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TWO ANALOGS OF THUE-MORSE SEQUENCE
VLADIMIR SHEVELEV

ABSTRACT. We introduce and study two analogs of one of the best
known sequence in Mathematics : Thue-Morse sequence. The first ana-
log is concerned with the parity of number of runs of 1’s in the repre-
sentation of nonnegative integers in binary (or in base 2). The second
one is connected with the parity of number of 1’s in the representation
of nonnegative integers in so-called negabinary (or in base —2). We give
for them some recurrent and structure formulas and consider several
interesting difficult problems.

1. INTRODUCTION

Let T' = {t,}|n>0 be Thue-Morse sequence (or it is called also Prouhet-
Thue -Morse sequence, Allouche and Shallit [2]). It is defined as the parity
of number of 1’s in binary representation of n. T" is the sequence A010060
[8]. There are well known the following formulas for 7" ([2]):

i) (A recurrent formula). to =0, for n > 0, ty, =t, and tg,11 = 1 — t,.

ii) (Structure formula). Let A; denote the first 2% terms; then Ay = 0 and
for Agyq1, k >= 0, we have a concatenation Ay, 1 = AiBjy, where By is
obtained from Ay by interchanging 0's and 1's;

iii) (A relation which is equivalent toii)). For 0 <=k < 2™, tom i = 1—ty;

Some much more general formulas one can find in author’s article [6]. In
this paper we introduce and study two analogs of 7" :

1) Let R = {r,}|n>0 be the parity of number of runs of 1's in the binary
representation of n. R is our sequence A268411 in [§].

2) Let G = {gn}|n>0 be the parity of number of 1’s in the negabinary
representation (or in base —2 of n. (cf. [9] and sequence A039724 [§]; see
also [4, p.101], [5, p.189])). G is our sequence A269027 in [§].

We say several words concerning the appearance of the sequences G' and
R. For the first time, the numerical base —2 was introduced by V.Grinwald
in 1885 (see [10] and references there). The author was surprised that during
130 years nobody considered a natural analog of Thue-Morse sequence in the
base —2 , and he decided to study this sequence. Unexpectedly, it turned out
that it has very interesting properties (although less canonical than Thue-
Morse sequence). Moreover, it definitely has astonishing (yet unproved)
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joint properties with Thue-Morse sequence (see below our problems 3,4).

Concerning sequence R, it first appears in some-what exotic way. Let
u(n) be characteristic (0,1) function of a sequence S = {1 = 1 < $3 <
s3 < ...}. In the main result of our recent paper [7] there appears the
following series f(z) = > ,oo(u(i) — u(i — 1))z". It is easy to see that if to
ignore zero coefficients (wh:en u(i) = u(i — 1)), then other coefficients form
alternative (—1,1) sequence. The author decided to introduce a numerical
system based on base 2 with such an order of digits. So he considered the
"balanced binary” representation of n which is obtained from the binary
representation of n by replacing every 2/ by 291 — 27, The system was
named "balanced” since the digital sum of every n in this system equals 0.
For example 7 =442+1=(8—4)+(4—-2)+(2—1)=8—-1=(1,0,0,—1),.
The natural question: "how many pairs 1, —1 are contained in the balanced
binary representation of n?” is easily answered: this number equals the
number of runs of 1’s in the binary representation of n. This sequence
modulo 2 is R.

2. MAIN RESULTS

In this paper we prove the following.

Theorem 1. The following recursion holds. ro = 0,79, = r,; for even n,
Tona1 = 1 — 1y for odd n, ropi1 = 7y.

Theorem 2. Let Ry denote the first 2% terms of R; then Ry = {0,1} and
for k >= 1, we have a concatenation Ry, = RpSk, where Sy is obtained
from Ry, by complementing the first 2871 0's and 1's and leaving the rest

unchanged.

Theorem 3. The following recursion holds. gy = 0, g4n = Gn, Gan+1 = 1—gn,

Jan+2 = 1 — Gnt1, Gants = Gn+1-

For the first time this statement was formulated by R. Israel in our se-
quence A269027 [§].

