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THE FOURIER EXPANSION OF ηpzqηp2zqηp3zq{ηp6zq

CHRISTIAN KASSEL AND CHRISTOPHE REUTENAUER

Abstract. We compute the Fourier coefficients of the weight one modular form
ηpzqηp2zqηp3zq{ηp6zq in terms of the number of representations of an integer as
a sum of two squares. We deduce a relation between this modular form and
translates of the modular formηpzq4{ηp2zq2. In the last section we use our main
result to give an elementary proof of an identity by Victor Kac.

1. Introduction

In this note we consider theη-product

(1.1)
ηpzqηp2zqηp3zq

ηp6zq
“

ź

ně1

p1 ´ qnq2

1 ´ qn ` q2n
.

whereq “ e2πiz. Recall thatηpzq is Dedekind’s eta function

ηpzq “ eπiz{12
ź

ně1

p1 ´ qnq.

The η-productηpzqηp2zqηp3zq{ηp6zq is a modular form of weight 1 and level 6.
Since it is invariant under the transformationz ÞÑ z` 1, it has a Fourier expansion
of the form

(1.2)
ηpzqηp2zqηp3zq

ηp6zq
“

ÿ

ně0

a6pnq qn,

where the Fourier coefficientsa6pnq are integers. For general information onη-
products, see [6, Sect. 2.1].

Our main result expressesa6pnq in terms of the numberrpnq of representations
of n as the sum of two squares, i.e the number of elementspx, yq P Z2 such that
x2 ` y2 “ n. Observe thatrpnq is divisible by 4 for alln ě 1 (for n “ 0 we have
rp0q “ 1). The sequencerpnq appears as Sequence A004018 in [7].

Theorem 1.1. For all non-negative integers m we have

a6p3mq “ p´1qm rp3mq,

a6p3m` 1q “ p´1qm`1 rp3m` 1q

4
,

a6p3m` 2q “ p´1qm`1 rp3m` 2q

2
.

We next relateηpzqηp2zqηp3zq{ηp6zq to the weight one modular formηpzq4{ηp2zq2

and two of its translates.
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Theorem 1.2. Set j“ e2πi{3. We have the following linear relation between weight
one modular forms:

ηpzqηp2zqηp3zq

ηp6zq
“

1
4
ηpzq4

ηp2zq2
`

1 ´ j
4
ηpz` 1{3q4

ηp2z` 2{3q2
`

1 ´ j2

4
ηpz` 2{3q4

ηp2z` 4{3q2
.

Both modular formsηpzqηp2zqηp3zq{ηp6zq andηpzq4{ηp2zq2 came up naturally
in [5], where we computed the numberCnpqq of ideals of codimensionn of the
algebraFqrx, y, x´1, y´1s of Laurent polynomials in two variables over a finite
field Fq of cardinality q. Equivalently,Cnpqq is the number ofFq-points of the
Hilbert scheme ofn points on a two-dimensional torus. We proved thatCnpqq is
the value atq of a palindromic one-variable polynomialCnpxq P Zrxs with integer
coefficients, which we computed completely (see [5, Th. 1.3]).

We also showed (see [5, Cor. 6.2]) that the generating function of the polynomi-
alsCnpxq can be expressed as the following infinite product:

(1.3) 1`
ÿ

ně1

Cnpxq

xn qn “
ź

ně1

p1 ´ qnq2

1 ´ px ` x´1qqn ` q2n
.

It follows from the previous equality thatCnp1q “ 0. Actually, we proved
(see [5, Th. 1.3 and 1.4]) that there exists a polynomialPnpxq P Zrxs such that
Cnpxq “ px ´ 1q2Pnpxq. Moreover,Pnpxq is palindromic, has non-negative coeffi-
cients and its value atx “ 1 is equal to the sum of divisors ofn: Pnp1q “

ř

d|n d.

Whenx “ e2iπ{k with k “ 2, 3, 4, or 6, thenx` x´1 “ 2 cosp2π{kq is an integer.
For such an integerk, we define the sequenceakpnq by

(1.4)
ÿ

ně0

akpnq qn “
ź

ně1

p1 ´ qnq2

1 ´ 2 cosp2π{kq qn ` q2n
.

Since 2 cosp2π{kq is an integer, so is eachakpnq. It follows from (1.3) that these
integers are related to the polynomialsCnpxq by

Cnpe2iπ{kq “ akpnq e2niπ{k.

