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THE FOURIER EXPANSION OF 1(2)n(22)n(32) /n(62)

CHRISTIAN KASSEL AND CHRISTOPHE REUTENAUER

Asstract. We compute the Fourier cfigients of the weight one modular form
n(2)n(22)n(32) /n(6z) in terms of the number of representations of an integer as
a sum of two squares. We deduce a relation between this mofduta and
translates of the modular fori(z)*/7(22)2. In the last section we use our main
result to give an elementary proof of an identity by VictorcKa

1. INTRODUCTION
In this note we consider thgproduct

n(2n(22)n(32) _ I (1-q"?
n(62) 1 1o+ o

whereq = €2, Recall thaty(z) is Dedekind’s eta function
n(@) = &2 [Ta—q.

n>=1
The n-productn(z)n(2z)n(3z) /n(62) is a modular form of weight 1 and level 6.
Since it is invariant under the transformatibr> z + 1, it has a Fourier expansion
of the form

n(2)n(22)n(32)
(1.2) TR é}

where the Fourier cdgcientsag(n) are integers. For general information gn
products, see[6, Sect. 2.1].

Our main result expresseg(n) in terms of the number(n) of representations
of n as the sum of two squares, i.e the number of elemeotg € Z? such that
X2 +y? = n. Observe that(n) is divisible by 4 for alln > 1 (for n = 0 we have
r(0) = 1). The sequencgn) appears as Sequence A004018in[7].

(1.1)

as(n) q",

Theorem 1.1. For all non-negative integers m we have

a(3m) = (~1)"r(3m),
as(3m+1) = (—1™? w
a(3m+2) = (_1)m+1 m

We next relatey(z)n(22)5(3z) /7(62) to the weight one modular fori(z)*/7(22)?
and two of its translates.

2010Mathematics Subject ClassificatiofPrimary) 11F11, 11F20, 14C05, 14G15, 14N10.
Key words and phrasedDedekind eta function, eta products, Fourierfiognt, punctual Hilbert
scheme.
1


http://arxiv.org/abs/1603.06357v2

2 CHRISTIAN KASSEL AND CHRISTOPHE REUTENAUER

Theorem 1.2. Set j= €¥/3. We have the following linear relation between weight
one modular forms:

n(@n(2zn(32) _1n@*  1-jnz+1/3)* L1 i* n(z+2/3)*
1(62)  4p(22)2 4 n(2z+2/3)2 4 n(2z+4/3)%

Both modular forms;(2)(22)(32) /7(62) andn(2)*/n(22)? came up naturally
in[5], where we computed the numb€p(q) of ideals of codimensiom of the
algebraFq[x,y, x"1,y~1] of Laurent polynomials in two variables over a finite
field Fq of cardinality g. Equivalently,C,(q) is the number off4-points of the
Hilbert scheme ohf points on a two-dimensional torus. We proved t8atq) is
the value atj of a palindromic one-variable polynomi@},(x) € Z[x] with integer
codficients, which we computed completely (s€e [5, Th. 1.3]).

We also showed (s€e [5, Cor. 6.2]) that the generating fomaif the polynomi-
alsCp(x) can be expressed as the following infinite product:

Ca(¥) (1-q)?
(1.3) 1+ q' = — .
o e e

It follows from the previous equality that,(1) = 0. Actually, we proved
(seellb, Th.1.3 and 1.4]) that there exists a polynoriglx) € Z[x] such that
Cn(X) = (x — 1)?Pn(X). Moreover,P,(x) is palindromic, has non-negative ¢be
cients and its value at= 1 is equal to the sum of divisors of Pn(1) = >4, d.

Whenx = é27/Xwith k = 2,3, 4, or 6, therx+ x 1 = 2 cog2x/K) is an integer.
For such an integét, we define the sequeneg(n) by

(1.4) dramd =] (1_qn)2n .
n=0 n>1 1-2cog2r/k)q" +q

Since 2 co&r/K) is an integer, so is eaci(n). It follows from (1.3) that these
integers are related to the polynomi@lg(x) by

Cn(eZin/k) _ ak(n) eZniﬂ/k.

