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TWO ANALOGS OF THUE-MORSE SEQUENCE

VLADIMIR SHEVELEV

Abstract. We introduce and study two analogs of one of the best
known sequence in Mathematics : Thue-Morse sequence. The first ana-
log is concerned with the parity of number of runs of 1’s in the repre-
sentation of nonnegative integers in binary (or in base 2). The second
one is connected with the parity of number of 1’s in the representation
of nonnegative integers in so-called negabinary (or in base −2). We give
for them some recurrent and structure formulas and consider several
interesting difficult problems.

1. Introduction

Let T = {tn}|n≥0 be Thue-Morse sequence (or it is called also Prouhet-

Thue -Morse sequence, Allouche and Shallit [2]). It is defined as the parity

of number of 1′s in binary representation of n. T is the sequence A010060

[8]. There are well known the following formulas for T ([2]):

i) (A recurrent formula). t0 = 0, for n > 0, t2n = tn and t2n+1 = 1− tn.

ii) (Structure formula). Let Ak denote the first 2k terms; then A0 = 0 and

for Ak+1, k >= 0, we have a concatenation Ak+1 = AkBk, where Bk is

obtained from Ak by interchanging 0′s and 1′s;

iii) (A relation which is equivalent to ii)). For 0 <= k < 2m, t2m+k = 1−tk;

Some much more general formulas one can find in author’s article [6]. In

this paper we introduce and study two analogs of T :

1) Let R = {rn}|n≥0 be the parity of number of runs of 1′s in the binary

representation of n. R is our sequence A268411 in [8].

2) Let G = {gn}|n≥0 be the parity of number of 1′s in the negabinary

representation (or in base −2 of n. (cf. [9] and sequence A039724 [8]; see

also [4, p.101], [5, p.189])). G is our sequence A269027 in [8].

We say several words concerning the appearance of the sequences G and

R. For the first time, the numerical base −2 was introduced by V.Grünwald

in 1885 (see [10] and references there). The author was surprised that during

130 years nobody considered a natural analog of Thue-Morse sequence in the

base−2 , and he decided to study this sequence. Unexpectedly, it turned out

that it has very interesting properties (although less canonical than Thue-

Morse sequence). Moreover, it definitely has astonishing (yet unproved)
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joint properties with Thue-Morse sequence (see below our problems 3,4).

Concerning sequence R, it first appears in some-what exotic way. Let

u(n) be characteristic (0, 1) function of a sequence S = {1 = s1 < s2 <

s3 < ...}. In the main result of our recent paper [7] there appears the

following series f(x) =
∑

i≥2(u(i) − u(i− 1))xi. It is easy to see that if to

ignore zero coefficients (when u(i) = u(i− 1)), then other coefficients form

alternative (−1, 1) sequence. The author decided to introduce a numerical

system based on base 2 with such an order of digits. So he considered the

”balanced binary” representation of n which is obtained from the binary

representation of n by replacing every 2j by 2j+1 − 2j . The system was

named ”balanced” since the digital sum of every n in this system equals 0.

For example 7 = 4+2+1 = (8−4)+(4−2)+(2−1) = 8−1 = (1, 0, 0,−1)b.

The natural question: ”how many pairs 1,−1 are contained in the balanced

binary representation of n?” is easily answered: this number equals the

number of runs of 1′s in the binary representation of n. This sequence

modulo 2 is R.

2. Main results

In this paper we prove the following.

Theorem 1. The following recursion holds. r0 = 0, r2n = rn; for even n,

r2n+1 = 1− rn; for odd n, r2n+1 = rn.

Theorem 2. Let Rk denote the first 2k terms of R; then R1 = {0, 1} and

for k >= 1, we have a concatenation Rk+1 = RkSk, where Sk is obtained

from Rk by complementing the first 2k−1 0′s and 1′s and leaving the rest

unchanged.

Theorem 3. The following recursion holds. g0 = 0, g4n = gn, g4n+1 = 1−gn,

g4n+2 = 1− gn+1, g4n+3 = gn+1.

For the first time this statement was formulated by R. Israel in our se-

quence A269027 [8].

Theorem 4. Let Gk denote the first 2k terms of G; then G0 = 0 and for

even k >= 0, we have a concatenation Gk+1 = GkFk, where Fk is obtained

from Gk by complementing its 0′s and 1′s; for odd k >= 1, we have a con-

catenation Gk+1 = GkHk, where Hk is obtained from Gk by complementing

its last (2/3)(2k−1 − 1) 0′s and 1′s.
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3. Proof of Theorem 1

Proof. 1) Trivially, r2n = rn.