In [5] we computeda2pnq, a3pnq, anda4pnq explicitly in terms of well-known arith-
metical functions. In particular, we established the equality

(1.5) a2pnq “ p´1qn rpnq,

whererpnq is the number of representations ofn as the sum of two squares.
We also observed in [5, (1.8)] that

(1.6)
ÿ

ně0

a2pnq qn “
ηpzq4

ηp2zq2
and

ÿ

ně0

a6pnq qn “
ηpzqηp2zqηp3zq

ηp6zq
.

The question of finding an explicit expression fora6pnq had been left open in [5].
This is now solved with Theorem 1.1 of this note. In view of this theorem, of (1.5),
and of (1.6), for allm ě 0 we obtain

$

’

’

’

’

’

&

’

’

’

’

’

%

a6p3mq “ a2p3mq,

a6p3m` 1q “
a2p3m` 1q

4
,

a6p3m` 2q “ ´
a2p3m` 2q

2
.

(1.7)
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We had experimentally observed (see [5, Footnote 7]) thata6pnq “ 0 whenever
a2pnq “ 0. As a consequence of (1.7) we can now state thata6pnq “ 0 if and only
if a2pnq “ 0, i.e. if and onlyn is not the sum of two squares.

Remarks 1.3. (a) The sequencea6pnq is Sequence A258210 in [7]. The sequence
a6p3n ` 1q is probably the opposite of Sequence A258277 inloc. cit.

(b) It can be seen from Table 1 thata6pnq is not a multiplicative function. Indeed,
a6p10q ‰ a6p2qa6p5q or a6p18q ‰ a6p2qa6p9q or a6p20q ‰ a6p4qa6p5q.

Table 1. First values of a6pnq

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

a6pnq ´1 ´2 0 1 4 0 0 ´2 ´4 2 0 0 ´2 0 0 1 4 4 0 ´4

Theorems 1.1 and 1.2 will be proved in the next two sections. In Section 4 we
explain how to obtain an elementary proof of an identity which Victor Kac [4]
obtained using his theory of contragredient Lie superalgebras.

2. Proof of Theorem1.1

2.1. For any odd integerm we setξpmq “ ´2 sinpmπ{6q. Because of the well-
known properties of the sine function,ξpmq depends only on the class ofm mod-
ulo 12 and we have the following equalities for all oddm:

(2.1) ξp´mq “ ´ξpmq and ξpm` 6q “ ´ξpmq,

which is equivalent toξp´mq “ ´ξpmq andξp6 ´ mq “ ξpmq.
We have

(2.2) ξpmq “

$

’

’

’

&

’

’

’

%

´1 if m ” 1 or 5 pmod 12q,

´2 if m ” 3 pmod 12q,

1 if m ” 7 or 11 pmod 12q,

2 if m ” 9 pmod 12q.

Next consider the excess functionE1pn; 4q defined by

E1pn; 4q “
ÿ

d|n , d”1pmod 4q

1 ´
ÿ

d|n , d”´1pmod 4q

1.

It is a multiplicative function, i.e.E1pmn; 4q “ E1pm; 4q E1pn; 4q wheneverm and
n are coprime. It is well known that the excess function can be computed in terms
of the prime decomposition ofn. Write n “ 2cpa1

1 pa2
2 ¨ ¨ ¨ qb1

1 qb2
2 ¨ ¨ ¨ , where allpi ,

qi are distinct prime numbers such thatpi ” 1pmod 4q andqi ” 3pmod 4q for all
i ě 1. ThenE1pn; 4q “ 0 if and only if one of the exponentsbi is odd. If allbi are
even, then

(2.3) E1pn; 4q “ p1 ` a1qp1 ` a2q ¨ ¨ ¨ .

In the sequel we will need the following result.