In [5] we computedy(n), ag(n), anday(n) explicitly in terms of well-known arith-
metical functions. In particular, we established the egual

(1.5) a(n) = (—=1)"r(n),

wherer (n) is the number of representationsroés the sum of two squares.
We also observed in[5, (1.8)] that

" @ n_ 1(2)n(22)n(32)
(1.6) go ax(n)q" = 222 and go as(n) g’ = T

The question of finding an explicit expression &(n) had been left open in[5].
This is now solved with Theorem 1.1 of this note. In view ofttlieorem, of(115),
and of [1.6), for alim > 0 we obtain

a(3m) = ax(3m),

(1.7) a(3m+1) = w,
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We had experimentally observed (see [5, Footnote 7])akat) = 0 whenever
ap(n) = 0. As a consequence ¢f (1.7) we can now stateagat) = O if and only
if ax(n) = 0, i.e. if and onlyn is not the sum of two squares.

Remarks 1.3. (a) The sequencas(n) is Sequence A258210 ini[7]. The sequence
as(3n + 1) is probably the opposite of Sequence A25827Ibm cit.
(b) It can be seen from Tabilé 1 thei(n) is not a multiplicative function. Indeed,

as(10) # as(2)as(5) or as(18) # as(2)as(9) or as(20) # as(4)ae(5).

TasLe 1. First values of g(n)

[ n 2] 2]3]4]5]6]7] 8] 9 Jio[1a]12]13[14]15[16[17][18[19] 20 |
Leem [ -2]-2]of1[4Jofo]-2]4[2]o0Jo]-2[0ofo]a1]4[af0]4]

Theorem§&1]1 arid1.2 will be proved in the next two sectionsSdctio 4 we
explain how to obtain an elementary proof of an identity vahidctor Kac [4]
obtained using his theory of contragredient Lie superatggeb

2. Proor ofF THEoREM[L.]

2.1. For any odd integan we seté(m) = —2sin(mr/6). Because of the well-
known properties of the sine functiofim) depends only on the class @wfmod-
ulo 12 and we have the following equalities for all oahd

2.1) £(—m) = —&(m) and £(m+6) = —£(m),
which is equivalent t&(—m) = —£(m) and£(6 — m) = £(m).
We have

-1 ifm=1or5 (mod 12,
-2 ifm=3 (mod 12,

1 ifm=7orl1ll (mod 12,
2 ifm=9 (mod 12.

(2.2) &(m) =

Next consider the excess functi&i(n; 4) defined by
Ei(n;4) = > 1-— > 1.
d|n, d=1(mod 4 dn, d=—1(mod 4

It is a multiplicative function, i.eEj(mmn4) = E;(m; 4) E;(n; 4) wheneverm and

n are coprime. It is well known that the excess function candrmputed in terms
of the prime decomposition af. Writen = 2°p®p ... qf*g2 - - -, where allp;,
g are distinct prime numbers such thgt= 1 (mod 4 andg, = 3(mod 4 for all
i > 1. ThenEy(n;4) = 0if and only if one of the exponents is odd. If allb; are

even, then
(23) El(n; 4) = (l + a.]_)(l + a.z) e
In the sequel we will need the following result.

Lemma2.1. Let n be a positive integer which is not divisible dyWe have

D, £(d)=—-Ex(m4) and > £(3d) = —2E(n;4).

d|n, dodd din, dodd
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Proof. Letd be an odd divisor ofi; it is not divisible by 3 sinca is not. Therefore,
d=1,57or 11(mod 12. Observe thatl = 1 or 5(mod 12 ifand only ifd = 1
(mod 4 sinced = 3(mod 12 is excluded. Similarlyd = 7 or 11(mod 12 if and

only if d = 3(mod 4. Now,¢(d) = —1ifd=1or5,and(d) = 1ifd=7or 11
(mod 12. Consequently,

D Ed) = > 1- > 1= —Ei(n;4).

d|n, d odd din, d=3(mod 4 d|n, d=1(mod 4

Similarly, £(3d) = ¢(3) = —2ifd=1or5, and(3d) = ¢(9) = 2ifd=7
or 11(mod 12. Therefore,

