Tuenter polynomials and a Catalan triangle

Andrei K. Svinin
Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences svinin@icc.ru

Abstract

We consider Tuenter polynomials as linear combinations of descending factorials and show that coefficients of these linear combinations are expressed via a Catalan triangle of numbers. We also describe a triangle of coefficients in terms of some polynomials.

1 Preliminaries. Tuenter polynomials

The polynomials we are going to study in this brief note are defined by a recursion [7]

$$
\begin{equation*}
P_{k+1}(n)=n^{2}\left(P_{k}(n)-P_{k}(n-1)\right)+n P_{k}(n-1), \quad n \in \mathbb{N} \tag{1.1}
\end{equation*}
$$

with initial condition $P_{0}(n)=1$. The first few polynomials yielded by (1.1) are as follows.

$$
\begin{gathered}
P_{1}(n)=n, \\
P_{2}(n)=n(2 n-1), \\
P_{3}(n)=n\left(6 n^{2}-8 n+3\right), \\
P_{4}(n)=n\left(24 n^{3}-60 n^{2}+54 n-17\right), \\
P_{5}(n)=n\left(120 n^{4}-480 n^{3}+762 n^{2}-556 n+155\right), \\
P_{6}(n)=n\left(720 n^{5}-4200 n^{4}+10248 n^{3}-12840 n^{2}+8146 n-2073\right) .
\end{gathered}
$$

Let us refer to these polynomials as Tuenter ones. Introducing a recursion operator $R:=$ $n^{2}\left(1-\Lambda^{-1}\right)+n \Lambda^{-1}$, where Λ is a shift operator acting as $\Lambda(f(n))=f(n+1)$, one can write $P_{k}(n)=R^{k}(1)$. The sense of these polynomials is that they help to count the sum

$$
S_{r}(n)=\sum_{j=0}^{2 n}\binom{2 n}{j}|n-j|^{r}
$$

for odd r.

Bruckman in [2] asked to prove that $S_{3}(n)=n^{2}\binom{2 n}{n}$. Strazdins in [6] solved this problem and conjectured that $S_{2 k+1}(n)=\tilde{P}_{k}(n)\binom{2 n}{n}$ with some monic polynomial $\tilde{P}_{k}(n)$ for any $k \geq 0$. Tuenter showed in [7] that it is almost true. More exactly, he proved that

$$
S_{2 k+1}(n)=P_{k}(n) n\binom{2 n}{n}=P_{k}(n) \frac{(2 n)!}{(n-1)!n!}
$$

One can see that polynomial $\tilde{P}_{k}(n)$ is monic only for $k=0,1$. The recursion (1.1) follows from [7]

$$
S_{r+2}(n)=n^{2} S_{r}(n)-2 n(2 n-1) S_{r}(n-1)
$$

Also, as was noticed in [7], polynomials $P_{k}(n)$ can be obtained as a special case of DumontFoata polynomials of three variables [3].

2 The Tuenter polynomials as linear combinations of descending factorials

Consider descending factorials

$$
(n)_{k}:=n(n-1)(n-2) \cdots(n-k+1) .
$$

It can be easily seen that

$$
\begin{equation*}
R\left((n)_{k}\right)=k^{2}(n)_{k}+(k+1)(n)_{k+1} . \tag{2.1}
\end{equation*}
$$

Let us consider $P_{k}(n)$ as linear combinations of descending factorials

$$
P_{k}(n)=\sum_{j=1}^{k} c_{j, k}(n)_{j}
$$

with some coefficients $c_{j, k}$ to be calculated. For example, for the first few $P_{k}(n)$ we get

$$
\begin{gathered}
P_{1}(n)=(n)_{1} \\
P_{2}(n)=(n)_{1}+2(n)_{2} \\
P_{3}(n)=(n)_{1}+10(n)_{2}+6(n)_{3} \\
P_{4}(n)=(n)_{1}+42(n)_{2}+84(n)_{3}+24(n)_{4} \\
P_{5}(n)=(n)_{1}+170(n)_{2}+882(n)_{3}+720(n)_{4}+120(n)_{5} \\
P_{6}(n)=(n)_{1}+682(n)_{2}+8448(n)_{3}+15048(n)_{4}+6600(n)_{5}+720(n)_{6}
\end{gathered}
$$