Lemma 2.1. Let n be a positive integer which is not divisible by3. We have
ÿ

d|n , dodd

ξpdq “ ´E1pn; 4q and
ÿ

d|n , dodd

ξp3dq “ ´2E1pn; 4q.
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Proof. Let d be an odd divisor ofn; it is not divisible by 3 sincen is not. Therefore,
d ” 1, 5, 7 or 11pmod 12q. Observe thatd ” 1 or 5pmod 12q if and only if d ” 1
pmod 4q sinced ” 3pmod 12q is excluded. Similarly,d ” 7 or 11pmod 12q if and
only if d ” 3pmod 4q. Now, ξpdq “ ´1 if d ” 1 or 5, andξpdq “ 1 if d ” 7 or 11
pmod 12q. Consequently,

ÿ

d|n , d odd

ξpdq “
ÿ

d|n , d”3pmod 4q

1 ´
ÿ

d|n , d”1pmod 4q

1 “ ´E1pn; 4q.

Similarly, ξp3dq “ ξp3q “ ´2 if d ” 1 or 5, andξp3dq “ ξp9q “ 2 if d ” 7
or 11pmod 12q. Therefore,

ÿ

d|n , dodd

ξp3dq “
ÿ

d|n , d”3pmod 4q

2 ´
ÿ

d|n , d”1pmod 4q

´2 “ ´2E1pn; 4q.

�

2.2. We now expressa6pnq in terms of the functionξ introduced above.

Proposition 2.2. We have

(2.4) a6pnq “
ÿ

d|n , dodd

ξ

ˆ

2n
d

´ d

˙

.

Note that 2n{d ´ d is an odd integer sinced is an odd divisor ofn.

Proof. Setu “ π{k andω “ d in Formula (9.3) of [2, p. 10]. It becomes

(2.5)
ÿ

ně0

akpnq qn “ 1 ´ 4 sinpπ{kq
ÿ

ně1

¨

˝

ÿ

d|n , dodd

sin

ˆˆ

2n
d

´ d

˙

π

k

˙

˛

‚qn.

Consider the special casek “ 6 of (2.5). Since sinpπ{6q “ 1{2, Equality (2.5)
becomes

ÿ

ně0

a6pnq qn “ 1 ´ 2
ÿ

ně1

¨

˝

ÿ

d|n , dodd

sin

ˆˆ

2n
d

´ d

˙

π

6

˙

˛

‚qn

“ 1 `
ÿ

ně1

¨

˝

ÿ

d|n , dodd

ξ

ˆ

2n
d

´ d

˙

˛

‚qn

in view of the definition ofξ. The formula fora6pnq follows. �

Proof of Theorem 1.1.Let us first mention the following well-known fact (see [1,
§ 51, Th. 65]): the numberrpnq of representations ofn as a sum of two squares is
related to the excess functionE1pn; 4q by

(2.6) rpnq “ 4E1pn; 4q

for all n ě 0. It follows from this fact and from (1.5) that

(2.7) a2pnq “ p´1qn4E1pn; 4q.

We now distinguish three cases according to the residue ofn modulo 3.
(a) We start with the casen ” 1 pmod 3q. We haven “ 3ℓ ` 1 for some non-

negative integerℓ. Since the odd divisorsd of n are not divisible by 3, they must
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satisfyd ” 1, 5, 7 or 11pmod 12q. Such divisors are invertiblepmod 12q and we
haved2 ” 1pmod 12q. Consequently,

2n
d

´ d ”
2nd2

d
´ d ” 2nd ´ d pmod 12q.

Hence,

ξ

ˆ

2n
d

´ d

˙

“ ξp2nd ´ dq “ ξp6dℓ ` dq “ pp´1qdqℓξpdq “ p´1qℓξpdq

in view of (2.1). Therefore, by Proposition 2.2,

a6pnq “ p´1qℓ
ÿ

d|n , dodd

ξpdq.

Together with Lemma 2.1 and (2.7), this implies

a6pnq “ p´1qℓ`1 E1pn; 4q “ p´1qn`ℓ`1 a2pnq{4.

Finally observe thatn is odd (resp. even) ifℓ is even (resp. odd). Therefore,a6pnq “
a2pnq{4.

(b) Now consider the casen ” 2 pmod 3q. We haven “ 3ℓ ` 2 for some
non-negative integerℓ. Again the odd divisorsd of n must satisfyd ” 1, 5, 7 or 11
pmod 12q since they are not divisible by 3. Consequently, as above,

ξ

ˆ

2n
d

´ d

˙

“ ξp2nd ´ dq “ ξp6dℓ ` 3dq “ p´1qℓξp3dq.

