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Abstract

Mechanized reasoning uses computers to verify proofs aheldis-
cover new theorems. Computer scientists have applied miezgthreason-
ing to economic problems but — to date — this work has not yehlgop-
erly presented in economics journals. We introduce meebdnieasoning
to economists in three ways. First, we introduce mechanigadoning in
general, describing both the techniques and their suadeagplications.
Second, we explain how mechanized reasoning has been cGpplieco-
nomic problems, concentrating on the two domains that htavacted the
most attention: social choice theory and auction theonyalBj, we present
a detailed example of mechanized reasoning in practice laynaef a proof
of Vickrey’s familiar theorem on second-price auctions.
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1 Introduction

Mechanized reasoners automate logical operations, ertgice scope of me-
chanical support for human reasoning beyond numerical atemipns (such as
those carried out by a calculator) and symbolic calculati@uch as those carried
out by a computer algebra system). Such reasoners may béusechulate new
conjectures, check existing proofs, formally encode keolgk, or even prove new
results. The idea of mechanizing reasoning dates backsittleaeibniz (1686),
who envisaged a machine which could compute the validitygdiments and the
truth of mathematical statements. The development of fbloge from 1850 to
1930, the advent of the computer, and the inceptioardficial intelligence(Al)
as a research field at the Dartmouth Workshop in 1956 all pthesgvay for the
first mechanized reasoners in the 1950s and 1960s.

Since then, mechanized reasoning has been both less andueosssful than
anticipated. In pure maths, mechanized reasoning hasdelpse only a few
high-profile theorems. Perhaps surprisingly — althouglsiste@nt with the greater
success of applied Al over ‘pure’ Al — mechanized reasonimg) farmal meth-
od€ have enjoyed greater success in industrial applicatianspalied to both
hardware and software design. In the past decade or so, ¢tenguientists have
also begun to apply formal methods to economics.

A central inspiration for this recent work are Geanakoptbsée brief proofs
of Arrow’s impossibility theorem (Geanakoplos, 205mitially, Nipkow (2009),
Wiedijk (2007), and Wiedijk (2009) used theorem proversroage and verify
two of Geanakoplos’ proofs. A subsequent generation of ywdr&wing on the
inductive proof of Arrow’s theorem in Suzumura (2000), usednal methods
to discover new theorems. Tang and Lin (2009) introducedkaitiyechnique,
using computational exhaustion to show that Arrow holds @mall base case

Iperhaps unsurprisingly, Gardner was ahead of his time imarézed reasoning as well: four
years before his regular columns wiigientific Americaibbegan, his first article for them included
a template allowing readers to make their own mechanizesbresas — out of paper.

°The termformal methodss used here to denote approaches to establishing the trassc
of mathematical statements to a precision that they can bieutaisly checked by a computer.
Rather than being seen as distinct from other mathematietiiods, researchers in the area see
them as the next step in mathematics’ march towards gresgeispn and rigor (Wiedijk, 2008).
Consider: “A Mathematical proof is rigorous when it is (o be) written out in the first-order
predicate languagk (€) as a sequence of inferences from the axioms ZFC” (MacL.ar&5)19
The advantages of taking this next step with computers d&cla computer system is never tired
or intimidated by authority, it does not make hidden assiwngt and can easily be rerun. A
pioneer of mechanized reasoning — who saw himself buildmBaurbaki’s formalism — referred
to computers as “slaves which are such persistent plod(afsig, 1960).

SAll three use Barbera’s replacement of Arrowlscisive votewith a pivotal voter(Barbera,
1980). Barbera (1983) also used this approach to find a girecf of the Gibbard-Sattherthwaite
theorem.



of two agents and three alternatives, and then manual iilwhutd extend that
to the full theorem. By inspecting the results of the compaitel step, they
were able to discover a new theorem subsuming Arrow’s. TawtigLan (20113)
used this approach — exhaustively generating and evafpla#ise cases, and then
using a manual induction proof to generalize the resultsestablish uniqueness
conditions for pure strategy Nash equilibrium pffgan two player static games;
they published manual proofs of two of the most significasbtiems discovered
this way in Tang and Lin (2011b). Geist and Endriss (2011)lubke approach
to generate 84 impossibility theorems in the ‘ranking sétslgects’ problem
(Barbera, Bossert, and Pattanaik, 2004).

To date, the economics literature remains almost untoublgegsearch ap-
plying mechanized reasoning to economic probl@rﬂl’be one exception that we
are aware of is Tang and Lin (2011b), whose two theorems wesecevered com-
putationally, but proved manuaﬁyAs it is our view that these tools will become
increasingly capable, this paper aims to introduce ecostsito mechanized rea-
sonindﬁ It does so by means of three analytical lenses, each witlbwarrscope
but greater magnification than its predecessor.

First, Section 2 presents an overview of mechanized reagamigeneral. We
do so by setting out a classificatory scheme, with the cavestit should not
be seen as implying a partition on the field: interesting aege will straddle
boundaries, perhaps even forcing them to be redefined.

Second, Sectionl 3 surveys the emerging literature applyieaghanized rea-
soning to economics. We structure this survey primarilyoading to the problem
domain within economics, referring only secondarily to dassificatory scheme.
We do this to focus on the economic insights — primarily witkocial choice and
auction theory — made possible by these techniques, rdthemin the techniques
per se

Finally, to make this introduction more concrete, Sedfigravides an exam-
ple of what mechanized reasoning looks like in practicesgméng a blueprint of
a mechanized proof of Vickrey’s theorem on second-pricéians. We present

4A recent symposium on economics and computer science,vingptentral figures at the
interface between the disciplines, made no mention of nrézkd reasoning (q.v. Blume et al.,
2015).

5The process by which the theorems were discovered is descibTang and Lin/(2011a);
Tang and Lin|(2011Db) itself is all but silent on its mechadipeigins.

5For more general introductions, see Wiedijk (2008) and aslignd Harrison (2014). Harrison
(2007) introduces mechanized reasoning alongside comalgiebra, presenting something of a
unified view.

"For example, we shall see that mechanized theorem discavesually associated with in-
ductive reasoning. However — in economic examples — the fnoistul examples of theorem
discovery (Tang and Lin, 2009; Tang and Lin, 2011a; Tang aingi2011b; Geist and Endriss,
2011) have combined very simple deductive reasoning systéth human intelligence.



such an established theorem to focus attention on its ingriaion.
Section’b concludes, and suggests some possible next stepethanized
reasoning in economics.

2 Mechanized reasoning

Our overview of mechanized reasoning distinguishes betwieeuctive and in-
ductive systems. While the distinction has been recograzéshst since Aristotle,
deductive reasoning — which allows reliable inference dinmwvn facts from es-
tablished facts — has been in the focus of the mechanizedmegscommunity.
Inductive reasoning also generalizes from individual salset does not restrict it-
self to reliable inferences; the cost of this additiona¢ttem is that its conjectures
must then be tested.

2.1 Deductive reasoning

Historically, deductive reasoning systems were among teeAil systems, dat-
ing back to the 1950s. While the origins of deductive reasguiate to at least
Aristotle, modern advances in this area built on the workogidians in the sec-
ond half of the 19th century and the start of the 20th (e.g.tétiead and Russell,
1910). At the Dartmouth Workshop in 1956, Newell and Simamnoituced the
Logic Theorist, an automated reasoner which re-proved 3Beo52 theorems in
Whitehead and RussellRrincipia MathematicgWhitehead and Russell, 19ﬂ)).

Abstractly, a deductive reasoner implemenlsgc — which is comprised of a
syntaxdefining well-formed formulae andsemanticassigning meaning to for-
mulae — and aalculusfor deriving formulae (called theorems) from formulae
(called premises or axioms). Historically, subfields of hatized reasoning have
been defined by choice of logic, calculus and problem domEtis section pro-
vides a classificatory scheme based, first, on the choicelaifloa. Following
the choice of calculus, a logic is chosen to balance expressss and tractability.
Finally, the problem domain itself will dictate some of thgesialized features of
a mechanized reasoner.

When a mechanized reasoner applies the calculus’ perriesgierations to
the axioms to obtain new, syntactically-correct formulagoies not make use of
the semantics: the semantics, or ascribed meanings, yaii@lsithat may assist
human intuition, but which are not necessary to the formatess of reasoning

8According to McCorduck (2004), Russell himself “responeéth delight” when shown the
Logic Theorist’s proof of the isosceles triangle theorermpse proof was more elegant than their
manual one.
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itself Crucially, mechanized reasoning involves manipulatinglsgls@

Thus, mechanized deductive reasoning since the Logic @tdw@s seen rea-
soning as a search task for a syntactically welI-defined@o&lurther, as the
spaces through which search occurred was potentially,lagecessful reason-
ing would useheuristicsto avoid unprofitable sequences of operations. From this
point of view, mechanized reasoning operates as chess cteremldE For a
chess computer, the premises’ intended semantic intatjmes are the board, its
pieces and their positions; the calculus specified perbiessioves. A chess com-
puter could then test manually discovered solutions tospeagzles by verifying
that each move satisfies the requirements of its calculuh,thve final operation
yielding the goal-formula. More ambitiously, and intenegty, chess programs
discover solutions (e.g. sequences of winning moves) bycker through per-
missible operations, with the benefit of heuristics (e.garding relative values of
pieces).

A set of premises and a formula may be related in twfiedent ways. First,
the semantic consequence relatidascribes situations in which the formut-
lows fromthe premises: if the symbols in the premises are interprietedch a
way that the formulae in the premises are all true, then thadéa is also true
when the symbols in it are interpreted in the same way. Sedbwedsyntactic
derivibility relation describes situations in which the formwian be derived from
the premises: it is possible to generate the formula fronptieenises by apply-
ing a fixed set of so-called calculus rules. (An example ohsaicule ismodus
ponens From A andA — B it is possible to derivd3, whereA andB may match
any formal expression). A proof that applies such rulesheuit any appeals to
intuition or to the reader filling in steps on her own, is cdlédormal proof of the
formula using the premises.

A calculus is callegoundif only formulae can be derived from the premises
that actually follow from them. Deductive reasoning is suimductive reason-
ing, considered below, is not.

A calculus iscompletdf it allows derivation of any formula that follows from
the set of premises. A calculus decidableif, for any set of premises and any
formula, there is a procedure that either derives the foarfroim the premises or

9Beginning with Euclid’'s §orts to axiomatize geometry, logicians have produced syiotd
descriptions that make semantic references obsoleteeitifilegedly said that we would still
have an axiomatization of geometry if we replaced the wopdint’, ‘line’, and ‘plane’ by ‘beer
mug’, ‘bench’, and ‘table’ (H6mann| 2013, p.6).

10That this was an insight at one point may be inferred fromrigisi famous explanation that,
“computing is normally done by writing certain symbols omppd’ (Turing, 1935)

11As noted by Harrisor (2007), specialist provers have alsm leveloped for particular prob-
lems for which more structured approaches than generaitseae appropriate.

?2Indeed, Newell’s collaboration with Simon began after tteer became aware of the former’s
work on a chess machine.



proves that no such derivation exists; a calculuseisi-decidabléf a procedure
exists that derives the formula from premises, wheneveiaitmula follows from
them (but may not terminate if it does not).

