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Abstract. In this paper we introduce a new sequence of polynomials,

which follow the same recursive rule of the well-known Lucas-Lehmer in-
teger sequence. We show the most important properties of this sequence,

relating them to the Chebyshev polynomials of the first and second kind.

1. Introduction

In this paper we study a class of polynomials Ln(x) = L2
n−1(x)−2, which,

at the best of our knowledge, are here introduced for the first time, created by
means of the same iterative formula used to build the well-known Lucas-Lehmer
sequence, employed in primality tests [18, 17, 21, 6, 16]. It is clearly crucial
to choose the first term of the polynomial sequence. In this paper we consider
L0 = x.

In this paper we show some properties of these polynomials, in particular
discussing the link among the Lucas-Lehmer polynomials and the Chebyshev
polynomials of the first and second kind [2, 12, 22]. The Chebyshev polynomials
are well-known and, although they have been known and studied for a long
time, continue to play an important role in recent advances in many areas of
mathematics such as Algebra, Numerical Analysis, Differential Equations and
Number Theory (see, for instance: [1, 3, 5, 7, 10, 13, 19, 23, 26, 4]) and new
other properties of theirs continue to be discovered ([3, 7, 8, 11]).

In particular, in the spirit of some existing results on the Chebyshev poly-
nomials and the nested square roots (see, for example, [20, 25]), we show that
the zeros of the Lucas-Lehmer polynomials can be written in terms of nested
radicals.

There are many classes of polynomials which are related to the Chebyshev
polynomials, such as [5, 9, 14, 15, 24]. In the spirit of some of these works - if
Ln(x), Tn(x), Un(x) denote (respectively) the nth Lucas-Lehmer polynomials,
the Chebyshev polynomials of the first and second kind - we can consider the
polynomials Ln as a generalization of the so-called modified or shifted Chebyshev
polynomials, by introducing an appropriate change of variable t = f(x).
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Figure 1. comparison between L2(x) and 2 cos(2x).

We will now outline the content of this paper. In Sections 2 and 3 we
introduce the Lucas-Lehmer polynomials and we show their main properties.
Furthermore, we give a recursive formula for the sequence of the first nonnegative
zeros of Ln(x), in terms of nested radicals. In Section 4 we show some relations
among the Lucas - Lehmer polynomials Ln(x) and the Chebyshev polynomials
of the first and second kind, determining several new properties for the former.

In Section 5 we show some generalizations of the Lucas-Lehmer map, having
the same properties of Ln. In Section 6 we list some further perspectives and
developments of the theory.

2. First iterations of the Lucas-Lehmer map.

Let us consider the iterative map

(1) Ln(x) = Ln−1(x)2 − 2 ; L0(x) = x .

Assuming L0 = x as the initial value, let us construct the first terms of the
sequence. The function L1(x) = x2 − 2 represents a parabola with two ze-

ros z1,2 = ±
√

2 and one minimum point in (0,−2); L2(x) = (x2 − 2)2 − 2 =

2
(

1− 2x2 + x4

2

)
, shown in Fig. 1 contains four zeros: z1÷4 = ±

√
2±
√

2. From

the derivative of L2(x), L′2(x) = 4x · (x2 − 2) = 4x · L1(x) it is possible to de-

termine the critical points of the function: x1 = 0 (minimum), x2,3 = ±
√

2

(maximum). Since L2(x) = 2
(

1− 2x2 + x4

2

)
= 2 cos(2x) + o(x3), for x→ 0 we

have L2(x) ∼ 2 cos(2x).
The zeros of the function L3(x) = ((x2−2)2−2)2−2 = 2

(
1− 8x2 + o(x3)

)
,

whose graph is shown in Fig. 2, are eight: z1÷8 = ±
√

2±
√

2±
√

2. The

critical points are: x1 = 0, x2,3 = ±
√

2, x4,5,6,7 = ±
√

2±
√

2. Besides L3(x) ∼
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Figure 2. comparison between L3(x) and 2 cos(4x).

Figure 3. comparison between L4(x) and 2 cos(8x).

2 cos(4x) for x → 0. The zeros of the function (shown in Fig. 3) L4(x) =

(((x2 − 2)2 − 2)2 − 2)2 − 2 are sixteen: z1÷16 = ±

√
2±

√
2±

√
2±
√

2. The

critical points follow the same general rule which is possible to guess observing
the previous iterations; moreover it results again L4(x) ∼ 2 cos(8x) for x → 0.