2) Let n = 2k, 2n+1 = 4k+1 which ends on 00...01, where the number of

zeros ≥ 1, then the last 1 forms a new run of 1’s. So, r2n+1 = 1−r4k = 1−rn.

3) Let n be odd such that n− 1 = 2ml, where l is odd, m ≥ 1 and 2n+1 =

2m+1l + 3.

3a) Let m = 1. Then 4l ends on two zeros and the adding of 3 does not

form a new run. So, r2n+1 = r4l+3 = r4l = r2l = r2l+1 = rn.

3b) Let m ≥ 2. Then 2m+1l ends on ≥ 3 zeros and the adding of 3 forms a

new run. So, r2n+1 = 1− r2m+1l = 1− r2ml = 1− (1− rn) = rn. �

4. Proof of Theorem 2

Proof. It is easy to see that Theorem 2 is equivalent to the formula

(1) rn+2k =

{

1− rn, 0 ≤ n ≤ 2k−1 − 1

rn, 2k−1 ≤ n ≤ 2k − 1.

In case when n ∈ [2k−1, 2k − 1] in the binary expansion of n the maximal

weight of 1 is 2k−1. After addition of 2k this new 1 continues the previous

run of 1’s in which there is 1 of the weight 2k−1. So, in this case the number

of runs of 1’s does not change and rn+2k = rn. In opposite case when n ∈

[0, 2k−1−1] after addition of 2k this new 1 forms a new run and the number

of runs is increased on one, so rn+2k = 1− rn. �

5. Proof of Theorem 3

In binary expansion of n, we call even 1’s the 1’s with the weight 22k, k ≥

0, and other 1’s we call odd 1’s. In conversion from base 2 to base -2 an

important role plays the parity of 1’s in binary, since only every odd 1

with weight 22k+1, k >= 0, we should change by two 1’s with weights

22k+2, 22k+1, which corresponds to the equality

22k+1 = (−2)2k+2 + (−2)2k+1.

For example 7 = 22+2+1 => 22+22−2+1 = 23−2+1 = 24−23−2+1 =

11011−2.

Proof. 1)Since multiplication n by 4 does not change the parity of 1’s, then,

evidently, g4n = gn.

2) Again evidently g4n+1 = 1− g4n = 1− gn.

3) Note also that g2n+1 = 1− g2n. Hence, g4n+3 = g2(2n+1)+1 = 1− g4n+2.

4) It is left to prove that g4n+3 = gn+1 (then g4n+2 = 1− gn+1).
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4a) Let n be even = 2m. We should prove that g8m+3 = g2m+1. Note

that 8m+3 ends in the binary on 100...011, where the number of zeros≥ 1.

Since 011 in binary converts to 111−2, then g8m+3 = 1 − g8m = 1 − g2m =

1− (1− g2m+1) = g2m+1.

4b) Let n be odd and ends on even number of 1’s. We need lemma.

Lemma 1. For m ≥ 2,

(2) 2m − 1 =

{

100...011−2, m is even

1100...011−2, m is odd,

where in the 0’s run we have m− 2 zeros.

Proof. Let m be even. Then we have

2m − 1 = 2m−1 + 2m−2 + ...+ 2 + 1 =

(2m − 2m−1) + 2m−2 + (2m−2 − 2m−3) + ... + (16− 8) + 4 + (4− 2) + 1 =

2m+(−2m−1+2m−1)+(−2m−3+2m−3)+ ...+(−8+8)−2+1 = 100...011−2

such that zeros correspond to exponents m− 1, m− 2, ..., 3, 2, i.e., we have

m − 2 zeros. Now let m be odd. Then m − 1 is even and, using previous

result, we have

2m − 1 = 2m−1 + 2m−2 + ...+ 2 + 1 =

2m−1 +2m−1 + (−2m−2 +2m−2) + (−2m−4 +2m−4) + ...+ (−8+ 8)− 2+ 1 =

2m+1 − 2m − 2 + 1 = 1100...011−2

with also m− 2 zeros. �

Corollary 1.

(3) g2m−1 =



















0, m = 0

1, m = 1

1, m ≥ 2 is even

0, m ≥ 3 is odd.