With (2.1) we can easily derive recurrence relations for the coefficients $c_{j, k}$. Indeed, from

$$
\begin{aligned}
P_{k+1}(n) & =\sum_{j=1}^{k+1} c_{j, k+1}(n)_{j} \\
& =R\left(P_{k}(n)\right) \\
& =\sum_{j=1}^{k} c_{j, k}\left(j^{2}(n)_{j}+(j+1)(n)_{j+1}\right)
\end{aligned}
$$

we get

$$
\begin{equation*}
c_{j, k+1}=j^{2} c_{j, k}+j c_{j-1, k}, \quad j \geq 1, \quad k \geq j . \tag{2.2}
\end{equation*}
$$

To use (2.2), one must agree that $c_{0, k}=c_{k+1, k}=0$ for $k \geq 1$. Then, starting from $c_{1,1}=1$ we obtain the whole set $\left\{c_{j, k}: j \geq 1, k \geq j\right\}$. For example, $c_{1, k}=1$ for all $k \geq 1$, while for $j=2$ we obviously get a recursion

$$
c_{2, k+1}=4 c_{2, k}+2, \quad c_{2,1}=0 .
$$

As can be easily seen, a solution of this equation is given by

$$
\begin{equation*}
c_{2, k}=\frac{1}{3}\left(2^{2 k-1}-2\right), \quad k \geq 2 . \tag{2.3}
\end{equation*}
$$

Remark 2.1. It is interesting to note that integer sequence (2.3), known as A020988 in [5] gives n-values of local maxima for $s(n):=\sum_{j=1}^{n} a(j)$, where $\{a(n)\}$ is the Golay-RudinShapiro sequence [1].

For the whole set of the coefficients $\left\{c_{j, k}\right\}$, we get the following.
Theorem 2.2. A solution of equation (2.2) with $c_{0, k}=c_{k+1, k}=0$ for $k \geq 1$ and $c_{1,1}=1$ is given by

$$
\begin{equation*}
c_{j, k}=\frac{j!}{(2 j-1)!}\left(\sum_{q=1}^{j}(-1)^{q+j} B_{j, q} q^{2 k-1}\right), \quad \forall j \geq 1, \quad k \geq j \tag{2.4}
\end{equation*}
$$

where the numbers

$$
B_{j, q}:=\frac{q}{j}\binom{2 j}{j-q}
$$

constitute a Catalan triangle [4].
Proof. Substituting (2.4) into (2.2) and collecting terms at $q^{2 k-1}$, we obtain that sufficient condition for (2.4) to be a solution of (2.2) is that the numbers $B_{j, q}$ enjoy the relation

$$
\frac{q^{2} j!}{(2 j-1)!} B_{j, q}=\frac{j^{2} j!}{(2 j-1)!} B_{j, q}-\frac{j!}{(2 j-3)!} B_{j-1, q}, \quad \forall q=1, \ldots, j-1
$$

Simplifying the latter we get the relation

$$
(j-q)(j+q) B_{j, q}=(2 j-1)(2 j-2) B_{j-1, q}
$$

which can be easily verified. Therefore the theorem is proved.
The set $\left\{c_{j, k}\right\}$ can be presented as the number triangle

whose description is given by theorem 2.2.
Remark 2.3. From [4] one knows that the number $B_{j, q}$ can be interpreted as the number of pairs of non-intersecting paths of length j and distance q. The Catalan numbers itself (A000108) are

$$
C_{j}:=B_{j, 1}=\frac{1}{j}\binom{2 j}{j-1} .
$$

Therefore, we got an infinite number of integer sequences each of which is defined by numbers from the Catalan triangle and begins from $c_{j, j}=j$!. Let us list the first few ones. For example, one has,