Decidability typically depends on the expressiveness efldigic used: more
expressive logics model a richer set of concepts, but arergiy harder to ma-
nipulate. While ambitious exercises in mechanized reagpoiten begin by spec-
ifying a suitably tailored lo i, we largely restrict our attention to some of the
best knowrclassical Iogicg‘?

Propositional (Boolean) logic: Propositionalor Boolean logi¢ the simplest
classical logic, only uses propositional variables — wlaioh either true or false —
andconnectivesuch as\ (and),V (or), = (not), and— (implies). An example of
a propositional formula is

first_bidder bids highesta secondbidder bids lowest

Propositional logic can only make concrete, finite statasydout has a sound,
complete and decidable calculus.

An advantage of this decidability is that it may all@ush-buttortechnology,
which does not require specialist knowledge in order to @ece a problem is
adequately represented a corresponding system solvesoiblem fully automat-
ically.

First-order logic: First-order logic (FOL) is more expressive. First, it can
speak about objects (e.g. “bidder”) and their properties (e.g. “bidddn wins
auction”, bidder(b;) A wins(b;)). Secondd andV allow quantification over ob-
jects. For example, “every losing bidder pays nothing” meyekpressed as

Vi . bidder(i) — (-wins(i) — pay(i) = 0). (1)

Expressions likevinsare calledoredicates Boolean functions which — when ap-
plied to their arguments — evaluate to either true or falséddébs completeness
theorem proves that FOL has a sound and complete calculugQiuhas only
semi-decidable calculi. Furthermore, FOL is not expressivough to express the
finitude or (per negation) infinity of the non-empty sets o

Many-sorted FOLusessortsto extend first-order logic, not to add to its ex-
pressiveness, but to allow more concise representations; @aherefore — more

13See, for example, thedgement aggregation logidAL) of Agotnes, Hoek, and Wooldridge
(2011).

14The 17 volumes in the second edition of Gabbay and Guent@0812014) make clear that
the classical logics are a small subset of all logics.

15Thus, FOL could not express that only finitely many biddersigigate in an auction.
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efficient proving. Sorts restrict the instantiation of varesbto expressions of a
certain sort. For instance, sorts allow us to specify thatbéei is a bidder, and
variablex a good. Formuld (1) is then more precisely stated as:

Vibidder- “Wins(i) — pay(i) = 0. (2)

I (with the sortbidder mentioned only at the first occurrence) can be instantiated
now by terms of sort bidder, but not by those of sort good, tteakicing the
search space for a proof. Sorted formulae can be transkateasbrted formulae

by converting the sorts to unary predicates (which take glsiargument).

Higher-order logic: Higher-order logic(HOL) enriches the expressiveness of
FOL by extending quantification to predicates and functidinalso allows predi-
cates and functions to take cerfSiother predicates and functions as arguments.
For example, bidgp, are both a function from bidders to prices and an argument
(along withN, v andA) in the predicate

equilibrium weakly dominant strategy N vb A

Against this, HOL's calculi are not decidable, and are — bgd&8 incompleteness
theorem — incomplete.

Two common ways in which the classical logics (in particuF®L) are aug-
mented are, first, by the addition of set theoretical axiomd decond, by the
addition of modal operators. The first allows the approxiarabf higher order
logic while maintaining advantages of first order logic; seeond allows logic to
be applied to modalities, such as knowledge, belief, or.time

Set theoretical axioms allow the definition of new symbold aperations on
both predicates (e.g and<) and functions (e.gJ,N and(Z)) They also allow
the specification of properties of sets (eag¢z X). Adding set theoretical axioms
to FOL allows it to weakly simulate HOL: functions can be eegsed as relations
over X x X that are left-total and right-unique; predicates are esg@d as sets.
While HOL is still more expressive than FOL augmented bylsebty (e.g., FOL
cannot express inductive arguments), HOL's incompletenesans that there are
true statements that can be expressed in HOL but which mayawetfinite proofs.
As FOL augmented by set theory uses FOL, it remains completsing FOL's
complete calculus.

8Unrestricted formula building leads to antinomies as disced by Russell. The introduction
of types imposes a hierarchy on logical objects, includiregftates. This disables circular con-
structs such aX(Y) := =Y(Y), which — whenY is instantiated witiX — produces the set of al
for which X ¢ X, Russell’s famous antinomy.

"Constants such #sare considered as a special case of functions, nullaryifurst functions
that do not take any argument.



Modal operators — such as ‘next’ and ‘until’ — allow the calesation oimodes
(or statesdn economic parlance).inear temporal logidLTL) is a popular simple
modal logic, modelling states in a linear fashion, thus ediclg the consideration
of multiple possible future states. Kamp’s theorem essablil the equivalence of
LTL with a first-order logic. Another first-order approachrwdelling states is
the situation calculugMcCarthy and Hayes, 1969), which allows expression of
states and the temporal development of systems in first-twgie by representing
the state as an extra argument of the formulae (e.g., that Blgas £10 in statg,
can be expressed haq(i, 10, §)). By referring to the state absolutely, rather than
in relation to other states, the problem can be expressddndard FOL without
recourse to specialized modal relations.

Our final level of distinction is the domain of the problemistlevel will allow
us to present concrete examples of the preceding. Thbledisidpese dimensions
within deductive reasoning systems.

| decidable undecidable
logic SAT, CSP; description logi¢ ITP, ATP
computer systen model checking program verification

Table 1: Mechanized reasoning using deductive logics

Decidable logic: In Tablel1, thedecidable logiacell refers to decidable calculi
as applied to logical problems.

Boolean satisfiability problers (SAd)e among the simplest canonical prob-
lems in propositional logic. They specify a (finite) set @tetments about a (finite)
set of propositional variables, and ask whether there £aistassignment of val-
ues (i.e. true and false) to each of those variables thatitsineously satisfies all
of the statements.

In SAT problems, clauses of Boolean variables are typicalpressed in
conjunctive normal forinconjunctions {) of disjunctions {) such as

(-pva)A(pV-0); 3)

wherep andq are Boolean variables, evaluating either to true or S%evisiting
the example that in auctions the non-winning player paylingt equatiori(1) can
be translated for a finite number of bidders (here, three)gomaositional logic
formula,

(winslv —pays) A (wins2v —pays3 A (wins3v —paysJ3; 4)

8The sentence given here is logically equivalenpte g, an equivalence exploited by Tang
and Lin (20114a) in their search for uniqueness conditiorsrmatrix games.
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stating for each of the three players separately that theyowpay nothing.

Any formula in propositional logic can be expressed in tloigif, as can any
formula in first-order logic when the domain is restrictedatooncrete finite do-
main (such as three bidders in an auction). A SAT solver igl tiséry to assign
the variables such that all of the clauses are true. Fornnstaassigningvinsl
andpayslto true and the other predicates talseshows that the single formula
(4) is satisfiable.

SAT problems aré&vP-hard (Karp, 1972), requiring — in the worst case — trial
of every possible input. Thus, while the logic and calcwliclved are simple,
SAT problems may not be computable in practice except inlstagks. How-
ever, techniques have been developed so that SAT solveablar®o solve typical
cases very quickly. One application area of SAT solvers avdahcheckers, as
described below.

Constraint satisfaction problems (CS&pk triples(V, D, C), whereV is a set
of variables,D their domain, andC the constraint set. In CSPs, the variables
may take on more values than in Boolean satisfiability’s tyimssignments. For
example, arhoursvariable might take one of twelve values. While apparently
richer, CSPs can be reduced to SATs by suitable definitiodditianal auxiliary
variables'

The third example of decidable calculi applied to logicablgems that we
consider aralescription logics These are central to automated reasoning about
concept hierarchies in classification (or ontologicalksaOne of their most im-
portant applications is to theemantic webwhich allows computers to extract
semantic information from web pages. As a simple exampl@asécally en-
abled web searches could recognize that y> = 22 anda = Vc? — b2 were both
statements of Pythagoras’ theo?@n.

Model checking: Model checking (Clarke, Emerson, and Sistla, 1986; Clarke,
Grumberg, and Long, 1994) builds finite modelsto describemder hardware
systems or simple software systems and then tests theiegieg Typical ques-
tions include whether certain states of the system can lobeeaor whether in-
formation is flowing properly through a circuit design.

Such models are typically expressedfiagte automata A finite automaton
can model either a finite system or an infinite system if abstma allows the
infinite state space to be simplified to a finite 8hahen the model is systemat-

19See Bordeaux, Hamadi, and Zhang (2006) for a comparison ©fa®4 constraint program-
ming.

20See Lange (2013) for a more in-depth discussion of appticatdf semantic web technology
to mathematics.

2For example, in proofs involving real numbers, it mayfie to reduce an infinite number of
possible values — which cannot be handled by a decidablaloale to a trinary partition defined
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ically checked for desired properties, e.g. by using SAVesl. Viewing digital
computer chips as a set of Boolean statements allows them noodleled asle-
cidable computer systenaiowing, in turn, SAT solvers to automatically verify
their properties. Since the mid-1990s, Intel has used fomeshods to formally
prove properties like ‘this chip implements the IEEE digisistandard’ follow-
ing an embarrassing and costly recall of a Pentium chip tlaat svscovered not
to properly implement IEEE floating point division (Harrg@®006). No further
such problems have been reported since fAen.

Undecidable logic: The upper right cell in Tablel 1 refers to the application
of undecidable calculi to logical problems. The two typesr@chanized rea-
soning mentioned her@teractive theorem provinTP) andautomated theorem
proving (ATP) have traditionally been equated with theorem proving da@n as
distinct, with the former involving more steering from a hamuser than the latter.
Stereotypically, an ITP system could check an existing fpnwbile an ATP sys-
tem could suggest steps in a proof or, in some cases, a whwdé pn practice,
the distinction between the two has decreased, with ITReEysSimplementing
ATP procedure@

The traditional identification of theorem proving with workthese areas owes
partly to some high profile successes in pure mathematiedpttus of the most
hope in mechanized reasoning’s early days. The earliesirraagcess was — as
might be expected in an emerging field — not even a clear exaaiphechanized
reasoning: in the 1970s, computers were used to carry owxhaustive com-
putations required to prove the four-color map theorem. (§ppel and Haken,
1977; Appel, Haken, and Koch, 1977). Here, the computers weed to perform
simple (algebraic) calculations, rather than to (logigalleason’. More recently,
mechanized proof checkers have confirmed these resultaligr(q.v. Gonthier,
2008)?4

The first major mathematical result to be established by @r@ebd reason-
ing — rather than ‘mere’ calculation — was Robbins’ conjeetthat two bases
for Boolean algebras are equivalent. While appearing to begailingly simple
problem, it remained unresolved for 60 years, becominga@uiate of Tarski, who
set it as an open problem (g.v. Henkin, Monk, and Tarski, 197245). One of

by >, <and=. See Burch et al. (1990) for an application to large, compi&xoprocessor circuits.

22\ith chip design becoming more and more sophisticated, éasaning in the verification
needed to become also more sophisticated. Thus, HOL themmevars such as HOL-Light are
now also used for hardware verification.

23Harrison (2007) noted that ITP may be preferred to ATP, aswairking more closely along-
side human reasoning — it may be better at developing humderstanding.