By Lemma 2.1 and (2.7), we obtain

a6pnq “ p´1qℓ
ÿ

d|n , dodd

ξp3dq

“ p´1qℓ`1 2E1pn; 4q “ p´1qn`ℓ`1 a2pnq{2.

Sincen andℓ are of the same parity, we havea6pnq “ ´a2pnq{2.
(c) Finally we consider the case whenn is divisible by 3. We writen “ 3Nt,

whereN ě 1 andt is not divisible by 3. Any odd divisord of n is of the form
d “ 3r s for some odd divisors of t and 0ď r ď N. Sincet and its divisorss are
not divisible by 3 and sinces is odd, we again haves ” 1, 5, 7 or 11pmod 12q.
Recall that for suchswe haves2 ” 1pmod 12q. Thus, ford “ 3r s, we obtain

2n
d

´ d ”
`

2 ¨ 3N´r t ´ 3r
˘

s pmod 12q.

If r “ 0, then 2n{d ´ d ” p6 ¨ 3N´1t ´ 1qs pmod 12q. Therefore,

ξ

ˆ

2n
d

´ d

˙

“ ξ
`

p6 ¨ 3N´1t ´ 1qs
˘

“ p´1qtξp´sq “ p´1qt´1ξpsq.

in view of (2.1).
If 0 ă r ă N, then 2n{d ´ d ” p6 ¨ 3N´r´1t ´ 3rqs pmod 12q. Therefore,

ξ

ˆ

2n
d

´ d

˙

“ ξ
`

p6 ¨ 3N´r´1t ´ 3rqs
˘

“ p´1qt ξp´3r sq “ p´1qt´1 ξp3r sq.

Now, 3r ” 3pmod 12q if r is odd, and 3r ” ´3 if r ą 0 is even. Then by (2.1),

ξ

ˆ

2n
d

´ d

˙

“ p´1qt´r ξp3sq.
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Now consider the caser “ N. If N is odd, then 3N ” 3pmod 12q and

ξ

ˆ

2n
d

´ d

˙

“ ξ
`

p2t ´ 3Nqs
˘

“ ξpp2t ´ 3qsq.

Now, if t is odd, thent ” 1, 5, 7 or 11pmod 12q. We have 2t ´ 3 ” 7 or
11 pmod 12q and the multiplication by 7 or by 11 exchanges the setst1, 5u and
t7, 11u. Since by (2.2) the functionξ takes opposite values on such sets, we have
ξpp2t ´ 3qsq “ ´ξpsq. Consequently,ξp2n{d ´ dq “ ´ξpsq whent is odd.

If t is even, thent ” 2, 4, 8 or 10pmod 12q. Then 2t´3 ” 1 or 5pmod 12q. The
multiplication by 1 or by 5 preserves each sett1, 5u andt7, 11u, so that by (2.2)
we haveξpp2t ´ 3qsq “ ξpsq. In conclusion,

ξp2n{d ´ dq “ p´1qt ξpsq

whenr “ N is odd.
If r “ N is even, then 3N ” ´3pmod 12q andξp2n{d ´ dq “ ξpp2t ´ 3Nqsq “

ξpp2t ` 3qsq. A reasoning as in the oddN case shows that whenN is even we have

ξp2n{d ´ dq “ p´1qt´1 ξpsq.

We can now computea6pnq. We start with the case of oddN. Collecting the
above information, we obtain

a6pnq “
ÿ

d|n , dodd

ξ

ˆ

2n
d

´ d

˙

“
ÿ

s|t , sodd

N
ÿ

r“0

ξ

ˆ

2 ¨ 3Nt
3r s

´ d

˙

“
ÿ

s|t , sodd

˜

p´1qt´1ξpsq `

˜

N´1
ÿ

r“1

p´1qt´r

¸

ξp3sq ` p´1qt ξpsq

¸

“
`

p´1qt´1 ` p´1qt
˘

ÿ

s|t , sodd

ξpsq “ 0.

On the other hand, since the power of 3 inn is odd, then by (2.3) we havea2pnq “
p´1qn4E1pn, 4q “ 0. Therefore,a6pnq “ a2pnq in this case.

