,E) be a cubic hamiltonian 3-connected graph where n > 2,
V = {wg,v1, ..., v25_1}, and E comprises a hamiltonian cycle C' = vy, vy, ..., Va5 _1, Vg
and a set of spokes S,,, |S,,| = n such that:
ep = VU1 €5,
{’Ui_l’Ugn_i_g €S, for 1<i<n-—1, 7is odd

€ = . ..
Vig1Von_i € Sy, for 2<i<n—1, 7is even

Up—1Uns1 € Sp, n is odd
Cn—-1 =

Up—aUn € Sy, N is even

See Figure [[] and Figure 2l for Hig and H;s.

15 14 13 12 11 10 9 8

Figure 1: Hqyg

We believe that:

Conjecture 2. The graph Hs, has the smallest number of cycles among all
hamiltonian cubic 3-connected graphs on n vertices.

Let I(n) = (S,, E') denote the graph where the vertex set is the set
of spokes of Hy, and two vertices are adjacent if the corresponding spokes
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Figure 2: Hig

intersect. Since Ha, is 3-connected, I(n) is a connected graph. I(n) being a
path is one reason to believe that Conjecture 2]is true. Note that I(n) is a
path with the first vertex ey and the last e,,_;.

Let a be the edge (vo, v2,-1), and (3 be the edge (v,,_1,v,). The following
claim states a very important property of the graph Hs,.

Claim 3. Let H be a graph obtained by removing an edge e € {«, 3, eg, €p_1}
from Hsy, and suppressing two vertices of degree 2. Then H is isomorphic to
H2n—2~

Proof. The situation after removing the edge a or eg is clear from Figure Bl
and Figure [l respectively. The situation after deleting the edge 3 or e,_; is
analogous. O

a new

14 13 12 11 10 9 8

Figure 3: Hig —a >~ Hyy
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Figure 4: H16 — €y = H14

Let FF C S, be a set of spokes. The Basic Interval Representation of F)
the BIR of F) is a partition of F' into minimal number of parts Fi, ..., F} such
that (i) For each i,7 = 1,2,...,k, F; is a set of spokes so that the indices of
spokes in F; are consecutive numbers, that is, they form an interval; (ii) If
es € Fy e, € Fj, and @ < 7, then s < .

Clearly, for each set F' its BIR is determined in a unique way. The part
Fy, will be called the last part of BIR of F.

If a set of spokes comprises spokes so that their indices form an interval,
then for short F' will be called a set of consecutive spokes.

Lemma 4. Let F' be a set of consecutive spokes. Then there are two F-cycles
in Ho,. Further, if |F| is even, then one of the two cycles contains both edges
a and 3, while the other cycle contains neither o nor 3. For |F| odd, one of
the two cycles contains o and not 3, the other contains 5 but not «.

Proof. The statement follows directly from Lemma [Il It is easy to check in
this case that both F; and FE5 induce a single cycle. O

As a direct consequence:

Corollary 5. Let Fy, ..., Fi.,k > 2, be BIR of a set F' of spokes of Hs,,. Then
there is at most one F-cycle in Hy,. An F-cycle C exists iff | F;| is even for
all i =2,...,k — 1. Further, C' contains the edge « (the edge () if and only if
|F1| is even (|F}| is even).

Proof. Tt follows directly from the above lemma. O



Let ¢, be the total number of cycles in H,,, and let a,, stand for the num-
ber of cycles in Hs, containing the edge a. By inspection, using Corollary [5]
we get, co = 7,c3 = 14,¢4 = 26,c5 = 46, and ap = 4, a3 = 7, ay = 12, and
as = 20. Further, let E, and O,, be the number of cycles C' in Hs, containing
the edge o so that if Fio is the set of all spokes of C', then the last part in
the BIR of F¢ is of even, or odd parity, respectively. For short, these cycles
will be called a—even and a—odd cycles, respectively. By definition,

an:En+On

Clearly, if F'is a set of spokes of H,, not containing the last spoke e,,_1,
then there is an F-cycle in Ho, iff there is an F’-cycle in Hs,_s.

Lemma 6. Forn >4, (i) O, = ay,_1; (11) E, = a1 — Opa.

Proof. Let C be an a—odd cycle in Hy,. If F, the set of spokes of C contains
the last spoke e, _1, then the Fo — e,_1 cycle is an a—even cycle of Hy, o,
otherwise Fg-cycle forms an a—odd cycle of H,, . Thus, O, = E,_1 +
On-1 = a1 and (i) follows. For C being an a—even cycle, if Fo does not
contain the last spoke e,,_1, then Fg-cycle forms an a—even cycle of Hs, o,
otherwise F — e, _1 cycle forms an a—odd cycle of Hy, o that contains e, _;
the last spoke of Hy, 5. Hence, £, = E,, 1+ E, o2 = (a1 —0,-1)+ (@p_o—
On—2) = an_1 — Op_9, since O, _1 = a,_s. O

Corollary 7. Forn >4, a, = a1 + p_g + 1.