Let n in the binary ends on even m ≥ 2 1’s. Then 4(n + 1) ends on

100...0 with m+ 2 zeros and thus the end of 4(n+ 1) equals 100...0−2 with

m + 2 zeros. On the other hand, 4n + 3 ends on m + 2 ≥ 4 1’s: 011...1,

so, by (2), the end of 4n + 3 equals 10...011−2 with m zeros. Since all

the previous binary digits for 4n + 3 and 4(n + 1) are the same (indeed,

4n+ 4− (4n+ 3) = 1 = 10...02 − 01...12), then, continuing conversion from

base 2 to base −2, we obtain the equality g4n+3 = gn+1.

4c) Finally, let n be odd and ends on odd number m of 1’s. Consider in

more detail the end of n. If n ends on 001..12, then the proof does not differ
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from the previous case, since 4(n+1) = ...010...02 with m+2 zeros, thus

the end of 4(n+1) equals 110...0−2; on the other hand, 4n+3 = ...001...1112

and, by (2) the end of 4n + 3 equals 110...011 with m zeros and we again

conclude that g4n+3 = gn+1.

Now let n ends on 01...101...1, where the first run contains k 1’s while the

second run contains odd m 1’s. Then 4n + 3 ends on 01...101...111, while

n + 1 ends on 01...110...0, where the run of 1’s contains k + 1 1’s which is

followed by the run of m 0’s. Let us pass in two last ends to base −2. We

need a lemma which is proved in the same way as Lemma 1.

Lemma 2. For odd m ≥ 3,

(4) 2m+k+1 − 2m − 1 =

{

10...010...011−2, k is even

110...010...011−2, k is odd,

where the first (from the left to the right) 0’s run has k zeros, while the

second 0’s run has m− 2 zeros;

(5) 2(2k+1 − 1) =

{

10...010−2, k is even

110...010−2, k is odd,

where the first 0’s run has k zeros.

So, by (4), for the end of 4n+ 3 we have

01...101...1112 = 2(m+2)+k+1 − 2m+2 − 1 =
{

10...010...011−2, k is even

110...010...011−2...010...011−2, k is odd,

where the 0’s runs have k and m zeros respectively.

For the corresponding end of 4(n+ 1) having m+ 2 zeros at the end, by

(5), we have (since m+ 1 is even):

01...110...02 = 2m+1 · 1...1102 =

2m+1 ·

{

10...010−2, k is even

110...010−2, k is odd,
=

{

10...010...0−2, k is even

110...010...0−2, k is odd,

where the 0’s runs have k and m+ 2 zeros respectively.

Since all the previous binary digits for 4n + 3 and 4(n + 1) are the same

(4n+4−(4n+3) = 1 = 1...110...02−1...101...12), then, continuing conversion

from base 2 to base −2, we obtain the equality g4n+3 = gn+1. �
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6. Proof of Theorem 4

Proof. It is easy to see that Theorem 4 is equivalent to the formula

(6) g2k+m =











1− gm, k is even ≥ 2 and 2k−1 ≤ m < 2k

gm, k is odd ≥ 1 and 0 ≤ m < 2k − 2
3
(2k−1 − 1)

1− gm, k is odd ≥ 3 and 2k − 2
3
(2k−1 − 1) ≤ m < 2k.

1) Let k be even≥ 2 and 2k−1 ≤ m < 2k. We use induction over k. For

k = 2, 2 ≤ m < 4, (6) is true: g4+2 = 1 − g2, g4+3 = 1 − g3 = 0; also it

is easy verify (6) for k = 4. Suppose that (6) is true for k − 2. We write in

binary 1 ∨m instead of 2k +m.

1a) Let m = 4x. By the induction supposition g1∨x = 1 − gx. But also, by

the condition, g1∨m = g1∨x = 1− gx and gm = gx. So g1∨m = 1− gm.

1b) Let m = 4x+ 1. By the induction supposition g1∨x = 1− gx. But also,

by the condition (since g4n+1 = 1 − gn) we have g1∨m = 1 − g1∨x = gx and

gm = 1− gx. So g1∨m = 1− gm.

1c) Let m = 4x− 1. By the induction supposition g1∨x = 1 − gx. But also,

by the condition (since g4n−1 = g4(n−1)+3 = gn) g1∨m = g1∨x = 1 − gx and

gm = gx. So g1∨m = 1− gm.