It must be noted that: L1(±
√

2) = 0, L2(±
√

2) = −2, Ln(±
√

2) = 2 ∀n ≥
3; L0(0) = 0, L1(0) = −2, Ln(0) = 2 ∀n ≥ 2; L0(−2) = −2, Ln(−2) =
2 ∀n ≥ 1; Ln(2) = 2 ∀n ≥ 0. Let us observe that the numerical sequence

Ln(
√

6) (OEIS, On-Line Encyclopedia of Integer Sequences, http://oeis.org/
A003010) was used, as we said before, in the Lucas-Lehmer primality test [16,
21, 6].

http://oeis.org/A003010
http://oeis.org/A003010
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3. Zeros and critical points.

Taking into account the considerations of the previous section, we can in
general state the following proposition (whose proof is quite simple and is omitted
for brevity)

Proposition 1. At each iteration the zeros of the map Ln(n ≥ 1) have the form

(2) ±

√√√√
2±

√
2±

√
2±

√
2± ...±

√
2

How can we order these zeros? Considering only positive zeros (being Ln a
symmetric function), the first sign on the left inside the root must be negative.
Let us set

√
2±√x2 =:

√
x1 and

√
2±√y2 =:

√
y1 be two generic roots chosen

from those expressed in (2). We wonder when
√
x1 >

√
y1. Then we have several

options.

opz1: If x1 = 2 +
√
x2, y1 = 2 +

√
y2 we have that:

√
x1 >

√
y1 ↔

2 +
√
x2 > 2 +

√
y2 whence x2 > y2, that is the examination moves to

the next step (and we apply again opz1,2,3,4).
opz2: If x1 = 2 − √x2, y1 = 2 +

√
y2 we have that:

√
x1 >

√
y1 ↔

2−√x2 > 2 +
√
y2, that is impossible, so we have

√
x1 <

√
y1.

opz3: If x1 = 2 +
√
x2, y1 = 2 − √y2 we have that:

√
x1 >

√
y1 ↔

2 +
√
x2 > 2−√y2, always satisfied and we have

√
x1 >

√
y1.

opz4: If x1 = 2 − √x2, y1 = 2 − √y2 we have that:
√
x1 >

√
y1 ↔

2−√x2 > 2−√y2, whence x2 < y2 then we have to check the following
step (we apply again opz1,2,3,4).

We show now what we argued in the previous steps.

Theorem 2. For n ≥ 2 we have

(3) Ln(x) = 2 cos(2n−1x) + o(x3)

Proof. Taking into consideration the McLaurin expansion of the cosine, to prove
formula (3) is equivalent to show that

(4) Ln(x) = 2− 22n−2x2 + o(x3) = 2− 4n−1x2 + o(x3) .

Let us proceed by means of induction principle. For n = 2 we have L2(x) =
(x2 − 2)2 − 2 =x4 − 4x2 + 2 = 2 − 4x2 + o(x3). Consider then the McLaurin
polynomial of the second order of 2 cos(2x): it is 4

3x
4 − 4x2 + 2, which proves

the relation for n = 2. Suppose now as true formula (3) for a generic index n
and proceed to check the case n+ 1:

Ln+1 = L2
n − 2 = [2− 4n−1x2 + o(x3)]2 − 2 =

= 2− 4nx2 + o(x2)(5)
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It is also known that McLaurin polynomial of 2 cos(2nx) is 2−22n ·x2 +R3. We
can therefore conclude that 2 cos(2n−1x) and Ln(x) have the same coefficients
up to the second order, which concludes the proof. �

We are interested in determining the distribution of minima and maxima
for each Ln. To this aim, now we are going to show an important property of
the polynomials Ln.

Lemma 3. For each n ≥ 2 we have

(6)
d

dx
Ln(x) = 2n x

n−1∏
i=1

Li(x)

Proof. Let us proceed by induction. If n = 2

(7)
d

dx
L2(x) =

d

dx
[(x2 − 2)2 − 2] = 4x(x2 − 2) = 4x L1(x)

Now we are going to check it for n+ 1. For the function (1)

(8)
d

dx
Ln+1(x) =

d

dx
[L2
n(x)] = 2Ln(x)

d

dx
Ln(x)

Replacing it with (6) we will have at the end:

(9)
d

dx
Ln+1(x) = 2Ln(x) ·

[
2n x

n−1∏
i=1

Li(x)

]
= 2n+1 x

n∏
i=1

Li(x)

�

Let Mn be the set of the critical points and be Zn the set of the zeros of
Ln(x); we obtain the following results.