Theorem 4. Let G}, denote the first 2% terms of G; then Gy = 0 and for
even k >= 0, we have a concatenation Gy 1 = GpF}, where Fy is obtained
from Gy by complementing its 0's and 1's; for odd k >= 1, we have a con-

catenation Gyy1 = GiHy, where Hy is obtained from Gy by complementing
its last (2/3)(28F"1 — 1) 0's and 1's.
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3. PROOF OF THEOREM 1

Proof. 1) Trivially, o, = 1.

2) Let n = 2k, 2n+1 = 4k+ 1 which ends on 00...01, where the number of
zeros > 1, then the last 1 forms a new run of 1’s. So, rop11 = 1—rgy = 1—1p,.
3) Let n be odd such that n — 1 = 2™, where [ is odd, m > 1 and 2n+ 1 =
2mH] 4 3.

3a) Let m = 1. Then 4[ ends on two zeros and the adding of 3 does not
form a new run. So, ro,41 = Tyi3 =Ty = Toy = Tyl = Tn.

3b) Let m > 2. Then 2™"!] ends on > 3 zeros and the adding of 3 forms a

new run. So, repy1 = 1 —rgmiyy=1—1rom=1—(1—=1,) =7,. O
4. PROOF OF THEOREM 2

Proof. 1t is easy to see that Theorem [2is equivalent to the formula

1—r,, 0<n<2k1_1
(1> Tn42k = . ok—1 <n< ok _ 1.

In case when n € [2¥71 28 — 1] in the binary expansion of n the maximal
weight of 1 is 2¥=1. After addition of 2% this new 1 continues the previous
run of 1’s in which there is 1 of the weight 2!, So, in this case the number
of runs of 1’s does not change and 7, o« = r,,. In opposite case when n €
0,28~ — 1] after addition of 2* this new 1 forms a new run and the number

of runs is increased on one, s0 1, or =1 — 7. U

5. PROOF OF THEOREM 3

In binary expansion of n, we call even 1’s the 1’s with the weight 22¢, k >
0, and other 1’s we call odd 1’s. In conversion from base 2 to base -2 an
important role plays the parity of 1’s in binary, since only every odd 1
with weight 2%*! &k >= 0, we should change by two 1’s with weights
22k+2 = 92k+1 which corresponds to the equality

22k+1 — (_2>2k+2 + (_2)219-‘:-1'

For example 7 = 22 4+2+1 =>22422-241=23-241=2 -2 241 =
11011 _,.

Proof. 1)Since multiplication n by 4 does not change the parity of 1’s, then,
evidently, g4, = gn.

2) Again evidently gsni1 =1 — gan = 1 — gn.

3) Note also that gapi1 = 1 — gan. Hence, guny3 = go@n+1)+1 = 1 — Ganta.
4) Tt is left to prove that gy,.3 = gne1 (then gapio =1 — gni1).
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4a) Let n be even = 2m. We should prove that gg,+3 = gams1. Note
that 8m + 3 ends in the binary on 100...011, where the number of zeros> 1.
Since 011 in binary converts to 111_5, then ggis =1 — ggm = 1 — gon =
1= (1= g2mt1) = Gamr1-
4b) Let n be odd and ends on even number of 1’s. We need lemma.

Lemma 1. Form > 2,

(2> om _ 1 — 100...011_5, m is even
] 1100...011_5, m is odd,

where in the 0’s run we have m — 2 zeros.

Proof. Let m be even. Then we have
2" —1=2""1 4 2m 2 424 1=
(2m—2m )y 4 2m 2 (2m2 =2 4+ (16 —8)+4+(4—2)+ 1=
2 (=2 2T p (=2 42T 4 (=8 48) =241 = 100...011_,
such that zeros correspond to exponents m — 1, m — 2, ..., 3, 2, i.e., we have

m — 2 zeros. Now let m be odd. Then m — 1 is even and, using previous
result, we have

oM 1 =9m L pom2 L 49241 =
om—l pom=l 4 (_gm=2 4 gm=2) L (_gm=4 L ogm) 1 1 (-848)-2+1=
omtl _om _ 94 1=1100...011_,

with also m — 2 zeros. O

Corollary 1.

m=20

m=1

3 m_1] —
(3) g1 m > 2 18 even

, m >3 is odd.

