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Abstract

We consider Tuenter polynomials as linear combinations of descending factorials and

show that coefficients of these linear combinations are expressed via a Catalan triangle

of numbers. We also describe a triangle of coefficients in terms of some polynomials.

1 Preliminaries. Tuenter polynomials

The polynomials we are going to study in this brief note are defined by a recursion [7]

Pk+1(n) = n2 (Pk(n)− Pk(n− 1)) + nPk(n− 1), n ∈ N (1.1)

with initial condition P0(n) = 1. The first few polynomials yielded by (1.1) are as follows.

P1(n) = n,

P2(n) = n(2n− 1),

P3(n) = n(6n2 − 8n+ 3),

P4(n) = n(24n3 − 60n2 + 54n− 17),

P5(n) = n(120n4 − 480n3 + 762n2 − 556n+ 155),

P6(n) = n(720n5 − 4200n4 + 10248n3 − 12840n2 + 8146n− 2073).

Let us refer to these polynomials as Tuenter ones. Introducing a recursion operator R :=

n2 (1− Λ−1)+nΛ−1, where Λ is a shift operator acting as Λ(f(n)) = f(n+1), one can write

Pk(n) = Rk(1). The sense of these polynomials is that they help to count the sum

Sr(n) =
2n
∑

j=0

(

2n
j

)

|n− j|r

for odd r.
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Bruckman in [2] asked to prove that S3(n) = n2

(

2n
n

)

. Strazdins in [6] solved this

problem and conjectured that S2k+1(n) = P̃k(n)

(

2n
n

)

with some monic polynomial P̃k(n)

for any k ≥ 0. Tuenter showed in [7] that it is almost true. More exactly, he proved that

S2k+1(n) = Pk(n)n

(

2n
n

)

= Pk(n)
(2n)!

(n− 1)!n!
.

One can see that polynomial P̃k(n) is monic only for k = 0, 1. The recursion (1.1) follows

from [7]

Sr+2(n) = n2Sr(n)− 2n(2n− 1)Sr(n− 1).

Also, as was noticed in [7], polynomials Pk(n) can be obtained as a special case of Dumont-

Foata polynomials of three variables [3].

2 The Tuenter polynomials as linear combinations of

descending factorials

Consider descending factorials

(n)k := n(n− 1)(n− 2) · · · (n− k + 1).

It can be easily seen that

R((n)k) = k2(n)k + (k + 1)(n)k+1. (2.1)

Let us consider Pk(n) as linear combinations of descending factorials

Pk(n) =

k
∑

j=1

cj,k(n)j ,

with some coefficients cj,k to be calculated. For example, for the first few Pk(n) we get

P1(n) = (n)1,

P2(n) = (n)1 + 2(n)2,

P3(n) = (n)1 + 10(n)2 + 6(n)3,

P4(n) = (n)1 + 42(n)2 + 84(n)3 + 24(n)4,

P5(n) = (n)1 + 170(n)2 + 882(n)3 + 720(n)4 + 120(n)5,

P6(n) = (n)1 + 682(n)2 + 8448(n)3 + 15048(n)4 + 6600(n)5 + 720(n)6.
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With (2.1) we can easily derive recurrence relations for the coefficients cj,k. Indeed, from

Pk+1(n) =

k+1
∑

j=1

cj,k+1(n)j

= R(Pk(n))

=

k
∑

j=1

cj,k
(

j2(n)j + (j + 1)(n)j+1

)

we get

cj,k+1 = j2cj,k + jcj−1,k, j ≥ 1, k ≥ j. (2.2)

To use (2.2), one must agree that c0,k = ck+1,k = 0 for k ≥ 1. Then, starting from c1,1 = 1

we obtain the whole set {cj,k : j ≥ 1, k ≥ j}. For example, c1,k = 1 for all k ≥ 1, while for

j = 2 we obviously get a recursion

c2,k+1 = 4c2,k + 2, c2,1 = 0.

As can be easily seen, a solution of this equation is given by

c2,k =
1

3

(

22k−1 − 2
)

, k ≥ 2. (2.3)

Remark 2.1. It is interesting to note that integer sequence (2.3), known as A020988 in

[5] gives n-values of local maxima for s(n) :=
∑n

j=1
a(j), where {a(n)} is the Golay-Rudin-

Shapiro sequence [1].

For the whole set of the coefficients {cj,k}, we get the following.

Theorem 2.2. A solution of equation (2.2) with c0,k = ck+1,k = 0 for k ≥ 1 and c1,1 = 1 is

given by

cj,k =
j!

(2j − 1)!