If N is even, then

a6pnq “
ÿ

d|n , dodd

ξ

ˆ

2n
d

´ d

˙

“
ÿ

s|t , sodd

N
ÿ

r“0

ξ

ˆ

2 ¨ 3Nt
3r s

´ d

˙

“
ÿ

s|t , sodd

˜

p´1qt´1ξpsq `

˜

N´1
ÿ

r“1

p´1qt´r

¸

ξp3sq ` p´1qt´1ξpsq

¸

“
ÿ

s|t , sodd

`

2p´1qt´1ξpsq ` p´1qt´1ξp3sq
˘

“ p´1qt´1

¨

˝2
ÿ

s|t , sodd

ξpsq `
ÿ

s|t , sodd

ξp3sq

˛

‚

“ p´1qt4E1pt; 4q

by Lemma 2.1. Now, by multiplicativity of the excess fonction,

E1pn; 4q “ E1p3N; 4q E1pt; 4q “ E1pt; 4q
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sinceE1p3N; 4q “ 1 for evenN. Finally, t andn being of the same parity, we have

a6pnq “ p´1qt 4E1pt; 4qq “ p´1qn 4E1pn; 4qq “ a2pnq.

Q.e.d. �

3. Proof of Theorem1.2

Set f pqq “ ηpzqηp2zqηp3zq{ηp6zq “
ř

ně0 a6pnq qn andgpqq “ ηpzq4{ηp2zq2 “
ř

ně0 a2pnq qn; see (1.6). To prove Theorem 1.2 it suffices to check that

f pqq “ agpqq ` bgp jqq ` cgp j2qq,

wherea “ 1{4, b “ p1 ´ jq{4, andc “ p1 ´ j2q{4. Now,

agpqq ` bgp jqq ` cgp j2qq “ a
ÿ

ně0

a2pnq qn ` b
ÿ

ně0

a2pnq jnqn

`c
ÿ

ně0

a2pnq j2nqn

“ pa ` b ` cq
ÿ

mě0

a2p3mq q3m

`pa ` jb ` j2cq
ÿ

mě0

a2p3m` 1q q3m`1

`pa ` j2b ` jcq
ÿ

mě0

a2p3m` 2q q3m`2.

It follows from (1.7) that

agpqq ` bgp jqq ` cgp j2qq “ pa ` b ` cq
ÿ

mě0

a6p3mq q3m

`4pa ` jb ` j2cq
ÿ

mě0

a6p3m` 1q q3m`1

´2pa ` j2b ` jcq
ÿ

mě0

a6p3m` 2q q3m`2.

The right-hand side is equal tof pqq sincea ` b ` c “ 1, a ` jb ` j2c “ 1{4, and
a ` j2b ` jc “ ´1{2. Q.e.d.

4. An elementary proof of an identity by Victor Kac

In [4, p. 122] Victor Kac derived four identities forη-products from his theory
of contragredient Lie superalgebras. One of these identities, labelled (new4) in
loc. cit., can be rephrased in the following form:

η2p2zqηp3zq

ηpzqηp6zq
“

ÿ

nPZ

p´1qn f pnq qn2
,

where f p3mq “ 1, f p3m`1q “ ´1, andf p3m`2q “ 0. This immediately implies

(4.1)
η2p2zqηp3zq

ηpzqηp6zq
“

ÿ

ně0

bpnq qn2
,

wherebp0q “ 1, bp3mq “ 2p´1qm “ 2p´1q3m for m ą 0, andbpnq “ p´1qn´1 if
n is not a multiple of 3. See also [6, Th. 8.2].
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In a mail dated March 22, 2016 Günter Köhler observed that our η-product (1.1)
can be written as the product of Kac’sη-product (4.1) and theη-productηpzq2{ηp2zq
(the latter two being modular forms of weight 1{2). Indeed,

(4.2)
ηpzqηp2zqηp3zq

ηp6zq
“
η2p2zqηp3zq

ηpzqηp6zq
¨
ηpzq2

ηp2zq
.

Now Gauss proved (see [2, (7.324)] or [3, 19.9 (i)]) the following:

(4.3)
ηpzq2

ηp2zq
“

ÿ

nPZ

p´1qn qn2
“

ÿ

ně0

apnq qn2
,

whereap0q “ 1 andapnq “ 2p´1qn for all n ą 0. Therefore, the expansion of the
right-hand side of (4.2) is given by

η2p2zqηp3zq

ηpzqηp6zq
¨
ηpzq2

ηp2zq
“

ÿ

ně0

a1
6pnq qn,

where

(4.4) a1
6pnq “

ÿ

x, yě0
x2`y2“n

apxqbpyq.