Proposition 4. For each n ≥ 2 we have

(10) Mn = Mn−1 ∪ Zn−1 = M1 ∪
n−1⋃
i=1

Zi

with card(Zn) = 2n.

Proof. Let us first find the critical points of Ln(x), imposing d
dxLn(x) = 0, from

which it results

(11) 2Ln−1(x)
d

dx
Ln−1(x) = 0

which vanishes either if Ln−1(x) = 0 (finding the points of Zn−1) or if d
dxLn−1(x) =

0 (determining the points of Mn−1). Therefore it is proved that Mn = Mn−1 ∪
Zn−1. To prove the second equality, it is sufficient to observe that the right hand
side of (6) vanishes either if x = 0 or if Li(x) = 0 for some i = 1, ..., n− 1; thus

we obtain the set

n−1⋃
i=1

Zi, which proves the statement. �
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Proposition 5. For each n ∈ N we have card(Mn) = 2n − 1. Furthermore, let
M+
n be the set of the positive critical points of Ln(x); we have that card(M+

n ) =
2n−1 − 1.

Proof. We must show that card(Mn) = 2n − 1; proceeding by induction: if
n = 1, then L1(x) = x2 − 2 is a parabola having only a minimum, at the point
(0,−2). Now we are going to check it for n + 1, having assumed it true for a
generic n ≥ 2. From proposition 4, we have, for n > 1:

(12) Mn+1 = Mn ∪ Zn ⇒ card(Mn+1) = card(Mn) + card(Zn)

(the intersection between Mn and Zn being empty). From proposition 4, we have
that card(Zn) = 2n; besides, by hypothesis, we know that card(Mn) = 2n − 1.
Then card(Mn+1) = 2n − 1 + 2n = 2n+1 − 1. Furthermore, if we don’t consider
the maximum in the origin, we will have 2n− 2 critical points, half of which are
positive. Therefore card(M+

n ) = 2n−1 − 1, �

Proposition 3 is very useful because allows us to obtain some interesting
properties for the critical points of Ln(x). We already observed that, for ev-

ery n ≥ 2, if x = 0, then
(
(0− 2)2...

)2 − 2 = 2 and the point is a maxi-
mum. Moreover, for every natural number j such that 1 < j < n − 1 we have
that the points x0 such that Lj(x0) = 0 are maximum points for Ln. Indeed...( Lj︸︷︷︸

=0

−2)2...

2

− 2 = 2. Instead, the points x such that Ln−1(x) = 0, being

Ln(x) = L2
n−1(x)︸ ︷︷ ︸
=0

−2 = −2, are minimum points for Ln. Now, from proposition

(3) there aren’t other critical points; thus we have shown that the set of maxi-

mum points of Ln(x) is:

n−2⋃
i=1

Zi ∪ {x = 0}, while the set of minimum points of

Ln(x) is Zn−1.

Remark 6. Minimum points for Ln(x) become maximum points for Ln+1(x),
maximum points for Ln(x) remain maximum points for Ln+1(x). This implies
that all the local maxima of every Ln are equal to 2.

Corollary 7. All zeros and critical points of Ln belong to the interval (−2, 2) .

Because of the symmetry of Lucas-Lehmer polynomials, we will study only positive zeros.
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4. Relationships between Lucas-Lehmer polynomials and
Chebyshev polynomials of the first and second kind, and

additional properties.

As we know [22, 2, 12], the Chebyshev polynomials of the first kind satisfy
the recurrence relation{

Tn(x) = 2xTn−1(x)− Tn−2(x) n ≥ 2

T0(x) = 1, T1(x) = x

from which it easily follows that for the n-th term:

(13) Tn(x) =

(
x−
√
x2 − 1

)n
+
(
x+
√
x2 − 1

)n
2

This formula is valid in R for |x| ≥ 1; here we assume instead that Tn,
defined in R, can take complex values, too.