24Gonthier’s team has now also formally checked the Feit-Tion Odd Order Theorem
(Gonthier et al., 2013).
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the complicating factors of the conjecture was that the dmigwn example of

a Robbins algebra was also a Boolean algebra, reducing tlenee base that
mathematicians could use to form intuitions about the @nwbl Nonetheless, in
the late 1990s, McCune (1997) was able to pose the problemway @hat allowed

EQP, an automated theorem prover related to his well-knotter Prover, to gen-
erate — not just check — a 17-step proof, later reduced ta sigps (McCune,
19974

Perhaps the highest profile success of mechanized reasonmge mathe-
matics is the solution to Kepler's conjecture that thereasdenser packing of
spheres irR3 than the face-centred cubic. Hales’ original proof was 120gs
long (excluding computer code that exceeded 500MB), reyuia team of 12
referees five years to become “99% certain” that it was cortdansatisfied with
this standard, Hales foundé&udoject Flyspechko establish a fully formal proof of
the conjecture (Hales, 2012). In August 2014, the projed @anpleted (Hales
et al., 2015), close to Hales’s original estimate of 20 pergears (Avigad and
Harrison, 2014).

More mundanely, ITP has been used to translate existing hyoraofs into
formal proofs that are sliciently detailed that a computer can mechanically ver-
ify them: as of January 2016, 91 of the ‘top 100’ mathematicabrems on a list
maintained by Wiedijk[(2014) had been formaliZ&dWhile most of these are
considerably less spectacular than the examples citeceabavwhich theorem
provers have been used to help convince mathematicianglae validity of ma-
jor, new results — the gradual accretion of small proof lilesbuilds a foundation
for applying ATPs more widely.

The distinction between high-profile, major theorems amgeleprofile bodies
of theory has been suggested as a reason that ATP has ydiltisfelarly hopes:
Buchberger (2006) noted that human mathematicians typidalnot try to prove
isolated theorems but explore a whole theory, thereby imgldp valuable intu-
ition which helps them in proving related theorems. Addititly, Newell (1981)
stated that standard theorem proving techniques — whiga difighly dficient — do
not make use of advanced human approaches (as describdgiarsPooks) such
as simplifying a problem to one they can solve; applying tihgpsfied solution
to the original problem may still be very hard, but the intantgained by solving
the simplified problem may help solve the original prob@m.

25Dahn (1998) manually reworked EQP’s proof to provide a manaan-readable proof.

26Exceptions include Fermat's last theorem.

2’Conversely, Dick/(2011) observed that the ‘resolutionéneince rule (Robinson, 1965), cen-
tral to mechanized reasoning, “was not based on any knowrahyractice and was in fact dif-
ficult and counterintuitive for humans to understand”. kediereviewing mechanized reasoning
since resolution, Robinson lamented that it may have hameszhanized reasoning by contribut-
ing to a parting of ways between human mathematicians antianéed reasoners (Dick, 2015).
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Program verification Table[1's lower right cell corresponds to software engi-
neering’'sprogram verification reasoning about software systems. This can be
highly complex in the case of complex programs. Within pamgrverification,
traditional proof approaches have sought to prove thatdafteare correctly im-
plements properties specified in the design brief. As suobfprare very costly,
full correctness proofs that seek to verify all desired prtips of the code, are
done only for ‘mission critical’ systems (D’Silva, Kroemgnand Weissenbacher,
2008).

Some well known examples of program verification have comm firansport
and finance: in code controlling automated commuter ratesys, theorems that
no two trains occupy the same location at the same time haregreved; within
financial transactions software, theorems that transastitm not create or de-
stroy value, but merely transfer it, have also been proveab@ock et al., 2009).
More recently, a compiler for the C programming language teen formally
verified (Boldo et all, 2013). These techniques are becomimi@ mainstream: in
2013, Facebook acquired Monoidics, a start-up firm appl{iegrem proving to
software code analysis; in 2015, another start-up, Adsth@egration beat 600
competitors to win first prize in UBS’ Future of Finance Clkaljje for its ability
to automatically prove failure or compliance in financi@]mithmé@

Historically, program verification has been conducted psst mortemgiven
existing code, program verification determines whetheratitis correct. More
recently,code extractiortechniques have been developed to generate code that
provably implements the desired properties.

2.2 Inductive reasoning

As noted above, both inductive and deductive reasoningtitatie at least to Aris-
totle, but the former is not sound, while the latter has b&erfacus of the mech-
anized reasoning community. The distinction between the-tvas well as the
utility of each — was expressed by Pdélya (1954, p. vi), whenrefd to deduc-
tive reasoning ademonstrative reasonin@nd inductive reasoning gdausible
reasoning

We secure our mathematical knowledged®monstrative reasoning
but we support our conjectures phausible reasoning. . Demonstrative
reasoning is safe, beyond controversy, and final. Plaustialeoning

is hazardous, controversial, and provisional. . ..

28Their entry formally defined a UBS ‘dark pool’ and a set of SEGulations which the SEC
had found the dark poolin breach of. Aesthetic Integratias able not only to verify the dark pool
failure found by the SEC, but discovered that its order fization failed to satisfy transitivity
(Ignatovich and Passmore, 2015).
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In strict reasoning the principal thing is to distinguishragf from

a guess, a valid demonstration from an invalid attempt. &dugble
reasoning the principal thing is to distinguish a guess feoguess,
a more reasonable guess form a less reasonable guedplausi-

ble reasoning] is the kind of reasoning on which [a mathecraatis]

creative work will depend.

Inductive systems seek to derive general statements basadfinite num-
ber of statements (e.g. i, is true, andA; is true, and so on up tédy for
some finiteN, thenA, is true for all natural numberls) This sort of reason-
ing is immediately familiar to us when we reflect on how we fatonjectures:
we expect the sun to rise tomorrow without any understandfrastrophysics;
this expectation, though, may lead to the formation of ccijees about astro-
physics. However compelling the weight of evidence, inthecteasoning is not
sound — as may be demonstrated by single counterexamplesiniber theory,
Euler’s attempted generalization of Fermat’s last theoremained open for two
centuries until a computer found a counterexar@)lm game theory, Neumann
and Morgenstern conjectured that stable sets (‘solutioribeir parlance) always
existed; it took almost a quarter-century for counterextasto be found (Lucas,
1968).

Inductive reasoning may be used tbeorem discoverywhereby regularities
in observed data are used to form conjectures t¢lest.

Mechanized inductive reasoning dates back to two systeiittdgrbthe 1970s
and 1980s to discover new conjectures, AM (Automated Ma#tiemn) (Lenat,
1976) and Eurisko (Lenat, 1983). These were able to detegcinres such as the
unique prime factorization theorem and Goldbach’s coujte@ The systems
use certain measures of interestingness for conceptsngianice, concepts that
are always true or always false are not interesting. Howéwaeconcept is true for
a significant proportion of examples (such as divisibiliyydmly 1 and the number

2Inductive reasoning is distinct from mathematical indaietiwhich involves provingy, and
thatAn,1 is true givenA,. Mathematical induction is a soutn@ductivemethod.

30Euler's conjecture states: letandk be integers greater than one, anddet...a, andb
be non-zero integers; the(Ei“:l a}‘ = b") = (n > k). The first known counterexample, found by
computer, is 27+ 84° + 11Q + 133 = 144 (Lander and Parkin, 1956).

310ne of the most dynamic subfields of Al currentlynigchine learningSome definitions are
agnostic as to how the machines learn — e.g. whether dedlyctivinductively — while, perhaps
more typically, others link machine learning more closalirtductive reasoning. Some of the
highest profile applications of machine learning are gtatik positing rules that fit the existing
data well, rather than perfectly.

32The prime factorization theorem states that any posititegier has a unique decomposition
as the product of primes. Goldbach’s conjecture statestrel/ even integer beyond two can be
expressed as the sum of two primes.
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itself) then this is considered as an interesting conc@pinfality’ for divisivility
by only 1 and the number itse.

Lenat's work was continued by Colton in the HR (Hardy-Raman) sys-
tem (Colton, Bundy, and Walsh, 1999), where more advancexsures for inter-
estingness were developed. For instance,

The novelty measure of a concept calculates how many tines th
categorisation produced by the concept has been seen. &or-ex
ple, square numbers categorise integers into two §et4.9, ...} and
{2,3,5,...}. If this categorisation had been seen often, square num-
bers would score poorly for novelty, and vice-versa. (Qul®Bundy,

and Walsh,,_2000).

Another important advance in Colton’s work is that the HRiegsweeds out sim-

ple conjectures, namely those that can be easily verifiedlsified by automated
theorem prove@ One of the successes of HR was that it invented the concept
of ‘integers with a square number of divisors’ which was atitteSloane’s Ency-
clopedia of Integer Sequen(@s.

3 Mechanized reasoning for economic problems

Over the past decade, computer scientists have becomestadrin economic
problems — often publishing economically novel and inteéinggesults, but almost
entirely within the computer science literature. This setteviews that literature,
focusing on the applications to social choice and aucti@omh We structure
this survey primarily according to the problem domain witleiconomics, and
only secondarily according to our classificatory schemeyder to focus on the
insights into economic problems made possible by thesentgals, rather than
the techniques themselves.

Table[2 places the papers reviewed in this section into agmad classifica-
tory scheme. This classification is imperfect. For exampdgg and Lin|(2009)
and Geist and Endriss (2011) both used propositional laiess (and, therefore,
deductive reasoning), but used them to discover new resultsch we have asso-
ciated, above, with inductive reasoning. Papers like thesdfore span historical
distinctions.

33pick’s case study of the Argonne National Laboratory’s AUBystem noted that, while “the
capacity to identify what was ‘promising’ or ‘interestingias precisely one of those unautomat-
able human abilities ...the Argonne practitioners decidbat was important on the basis of
extensive experimenting with AURA.”

34See also the introduction of Tang and Lin (2011a) for a beefaw of the history of mecha-
nized theorem discovery; a lengthier review is availabl&ing (2010).

3%https://oeis.org/
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Social choice has been mechanized reasoning’s main poicorgact with
economics, making it a convenient lens for illustrating heedzed reasoning.
Auction theory is, we feel, promising as a new point of contstween mecha-
nized reasoning and economics, due both to the technicalgarbetween social
choice (where mechanized reasoning has proved fruitful)raechanism design
(g.v. Reny|(2001)), and to auctions’ importance as allocathechanisms.

| decidable | undecidable
Geist and Endriss | (2011),Nipkow  (2009), Wiedijk
logic Brandt and Geist (2016): SAT | (2007), Wiedijk (2009), Lange

etal. (201B): ITP

Tang and Linl(2009): SAT, CSPGrandi and Endriss | (2012):
ATP

Bai, Tadjouddine, and Gup
(2014): description logic
computer| Xu and Cheng (2007), Art Caminati et al.[(2015): code ex-
system cos et al. [(2005), Tadjouddinetraction

Guerin, and Vasconcelas (2009)
: model checking

Table 2: Some applications of mechanized reasoning to eciermoblems

3.1 Social choice

Geanakoplos’ three brief and distinct proofs of Arrow’s wspibility theorem
— that, for three or more alternatives and a finite set of agehere is no so-
cial choice rule satisfying unanimityJ@), independence of irrelevant alternatives
(IIA) and non-dictatorshipND) — served as the mechanized reasoning commu-
nity’s entrée to economic problems: social choice was ntavéthis community,
yet used familiar structures — particularly linear ordei@nd the three proofs by
Geanakoplos (2005) gave the mechanized reasoning compnamaipportunity to
attempt to compare the relativefiittulty of encoding those proofs for computers.
One primitive measure of the relativefiiltulty of formal proofs is to compare
their size to that of human prodﬁ.TableB reports on the relative sizes of Nip-
kow’s proofs in Isabelle — a higher-order logic theorem oy and Wiedijk’s
proo@pin Mizar — a set theoretic proof checker, which augments-@irder logic

36The easiest way of determining the size of a formal proof isduynting lines of source code.
In Sectiorl 4 we discuss a less biased measure, the de Breiign.fa
37Wiedijk justified his decision to formalize only Geanakagltirst proof by noting that they
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by the axioms of Tarski—-Grothendieck set th@r}klipkow (2009) attributed the
greater length of the Mizar proofs to Isabelle’s “higherdeof automation” —
something to which we return in our Isabelle proof of Vicksgheorem.