D &@Bd) = Yoo2- Y 2= 2E(nA4)

din, dodd d|n, d=3(mod 4 d|n, d=1(mod 4

2.2.  We now expressgs(n) in terms of the functiord introduced above.
Proposition 2.2. We have
2n
(2.4) as(n)= >, ¢ (E - d> .
dn, dodd
Note that 2/d — d is an odd integer sincg is an odd divisor oh.
Proof. Setu = n/k andw = d in Formula (9.3) of[[2, p. 10]. It becomes

(2.5) > an)q"=1-4sinx/k) > ( > sin((% d) E))q”.

n=0 n=1 \d|n,dodd

Consider the special cake= 6 of (2.8). Since sifr/6) = 1/2, Equality (2.5)
becomes

> as(n)q" 1-23 | > sin((@d> E) q
n>0 n>1 \dn, dodd d 6
14y ( 3 g(?@)qn

n=1 \d|n, dodd

in view of the definition of. The formula forag(n) follows. m]

Proof of Theorem Il1Let us first mention the following well-known fact (séé[1,
§ 51, Th. 65]): the number(n) of representations of as a sum of two squares is
related to the excess functid (n; 4) by

(2.6) r(n) = 4E;(n;4)
for all n > 0. It follows from this fact and froni(115) that
(2.7) az(n) = (—=1)"4E1(n; 4).

We now distinguish three cases according to the residmamaddulo 3.
(a) We start with the case= 1 (mod 3. We haven = 3¢ + 1 for some non-
negative integef. Since the odd divisord of n are not divisible by 3, they must
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satisfyd = 1,5,7 or 11(mod 12. Such divisors are invertibl¢mod 12 and we
haved? = 1 (mod 12. Consequently,

?—dz%—dzz’]d—d (mod 12.

Hence,

£( 5~ ) - etand—0) - (6 + &) = (-1°)e(d) - (-1'e(@
in view of (2.1). Therefore, by Proposition 2.2,
a(n) = (-1)° >, £
d|n, dodd
Together with LemmiaZl1 and(2.7), this implies
a(n) = (~1)"Ex(m4) = (-1 ap(n)/4

Finally observe thatis odd (resp. even) ffis even (resp. odd). Thereforg(n) =
ax(n)/4.

(b) Now consider the case = 2 (mod 3. We haven = 3¢ + 2 for some
non-negative integef. Again the odd divisord of n must satisfyd = 1,5,7 or 11
(mod 12 since they are not divisible by 3. Consequently, as above,

2
¢ <H” - d> — £(2nd — d) = £(6d¢ + 3d) = (—1)%£(3d).
By LemmdZ.1 and{2]7), we obtain
a(n) = (-1° ) &3d)
din, dodd
= (=1 2E(m4) = (—1)™ T Lay(n)/2.

Sincen and¢ are of the same parity, we hasg(n) = —ay(n)/2.

(c) Finally we consider the case wharis divisible by 3. We writen = 3N,
whereN > 1 andt is not divisible by 3. Any odd divisod of n is of the form
d = 3'sfor some odd divisos of t and 0< r < N. Sincet and its divisorss are

not divisible by 3 and since is odd, we again have = 1,5,7 or 11(mod 12.
Recall that for sucls we haves’ = 1(mod 12. Thus, ford = 3's, we obtain

? —d=(2-3""t-3)s (mod 12.

If r =0, then 2/d —d = (6- 3Vt — 1)s (mod 12. Therefore,
¢ (% - d) —£((6-3V - 1)8) = (~1)te(—9) = (~1)" (9.

in view of (2.1).
IfO <r <N, then2y/d —d = (6-3V""1t — 3")s (mod 12. Therefore,

¢ (? - d) =£((6-3V M -3)g) = (-1)'¢(-3'9) = (-1 1 &(@s).
Now, 3 = 3(mod 12 if r is odd, and 3= —3if r > Ois even. Then by (211),

£( % -d) - (a9,
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Now consider the cage= N. If N is odd, then 8 = 3 (mod 12 and

£ (? — d> £((2t—3Y)s) = £((2t - 3)s).

Now, if t is odd, thent = 1,5,7 or 11(mod 12. We have 2— 3 = 7 or
11 (mod 12 and the multiplication by 7 or by 11 exchanges the $&t$} and
{7,11}. Since by[(Z.2) the functio& takes opposite values on such sets, we have
£((2t — 3)s) = —¢£(s). Consequently¢(2n/d — d) = —£(s) whent is odd.