O R =~ O

Let n in the binary ends on even m > 2 1’s. Then 4(n + 1) ends on
100...0 with m + 2 zeros and thus the end of 4(n + 1) equals 100...0_5 with
m + 2 zeros. On the other hand, 4n + 3 ends on m + 2 > 4 1’s: 011...1,
so, by (@), the end of 4n + 3 equals 10...011_5 with m zeros. Since all
the previous binary digits for 4n + 3 and 4(n + 1) are the same (indeed,
dn+4— (4n+3) = 1 =10...09 — 01...15), then, continuing conversion from
base 2 to base —2, we obtain the equality g4n13 = gni1-

4c) Finally, let n be odd and ends on odd number m of 1’s. Consider in
more detail the end of n. If n ends on 001..15, then the proof does not differ
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from the previous case, since 4(n+ 1) = ...010...05 with m + 2 zeros, thus
the end of 4(n+1) equals 110...0_5; on the other hand, 4n+3 = ...001...1115
and, by (2) the end of 4n + 3 equals 110...011 with m zeros and we again
conclude that g4n13 = gna1-

Now let n ends on 01...101...1, where the first run contains k£ 1’s while the
second run contains odd m 1’s. Then 4n + 3 ends on 01...101...111, while
n + 1 ends on 01...110...0, where the run of 1’s contains k£ + 1 1’s which is
followed by the run of m 0’s. Let us pass in two last ends to base —2. We
need a lemma which is proved in the same way as Lemma [I]

Lemma 2. For odd m > 3,
10...010...011_5, k is even

(4) 2m+k+1 —om _ 1 — .
110...010...011_5, k& s odd,

where the first (from the left to the right) 0’s run has k zeros, while the
second 0’s run has m — 2 zeros;

(5) 2(2k+1 . 1) _ 10010_27 k is even
110...010_s, & ds odd,

where the first 0’s run has k zeros.

So, by (@), for the end of 4n + 3 we have

01...101...1115 = 20mF2)+k+l _om+2 1 —
10...010...011 _,, k is even
110...010...011_5...010...011_5, % is odd,

where the 0’s runs have k and m zeros respectively.
For the corresponding end of 4(n + 1) having m + 2 zeros at the end, by
(), we have (since m + 1 is even):

01...110...0, = 2™t . 1...1105 =

om+1 10...010_5, kiseven
110...010_5, kis odd,

110...010...0_2, K is odd,

where the 0’s runs have k and m + 2 zeros respectively.

{ 10...010..0_9, K is even

Since all the previous binary digits for 4n + 3 and 4(n + 1) are the same
(4n+4—(4n+3) = 1 = 1...110...0o—1...101...15), then, continuing conversion
from base 2 to base —2, we obtain the equality gin13 = gni1- O
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6. PROOF OF THEOREM 4

Proof. 1t is easy to see that Theorem Ml is equivalent to the formula

1= gm, k is even>2and 281 <m < 2*
(6)  Gokim = § I, kis odd >1and 0 <m < 28— 2(2F-1 —1)
1—gm, kis 0dd23and2k—§(2k‘1—1)§m<2k.

1) Let k be even> 2 and 2k-1 < m < 2F. We use induction over k. For
k=2 2<m<4, (6 is true: ggyo =1 — 92, gar3 = 1— g3 = 0; also it
is easy verify (@) for k& = 4. Suppose that (@) is true for £ — 2. We write in
binary 1V m instead of 28 4 m.

la) Let m = 4x. By the induction supposition ¢g;v, = 1 — g,. But also, by
the condition, ¢iym = give = 1 — ¢ and g, = gz. SO Grym = 1 — Grm.

1b) Let m = 4z + 1. By the induction supposition gy, = 1 — g,. But also,
by the condition (since g4,11 = 1 — g,) we have g1ym = 1 — g1ve = g and
gm =1— gz SO grym =1 — gm.

1c) Let m = 4z — 1. By the induction supposition gy, = 1 — g,. But also,
by the condition (since gun—1 = gan-1)+3 = In) Jivm = Giva = 1 — g, and
Im = gz- SO Givm =1 — gm.