Proof. By Lemmald, «,, = E,,+0,, = 20, _1—0O,,_2 = 20,1 — v, _3. We show
by induction that, forn >4, a, = a1+ a, o+ 1. Itisay =12=7+4+1.
By the induction hypothesis, for n > 4, a,,_1 — a,,_3 = a,,_o + 1. Therefore,
ap =20, 1 — 03 = p_1+ (A1 — p_3) = Q1 + Qo + 1. O

Now it is possible to proceed with counting the number of cycles in Hy,.

Theorem 8. The number of cycles of Ha, is:




Proof. Since the number of cycles of Hs, not containing the edge a equals
the number of cycles of Hs,_o, then:

Cn = Cp—1+ Qy
To determine ¢,, we first prove:

Cn = Qpio — (n+3) for n > 2.

Using the initial values given above, the formula can be verified to be true
for n = 2. For n > 2, by the induction hypothesis and Corollary [, it is
Cn=Cno1+ y=0apy1 —(Nn+2)+a, =2 — (n+3).

Solving the recurrence relation «,, = «a,_1 + a,_s + 1, with the initial
conditions ap = 4, a3 = 7, one gets:

) (5 635 -

which in turn implies:

() () ) (5 e

O

Remark. The “pseudo” Fibonacci sequence {c,} is identical to sequence
A001924 electronically published at The On-Line Encyclopedia of Integer
Sequences (OEIS) - https://oeis.org/A001924. The same sequence appears
also in page 58 of [5], and in [9].

4 Largest Number of Cycles

It is widely believed, but not proved, that the largest number of cycles among
all cubic graphs is attained at a hamiltonian graph. In this section it is shown
that the largest number of cycles among all hamiltonian cubic graphs on n
vertices, denoted by T'(n), can be upper bounded by T'(n) < 22+ — f(n),
where f is an exponential function. We note that the cyclomatic number
r of a cubic graph on n vertices equals § + 1. This result is superseded by
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Aldred and Thomasen in [3] who proved that M (r) < 132"+ o(2"). However,
we believe that a refinement of the method used here could lead to further
improvement of the above mentioned result.

Theorem 9. T'(n) < 237! — 2:72Vn=3,

Before proving the statement, some more notions are introduced. Two
spokes e = v;v;, f = vpv,, are intersecting if the path v; — v; contains one of
the two vertices vy, vy, and the path v; — v; contains the other of the two
vertices, otherwise it is said that they are parallel. Further, let F' be a set of
spokes, e, f € F. Then, e and f are consecutive spokes in I, if each g € F,
e # g # f, either intersects both e and f, or g is parallel to both e and
f. Tt is easy to see that if e, f are two spokes of F' incident with vertices
Vj, Vj, Uk, Uny, Where, say v; < v; < v < ¥py, then e and f are consecutive iff
either no internal vertex of the paths v; —v; and vy — v, or no internal vertex
of the paths v; — v, and v, — v; is incident with a spoke in F'.

Proof. We start with a series of claims.

Claim [9L.1. Let F be a set of spokes so that e, f be consecutive spokes in
F'; and the number of spokes of F' intersecting both e and f be even. Then
F forms at most one cycle in G.

Proof of Claim[4.1. The statement is immediate for |F| = 2. Assume
now |F| > 3. Let spokes e, f be incident to vertices v;,v;, vy, vy, Where,
v; < Vj < U < Up,. In addition, we suppose WLOG that no internal vertex
of the paths v; — v; and vy — vy, is incident with a spoke in F'. Since the
number of spokes in F' intersecting e and f is even, hence, we have that if a
cycle C formed by the spokes of F' contains all edges of the path v; —v;, then
C would have to contain also all the edges of the path v, — v,,. However,
then the two path together with e and f form a cycle. Therefore, at least
one of Fy, By defined in Lemma [Il does not induce a single cycle. Thus, F
forms at most one cycle in G.

Claim [0.2. Let F,|F| > 1, be a set of spokes, e € F' be so that no spoke
in I intersects e. Then F' forms at most one cycle in G.

Proof of Claim[9.2. Let e = v;v;. Suppose first that both v; — v; path
and v; — v; path contain an internal vertex incident to a spoke in F'. Then
clearly F' does not form any cycle in GG. Otherwise, let no internal vertex of
the path P = v; — v; be incident to a spoke in F'. Then e and the path P
form a cycle, hence at least one of E7, Fs does not induce a single cycle.