If tis even, thet = 2,4,8 or 10(mod 12. Then2—3 = 1or5(mod 12. The
multiplication by 1 or by 5 preserves each $&5} and{7, 11}, so that byl(2Z2)
we haves((2t — 3)s) = £(s). In conclusion,

g(2n/d —d) = (—1)'&(s)
whenr = N is odd.
If r = Nis even, then® = —3 (mod 12 andé&(2n/d — d) = £((2t — 3N)s) =
£((2t + 3)s). Areasoning as in the odd case shows that whe¥ is even we have

£(2n/d —d) = (1) &(s).

We can now computeg(n). We start with the case of odd. Collecting the
above information, we obtain

a(n) = ) é‘(Fd) > i (23?:>

din, dodd s|t, sodd r=
N-1
= <(1)”§(S) + (Z (1)”> &(3s) + (1)t§(8)>
st, sodd r=1
= (D7 +(-D)) ) é9=o0.

s|t, sodd

On the other hand, since the power of 3irs odd, then by[(Z]3) we hawe(n) =
(—1)"4E;(n,4) = 0. Thereforepg(n) = ax(n) in this case.
If N is even, then

wo - 5 (G- 5 B

din, dodd s|t, sodd r=

N—-1
= ((1)t‘1€(5) + <Z (1)H> £(3s) + (1)t‘l€(s)>

s|t, sodd r=1

=Y (DTS + (1) (@)

st, sodd

= (-9 (2 IERICEEDY 5(38))

slt, sodd slt, sodd
= (-1)'4E(t;4)
by LemmaZ2.ll. Now, by multiplicativity of the excess fonctjo
E1(n;4) = E1(3V;4) E(t;4) = Ea(t;4)
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sinceE;(3V; 4) = 1 for evenN. Finally,t andn being of the same parity, we have
ag(n) = (—1)'4E1(t;4)) = (~1)"4E1(n;4)) = ay(n).
Q.e.d. O

3. Proor oF THEOREM[L.Z

Setf(q) = n(2)n(22)1(32)/1(62) = Yo 86(n) A" andg(q) = n(2)*/n(22)* =
Y =0 a&(Nn) q"; seel(1.6). To prove TheorémL.2 itBoes to check that
f(q) = ag(q) + bg(ja) + cg(j*a),
wherea = 1/4,b = (1 — j)/4, andc = (1 — j?)/4. Now,
ag(q) + bg(ja) +cg(j®a) = a a(nd’+b); a) j"d"

n=0 n=0
+c ) ap(n) "
n=0
= (@a+b+0c) ), a@Bmg"

m=0

+@+ jb + j%c) D] a(3m+ 1) g>™
m=0

+(@+ j°b+ jc) D) ax(3m+ 2) g™,
m=0

It follows from (1.7) that
ag(q) + bg(ja) + cg(j*q)

(@+b+c) ), as(3m) g™

m=0

+4(a+ jb+ j%c) ) ag(3m+ 1) ¥

m=0
—2(a+ %+ jc) Y| as(3m+ 2) ¥,

m=0

The right-hand side is equal fqq) sincea+b+c=1,a+ jb + j?c = 1/4, and
a+ j°b+ jc=—1/2. Q.e.d.

4. AN ELEMENTARY PROOF OF AN IDENTITY BY VICTOR Kac

In[4], p. 122] Victor Kac derived four identities foF-products from his theory
of contragredient Lie superalgebras. One of these idestilabelled (ney) in
loc. cit.,, can be rephrased in the following form:

(22032 v, e
w2 O
wheref (3m) = 1, f(B3m+1) = —1, andf(3m+2) = 0. This immediately implies
n(22)n(32) _ 7
@ w220

n=0

whereb(0) = 1,b(3m) = 2(—1)™ = 2(—1)3" for m > 0, andb(n) = (—1)"Lif
nis not a multiple of 3. See alsd|[6, Th. 8.2].
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In a mail dated March 22, 2016 Guinter Kohler observed thageproduct [1.11)
can be written as the product of Kag'product [4.1) and the-producty(2)?/5(22)
(the latter two being modular forms of weight2). Indeed,

n(2n(22n(32)  n*(22)n(32) n(2)?