1d) Let m = 4x — 2. By the induction supposition g1y, = 1 — g,. But also,
by the condition (since gun—2 = Gan—1)+2 = 1 = Gn) G1ivm = 1 — Giva = G
and ¢, =1 — gz. SO grym =1 — gpm-

The proof in the following two points is the same, except for the bases of
induction. Therefore in the points 2),3) we give the bases of induction only.
2) Let k be odd> 1 and 0 < m < 2F — 2(2*"! —1). For k = 1, we have
m = 0,1 and () is true: g0 = go = 0 and go 1 = g1 = 1; for k = 3,
we have m = 0,1,2,3,4,5 and (@) is true: gsi o = go = 0, gsy1 = g1 = 1,
gs+2=92=0,9843 =93 =1, 9814 =914 =1, gg45 = g5 = 0.

3) Let k be odd> 3 and 2(25~' —1) < m < 2*. For k = 3, we have m = 6,7
and ([6]) is true: gsi 6 = 1—9gs = 0 and ggy7 = 1 — g7 = 1. for k = 5, we have
m = 22,23, ...,31 and ([0) is true: gsoyoo =1 —goo =1, ggoy03 =1 —¢go3 =0
o 32431 =1 — g3 =1 0

7. SEVERAL DIFFICULT AUTHOR’S PROBLEMS

1) [6]. For which positive numbers a, b, ¢, for every nonnegative n there
exists © € {a,b, c} such that t,,, =t,7
This problem was solved in [6] only partially. For example, for every a >
1, k > 0, the triple {a,a + 2*,a + 2¥*1} is suitable. However, there are
other infinitely many solutions.
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2) Conjecture[6]. Let u(n) = (—1)|,>0 and a be a positive integer. Let
{lo <li <ly <.}, {my<my <mg < ..} be integer sequences for which
u(l; + a) = —u(ly), u(m; + a) = u(m;). Let Bu(n) = u(l,), va(n) = u(my,).
Then the sequences 3,,7, are periodic, of the smallest period 2°(®*! where
v(a) is such that 2Y(a)||a. They satisfy 5, = —7,.

This conjecture was proved by Allouche [1].

3) (in A268866 [8]). Let v(n) be the maximal number & such that g, =
trin, T = ok —1(if k = 0, there is no equality already for r = 0.)
Let {a(n )} be the sequence of records in the sequence {v(n)}. Conjec-
ture: 1) Let [(n) be the position in {v(n)} corresponding to a(n). Then
I(n) = (2/3)(4" — 1), if n is even, and I(n) = (2/3)(4" 1 —1)+3-4"" L ifn
is odd; 2) a(n) = 2l(n) + 2, if n is even, and a(n) = (7l(n) + 12)/11, if n is
odd.

4) (A dual problem: in A269341 [§]). Let w(n) be the maximal number k
such that g, = 1 —t,,, = 0,1...,k — 1. Let {b(n)} be the sequence of
records in the sequence {w(n)}. Denote by m(n) the position in {w(n)} cor-
responding to b(n). Then m(0) = 0, m(1) = 1. Conjecture: 1) for even n >
2, m(n) = (2/3)(4"'—=1);forodd n >3, m(n) = (2/3)(4"2—1)+3-4""2
2) forevenn > 2, b(n) = 2m(n)+2; foroddn >3, b(n) = (Tm(n)+12)/11.
5) Together with the Thue-Morse constant P = 0.01101001100101...o which
is given by the concatenated digits of the Thue-Morse sequence A010060 and
interpreted as a binary number, consider the constant S = 0.01111011100...5
and the constant /' = 0.0101101001..., which are given by the concatenated
digits of the sequences R = A268411 and G = A269027 respectively and
interpreted as binary numbers. Dekking [3] proved that P is a transcendent
number. We ask, are the constants S and F' transcendent?

The author hopes that this paper will help to solve at least the prob-
lems 3 and 4. The paper is connected with the following sequences in
[8]: A000695, A010060, A039724, A069010, A020985, A022155, A203463,
A268382, A268383, A268411, A268412, A268415, A268865, A268866, A268272,
A268273, A268476, A268477, A268483, A269003, A269027, A269340, A269341,
A269458, A269528, A269529.
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