Proposition 8. For each n ≥ 1 we have

(14) Ln(x) = 2 T2n−1

(
x2

2
− 1

)
Proof. We must show that

Ln(x) =

x2
2
− 1−

√(
x2

2
− 1

)2

− 1

2n−1

+

+

x2
2
− 1 +

√(
x2

2
− 1

)2

− 1

2n−1

(15)

This formula is real for |x| ≥ 2 and complex for |x| < 2 and is true for
n = 1:
(16)

L1(x) = x2−2 =

x2
2
− 1−

√(
x2

2
− 1

)2

− 1

+

x2
2
− 1 +

√(
x2

2
− 1

)2

− 1

 .

We assume true (14) for a natural n and write:

Ln+1(t(x)) = L2
n(t(x))− 2 =

=
(
t−
√
t2 − 1

)2n
+
(
t+
√
t2 − 1

)2n
+

+ 2
[(
t−
√
t2 − 1

) (
t+
√
t2 − 1

)]2n−1

− 2(17)
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where t(x) =
x2

2
−1. Observing that

(
t−
√
t2 − 1

) (
t+
√
t2 − 1

)
= 1, we lastly

obtain

(18) Ln+1(t(x)) =
(
t−

√
t2 − 1

)2n
+
(
t+
√
t2 − 1

)2n
which concludes the proof.

It is observed that the (18) is true for a generic function t(x). If n = 1,

instead, the only function that satisfies the (18) is t(x) =
x2

2
− 1. �

Proposition 9. The polynomials Ln(x) are orthogonal with respect to the weight
function 1

4
√
4−x2

defined on x ∈ [−2, 2].

Proof. Let us consider Chebyshev polynomials of the first kind; then:∫ 1

−1
(1− x2)−1/2Tn(x)Tm(x)dx = 0

if m 6= n and m,n ∈ N. Using this relationship, we must prove that:

(19)
1

4

∫ 2

−2

1√
4− x2

Ln(x)Lm(x)dx = 0 m 6= n

or, by (14):

(20) 2

∫ 2

−2

1√
4− x2

T2n−1

(
x2

2
− 1

)
T2m−1

(
x2

2
− 1

)
dx

for m 6= n and m,n ∈ N. From symmetry of the integrand function, putting

t = x2

2 − 1 and solving the integral we obtain the thesis. �

Corollary 10. Let x = 2 cos θ, then the polynomials Ln(x) admit the represen-
tation

(21) Ln(2 cos θ) = 2 cos (2nθ)

Proof. Note that, in this case, |x| ≤ 2. Therefore we need to work with radicals
of negative numbers. Substituting x = 2 cos θ in (15) we have:

Ln(2 cos θ) = (cos 2θ − ı sin 2θ)
2n−1

+ (cos 2θ + ı sin 2θ)
2n−1

which can be rewritten by applying Euler’s identity :(
e−ı2θ

)2n−1

+
(
e+ı2θ

)2n−1

= 2 cos (2nθ)

�

We resume approximation (3) of Ln(x) to prove that locally and for |x0| ≤ 2
the function Ln(x) behaves like a cosine, while globally, in [−2, 2], it oscillates
with shorter and shorter periods in the neighborhoods of the endpoints, by means
of the following theorem.
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Theorem 11. Let x0 a generic maximum point of Ln(x). For n ≥ 2 we have

(22) Ln(x) = 2 cos(2n−1k(x− x0)) + o((x− x0)2)

where k is such that |k| ≥ 1 and is increasing with x0, for fixed n.

Proof. For n = 2 it is sufficient recall Theorem 2. In this case k = 1. Let us
now suppose the claim to be true for some natural n and proceed by induction
for n+ 1:

Ln+1(x) =L2
n(x)− 2 = [2 cos(2n−1k(x− x0)) + o((x− x0)2)]2 − 2 =

= 4 cos2[2n−1k(x− x0)] + o[(x− x0)4]+

+ 4 cos[2n−1k(x− x0)] o[(x− x0)2]− 2(23)

from which, by means of well known trigonometric formulas, we arrive to Ln+1(x) =
L2
n − 2 = 2 cos(2nk(x − x0)) + o((x − x0)2) if x → x0. From Remark (6), the

point x0 is a maximum point for Ln(x) and Ln+1(x). Now we aim to prove
that |k| ≥ 1. The second-order Taylor expansion of the right hand side of (22),
centered in x0, is

(24) 2− 22(n−1)k2(x− x0)2 + o((x− x0)2)