15t proof 39 proof
Paper (Geanakoplos, 2005) 1 page 1 page
Isabelle (Nipkow, 2009) 350 lines (6 pages) 300 lines

Mizar (Wiedijk, 2007; Wiedijk, 2009) 1100 lines

Table 3: Relative lengths of human and machine proofs ofetheorem

Nipkow’s formalization attempts began with Geanakopld¥0(?, a working
paper that preceded the published version (Geanakopl0§).20 seeking to for-
malize the first proof, he discovered a statement in one déthenas that required
a 20 line auxiliary proof to properly establish. Furthergationship between a
pivotal voter and a dictator only “hinted at” in the origirntakt required elabora-
tion. Nipkow did not discover any errors in this first proofim8arly, Wiedijk
(2009) reported on missing cases, but no “real errors”.

As to the third proof, Nipkow found two instances of omittedterial in its
central lemma, preventing him from formalizing the proofipkbw presented
these concerns to Geanakoplos by e-mail; both concernsesolred in Geanako-
plos (ZOOJSE

Both Nipkow and Wiedijk’'s proofs were written by the authéhemselves,
and are therefore examples of ITP. By contrast, Grandi anlli§n(2012) sought
to, first, restate Arrow’s theory in FOL and, then, to autaoaly generate a proof
for it/ Expressing Arrow’s theory in FOL presented the challenge tjuanti-
fying over all possible linear orders of agents’ preferepoafiles appears to be
a second-order quantification as it involves quantifyingraagents, alternatives,
and the agents’ preference profiles. Grandi and Endriseaséld this by adopting

became successively more abstract, making the first the chafienging as, generally “abstract
mathematics is easier to formalize than concrete mathesigWiedijk,2009).

38The advantage of Tarski-Grothendieck set theory over Ziereenkel is that the former
only requires finitely many axioms to axiomatize sets.

39Mechanized reasoning can identify omissions by forcingelscrutiny. This, of course, is
also possible without mechanical support. For examplehénnhatching literature, Aygiin and
Sonmez[(2013) identified a hidden assumption in Hatfield ailgirin (2005) — which they view
as “widely considered to be one of the most important advaotthe last two decades in matching
theory” — without which many of their results fail to hold. &bversight arose from “an ambiguity
in setting the primitives of the model”. This ambiguity wduikely have been detected by a
mechanized reasoner as well.

49Grandi and Endriss (2012) is also a good guide to related mofkrmalizing results in social
choice.
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the approach taken in Tang and Lin (2009), namely to applysifuation calcu-
lus (mentioned in sectidn 2.1) for the representation. Tthey could present a
first-order formalization of the requisite axionTsrrow allowing them to restate
Arrow’s theorem as:

Theorem 1(Arrow a la Grandi and Endriss (2012)) arrowhas no finite models.

A model in this sense is an instantiation (or example) of tgables used in
the theory. For Arrow’s theorem, the variables inclidiéhe set of agentsA (the
set of alternatives), the set of the agents’ preferencel@spfind the set of social
welfare functions (SWFs) mapping from such profiles to aaqmieference. In
the two-agent, three-alternative case, thatrow “has no finite models” means
that none of the ¥ possible SWFs satisfy the theory’s axiofdsThe theorem
claims this property for any finite number of agents, and angefinumber of
alternatives in excess of three.

FOL's completeness allows any property of the system to pkaitty derived.
However, the second problem with FOL encountered by GramaiEandriss is that
FOL is unable to express finitude, for the same reason thanitat express in-
duction: intuitively, HOL defines finitude by consideringetbomplement of the
infinite, which it can define by induction on the natural numsbd hus, formulat-
ing Arrow’s Theorem in FOL requires a separate formulationdach|N|. Sim-
ilarly, proofs of Arrow’s theorem in FOL may ffer for eachN|. Thus, Grandi
and Endriss’ attempts to use a first-order theorem proverttmaatically generate
proofs of Arrow’s theorem failed outside of minimal caligs.

Independently of Geanakoplos’ proofs, Suzumura (2000) gradented an
induction proof of Arrow’s impossibility theorem for a basase of two agents
and|A| alternatives; an induction result then demonstratedutk in general. This
motivated Tang and Lin (2009) to manually derive a secondatidn result in the
number of agents. Proving the impossibility in a two-agdmnge-alternative base
case, would — by their two induction lemmas — cause it to holgeneral. They
computationally exhausted this base case in tvi@int ways.

First, they expressed the problem as a Boolean SAT problemg &nd Lin
then used the situation calculus, which allows many of tloblgm’s symmetries
to be dficiently dealt with by the action of swapping arguments, tuce the
number of variables needed in the base case @/35n 106354 clauses. These
are too many cases to check manually. However, using the SI%&rLhdf2 they
could show the inconsistency between the three basic axiolass than a second
on a desktop computer.

“IThere are a total of 36 preference profiles in the domain, anatders in the range, yielding
a total of [T, 6.

42They used Prover9, a successor to Otter, and — thereforeosa ilative of the system that
found the proof of Robbins’ conjecture (McCuhe, 1997).
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Second, Tang and Lin expressed the problem as a CSP, in Whitle set of
variables, consists — in their base case — of 36 preferendiégst D, their domain,
of six linear orderings for each profile; a@ their constraint set, of theN and
IIA axioms. As the base case implie¥ & 10?8 possible SWFs — far too many
to be feasibly generated — the authors used the (first-oloigigal programming
language Prolog to generate all SWF satisfying the comésraif UN and l1A.
Running in less than a second on a desktop computer, théogtode generated
two SWFs, both of which were also dictatorial.

A similar approach yielded the Muller-Satterthwaite thesor and Sen’s Pare-
tian liberal result, among othefs.

When implementing the CSP, the authors noticed that imgosien just the
lIA constraint reduced the set of SWFs frofi ® 94. By inspecting these man-
ually, Tang and Lin/(2009) posited a new theorem that im@&s Arrow’s and
Wilson’s. Before stating it, note that a social ordeirgersely dictatorialif it
ranks elements in the opposite way to at least one ageneheall taudistance
between two orderings is the number of pairs on which theggitese. Then:

Theorem 2(Tang and Lin(2009))If a social welfare function W o\, A) satis-
fies lIA, then for every subset Y of A such tivat 3,

1. W, is dictatorial, or
2. W is inversely dictatorial, or

3. The range of Whas at most 2 elements, whose [Kendall tau] distance is at
most 1.

As an example of an SWF accepted under condifion 3 of thearensjder the
function that always prefers the first alternative to theoselc always prefers the
first to the third, and prefers the second to the third altereainless both agents
prefer the third to the second. This is neither dictator@linversely dictatorial:
the agents’ preferences for the first item are ignored; the¥@nly two elements
in its range (e.ga > b > canda > ¢ > b), the distance between which is dife.
As Tang and Lin noted, the third case of their result viol&esw’s original non-
imposition axiom, which requires that the SWF be surjectimepping to every
possible value in its range.

43See Geist (2010) for a more complete list.

“4Represent preferences over three objects as a three-igiycharacter, the first indicating
whethera > b, the second whether > ¢ and the third whethds > c. There are six permissible
three digit numbers, 00001,011,100, 110 and 111, after eliminating the two cyclical ond#
then requires that each digit in the social preference imatifon of the corresponding digits in
the individual preferences alone. The 1-distance conditien allows only one of those digits to
vary.
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Of the 94 SWFs satisfyinlA, there are 84 of the sort described above, 6 con-
stant SWFs (one for each ordering), two dictatorial funticand two inversely
dictatorial functions.

As before, the theorem is established by exhaustive cortipatan the two-
agent, three-alternative base case, and then extenddittayrfinite domains by
the manually-derived induction lemmas. Chatterjee and/3@td) observed that,
as far as they were aware, this is the “only Arrow-type reisuthe literature that
does not use an axiom other thBA”, an achievement that they believe “could
not have been conjectured without computational Aia”.

Social choice is replete with characterization and impgmksi results. Geist
and Endriss|(2011) applied the Tang and Lin (2009) approathet problem of
ranking sets of objects (Kannai and Peleg, 1984), for whiatbBra, Bossert, and
Pattanaik (2004) supplied almost 50 possibly desirablerasf

Rather than deriving an induction lemma for every base chsgarest, they
derived a broadly applicable induction theorem based oratbdory’s £ G—Tarski preservation thec
which describes when properties pelow) are retained in substructures, namely
essentially when the theory can be expressed using univgraatifiers in the
form Vx. go

Furthermore, as they wished to distinguish between indaliclternatives,
sets of preferences, and preference orders the authorsausedy-sorted FOL.
Many-sorted FOL also allows relations (including set isodun or union) to be
defined on one domain that do not hold on the other.

Geist and Endriss then encoded 20 axioms drawn from BarBessert, and
Pattanaik|(2004) in their many-sorted FOL. As their indoiectresult translated
impossibilities generated on small, finite domains to hidwn impossibility re-
sults, they took advantage of these concrete, finite bases cage-write the ax-
ioms in propositional logic (using the kind of rewriting theansformed formula
(@) to formula[(4) in section 211). This, in turn, allowed tn¢o use SAT solvers
to search for subsets of axioms which generate imposygibdgults in these base
cases; once found, the induction theorem generalized théut impossibility re-
sults. Doing so for all base cases up to sets of eight itenidgdeB4 impossibility
theorems from about one million combinatidfs.

4SIn private correspondence, Sen has conjectured that thi oédalawski and Zhou (1994)
linking Wilson’s and Arrow’s theorems may be an immediataseErjuence of Tang and Lin’s.

46Geist (2010) had initially attempted an approach more akiGtandi and Endriss (2012),
seeking to derive an automated proof of the Kannai and Pe&grém using three filerent first-
order theorem provers; none of them was able to derive a @fbaf 120 hours of CPU time on
2.26 GHz machines with 24 GB RAM.

4As a trivial example, the property that a structure contétinse distinct elements cannot be
preserved in substructures with fewer than three elements.

48Resource constraints limited them to eight items and 20nasid hey derived their results in
about one day.
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Their results included known results (e.g. those of Kanndi Releg|(1984)
and Barbera and Pattanaik (1984)); variations on knowrltsegypically formed
by strengthening axioms to reduce the impossibility’s mialdomain; direct con-
sequences of other results (as they did not prune implicaid existing impos-
sibilities); a trivial contradiction between the axiomsuwfcertainty aversion and
uncertainty appeal; and — perhaps most interestingly — hearéms. These last
resolved an open question in the literature, which we noweralss.