Claim [9.3. There is in G a set F' of spokes, |F| > § — 2 [y/n] so that
either F' contains a pair of consecutive spokes, or F' contains a spoke that is
intersected by no spoke in F'.

Proof of Claim[3.3. First, let P be a partition of the set 0,1,...,n — 1
into k parts Py, ..., P, so that P; contains a set of consecutive integers, and
k< |P| <k+2fori=1,.. k. To see that such partition is possible, set
k = |y/n]. Choose t so that (t —1)> < n < t*. Then k =t — 1, and the
existence of P follows from k(k+2)=(t—1)(t+1)=¢*—1>n.

Suppose first that there is a spoke e = v;v;,€ G,7 < j so that both
1,] € P, for some 1 < m < k. To get a set F' with the required properties it
suffices to remove from S, the set of all spokes, those spokes that are incident
to internal vertices of the path v; —v;. As at most & spokes can be removed,
and e is not intersected by any spoke in F', the proof follows.

In the other case, let T" be the set of spokes incident to vertices in P;.
Since no spoke in 7T is incident to two vertices in P;, by the pigeon hole
principle, there is an m, 1 < m < k, so that there are at least two spokes
in T, say e = v;v, and f = vjw, 4,7 € P, so that a,b belong to P,,. Let
1 < j,a < b. To get a requested set I’ of spokes, it suffices to remove from S
all spokes incident to an internal vertex of v; —v;, and all spokes incident to
an internal vertex of v, — vy, As |P| < k+2 for all ¢t =1,..., k, at most 2k
spokes can be removed. Thus, |F| > 5 — 2k.

Now we are ready to prove the theorem. Let F' be a set of spokes guaran-
teed by Claim [9l3. Suppose that F' contains two consecutive spokes e and f,
and that there are t spokes in F' intersecting both e and f. Then there are
1202lFI=1=2 — 9IFI=3 gubsets of F satisfying the assumption of Claim @1, and
the statement follows. In the case that F' contains a spoke not intersected by
any spoke in F, then there are 2/¥1=1 subsets of F fulfilling the assumptions
of Claim [92. The proof is complete. O

5 Computational Results

To provide supporting evidence for Conjecture 2l on the smallest number of
cycles, we used an extensive computer search to verify it for all Hy,, 2n < 16.
It turns out that there are several extremal graphs for small values of 2n
vertices as shown in Table [II
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2n  Number of Graphs

6 1
8 2
10 2
12 )
14 7
16 14

Table 1: Number of Extremal Graphs Exhibiting The Smallest Number of
Cycles Including H,,

Figures Bl to 8 show the extremal graphs for 2n = 8 to 2n = 14 excluding
Hs,.

6 Concluding Remarks

So far there is no viable conjecture as to the largest number of cycles in
cubic graphs. Guichard [7] found T'(n) by an extensive computer search
for all n < 18. Unfortunately, it is not clear from these results what is the
structure of the extremal graph.

Unlike the case of the largest number of cycles, this paper conjectures a
structure Hs, for the smallest number of cycles in 3-connected hamiltonian
graphs. The number of cycles in Hs, is derived, and the conjecture is verified
using extensive computer searches for up to 2n = 16. The paper also presents
a proof technique that could be refined to improve the known upper bound
on the largest number of cycles in a hamiltonian graph.

Extensive computer searches shall be carried on in future to verify the
conjecture for 2n > 16. The searches will also find all the graphs exhibiting
the largest number of cycles. Hopefully, this would result in identifying
common extremal graph structures across different graph sizes. Investigating
these structure, if any, could lead to new venues on how to determine the
largest number of cycles for this class of graphs.
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Figure 5: The extremal graph other than Hg with the smallest number of
cycles for 2n = 8

Figure 6: The extremal graph other than Hy with the smallest number of
cycles for 2n = 10
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11 10 9 8 7 6 11 10 9 8 7 6
0 1 2 3 4 5 0 1 2 3 4 5
11 10 9 8 7 6 11 10 9 8 7 6

Figure 7: The extremal graphs for 2n = 12 with the smallest number of
cycles excluding Hio
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13 12 11 10 9 8 7 13 12 11 10 9 8 7
0 1 2 3 4 5 6 0 1 2 3 4 5 6
13 12 11 10 9 8 7 13 12 11 10 9 8 7
0 1 2 3 4 5 6 0 1 2 3 4 5 6
13 12 11 10 9 8 7 13 12 11 10 9 8 7

Figure 8: The extremal graphs for 2n = 14 with the smallest number of
cycles excluding H14
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