For what concerns the left hand side of (22), we observe that Ln(x0) = 2, being
x0 a maximum point. Let us observe that equation (15)

Ln(x) =

(
x2

2
− 1 +

√(x2
2
− 1
)2
− 1

)2n−1

+

+

(
x2

2
− 1−

√(x2
2
− 1
)2
− 1

)2n−1

= L+
n (x) + L−n (x)(25)

must be understood with values in the complex field, because, due to√
2 +

√
2 +

√
2 + ...+

√
2︸ ︷︷ ︸

n

= 2 cos
( π

2n+1

)
< 2

all the critical points have absolute value less or equal to 2. Then the derivative
of Ln(x) is

(26) L′n(x) =
d

dx

(
L+
n (x) + L−n (x)

)
with

d

dx
L+
n (x) = 2n−1

x L+
n (x)√(

x2

2 − 1
)2 − 1
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and
d

dx
L−n (x) = −2n−1

x L−n (x)√(
x2

2 − 1
)2 − 1

whence
(27)

L′n(x) = 2n−1
x√(

x2

2 − 1
)2 − 1

[
L+
n (x)− L−n (x)

]
=

2n√
x2 − 4

[
L+
n (x)− L−n (x)

]
which must vanish when calculated in x = x0, maximum point. For the sake of
simplicity, let us consider only x > 0. The second order derivative is

(28) L′′n(x) =
2n
{

(x2 − 4)
[
d
dxL

+
n (x)− d

dxL
−
n (x)

]
− x (L+

n (x)− L−n (x))
}

(x2 − 4)
√
x2 − 4

which can be rewritten as

L′′n(x) = 2n

[
d
dx (L+

n (x)− L−n (x))
√
x2 − 4

− xL′n(x)

2n(x2 − 4)

]
=

= 2n
[

2n (L+
n (x) + L−n (x))

(
√
x2 − 4)2

− xL′n(x)

2n(x2 − 4)

]
.(29)

We calculate it in x = x0:

(30) L′′n(x0) = 2n
[

2nLn(x0)

x20 − 4
− x0L

′
n(x0)

2n(x20 − 4)

]
=

22nLn(x0)

x20 − 4
=

22n+1

x20 − 4

since L′n(x0) = 0 and Ln(x0) = 2. Thus we have the Taylor expansion

(31) Ln(x) = 2 +
22n

x20 − 4
(x− x0)2 + o((x− x0)2) .

Equating it to (24) gives

(32)
22n

x20 − 4
= −22(n−1)k2 ⇒ 4

4− x20
= k2 ⇒ k = ± 1√

1− x20/4
It is easy to verify that k is such that |k| ≥ 1 and increasing with x0 > 0. �

As those of the first kind, the Chebyshev polynomial of the second kind are
defined by a recurrence relation [22, 2, 12]:{

U0(x) = 1, U1(x) = 2x

Un(x) = 2xUn−1(x)− Un−2(x) ∀n ≥ 2

which is satisfied by

(33) Un(x) =

n∑
k=0

(x+
√
x2 − 1)k(x−

√
x2 − 1)n−k ∀x ∈ [−1, 1] .
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This relation is equivalent to

(34) Un(x) =

(
x+
√
x2 − 1

)n+1 −
(
x−
√
x2 − 1

)n+1

2
√
x2 − 1

where the radicals assume real values for each x ∈ (−1, 1). From continuity of
function (33), we observe that (34) can be extended by continuity in x = ±1,
too. It can therefore be put Un(±1) = (±1)n(n+ 1) in (34).

Proposition 12. For each n ≥ 1 we have

(35)

n∏
i=1

Li(x) = U2n−1

(
x2

2
− 1

)

Proof. Also in this case, the formulas are defined on complex numbers. By (34)
we must demonstrate that:

n∏
i=1

Li(x) =

(
x2

2 − 1 +

√(
x2

2 − 1
)2 − 1

)2n

2

√(
x2

2 − 1
)2 − 1

−

+

(
x2

2 − 1−
√(

x2

2 − 1
)2 − 1

)2n

2

√(
x2

2 − 1
)2 − 1

.(36)

We proceed by induction on n. First of all, let us observe that when n = 1

we have L1(x) = x2 − 2 = U1

(
x2

2 − 1
)

.