Letting > (resp.x) denote strict (resp. weak) preference on individual ahoic
objects (denoted by lower case letters), andesp.>) strict (resp. weak) pref-
erence on sets of objects (denoted by capital letters),dBipg2attanaik, and Xu
(2000) presented a theorem characterizing the min-maxiagdie terms of four
axioms. The min-max ordering is defined as

Ak B © [Mmin{A} > min{B} v (min{A} = min{B} A max{A} = max{B})];

where min(A} is the minimal element oA with respect to> and maxA} the
maximal element. Thus, a sAtis weakly preferred under the min-max ordering
to setB iff either the worst element & is strictly preferred to that dB, or (when
the worst elements are equally preferred) the best elenidnsaveakly preferred
to that ofB.

The four axioms were:

1. simple dominancge

X>y= ({X}> (XY} A {Xy}>{y})

for all x andy, so that a set consisting of a strictly preferred object & pr
ferred to a set containing it as well as a strictly less pretépbject, which
—inturn —is preferred to a set consisting only of that les$gared object.

2. independence
A>B=AU{x}>BuU{x}

for all AandB andx not contained irA or B. Thus, adding a single object
to two sets ranked by strict preference does not reversedghking (but it
may weaken it).

3. uncertainty aversion
(x>y>2={y}l>{x2

for all x,y andz, so that a set consisting only of an intermediately preterre
object is strictly preferred to a set consisting of a styictiore favourable
and a strictly less favourable object.
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4. simple top monotonicity
X>y={x2zr»{y,z

for all x, yandzsuch thak > zandy > z, so that — if an object is strictly pre-
ferred to another — a set containing it and a third objectristht preferred
to a set containing the less preferred object and the thijettb

Arlegi (2003) showed that the min-max ordering was, in factonsistent
with the independence axiom, and presented an alternatiomatic basis for it.
Geist and Endriss (2011) presented a complementary reséiftegi’s, finding a
contradiction between the four original axioms at even fchwice objects, thus
establishing that the original four axioms are inconsist®mcannot form the basis
of any transitive binary relationship.

Geist and Endriss (2011) also presented the first imposgibésult in this
literature not to use any dominance axiom.

In cases of interest, the authors were able to quickly denasual proofs for
the computationally discovered restffs.

Finally, the large set of impossibility results allowed thathors to statisti-
cally consider the role of the various axioms. For exampie Jinear order axiom
appeared in all theorems; the ‘even-numbered extensiogu¥aence’ and re-
flexivity occurred in none; ‘intermediate independenceEweed in all results for
seven or eight choice items, but never for fewer than fiveashitems.

Brandt and Geist (2016) extended the methodology of GetsEawlriss/(2011)
by performing an initial encoding in HOL, and then derivimgglications capable
of expression in propositional logic for small base caséss @llowed expression
of more properties than was possible in the many-sorted F@edst and Endriss
(2011). Thus, Brandt and Geist (2016) could encode a néytexiom that Geist
and Endriss/(2011) could not, but at the cost of generatipgprantially many
new variables, restricting the size of cases that could bgpated.

3.2 Auctions

Applications of mechanized reasoning to auction designicapdementation are
less sophisticated than those to social choice. Nevedhelgven auctions’ prac-
tical importance, we expect that these will ultimately bmeomore widespread.
This section surveys work in two separate areas — applyirgparezed reasoning
to checking results in auction theory, and checking impletaigons of auction
designs.

“SFor the min-max ordering inconsistency, the manual proabisut a half-page long.
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On the former, Vickrey’s theorem has provided a basic testlesult. Sec-
tion[4 illustrates in detail our Isabelle implementatiohthlerefore complements
Lange et al.|(2013), which compared implementations of Mgls theorem in
four different mechanized reasoners.

Conceptually, as higher-order logic isfBaient to express all concepts in auc-
tion theory, it is not challenging to represent basic resumliauction theory using
a higher-order logic theorem prover like Isabelle. Doingrsmore basic logics is
both more conceptually challenging, and ma@ieomore promise of automation.

In simpler logics, model checking can automatically ess&bproperties of
systems by exhaustively inspecting the system'’s stateesgadjouddine, Guerin,
and Vasconcelos (2009) used SPIN, a widely-used commermdel checker
based on a linear temporal logic (LTL), to verify Vickrey &ioas’ strategy-proof-
ness property that bidders cannot do better than to bid Waduations21 They
implemented two techniques to reduce the search space wvehifging strategy-
proofness for arbitrary bid ranges and numbers of agemisgram slicingre-
moved variables irrelevant to the proper&gstractiondiscretized the domain of
bids into a three-element domain, depending on whether eXoieeded, equalled,
or was less than an agent’s valuation. A manual proof wasinedjto establish
the abstraction’s soundness. Together, the two simpiicatallowed strategy-
proofness to be verified for any number of agents in a Vicktefian in a quarter
of a second.

The second branch of applications of mechanized reasoaiagdtions has
sought to establish properties of auction designs as imgaéad. This is of inter-
est for at least two reasons: first, even if theoretical prigee of an auction are
known, errors may be introduced when translating the andtem a design to an
operational auction. Second, and more commonly for modectians, practice
may simply outstrip theory. In both cases, mechanized reagaan be used to
reduce the likelihood that an auction will fail when run.

Caminati et al.(2015) used Isabelle to prove that a combiraickrey auc-
tion is soundly specified, in the sense of guaranteeing thahatever the bids
received as input — the output allocated only the availabtelg, at non-negative
prices, and assigned a unique output to each input. Furtirernt implemented
two parallel specifications of the auction, the first closggatandard paper spec-
ification, and the second a constructive one. Construcefmitions are essen-
tially algorithmic descriptions. By contrast, definitiomsclassical logics need
only state properties of the defined object. For instancéassical definition of
the maximum of a (non-empty) list of bids identifies an eletredrihe list that is

S0Tadjouddine, Guerin, and Vasconcelos (2009) did not seemsd¢cthe modal capabilities of
SPIN; instead, the authors seemed to adopt SPIN as theydwisire future work — to be able
to accept C code as input, and to reason about it; reasonowg abmputer programs in which
variables can be set does require modal capability.
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greater than or equal to every other element in the list. Astractive definition
would begin by noting that — for a one-element list — the masamis the single
element of the list; it would then proceed recursively by poiing the maximum
of the remainder of the list. It would then return the largethe two: the initial
element, or the maximum of the remaining elements.

Isabelle was used to formally prove the equivalence of tleedpecifications.
While the constructive specification is less intuitive d@tgorithmic nature allows
Isabelle to automatically generate verified executable ¢omn it.

Model checking has also been used to examine auctions fderse of shill
bidding. Xu and Cheng (2007) used SPIN to define predicatessymonding to
suspicious behaviour, including pushing prices to a resprice before dropping
out, and bidding on the higher priced of two identical goolse model checker
was then used to see whether the predicates were presentniteadftaset of
actual bidding behaviour.

Arcos et al.|(2005) developed a toolkit to verify properiésnulti-agent en-
vironments, with a traditional open outcry auction as theading example. Their
toolkit implemented liveness checks to ensure that ageatsa blocked (i.e. can
bid in every round), that each bidding round can be reached tl@at the final
bidding round is reachable from any other, as well as camess of the bidding
language (that is, that by following the rules, the systewags remains in a de-
fined state). Their toolkit also includes a simulation tdalttconducts a ‘what-if’
analysis by performing a complete check of all cases. Whieauthors them-
selves do not refer to what they do as model checking, thalh#é Wwmost closely
resembles.

Finally, Bai, Tadjouddine, and Guo (2014) consider the jaef how po-
tential users of online auctions can trust the auctionstquals. They develop
a protocol for specifying auction designs that can be rea@dxy, a mechanized
reasoner. Future work building on this should eventuallgvalCoq to verify
properties claimed for the auction.

4 Blueprint of a formal proof of Vickrey’s theorem

The preceding has provided an overview of mechanized ra@agonoth in gen-
eral, and as applied to economic problems. This sectionige\a detailed de-
scription of how a mechanized reasoner is used in practiciis case to verify
a formal proof of Vickrey’s theorem. We use Vickrey'’s farailitheorem to focus
attention on the formal proof’s implementation, rathemttize details of the result
or proof.

We begin with a standard statement of Vickrey’s theorem awdfpin this
case from Maskin (2004):
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Theorem 3 (Vickrey 1961) In a second-price auction, it is (weakly) dominant
for each buyer i to bid its valuation viFurthermore, the auction igfcient.

Proof #1. Suppose that buyeridsb; < v;. The only circumstance in which the
outcome fori is changed by its bidding; rather thany, is when the highest bid

by other bidders satisfias > b > by;. In that event, buyerloses by biddingdp; (for
which its net pay# is 0) but wins by bidding; (for which its net payff is v; — b).
Thus, it isworseoff biddingb; < v;. By symmetric argument, it can only be worse
off biddingb; > v;. We conclude that bidding its valuation (truthful bidding)
weakly dominant. Because it is optimal for buyers to bidHfully and the high
bidder wins, the second-price auction fERaent. |

However intelligible to humans, Maskin’s proof is too sigdd for computers:
that there is only one circumstance in which changing bidgsgks the outcome
is merely asserted; the “symmetric argument” is not exijielaborated. Before
formalizing it, we therefore elaborated the paper prood] estructured it to four
cases, rather than the original nine:

Proof #2. Let N be the set of bidders, and suppose biddedsb;, = v;, whatever
bj each other biddey # i bids. There are two cases:
1. i wins. This impliesy = vi = maxjen {bj}, Pi = MaXenij {bj}, anduy; (b) =
Vi — pi = 0. Now consider submitting an arbitrary bidh # b so that the
bid vector is(bl, bbb, bn). This has two sub-cases:

(a) i wins with by, so thatu, (by, ..., i1, b, b1, ..., by) = wi (b): i re-
ceives the same utility from winning the item, and pays thmeesprice
as the second highest bid has not changed.

(b) i loses withb;, so thatu; (by.. ... b1, Bi, bisa. ... by) = 0 < s (b).

2. iloses. Thisimplieg; = 0,u; (b) = 0, andb; < MaXen; {bj} as, otherwise,
I would have won. This yields again two casesifsalternative bich;:

(a) i wins, so that (by, ... b1, b, by, ... by) = W — maxewyy {by} =
b — MaXen iy {bj} <0=uy (b)

(b) i loses, so that, (by. ..., bi_y, b bis..... b)) = 0= u; (b).

By analogy for alli, b = v supports an equilibrium in weakly dominant strategies.
Efficiency is immediate: the highest bidder has the highesatiaio. |

To formally prove Vickrey’s theorem, we used Isabelle, wdhbsgher-order
logic allows our formalization to remain close to paper neatltics.

Our proof,Vickrey.thyis a 9 KB, 185 line file that draws on five ancillary files
written for this projecel All six files amount to 17 KB and 404 lines — much

Slgee https://github.com/formare/auctions/tree/master/isabelle/Auction for
the code.
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longer than their paper counterparts. A more reliable edgnof the additional
effort involved in formal proofs, thee Bruijn factor(Wiedijk,2012), cleans and
compresses files before dividing the size of the code by #esadian informal X
source. It thus avoids bias by semantically irrelevafiedences in the syntaxes of
formalisations such as languages or code styles ustteyeint lengths of lines or
of identifiers. The de Bruijn factor relating Proof #2 anddeginitions (including
max) to our Isabelle code is 1.1; as ogiXTsource is more elaborate than usual,
this is lower than the typically observed factors of aroumar f

Figurell depicts the files used in the proof. Those alreadyahdlle’s library
are marked by ellipses. Dotted ellipses denote files cantaopeneral definitions
and lemmas that we have added to Isabelle’s library. Relgamtgnote this pa-
per’s auction-specific files. Directed edges denote deperdavith the source
code being imported into the target code.