@2 M6 noned nzd

Now Gauss proved (s€€[2, (7.324)]lor [3, 19.9 (i)]) the fwilog:
77(2)2 _ nan? _ n?

(4.3) w2 é(—l) q = ;O a(nq",

wherea(0) = 1 anda(n) = 2(—1)" for all n > 0. Therefore, the expansion of the
right-hand side of[(4]2) is given by

7(22)n(32) n(2)> o
n2n62) 022 >, &

n=0

where

(4.4) an) = > axby).

Xy=0
W2 4y2—n

Consequently, an alternative way to prove Thedremn 1.1 istabésh the following
lemma.

Lemma4.l. Forallm > 0,
a(Bm) = (~=1)"r(3m),
r(3m+1)
4 b
me1 F(3M+2)
—

Conversely, since the right-hand side[of{4.3) is an inkkrtformal power se-
ries, the lemma combined with Gauss’s idenfify|(4.3) and witr elementary proof
of Theoreni 1.1l yields an elementary proof of Kac's idenHiy}j.

gEm+1) = (-ym

a(Bm+2) = (-1

Proof of Lemm&4l1 (provided by G. Kdhlefp) Suppose firsh = 3m + 1 for
some integem > 0. We consider solutiong > 0,y > 0 of X + y2 = n.
Sincen=1 (mod 3, exactly one of the integeps y is a multiple of 3. Therefore
the solutions can be coupled in pail,y), (v, X)), where 3 divides, but noty
(hencey > 0). If x > 0, then the contribution of such a pairdf(n) is

2(-1)* (=1t + 2(-1)Y - 2(-1)¥
= 2(=)*Y = 2(-1) = 2(-1)" = 2(-)™*
and itis 8 forr (n), since one has to consider all pajsisx, +y) and(+y, £x), which
are distinct. Ifx = 0 (which occurs only ifh is a square), then the contribution is
(D2 = (-1 = (1) = ()" = (T

for ag(n) and it is 4 forr(n) (corresponding to the pair®, +y), (+y,0), which
are distinct). Summing up and comparing the contributioms,obtainag(n) =
(—1)™1r(n)/4, which is the desired formula.
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(b) Now letn = 3m + 2 for some integem > 0. We again consider solutions
x>0,y > 0of x> +y? = n. Sincen = 2 (mod 3, none ofx, y is divisible by 3,
and in particulax > 0 andy > 0. The contribution ofx,y) is

2(71)X . (71)y71 _ 2(71)x+y71 _ 2(71)x2+y271 _ 2(71)n71 _ 2(71)m+1

for a5(n) and it is 4 forr(n). Summing up and comparing the contributions, we
obtainag(n) = (— 1)™1r(n)/2.

(c) Finally letn = 3m. Forn = 0, the result is clear, so we may assume that
n > 0. Writen = 3Nt, whereN > 1 andt is not divisible by 3. IfN is odd, then by
the remark precedin@(2.3) and by (2.6) we hay® = 4E(n;4) = 0. Hence the
sum [4.4) definingg(n) is empty, which impliesg(n) = 0 = (—1)™r(3m).

So letN = 2s > 0 be even. It is easy to check that the solutions?of y? =
n = 3%t are of the formx = 3%u andy = 3%, whereu? + v = t. If tis not a
square, then there is no solution where 0 orv = 0, and we obtain

am = Y 22— =4 Y (-

u,v=0 u,v=0
u24v2=t u2+v2
RV e
u,v=0 u,v=0
wRv2=t wRv2=t
= 4-1' > 1
u,v=0
u2v2=t

= (=D)'r(t) = (=1)"r(n).
If t = w? is a square, then we have the additional solutims) = (w,0) and
(u,v) = (O,w), hence(x,y) = (3°w,0) and (x,y) = (0,3%w). This yields an
additional contribution of @-1)3W+2(—1)3W = 4(—1)(3W)* = 4(—1)" for &(n),
and forr(n) itis 4; thus we have provea[(n) = (—1)"r(n) = (=1)™r(3m). O
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