For the inductive step, let n > 1 be an integer, and assume that the propo-
sition holds for n; by multiplying both sides of (35) by Ln+1(x) we obtain:

(37)

n+1∏
i=1

Li(x) = U2n−1

(
x2

2
− 1

)
Ln+1(x)

Thus, the proposition holds for n+ 1 if

(38) U2n+1−1

(
x2

2
− 1

)
= U2n−1

(
x2

2
− 1

)
Ln+1(x)
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Let’s focus on the right hand side, setting t =
x2

2
− 1:

=

2n−1∑
k=0

(t+
√
t2 − 1)k+2n(t−

√
t2 − 1)2

n−1−k

︸ ︷︷ ︸
B

+

+

2n−1∑
k=0

(t+
√
t2 − 1)k(t−

√
t2 − 1)2

n+1−1−k

︸ ︷︷ ︸
A

(39)

where

A =

2n+1−1∑
k=0

(t+
√
t2 − 1)k(t−

√
t2 − 1)2

n+1−1−k+

−
2n+1−1∑
k=2n

(t+
√
t2 − 1)k(t−

√
t2 − 1)2

n+1−1−k

B =

2n−1∑
k=0

(t+
√
t2 − 1)k+2n(t−

√
t2 − 1)2

n−1−k

=

2n+1−1∑
j=2n

(t+
√
t2 − 1)j(t−

√
t2 − 1)2

n+1−1−j(40)

therefore A+B is just equal to U2n+1−1 (t), and this completes the proof. �

After having calculated Ln(2 cos θ) in (21), now let us calculate U2n−1(x2/2−
1) for x = 2 cos θ by (36).

n∏
i=1

Li(2 cos θ) =
(cos 2θ + ı sin 2θ)

2n − (cos 2θ − ı sin 2θ)
2n

2ı sin 2θ

from which and Euler identity, we get

(41)

n∏
i=1

Li(2 cos θ) =

(
e+ı2θ

)2n − (e−ı2θ)2n
2ı sin 2θ

=
sin
(
2n+1θ

)
sin 2θ

.
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For |x| ≤ 2 we can show another formula for Ln. Let us come back to (15):

Ln(x) =

x2
2
− 1−

√(
x2

2
− 1

)2

− 1

2n−1

+

+

x2
2
− 1 +

√(
x2

2
− 1

)2

− 1

2n−1

(42)

In this case |x| ≤ 2; we change the sign inside the radical, factorizing out
the imaginary unit:

Ln(x) =

x2
2
− 1− ı

√
1−

(
x2

2
− 1

)2
2n−1

+

+

x2
2
− 1 + ı

√
1−

(
x2

2
− 1

)2
2n−1

(43)

We then calculate the powers of two complex conjugate numbers L+
n and L−n ,

depending on the variable x. With the notation introduced in (25), the absolute
value of both complex numbers is unitary, since

(44) |L+
n | = |L−n | =

√(
x2

2
− 1

)2

+ 1−
(
x2

2
− 1

)2

= 1 .

Moreover, since L1(±
√

2) = 0 ; L2(±
√

2) = −2 ; Ln(±
√

2) = 2 ∀n ≥ 3 ,

then the argument of Ln(±
√

2) is 0 for every n ≥ 3. In the other cases, since,

when |x| ≤ 2, we can write x = 2 cos(ϑ), thus
x2

2
−1 = cos(2ϑ); thus for |x| 6=

√
2

we can also put

(45) ϑ(x) =
1

2
arctan


√

1−
(
x2

2 − 1
)2

x2

2 − 1

+ bπ

where b is a binary digit; thus, using (21), we obtain Ln(x) = 2 cos (2nϑ(x)).
By setting further

(46) θ(x) =
1

2
arctan


√

1−
(
x2

2 − 1
)2

x2

2 − 1


we can write:

(47) Ln(x) = 2 cos (2nθ(x) + 2nbπ) = 2 cos (2nθ(x)) .
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On the other hand, for very large |x|, considering the iterative structure of the

map Ln, we deduce immediately the asymptotic formula Ln(x) ∼ (x2 − 2)2
n−1

.

5. Ma
n = 2a

(
Ma
n−1
)2 − 1

a map.

The considerations made in the previous sections on the map Ln can be
extended to an entire class of maps, obtained through the iterated formula Ma

n =

2a
(
Ma
n−1
)2 − 1

a , a > 0, with Ma
0 (x) = x. It follows that

(48) Ma
0 (x) = x ; Ma

1 (x) = 2ax2 − 1

a
; Ma

2 (x) = 8a3x4 − 8ax2 +
1

a
...