Maximum.thy

SingleGoodAuction.thy

defines single good auctions including

valuations, bids, allocations, pay®

~ o~

SecondPriceAuction.thy SingleGoodAuctionProperties.thy

defines transfers, allocations to winners, losers"thg2ice auction ) ] S ) |
defines éiciency, equilibrium in weakly dominant strategips

supporting lemmas (e.g. prove that loser pays 0)

~

Vickrey.thy

states and proves the two halves of the theofem

Figure 1: High level theory graph for the formal proof of Viely’s theorem

Vickrey.thybegins withvickreyA which proves that truth telling is weakly
dominant in Vickrey auctions:
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theorem vickreyA:
fixesN :: “participant set and v :: valuationsand A :: single good auction
assumewal : “valuations N ¥
defines*b = v’
assumesspa: “secondprice auction A andcard N : “card N> 1”
shows" equilibrium weakly dominant strategy N v b A

Thefixes keyword applies the theorem to ahly v andA of the given types.
The typesingle_good_auctiors defined as amput x outputrelation, with the
bidders and their bids as input, and a Boolean allocatiotovend a vector of
transfers as outcon@.Thevaluationstype is defined elsewhere to be a vector of
real numbers. Thassumeseyword on the next line states that the theorem holds
under an assumption labeledl, namely that in the vector of N real numbers,
all numbers are non-negative (this defined at another pladbaeadefinition of
‘valuations’).

Next, thedefinesdeclaration equates bids and valuations. The follovesg
sumeskeyword introduces and labels further assumptions feigia second-price
auction;N contains more than one bidder). Téleowskeyword states the theo-
rem: N agents participating in auctiol, with valuationss and bidsb (equated to
valuations) yields an equilibrium in weakly dominant st@es.

SingleGoodAuctionProperties.tdgfines the equilibrium concept:

definition equilibrium weakly dominant strategy ::

“participant set= valuations= bids = single good auction= bool’ where
“equilibrium weakly dominant strategy N v b A——

valuations N w bids N bA single good auction AA

(VieN.

(Ywhatever bid. bids N whateverbid —
(let b’ = whateverbid(i := b i)
in (Yx p X p". ((N,whateverbid), (x, p)) € AA ((N,b"), (X, p')) € A
— payqf (vi) (X'i) (p"i) > paygf (vi) (xi) (p)))))"

The definition’s second line declares the type ofehailibrium_weakly _dom
inant_strategyto be a (Boolean) predicate whose arguments are a set of-parti
ipants, a valuation vector, a bid vector, and an auéom'he definition’s body
states that the predicate, given argumeMits, b and A, evaluates to true if and
only if the remaining expression does. The expressionsénstibsequent line

52This can be seen from expressions such Hsi({, (X, p')) € A.
%The A = B = C notation, referred to asurrying, is equivalent toA x B — C, but is
conceptually simpler as it does not require definition af@peration.
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ensure that all arguments have admissible values. Sigilaul first step when
introducingwhatever bid is to ensure that it is an admissible bid vector. The
whatever bid(i := b i) notation then takes an arbitrary vector and replaceshts
component with’s bid b i (which the theorem equatesite valuation

We denote the outcome of an arbitrary bwh@tever bid) by (x, p), while
(x’, p’) denotes that of’'s original bid and arbitrary bids by agenjs# i. To
satisfy the definition of an equilibrium in weakly dominatredegies, the outcome
(x’,p’) of i's truthful bid must yield a pay® no less than that resulting from
an arbitrary bid. Thdet --- in --- notatiof?d introduces local abbreviations,
which can only be accessed within timeblock; here, this makes the expression
((N,b), (X, p’)) € Amore readable.

The code snippet below formalizes case 2b of Proof #2. tegslarative
resembling a textbook proofProceduralproofs, by contrast, prescrildactics
to apply, thus more resembling tippocesshumans use to find proofs. In either
case, each theorem creatgwaof obligation or agoal, these may be broken into
subgoalg(e.g. by case distinction); the set of local proof obligatomplied by
these subgoals are stored ogaal stack

Proof #3.
proof —

D)
{
fix i :: participant
assume_range : “i € N”

(- - - %)
let ?b = “whateverbid(i := b i)’
D)

haveweak dominance “payqf (vi) (X i) (p’ i) > paygf (vi) (xi) (pi)”
proof cases
assumenon alloc: “xX i # 1”
with spa pred i_rangehave“x i = 0” using spa allocates binary by blast
with spa pred i_rangehaveloser payqgf : “payqgf (vi) (X 1) (p'i) = 0"
by (rule secondprice _auction loser_paygy)
havei_bid at most second “?bi <7 max”
proof (rule cconti
assume’ —=thesis
then have“?b i > ?b_max” by simp

54The code snippet contains various instances of “.”: thesseparators that improve readabil-
ity.
SSWe use - - to distinguish the standard use of ellipses from Isabelle’.” notation, whose
meaning we introduce when explaining line 30 of the follogvaode snippet.
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19 with defined spapred i_rangehave*“secondprice _auction winner N?b X p’ i”

20 by (simp add: only max bidder wing)

21 with non alloc showFalse

22 unfolding secondprice _auction winner_def

23 secondprice_auction winner_outcomedef by blast
24 ged

25 show 2thesis

26 proof cases

27 assume‘'xi # 1”

28 then have"x i = 0” by (rule spa allocates binary)

29 with spa pred i rangehave“payqgf (vi) (xi) (pi) =0"
30 by (rule secondprice_auction loser _payqf)

31 also have®... = payqgf (vi) (X 1) (p’ 1)” usingloser payqgf ..
32 finally show 2thesisby (rule eq refl)

33 next

34 (- - %)

35 ged

36 next

37 (- %)

38 ged

39 |}

40 (o)

41 qed

O

Theproof keyword starts the proof. Invoked alone, Isabelle wouleanati-
cally select inference rules to appfyoof — performs manual inference. Alterna-
tively, one can specify existing inference rules:

e proof cases(lines[I0 and_26) makes a case distinction; analysis of each
case concludes Ishowing that the desired thesis holdgd clears the goal
stack;next begins the next case.

e proof (rule ccontr)(line[16) undertakes proof by contradiction, culminating
in showFalse

The proof considers an arbitrary but fixed participgnhich is introduced
locally with thefix keyword, and assumed to be in the admissible radder
bidderd

%6In Isabelle, the descriptive form of a verb (efiges assumesor showg are often used when
stating theorems, while their imperative counterparts. &, assumeor show) are used locally
in proofs.
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The have statements establish local facts, generating local prbbgations,
which have to be discharged by correspondongofs. Here, thecasesproof
establishes thati (--- ,Vv;,---) > u(---,b;,---). This proof makes use of fur-
ther facts, omitted to keep the snippet readagpet predandspa pred state that
((N, whatever bid), (x, p)) and (N, ?b), (X, p’)) respectively are in anr(put, outcomg
relationship of a second price auction with each dtheiefinedstates that a vector
with one component per element of the (finite) Ndtas a well-defined maximum
component.

Both from andusing introduce facts to discharge tlave obligations. The
by keyword invokes an automated proof method, instead of digihg proof
obligations by explicit declarative means. Isabelle thosibines ATP and ITP
methods.

1. simp(lines[18 and 20) simplifies (e.gA x = X) the statement to be proved.
Line[20 supplies a simplification rule of our owanly_max bidder wins.

2. blast(lines12 and 23) “is (in principle) a complete proof procedior first-
order formulas” (Nipkow| 2015). In practicé]ast either succeeds, fails,
or — giving a practical example of semi-decidability — rungiluthe user
cancels it.

3. rule (lines[14,[16[ 28, 30 arid B2) applies the given lemma as areimée
rule. In line[31, “.” abbreviatesby rule, which automatically applies a
matching inference rule.

While interactively developing the proof, we employed the andtryO com-
mands, which apply a range of automated methods, to find tlst appropriate
proof methods. Automated calls can always be replaced blcexgeclarative
steps; Isabelle’s Sledgehammer tool (Blanchette and &au015) can some-
times provide them automatically.

Theassume - - then haveconstructions (lines17 and]18, dnd 27 28) list
assumptionghen state the proof obligations. Linell7’s identifiéthesisrefers to
the proof obligation at the proof’s current level of reaswni

Lines[22 -{2B'sunfolding also performs substitutions, replacing stated con-
cepts’ names with the bodies of their definitions. Unlike raviations with?,
the latter are semantic definitions, of which the reasonekemsse (e.gsec-
ond_price_auction_winner_des restated in terms ofe N, i € arg maxb, ...).

"Isabelle syntactically substitutes identifiers startirithv® by other, usually more complex
expressions before checking a proof step. Syntactic sutisti is performed, for example, by
the preprocessor of many programming languages, allowiagptogrammer to use shorthand
designations rather than writing complicated expressiorfsll. It is distinct from the semantic
equation of two variables, as i ‘= v".
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Lines[29+£3P’shave- - - also have- - - finally show construction allows chains
of reasoning with equality before discharging a proof codlign: the “...” fol-
lowing the also haveare replaced by the right hand side of the previbase
statement. In lin€_31, this establishes thegceives zero given valuation and
either(x, p), or (x’, p’).

5 Discussion

The decade since the mechanized reasoning community becearested in eco-
nomic applications has seen rapid progress. When Nipkoarteg on his for-
malization of Arrow’s theorem, he agreed that “[s]ocial @eatheory turns out to
be perfectly suitable for mechanical theorem proving” feiitthat it was “unclear
if [it] will lead to new insights into either social choiceghbry or theorem proving”
(Nipkow,2009). However, that very year Tang and Lin (2008¢dimechanized
reasoning to discover a new theorem that subsumes ArrowigsimChatterjee
and Senl(2014) believed to be novel, and unlikely to have bmamd with tradi-
tional methods. Shortly thereafter, Geist and Endriss 12@bntributed their 84
impossibility theorems.

If mechanized reasoning is to make further inroads into egoes it must be
sensitive to a number of concerns. First, economics has oafof compara-
ble complexity or length to significant results in modern neswatics. Thus, the
question of whether a proof will exceed the capability of launtheorists to verify
is less of a concern than in mathematics. Further, it is @nd¢heat there have been
any disastrous cases of mistaken proofs within econonmsgad, our greater er-
rors likely result from poor modelling in the first place, armbing or data errors
in econometrics.

Second, even when mechanized reasoners have helpedydeifresults,
economic theorists may dismiss them as unmotivated, rasrsparent or lacking
insight Even, however, in the worst case, we believe that a stock oflypo
motivated, non-transparent theorems generated blindtpbputer provide cases
for us to think about and reason with: the presence of thenrediate indepen-
dence axiom in all of the larger impossibility theorems fdlny Geist and Endriss
(2011) should provide precisely the sort of hunch that sesharpening our pen-
cils.

We close by suggesting some further possible applicatibmechanized rea-
soning to economic problems.