$$
\begin{gathered}
c_{1, k}=1, \\
c_{2, k}=\frac{1}{3}\left(2^{2 k-1}-2\right) \\
c_{3, k}=\frac{1}{20}\left(3^{2 k-1}-4 \cdot 2^{2 k-1}+5\right), \\
c_{4, k}=\frac{1}{210}\left(4^{2 k-1}-6 \cdot 3^{2 k-1}+14 \cdot 2^{2 k-1}-14\right) \\
c_{5, k}=\frac{1}{3024}\left(5^{2 k-1}-8 \cdot 4^{2 k-1}+27 \cdot 3^{2 k-1}-48 \cdot 2^{2 k-1}+42\right), \\
c_{6, k}=\frac{1}{55440}\left(6^{2 k-1}-10 \cdot 5^{2 k-1}+44 \cdot 4^{2 k-1}-110 \cdot 3^{2 k-1}+165 \cdot 2^{2 k-1}-132\right), \ldots
\end{gathered}
$$

All these sequences are indeed integer because they are solutions of (2.2).
Let us replace $k \mapsto j+k$ in (2.2) and seek its solution in the form $c_{j, j+k}=F_{k}(j) j$!. Substituting the latter in (2.2) we come to the recurrence relation

$$
\begin{equation*}
F_{k}(j)-F_{k}(j-1)=j^{2} F_{k-1}(j) \tag{2.5}
\end{equation*}
$$

with conditions $F_{0}(j)=1$ and $F_{k}(1)=1$. A solution of (2.5) is

$$
F_{k}(j)=1+\sum_{2 \leq \lambda_{1} \leq j} \lambda_{1}^{2}+\sum_{2 \leq \lambda_{1} \leq \lambda_{2} \leq j} \lambda_{1}^{2} \lambda_{2}^{2}+\cdots+\sum_{2 \leq \lambda_{1} \leq \cdots \leq \lambda_{k} \leq j} \lambda_{1}^{2} \lambda_{2}^{2} \cdots \lambda_{k}^{2}
$$

In particular,

$$
F_{1}(j)=1+2^{2}+\cdots+j^{2}=\frac{1}{6} j(j+1)(2 j+1)
$$

that is, $F_{1}(j)$ yields A000330 sequence of the square pyramidal numbers. The next two polynomials $F_{k}(j)$ are

$$
F_{2}(j)=\frac{1}{360} j(j+1)(j+2)(2 j+1)(2 j+3)(5 j-1)
$$

and

$$
F_{3}(j)=\frac{1}{45360} j(j+1)(j+2)(j+3)(2 j+1)(2 j+3)(2 j+5)\left(35 j^{2}-21 j+4\right)
$$

Looking at these examples and others we can suppose that

$$
F_{k}(j)=\prod_{q=0}^{k}(j+q) \prod_{q=0}^{k-1}(2 j+2 q+1) \tilde{F}_{k}(j)
$$

where $\tilde{F}_{k}(j)$ is a polynomial of $(k-1)$ degree, which satisfy

$$
\tilde{F}_{k}(1)=\frac{1}{(k+1)!(2 k+1)!!}
$$

Acknowlegments

This work was supported in part by the Council for Grants of the President of Russian Foundation for state support of the leading scientific schools, project NSh-8081.2016.9.

References

[1] J. Brillhart and P. Morton, A case study in mathematical research: the Golay-RudinShapiro sequence, The American Mathematical Monthly, 103 (1996), 854-869. 3
[2] P. S. Bruckman, Problem B-871, Fibonacci Quartely, 37 (1999), 85. 2
[3] D. Dumont and D. Foata, Une propriété de symétrie des nombres de Genocchi, Bulletin de la Société Mathématique de France 104 (1976), 433-451. 2
[4] L. W. Shapiro, A Catalan triangle, Discrete Math., 14 (1976), 83-90. 3, 4
[5] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences, http://oeis.org. 3
[6] I. Strazdins, Solution to problem B-871, Fibonacci Quartely, 38.1 (2000), 86-87. 2
[7] H. J. H. Tuenter, Walking into an absolute sum, Fibonacci Quartely, 40 (2002), 175-180. 1, 2