Consequently, an alternative way to prove Theorem 1.1 is to establish the following
lemma.

Lemma 4.1. For all m ě 0,

a1
6p3mq “ p´1qm rp3mq,

a1
6p3m` 1q “ p´1qm`1 rp3m` 1q

4
,

a1
6p3m` 2q “ p´1qm`1 rp3m` 2q

2
.

Conversely, since the right-hand side of (4.3) is an invertible formal power se-
ries, the lemma combined with Gauss’s identity (4.3) and with our elementary proof
of Theorem 1.1 yields an elementary proof of Kac’s identity (4.1).

Proof of Lemma 4.1 (provided by G. Köhler).(a) Suppose firstn “ 3m ` 1 for
some integerm ě 0. We consider solutionsx ě 0, y ě 0 of x2 ` y2 “ n.
Sincen ” 1 pmod 3q, exactly one of the integersx, y is a multiple of 3. Therefore
the solutions can be coupled in pairsppx, yq, py, xqq, where 3 dividesx, but noty
(hencey ą 0). If x ą 0, then the contribution of such a pair toa1

6pnq is

2p´1qx ¨ p´1qy´1 ` 2p´1qy ¨ 2p´1qx

“ 2p´1qx`y “ 2p´1qx2`y2
“ 2p´1qn “ 2p´1qm`1

and it is 8 forrpnq, since one has to consider all pairsp˘x,˘yq andp˘y,˘xq, which
are distinct. Ifx “ 0 (which occurs only ifn is a square), then the contribution is

p´1qy´1 ` 2p´1qy “ p´1qy “ p´1qy2
“ p´1qn “ p´1qm`1

for a1
6pnq and it is 4 forrpnq (corresponding to the pairsp0,˘yq, p˘y, 0q, which

are distinct). Summing up and comparing the contributions,we obtaina1
6pnq “

p´1qm`1rpnq{4, which is the desired formula.
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(b) Now letn “ 3m ` 2 for some integerm ě 0. We again consider solutions
x ě 0, y ě 0 of x2 ` y2 “ n. Sincen ” 2 pmod 3q, none ofx, y is divisible by 3,
and in particularx ą 0 andy ą 0. The contribution ofpx, yq is

2p´1qx ¨ p´1qy´1 “ 2p´1qx`y´1 “ 2p´1qx2`y2´1 “ 2p´1qn´1 “ 2p´1qm`1

for a1
6pnq and it is 4 forrpnq. Summing up and comparing the contributions, we

obtaina1
6pnq “ p´1qm`1rpnq{2.

(c) Finally let n “ 3m. For n “ 0, the result is clear, so we may assume that
n ą 0. Writen “ 3Nt, whereN ě 1 andt is not divisible by 3. IfN is odd, then by
the remark preceding (2.3) and by (2.6) we haverpnq “ 4Epn; 4q “ 0. Hence the
sum (4.4) defininga1

6pnq is empty, which impliesa1
6pnq “ 0 “ p´1qmrp3mq.

So letN “ 2s ą 0 be even. It is easy to check that the solutions ofx2 ` y2 “
n “ 32st are of the formx “ 3su andy “ 3sv, whereu2 ` v2 “ t. If t is not a
square, then there is no solution whereu “ 0 orv “ 0, and we obtain

a1
6pnq “

ÿ

u, vě0
u2`v2“t

2p´1q3su ¨ 2p´1q3sv “ 4
ÿ

u, vě0
u2`v2“t

p´1qup´1qv

“ 4
ÿ

u, vě0
u2`v2“t

p´1qu`v “ 4
ÿ

u, vě0
u2`v2“t

p´1qu2`v2

“ 4p´1qt
ÿ

u, vě0
u2`v2“t

1

“ p´1qtrptq “ p´1qmrpnq.

If t “ w2 is a square, then we have the additional solutionspu, vq “ pw, 0q and
pu, vq “ p0,wq, hencepx, yq “ p3sw, 0q and px, yq “ p0, 3swq. This yields an
additional contribution of 2p´1q3sw`2p´1q3sw “ 4p´1qp3swq2

“ 4p´1qn for a1
6pnq,

and forrpnq it is 4; thus we have proveda1
6pnq “ p´1qnrpnq “ p´1qmrp3mq. �
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