First, there are open problems in auction theory that seeemabte to solution
by computation (rather than ‘reasoning’). For example dingplest formulation

%85ee Avigad and Harrison (2014, p.73) for a discussion of émsibn between rigour and
insight in pure mathematics.
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of optimal multi-object auctions (g.v. Armstrong, 2000¥ides a linear program-
ming problem that quickly becomes too large to solve maguadl the number
of items increased As efficient algorithms exist for solving linear programming
problems automated mechanism desi@nv. Conitzer and Sandholm, 2003) has
already begun to address the purely computational aspegfgimal mechanism
design. As formal methods can be used to verify the resultemiputations (q.v.
Gonthier, 2008; Hales et al., 2015), proofs in automatedhaesm design could
also be verified by formal methods.

Second, we believe that the exhaust-then-induct techipouresered by Tang
and Lin (2009), and developed by Geist and Endriss (201igrsothe promise
of automating search for theorems in other areas of econtimamry. The for-
mal similarities between social choice and matching theancluding a reliance
on discrete objects — suggests that this technique coulgiesd directly to the
latter. Although auction theory appears richer in its useaitinuous objects
(prices), there is a small literature establishing resojtsnduction (Chew and
Serizawa, 2007; Morimoto and Serizawa, 2015; Adachi, 28&40, Ohseto, and
Tamura, 2015); the possibility of coupling their inductisteps with computa-
tional exhaustion has not been explored.

However these tools are applied within economics, it is haichagine them
not becoming more important, as the tools themselves betaster and easier to
use, as they gain acceptance within the pure mathematicsaaity, and as the
mechanized reasoning community seeks more applicationsdm.

References

Adachi, T. (2014). “Equity and the Vickrey allocation rula general preference
domains”.Social Choice and Welfa®#2.4, pp. 813-830.

Agotnes, T., W. van der Hoek, and M. Wooldridge (Jan. 201@h the logic of
preference and judgment aggregatioAtitonomous Agents and Multi-Agent
System&2.1, pp. 4-30.

Appel, K. and W. Haken (1977). “Every Planar Map is Four Calde Part I:
Discharging”.lllinois Journal of Mathematic21.3, pp. 429-490.

Appel, K., W. Haken, and J. Koch (1977). “Every Planar Map asiFColorable
Part II: Reducibility”.lllinois Journal of Mathematic21.3, pp. 491-567.
Arcos, J. L., M. Esteva, P. Noreiga, J. A. Rodriguez-Aguyiard C. Sierra (2005).
“Engineering open environments with electronic instins”. Engineering

Applications of Artificial Intelligencé8, pp. 191-204.

59See Armstrong and Rochet (1999) for the equivalent multiatisional screening problem
for a monopolist.

31



Arlegi, R. (Aug. 2003). “A note on Bossert, Pattanaik and s<tChoice under
complete uncertainty: axiomatic characterization of sateeision rules™.
Economic Theorg2.1, pp. 219-225.

Armstrong, M. (2000). “Optimal multi-object auction®Review of Economic Stud-
ies67.3, pp. 455-481.

Armstrong, M. and J.-C. Rochet (1999). “Multi-dimensiosafteening: a user’s
guide”. European Economic Revie#.4-6, pp. 959-979.

Avigad, J. and J. Harrison (2014). “Formally verified matlagics”. Communica-
tions of the ACMb67.4, pp. 66-75.

Aygin, O. and T. S6nmez (2013). “Matching with contractsnoment”. American
Economic RevieW03.5, pp. 2050-2051.

Bai, W., E. M. Tadjouddine, and Y. Guo (2014). “Enabling Aonatic Certifi-
cation of Online Auctions”. InProceedings 11th International Workshop on
Formal Engineering Approaches to Software Components ackitdctures
(EPTCS 147, Apr. 2, 2014). Ed. by J. K. B. Buhnova L. Happe 23-132.
pol: |10.4204/EPTCS. 147.9.

Barbera, S. (1980). “Pivotal voters: A new proof of Arrowfeebrem”.Econom.
Lett.6.1, pp. 13-16.

— (1983). “Strategy-proofness and pivotal voters: A difgciof of the Gibbard-
Satterthwaite theoreminternat. Econom. Re®4.2, pp. 413—-417.

Barbera, S., W. Bossert, and P. K. Pattanaik (2004). “Ran&ets of objects”. In:
Handbook of Utility TheoryEd. by S. Barbera, P. J. Hammond, and C. Seidl.
\ol. II. Dordrecht: Kluwer Academic Publishers, pp. 893497

Barbera, S. and P. K. Pattanaik (Feb. 1984). “Extending deroon the set to
the power set: some remarks on Kannai and Peleg’'s approdetinal of
Economic Theorg2.1, pp. 185-191.

Blanchette, J. C. and L. C. Paulson (May 25, 20Hgmmering Away. A User’s
Guide to Sledgehammer for Isab@H®L. urL: http://isabelle.in.tum.de/dist/doc/sledg

Blume, L., D. Easley, J. Kleinberg, R. Kleinberg, and Evad't'xsr(ZOlS). “In-
troduction to computer science and economic theadgurnal of Economic
Theoryl156, pp. 1-13.

Boldo, S., J.-H. Jourdan, X. Leroy, and G. Melquiond (Apr12p “A Formally-
Verified C Compiler Supporting Floating-Point Arithmetidh: Arith - 21st
IEEE Symposium on Computer Arithmegd. by A. Nannarelli, P.-M. Seidel,
and P. T. P. Tang. Austin, United States: IEEE, pp. 107-#5https://hal.inria. fr/hal-00

Bordeaux, L., Y. Hamadi, and L. Zhang (2006). “Propositicsetisfiability and
constraint programming: a comparative survéyCM Computing Surveyis.4.

Bossert, W., P. Pattanaik, and Y. Xu (Sept. 2000). “Choiatencomplete uncer-
tainty: axiomatic characterizations of some decisiongUlEconomic Theory
16.2, pp. 295-312.

32


http://dx.doi.org/10.4204/EPTCS.147.9
http://isabelle.in.tum.de/dist/doc/sledgehammer.pdf
https://hal.inria.fr/hal-00743090

Brandt, F. and C. Geist (2016). “Finding strategy proof abchoice functions via
SAT solving”.Journal of Atrtificial Intelligence Research

Buchberger, B. (2006). “Mathematical Theory Exploratiom: Automated Rea-
soning, Third International Joint Conference, IJCAR 2088attle, WA, USA,
August 17-20, 2006, Proceeding®. 1-2.por: 10.1007/11814771_1 urL:
http://dx.doi.org/10.1007/11814771_1|

Burch, J. R., E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hang (1990).
“Symbolic model checking: 1 states and beyond”. IrProceedings of the
5th Annual Symposium on Logic in Computer Scief€EE Computer Soci-
ety Press.

Caminati, M. B., M. Kerber, C. Lange, and C. Rowat (2015). (Sd Auction
Specification and Implementation”. IEconomics and Computatiob6"” ACM
Conference, EC’'15 (Portland, Oregon, USA, June 15-19, R@Ed by M.
Feldman, M. Schwarz, and T. Roughgarden.

Chatterjee, S. and A. Sen (2014). “Automated Reasoning ¢reSGhoice Theory
— Some Remarks’Mathematics in Computer Scien8el, pp. 5-10.

Chew, S. H. and S. Serizawa (2007). “Characterizing the iéigckcombinatorial
auction by induction”’Economic Theor$3.2, pp. 393—-406.

Clarke, E. M., E. A. Emerson, and A. P Sistla (Apr. 1986). “@wiatic verification
of finite-state concurrent systems using temporal logicigpations”. ACM
Transactions on Programming Languages and Sys&&pp. 244—-263or:
10.1145/5397.5399|

Clarke, E. M., O. Grumberg, and D. E. Long (1994). “Model Gtieg and ab-
straction”. ACM Transactions on Programming Languages and Sysiénis
doi:10.114%186025.186051, pp. 1512-1542.

Colton, S., A. Bundy, and T. Walsh (1999). “Automatic ConcEprmation in
Pure Mathematics”. InProceedings of the 16th International Joint Confer-
ence on Atrtificial Intelligence - IJCAI 'Q®Morgan Kaufmann Pub Inc, pp. 786—
791.

— (2000).Automatic Invention of Integer Sequendestp: //www.doc.ic.ac.uk/~sgc/html_pape

Conitzer, V. and T. Sandholm (2003). “Applications of Autated Mechanism
Design”. In:UAI-03 workshop on Bayesian Modeling ApplicatioAsapulco,
Mexico.

Dahn, B. 1. (1998). “Robbins algebras are Boolean: a remisfdVicCune’s computer-
generated solution of Robbins’ problendburnal of Algebra208.2, pp. 526—
532.

Dick, S. (2011). “AfterMath: The Work of Proof in the Age of Ifhan-Machine
Collaboration”.Isis 102.3, pp. 494-505.

— (2015).After Math: Following Mathematics into the DigitaPresentation to
Microsoft Research New England.

33


http://dx.doi.org/10.1007/11814771_1
http://dx.doi.org/10.1007/11814771_1
http://dx.doi.org/10.1145/5397.5399
http://www.doc.ic.ac.uk/~sgc/html_papers/colton_aaai00.html

D’Silva, V., D. Kroening, and G. Weissenbacher (2008). “A&y of Automated
Techniques for Formal Software VerificatiolEEE Trans. on CAD of Inte-
grated Circuits and Systen23.7, pp. 1165-1178.

Gabbay, D. M. and F. Guenthner, eds. (2@014).Handbook of Philosophical
Logic. 2nd ed. Vol. 1-17. Springer-Verlag.

Gardner, M. (Mar. 1952). “Logic MachinesScientific Americari86.3, pp. 68—
73.

Geanakoplos, J. D. (2001)hree brief proofs of Arrow’s impossibility theorem
Discussion Paper 1123RRR. New Haven: Cowles Foundation.

— (2005). “Three brief proofs of Arrow’s impossibility theem”. Economic The-
ory 26.1, pp. 211-215.

Geist, C. (July 2, 2010). “Automated Search for Imposdipiliheorems in Choice
Theory: Ranking Sets of Objects”. MSc Thesis. Institutelfogic, Language
and Computation: Universiteit van Amsterdam.

Geist, C. and U. Endriss (2011). “Automated search for irsjioléty theorems in
social choice theory: ranking sets of objecti&jurnal of Artificial Intelligence
Research0 (January—April), pp. 143-174.

Gonthier, G. (2008). “Formal proof — the four color theoreibtices of the AMS
55.11, pp. 1382-1393.

Gonthier, G., A. Asperti, J. Avigad, Y. Bertot, C. Cohen, Rr{Bot, S. Le Roux,
A. Mahboubi, R. O’Connor, S. Ould Biha, I. Pasca, L. Rideau$Sélovyev, E.
Tassi, and L. Théry (2013). “A Machine-Checked Proof of tlel@rder The-
orem”. English. In:ITP 2013, 4th Conference on Interactive Theorem Prov-
ing. Ed. by S. Blazy, C. Paulin, and D. Pichardie. Vol. 7998. LN&8nnes,
France: Springer, pp. 163—1%91:/10.1007/978-3-642-39634-2_14/| urL:
http://hal.inria.fr/hal-00816699.

Grandi, U. and U. Endriss (2012). “First-Order Logic Forisafion of Impossibil-
ity Theorems in Preference Aggregation”. Englisburnal of Philosophical
Logic, pp. 1-24por:[10.1007/510992-012-9240- 8.