1d) Let m = 4x− 2. By the induction supposition g1∨x = 1− gx. But also,

by the condition (since g4n−2 = g4(n−1)+2 = 1 − gn) g1∨m = 1 − g1∨x = gx

and gm = 1− gx. So g1∨m = 1− gm.

The proof in the following two points is the same, except for the bases of

induction. Therefore in the points 2),3) we give the bases of induction only.

2) Let k be odd≥ 1 and 0 ≤ m < 2k − 2
3
(2k−1 − 1). For k = 1, we have

m = 0, 1 and (6) is true: g2+0 = g0 = 0 and g2+1 = g1 = 1; for k = 3,

we have m = 0, 1, 2, 3, 4, 5 and (6) is true: g8+0 = g0 = 0, g8+1 = g1 = 1,

g8+2 = g2 = 0, g8+3 = g3 = 1, g8+4 = g4 = 1, g8+5 = g5 = 0.

3) Let k be odd≥ 3 and 2
3
(2k−1− 1) ≤ m < 2k. For k = 3, we have m = 6, 7

and (6) is true: g8+6 = 1− g6 = 0 and g8+7 = 1− g7 = 1. for k = 5, we have

m = 22, 23, ..., 31 and (6) is true: g32+22 = 1− g22 = 1, g32+23 = 1− g23 = 0

... g32+31 = 1− g31 = 1. �

7. Several difficult author’s problems

1) [6]. For which positive numbers a, b, c, for every nonnegative n there

exists x ∈ {a, b, c} such that tn+x = tn?

This problem was solved in [6] only partially. For example, for every a ≥

1, k ≥ 0, the triple {a, a + 2k, a + 2k+1} is suitable. However, there are

other infinitely many solutions.
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2) Conjecture[6]. Let u(n) = (−1)tn |n≥0 and a be a positive integer. Let

{l0 < l1 < l2 < ...}, {m0 < m1 < m2 < ...} be integer sequences for which

u(li + a) = −u(li), u(mi + a) = u(mi). Let βa(n) = u(ln), γa(n) = u(mn).

Then the sequences βa, γa are periodic, of the smallest period 2v(a)+1, where

v(a) is such that 2v(a)||a. They satisfy βa = −γa.

This conjecture was proved by Allouche [1].

3) (in A268866 [8]). Let v(n) be the maximal number k such that gr =

tr+n, r = 0, 1..., k − 1( if k = 0, there is no equality already for r = 0.)

Let {a(n)} be the sequence of records in the sequence {v(n)}. Conjec-

ture: 1) Let l(n) be the position in {v(n)} corresponding to a(n). Then

l(n) = (2/3)(4n − 1), if n is even, and l(n) = (2/3)(4n−1 − 1) + 3 · 4n−1, if n

is odd; 2) a(n) = 2l(n) + 2, if n is even, and a(n) = (7l(n) + 12)/11, if n is

odd.

4) (A dual problem: in A269341 [8]). Let w(n) be the maximal number k

such that gr = 1 − tr+n, r = 0, 1..., k − 1. Let {b(n)} be the sequence of

records in the sequence {w(n)}. Denote by m(n) the position in {w(n)} cor-

responding to b(n). Then m(0) = 0, m(1) = 1. Conjecture: 1) for even n ≥

2, m(n) = (2/3)(4n−1−1); for odd n ≥ 3, m(n) = (2/3)(4n−2−1)+3·4n−2;

2) for even n ≥ 2, b(n) = 2m(n)+2; for odd n ≥ 3, b(n) = (7m(n)+12)/11.

5) Together with the Thue-Morse constant P = 0.01101001100101...2 which

is given by the concatenated digits of the Thue-Morse sequence A010060 and

interpreted as a binary number, consider the constant S = 0.01111011100...2

and the constant F = 0.0101101001...2 which are given by the concatenated

digits of the sequences R = A268411 and G = A269027 respectively and

interpreted as binary numbers. Dekking [3] proved that P is a transcendent

number. We ask, are the constants S and F transcendent?

The author hopes that this paper will help to solve at least the prob-

lems 3 and 4. The paper is connected with the following sequences in

[8]: A000695, A010060, A039724, A069010, A020985, A022155, A203463,

A268382, A268383, A268411, A268412, A268415, A268865, A268866, A268272,

A268273, A268476, A268477, A268483, A269003, A269027, A269340, A269341,

A269458, A269528, A269529.
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