(

j
∑

q=1

(−1)q+jBj,qq
2k−1

)

, ∀j ≥ 1, k ≥ j, (2.4)

where the numbers

Bj,q :=
q

j

(

2j
j − q

)

constitute a Catalan triangle [4].

Proof. Substituting (2.4) into (2.2) and collecting terms at q2k−1, we obtain that sufficient

condition for (2.4) to be a solution of (2.2) is that the numbers Bj,q enjoy the relation

q2j!

(2j − 1)!
Bj,q =

j2j!

(2j − 1)!
Bj,q −

j!

(2j − 3)!
Bj−1,q, ∀q = 1, . . . , j − 1.
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Simplifying the latter we get the relation

(j − q)(j + q)Bj,q = (2j − 1)(2j − 2)Bj−1,q

which can be easily verified. Therefore the theorem is proved. �

The set {cj,k} can be presented as the number triangle

c1,1
c1,2 c2,2

c1,3 c2,3 c3,3
. . .

. . .
. . .

whose description is given by theorem 2.2.

Remark 2.3. From [4] one knows that the number Bj,q can be interpreted as the number

of pairs of non-intersecting paths of length j and distance q. The Catalan numbers itself

(A000108) are

Cj := Bj,1 =
1

j

(

2j
j − 1

)

.

Therefore, we got an infinite number of integer sequences each of which is defined by

numbers from the Catalan triangle and begins from cj,j = j!. Let us list the first few ones.

For example, one has,

c1,k = 1,

c2,k =
1

3

(

22k−1 − 2
)

,

c3,k =
1

20

(

32k−1 − 4 · 22k−1 + 5
)

,

c4,k =
1

210

(

42k−1 − 6 · 32k−1 + 14 · 22k−1 − 14
)

,

c5,k =
1

3024

(

52k−1 − 8 · 42k−1 + 27 · 32k−1 − 48 · 22k−1 + 42
)

,

c6,k =
1

55440

(

62k−1 − 10 · 52k−1 + 44 · 42k−1 − 110 · 32k−1 + 165 · 22k−1 − 132
)

, . . .

All these sequences are indeed integer because they are solutions of (2.2).

Let us replace k 7→ j + k in (2.2) and seek its solution in the form cj,j+k = Fk(j)j!.

Substituting the latter in (2.2) we come to the recurrence relation

Fk(j)− Fk(j − 1) = j2Fk−1(j) (2.5)

with conditions F0(j) = 1 and Fk(1) = 1. A solution of (2.5) is

Fk(j) = 1 +
∑

2≤λ1≤j

λ2

1 +
∑

2≤λ1≤λ2≤j

λ2

1λ
2

2 + · · ·+
∑

2≤λ1≤···≤λk≤j

λ2

1λ
2

2 · · ·λ
2

k.

4



In particular,

F1(j) = 1 + 22 + · · ·+ j2 =
1

6
j(j + 1)(2j + 1),

that is, F1(j) yields A000330 sequence of the square pyramidal numbers. The next two

polynomials Fk(j) are

F2(j) =
1

360
j(j + 1)(j + 2)(2j + 1)(2j + 3)(5j − 1)

and

F3(j) =
1

45360
j(j + 1)(j + 2)(j + 3)(2j + 1)(2j + 3)(2j + 5)(35j2 − 21j + 4).

Looking at these examples and others we can suppose that

Fk(j) =
k
∏

q=0

(j + q)
k−1
∏

q=0

(2j + 2q + 1)F̃k(j),

where F̃k(j) is a polynomial of (k − 1) degree, which satisfy

F̃k(1) =
1

(k + 1)!(2k + 1)!!
.

Acknowlegments

This work was supported in part by the Council for Grants of the President of Russian

Foundation for state support of the leading scientific schools, project NSh-8081.2016.9.

References

[1] J. Brillhart and P. Morton, A case study in mathematical research: the Golay-Rudin-

Shapiro sequence, The American Mathematical Monthly, 103 (1996), 854-869. 3

[2] P. S. Bruckman, Problem B-871, Fibonacci Quartely, 37 (1999), 85. 2
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de la Société Mathématique de France 104 (1976), 433-451. 2

[4] L. W. Shapiro, A Catalan triangle, Discrete Math., 14 (1976), 83-90. 3, 4

[5] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences, http://oeis.org. 3

[6] I. Strazdins, Solution to problem B-871, Fibonacci Quartely, 38.1 (2000), 86-87. 2

[7] H. J. H. Tuenter, Walking into an absolute sum, Fibonacci Quartely, 40 (2002), 175-180.

1, 2

5


	1 Preliminaries. Tuenter polynomials
	2 The Tuenter polynomials as linear combinations of descending factorials 