Hales, T., M. Adams, G. Bauer, D. T. Dat, J. Harrison, H. L.dirg, C. Kaliszyk,
V. Magron, S. McLaughlin, N. T. Thang, N. Q. Truong, T. Nipko8: Obua, J.
Pleso, J. Rute, T. T. H. A. Alexey Solovyev, T. N. Trung, T. Tep, J. Urban,
V. K. Ky, and R. Zumkeller (2015). “A formal proof of the Kepleonjecture”.
arXiv preprint arXiv:1501.02155

Hales, T. C. (Nov. 2005). “A proof of the Kepler conjectur&nnals of Mathe-
matics162.3, pp. 1063-1185.

— (Sept. 6, 2012)Dense Sphere Packings. A Blueprint for Formal Proafsn-
don Mathematical Society Lecture Note Series 400. Caméridgiversity
Press.

Harrison, J. (May 2006). “Floating-Point Verification ugifheorem Proving”.
In: Formal Methods for Hardware Verificatior6th International School on

34


http://dx.doi.org/10.1007/978-3-642-39634-2_14
http://hal.inria.fr/hal-00816699
http://dx.doi.org/10.1007/s10992-012-9240-8

Formal Methods for the Design of Computer, Communicatiow, Software
Systems, SFM 2006 (Bertinoro, Italy). Ed. by M. Bernardo &dCimatti.
Lecture Notes in Computer Science 3965. Springer Verlag2 pp-242.

Harrison, J. (2007). “A short survey of automated reasdniimg Proceedings of
the Second International Conference on Algebraic Biolédy,2007 Ed. by
H. Anai, K. Horimoto, and T. Kutsia. Vol. 4545. Lecture NotesComputer
Science. Castle of Hagenberg, Austria: Springer-Verlag384—-349.

Hatfield, J. W. and P. R. Milgrom (2005). “Matching with coetts”. American
Economic RevieWw5.4, pp. 913-935.

Henkin, L., J. D. Monk, and A. Tarski (1971¢ylindric algebras, Part I\Vol. 64.
Studies in Logic. North Holland.

Hoffmann, D. W. (2013)Die Grenzen der Mathematik — Die G6édel'schen Unvoll-
standigkeitssatz&pringer-Verlag.

Ignatovich, D. A. and G. O. Passmore (201Gase Study: 2015 SEC Fine Against
UBS ATSwhite paper 1503. London: Aesthetic Integration.

Kannai, Y. and B. Peleg (Feb. 1984). “A note on the extensi@nmrder on a set
to the power set”Journal of Economic Theor§2.1, pp. 172-175.

Karp, R. M. (1972). “Reducibility among Combinatorial Pleims”. In: Complex-
ity of Computer Computation&d. by R. E. Miller and J. W. Thatcher. New
York: Plenum, pp. 85-103.

Kato, M., S. Ohseto, and S. Tamura (2015). “Strategy-presgrversus symmetry
in economies with an indivisible good and monelyiternational Journal of
Game Theory4.1, pp. 195-207.

Kerber, M., C. Lange, and C. Rowat (Jan. 20&jormal proof of Vickrey’s theo-
rem by blast, simp, and rul&®/orking Paper 14-01. University of Birmingham,
Department of Economicsrr: http://ssrn.com/abstract=2376205.

Lander, L. J. and T. R. Parkin (1966). “Counterexample teeEsiconjecture on
sums of like powers”Bulletin of the American Mathematical Societg.6,
p. 1079.

Lange, C. (2013). “Ontologies and Languages for Represgrlathematical
Knowledge on the Semantic Wel8emantic Web Journdl.2, pp. 119-158.
pol: |10.3233/SW-2012-0059.

Lange, C., M. B. Caminati, M. Kerber, T. Mossakowski, C. Rgwa. Wenzel,
and W. Windsteiger (2013). “A Qualitative Comparison of Bwitability of
Four Theorem Provers for Basic Auction Theory”. Intelligent Computer
Mathematics Conferences on Intelligent Computer Mathematics (Batk, U
July 8-12, 2013). Ed. by J. Carette, D. Aspinall, C. Lange&dika, and W.
Windsteiger. Lecture Notes in Computer Science 7961. §prinpp. 200—
215.p01:(10.1007/978-3-642-39320-4| arXivi1303.4193 [cs.LO].

Leibniz, G. W. (1686). “Projet et Essais pour arriver a quelaertitude pour
finir une bonne partie des disputes et pour avancer I'arvditer”. In:Logik-

35


http://ssrn.com/abstract=2376205
http://dx.doi.org/10.3233/SW-2012-0059
http://dx.doi.org/10.1007/978-3-642-39320-4
http://arxiv.org/abs/1303.4193

Texte: Kommentierte Auswahl zur Geschichte der moderngik.Lied. by K.
Berka and L. Kreisler. Deutsche Ubersetzung aus G. W. Leji#fragmente
zur Logik, Akademie-Verlag, Berlin, 1960. Berlin, Deuttahd: Akademie-
Verlag. Chap. 1.1, pp. 15-17.

Lenat, D. B. (1976). “AM: An Artificial Intelligence Approdcto Discovery in
Mathematics as Heuristic Search”. AIM-286, STAN-CS-7®53nd Heuris-
tic Programming Project Report HPP-76-8. PhD thesis. StdnfCalifornia,
USA: Al Lab, Stanford University.

— (1983). “EURISKO: A Program That Learns New Heuristics ddmain
Concepts”Atrtifical Intelligence21, pp. 61-98.

Lucas, W. F. (1968). “A game with no solutiorBulletin of the American Mathe-
matical Societyr4.2, pp. 237-239.

MacLane, S. (1986Mathematics: Form and Functio®springer-Verlag.

Malawski, M. and L. Zhou (1994). “A note on social choice thewithout the
Pareto principle”Social Choice and Welfarkl.2, pp. 103-107.

Maskin, E. (2004). “The unity of auction theory: Milgrom’saster class’Journal
of Economic Literaturé2.4, pp. 1102-1115.

McCarthy, J. and P. Hayes (1969). “Some Philosophical lBroblfrom the Stand-
point of Artificial Intelligence”.Machine Intelligencd, pp. 463-502.

McCorduck, P. (2004Machines who think2nd ed. AK Peters.

McCune, W. (Dec. 1997). “Solution of the Robbins probleddurnal of Auto-
mated Reasoning9.3, pp. 263-276.

Morimoto, S. and S. Serizawa (2015). “Strategy-proofness eficiency with
non-quasi-linear preferences: a characterization ofmmuinn price Walrasian
rule”. Theoretical Economic$0.2, pp. 445-487.

Neumann, J. von and O. Morgenstern (195@)eory of Games and Economic
Behavior 2nd. Princeton University Press.

Newell, A. (1981).The Heuristic of George Polya and its Relation to Artificiad |
telligence Tech. rep. CMU-CS-81-133. also in Rudolf Groner, Marinai@&ar
and Walter F. Bishoof, eds., Methods of Heuristics, LawesBdbaum, Hills-
dale, New Jersey, USA, p. 195-243. Pittsburgh, Pennsyy&i$A: Depart-
ment of Computer Science, Carnegie-Mellon University.

Newell, A. and H. A. Simon (1956)he logic theory machine: a complex infor-
mation processing systefechnical Report P-868. The RAND Corporation.

Nipkow, T. (2009). “Social choice theory in HOL: Arrow andibiard-Satterthwaite”.
Journal of Automated Reasonidg.3, pp. 289-304.

— (May 25, 2015)Programming and Proving in IsabeftdOL. urL: http://isabelle.in. tum.de/

Pélya, G. (1945)How to Solve It Princeton, New Jersey, USA: Princeton Uni-
versity Press.

— (1954). Mathematics and Plausible Reasoning — Induction and Anaiag
MathematicsPrinceton, New Jersey, USA: Princeton University Press.

36


http://isabelle.in.tum.de/doc/prog-prove.pdf

Reny, P. J. (Jan. 2001). “Arrow’s theorem and the Gibbarte8awaite theorem:
a unified approach’Economics Letterg0.1, pp. 99-105.

Robinson, J. A. (Jan. 1965). “A Machine-Oriented Logic Bhse the Resolution
Principle”. Journal of the Association for Computing Machind®.1, pp. 23—
41.

Suzumura, K. (Mar. 2000). “Welfare economics beyond wedfasonsequentialism”.
Japanese Economic Revié&d. 1, pp. 1-32.

Tadjouddine, E. M., F. Guerin, and W. Vasconcelos (2009hstacting and Ver-
ifying Strategy-Proofness for Auction Mechanisms”. Declarative Agent
Languages and Technologies.\Hd. by M. Baldoni, T. C. Son, M. B. van
Riemsdijk, and M. Winikdf. 5397. Springer Verlag, pp. 197-214.

Tang, P. (2010). “Computer-aided theorem discovery — a rohversture and its
application to economic theory”. PhD dissertation. HonghgdJniversity of
Science and Technology.

Tang, P. and F. Lin (July 2009). “Computer-aided proofs ofadw's and other
impossibility theorems”Atrtificial Intelligencel73.11, pp. 1041-1053.

— (Sept. 2011a). “Discovering theorems in game theory: p@oson games with
unique pure Nash equilibrium patys”. Artificial Intelligencel75.14-15, pp. 2010-
2020.

— (Mar. 2011b). “Two equivalence results for two-persoficsggames”.Games
and Economic Behaviofl.2, pp. 479-486.

Turing, A. M. (1936). “On Computable Numbers, with an Applion to the
EntscheidungsproblemProceedings of the London Mathematical Society.
Second Serie$2, pp. 230-265.

Wang, H. (1960). “Toward Mechanical Mathematici8M Journal of Research
and Development.1, pp. 2-22.

Whitehead, A. N. and B. Russell (191®rincipia MathematicaVol. I. Cam-
bridge, UK: Cambridge University Press.

Wiedijk, F. (2007). “Arrow’s impossibility theorem3Journal of Formalized Math-
ematicsl5.4, pp. 171-174.

— (2008). “Formal proof: getting startedRlotices of the AMS5.11, pp. 1408—
1414.

— (Feb. 2009). “Formalizing Arrow’s theoremS adhan34.1, pp. 193-220.

— (Mar. 1, 2012)The “de Bruijn factor”. urL: http: //www.cs.ru.nl/~freek/factor/
(visited on 0124/2016).

— (2014).Formalizing 100 Theoremsrr: http://www.cs.ru.nl/~freek/100/.

Woodcock, J., P. G. Larsen, J. Bicarregui, and J. Fitzgd@dd. 2009). “Formal
method: practice and experiencACM Computing Surveysl.4, pp. 1-40.

Xu, H. and Y.-T. Cheng (2007). “Model checking bidding beloas in internet
concurrent auctionsinternational Journal of Computer Systems Science and
Engineering22.4, pp. 179-191.

37


http://www.cs.ru.nl/~freek/factor/
http://www.cs.ru.nl/~freek/100/

	1 Introduction
	2 Mechanized reasoning
	2.1 Deductive reasoning
	2.2 Inductive reasoning

	3 Mechanized reasoning for economic problems
	3.1 Social choice
	3.2 Auctions

	4 Blueprint of a formal proof of Vickrey's theorem
	5 Discussion