Note that the map Ln is a particular case of Ma
n , obtained by setting a =

1/2. We briefly show that the map Ma
n satisfies similar properties as those

proven for Ln.

Proposition 13. For n ≥ 2 we have

(49) Ma
n(x) =

1

a
· cos(a 2nx) + o(x2)

Proof. We must show that:

(50) Ma
n(x) =

1

a
− a22n−1x2 + o(x2)

where we take into account the McLaurin polynomial of cosine. We proceed by
induction. For n = 2:

(51) Ma
2 (x) = 2a

(
2ax2 − 1

a

)2

− 1

a
=

1

a
− 8ax2 + o(x2)

Let us consider the second order McLaurin polynomial of 1
a · cos(4ax): it is just

1
a − 8ax2 + o(x2), thus verifying the relation for n = 2. Let us now assume (49)
is true for a generic n, and deduce that it is also true for n+ 1:

Ma
n+1 = 2a (Ma

n)
2 − 1

a
= 2a

[
1

a
− a22n−1x2 + o(x2)

]2
− 1

a
=

=
1

a
− a22n+1x2 + o(x2)(52)

which is in fact the McLaurin polynomial of 1
a · cos(a 2n+1x). �

Proposition 14. At each iteration the zeros of the map Ma
n(n ≥ 1) have the

form

(53) ± 1

2a
·

√√√√
2±

√
2±

√
2±

√
2± ...±

√
2
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Proof. It is obvious that at n = 1 this statement is valid. Now assume that the
(53) is valid for n. We have to prove that it is valid for n+ 1:

(54) x2 =
1

2a2
± 1

4a2
·

√√√√
2±

√
2±

√
2±

√
2± ...±

√
2

and placing under the radical sign

(55) x = ±

√√√√√ 1

2a2
± 1

4a2
·

√√√√
2±

√
2±

√
2±

√
2± ...±

√
2

the thesis is obtained. �

Proposition 15. For each n ≥ 1 we have

(56) Ma
n(x) =

1

a
T2n−1

(
2a2x2 − 1

)
Proof. We must show that

Ma
n(x) =

(
2a2x2 − 1−

√
(2a2x2 − 1)

2 − 1

)2n−1

2a
+

+

(
2a2x2 − 1 +

√
(2a2x2 − 1)

2 − 1

)2n−1

2a
(57)

This is verified for n = 1:

(58) Ma
1 (t(x)) =

t+
√
t2 − 1 + t−

√
t2 − 1

2a
=

2t

2a
= 2ax2 − 1

a

where t = 2a2x2 − 1. By assumption, we suppose (56) true for n and by
Ma
n+1(t(x)) = 2a(Ma

n)2(t(x))− 1
a ; we get finally the thesis for n+ 1:

(59) Ma
n+1(t(x)) =

(
t−
√
t2 − 1

)2n
2a

+

(
t+
√
t2 − 1

)2n
2a

�

Remark 16. For |x| ≤ 1

a
, substituting x = 1

a cos θ in (57) we obtain:

(60) Ma
n

(
1

a
cos θ

)
=

1

a
cos (2nθ) .

Proposition 17. For each n ≥ 1 we have

(61)

n∏
i=1

Ma
i (x) =

(
1

2a

)n
U2n−1

(
2a2x2 − 1

)
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Proof. We must first show that the formula is true for n = 1:

(62)
1

2a
U1(t) =

(
t+
√
t2 − 1

)2 − (t−√t2 − 1
)2

4a
√
t2 − 1

=
t

a

which is true because t
a = 2ax2 − 1

a = Ma
1 (x). We assume, then, that formula

(61) is true for n. We must now show that it is also true for n+ 1. To this aim,
let us multiply both sides of (61) by Mn+1(t), expressed in (59); the right-hand
side becomes (

1

2a

)n+1 (t+
√
t2 − 1

)2n+1

−
(
t−
√
t2 − 1

)2n+1

2
√
t2 − 1

=

=

(
1

2a

)n+1

U2n+1−1
(
2a2x2 − 1

)
(63)

�

Proposition 18. For each n ≥ 2 we have

(64)
d

dx
Ma
n(x) = (4a)n x

n−1∏
i=1

Ma
i (x)

Proof. We have first to prove it is true for n = 2:

(65)
d

dx
Ma

2 (x) =
d

dx

[
2a

(
2ax2 − 1

a

)2

− 1

a

]
= 4axMa

1 (x)

Assume it is true for n and deduce that (64) is true for n + 1, too. In fact
Ma
n+1 = 2a(Ma

n)2 − 1
a . Write

(66)
d

dx
Ma
n+1(x) = 2a

d

dx
(Ma

n)2 = 4aMa
n

d

dx
Ma
n

and using (64) we arrive to:

(67)
d

dx
Ma
n+1(x) = 4aMa

n ·

[
(4a)n x

n−1∏
i=1

Ma
i (x)

]
= (4a)n+1 x

n∏
i=1

Ma
i (x)

�

Remark 19. It can be easily shown that, when |x| ≤ 1

a
, replacing x = 1

a cos θ

in the expression of U2n−1
(
2a2x2 − 1

)
and taking into account that 2a2x2− 1 =

cos(2θ):
(68)(

2a2x2 − 1 +
√

(2a2x2 − 1)2 − 1
)2n
−
(

2a2x2 − 1−
√

(2a2x2 − 1)2 − 1
)2n

2
√

(2a2x2 − 1)2 − 1

we again get the trigonometric expression (41).
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Factorizing out the minus sign in (57) and carrying out the imaginary unit
from radical, we obtain:

Ma
n(x) =

1

2a

[
(Ma,+

n )2
n−1

+ (Ma,−
n )2

n−1
]

The module of both complex numbers Ma,+
n and Ma,−

n is unitary; in fact:

(69) |Ma,+
n (x)| = |Ma,−

n (x)| =
√

(2a2x2 − 1)
2

+ 1− (2a2x2 − 1)
2

= 1

Then

Ma
n(x) =

ei2
nϑ(x) + e−i2

nϑ(x)

2a
=

1

a
cos (2nϑ(x))

ϑ(x) =
1

2
arctan


√

1− (2a2x2 − 1)
2

2a2x2 − 1

+ bπ = θ(x) + bπ(70)

with b a binary digit, and

(71) Ma
n(x) =

1

a
cos (2nθ(x) + 2nbπ) =

1

a
cos (2nθ(x))

If x = ±
√
2

2a : Ma
1 (±

√
2

2a ) = 1
a cos

(
π
2

)
= 0; Ma

2 (±
√
2

2a ) = 1
a cos (π) = − 1

a ;

Ma
n(±

√
2

2a ) = 1
a cos

(
2n−2π

)
= 1

a ; n ≥ 3. Then the argument of Ma
n

(
±
√

2

2a

)
is

0 for every n ≥ 3. For very large |x|, considering the iterative structure of the
map Ma

n , we deduce immediately the asymptotic formula:

Ma
n ∼ (2a)2

n−1−1
(

2ax2 − 1

a

)2n−1

,

∀n ≥ 1.

6. Conclusions and perspectives.

In this paper we introduced a class of polynomials which follow the same
recursive formula as the Lucas-Lehmer numbers. We showed several properties
of the polynomials, including important links with the Chebyshev polynomials,
proving their orthogonality with respect to a suitable weight.

This paper intended just to introduce this new class of polynomials. Much
more aspects need to be deepened, concerning the properties of the polynomials
and their applications.

A further progress in our work will consist in studying the distribution of
the zeros of Ln. This topic is the subject of a paper in preparation. By Section 4,
the zeros, expressed in terms of nested radicals, allow us to generalize in infinite
ways a well-known formula for the approximation of π. This formula allows
us to obtain several other notable mathematical constants as limits of suitably
weighted sequences of zeros of the Lucas-Lehmer polynomials Ln and Ma

n .
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Thanks to their strict link with the Chebyshev polynomials, we could de-
termine other properties of the Lucas-Lehmer polynomials, mainly of integral
and asymptotic type. These topics will be subject of future studies. Moreover,
it would be interesting to determine and study different classes of Lucas-Lehmer
polynomials, for example modifying suitably the first term of the sequence.

Finally, it is well known that Chebyshev polynomials can be applied in
several fields of Mathematics, for example in Numerical Analysis and Combina-
torics (see, for instance: [3, 5, 7, 13, 19, 23, 26, 4] and references therein). We
think that also the Lucas-Lehmer polynomials could be adapted to solve similar
problems.
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