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Abstract

In 2013, Komatsu introduced the poly-Cauchy numbers, which generalize Cauchy
numbers. Several generalizations of poly-Cauchy numbers have been considered since
then. One particular type of generalizations is that of multiparameter-poly-Cauchy num-
bers. In this paper, we study the log-convexity of the multiparameter-poly-Cauchy num-
bers of the first kind and of the second kind. In addition, we also discuss the log-behavior
of multiparameter-poly-Cauchy numbers.
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1 Introduction

Komatsu [10], introduced two kinds of poly-Cauchy numbers c%k) and ’c\flk). The first kind cgk)

is given by
1 1
C,(@k) = /"'/(x1x2'--wk)ndw1dx2"'dﬂ:k,
0 0
k

and the second kind Eff) is given by

1 1
a(lk) = (_1)"/ / (x129 - - - Tp)ndxrday - - - day,
0 0

—_——
k
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where k is a positive integer, and (z), = z(z —1)---(x —=n+ 1 (n > 1) with (z)p = 1 and
() =x(x+1)--- (z+n—1) with (x)o = 1. The first few values of ) and & are
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Some sequences derived from denominators and numerators of poly-Cauchy numbers of the
first kind and of the second kind can be found in [16, A224094-A224101,A219247,A224102—
A224107,A224109]. When k = 1, ¢, = cg) and ¢, = ES) are the Cauchy numbers of the
first kind and the second kind, respectively (see [3]). The basic properties of the two kinds
of the poly-Cauchy numbers are studied in [9} [I0]. Several generalizations of poly-Cauchy
numbers have been considered since then. One particular type of generalizations is that of the
multiparameter-poly-Cauchy numbers ([12]). For a k-tuple of real numbers L = (Iy,... 1)
and a n-tuple of real numbers A = (ag,a1,...,a,—1), define the ¢g-multiparameter-poly-

Cauchy polynomials of the first kind Ciﬂ; A, q(z) by

I I
nLA,q / / e xp—og—2) (T T — Q1 — 2)dgxy - dgTy,

Here, Jackson’s g-integral is defined by

/0 (gt = (1 - e S fla" )
n=0

and ) .
—q
[z]q = 1—g¢ —z (¢—1).

The g-multiparameter-poly-Cauchy polynomials of the first kind can be expressed explicitly

in terms of the multiparameter Stirling numbers of the first kind S1(n, m, A), defined by
(t—ag)(t—aq) - (t —ap-1) ZSlnmA

Namely, we have

)m—i—i—l

m lk
Si( A)
etz Z 1(n,m, ;( ) —z—i—l]

([12] Theorem 1}).

When g — 1,11 =---=1[; =1 and z = 0, we have
4) _ iy o8 _ -~ S, 4)
Cna = ;L)ml Cn,(1,...,1),A,q(O) - mZ::O (m+ 1)F



Furthermore, if A = (0,1,...,n — 1), then Si(n,m) = (—=1)"""S1(n, m, A) are the unsigned
Stirling numbers of the first kind and cgﬂ) = Cfmkzo Lol
first kind. S

Similarly, define the ¢g-multiparameter-poly-Cauchy polynomials of the second kind ’c\glk)L A q(z)

by

) are poly-Cauchy numbers of the

l Ik
/ / e xp— g 2) o (X T — Qo F 2)dgx - dgx
When ¢ - 1,01 = =1l =1, a; =ip (i = 0,1,...,n — 1) and z = 0, the number
Eflkl)ﬁl is reduced to the poly-Cauchy numbers of the second kind with a parameter p ([11]).

Furthermore, if p = 1, then the number E(kl)ﬁl is reduced to the poly-Cauchy numbers of the

second kind 2" ([10]). If k =1, then e =2, is the classical Cauchy number ([3]). The ¢-
multiparameter-poly-Cauchy polynomials of the second kind can be also expressed explicitly

in terms of the multiparameter Stirling numbers of the first kind as follows.

) B n . m m (—Z)i(ll L lk)m—i-‘rl
([12, Theorem 2]). When ¢ -+ 1,1y =--- =1 = 1 and z = 0, we have
L Z_:O (m+1k

In 18], the log-convexity of Cauchy numbers of the first kind and of the second kind has
been studied. We recall some other definitions and notations used in this paper.

Let {2 }n>0 be a sequence of positive numbers. If for all j > 1, 2]2- < zj_1zj41 (respectively
zjz > zj_1%j+1), the sequence {z,},>¢ is called log-convex (respectively log-concave).

The log-behavior (log-convexity and log-concavity) are important properties of combi-
natorial sequences, and they play an important role in many subjects such as quantum
physics, white noise theory, probability, economics and mathematical biology. See for in-
stance [1], 2, [4), 5 6, [8 [14], [15] [17].

Ifzg <2z <  <zpmo1 < 2z > Zmg1 > -+ for some m, then {2, },>0 is called unimodal,
and m is called a mode of the sequence.

In this paper, we study the log-convexity of multiparameter-poly-Cauchy numbers of
the first kind and of the second kind. In addition, we also discuss the log-behavior of

multiparameter-poly-Cauchy numbers.

2 The log-convexity of poly-Cauchy numbers

In this section, we mainly discuss the log-behavior of {cgk) tn>2, {Eglk)}nzo, {cﬁf%}nzg, and

@

‘s }n>0. For convenience, put

o) = ()"l ol = ()l (n> 1),

n n

3



and
W) = (el Wl = (0El (o).

In [18], the log-convexity of Cauchy numbers was discussed. First, we shall investigate
the log-convexity of the poly-Cauchy numbers of the two kinds.

Lemma 2.1 [I53] If {yn}n>0 is log-convez, then the Stirling transformation of the first kind
Zn = om0l ]ym preserves the log-conveity.

Theorem 2.1 The sequences {cn tn>2 and {cnk)}nzo are log-convex.

Proof. We first prove the log-convexity of {a,ﬁk)}n22. Forn > 1,
2
<C(k)> - C1(’L )1C£zkl1

2

1 1
/ xp-xp(l—ay-xg)- - (n—2—x1 -+ g )drrd - - - day
Jo Jo,

1 1
x/ xpxp(l—xy - xg) - (n—xy - x)dey - - - dxy.
Jo Jo,

ForOS:L'jgl(1§j§k:),n—1§n—:171:172---3:k§n. Then for n > 3,
? (k) (k)
k
<C( )> — =16t

2
[/ /xl 1—%1 k)-'-(n—1—x1~-xk)da;1---dxk

1 1
/ x1-xp(l—xy - xg)- - (n—2—x1 -z )drrd - - - doy,
Jo Jo,

1 1
X(n—l)/ .../ xl---xk(l—xl...xk)---(n—1—x1---xk)dx1...dxk
0 0

N—_——
k
1 1
:—/ ---/ $1---$k(1_$1---$k)---(n_1_$1---$k)d$1...d$k
0 0
k

1 1
X/ / (1 xp)? A=z ap) - (n—2—x1 - z)dxy - - - doy,
N——



Hence, sequence {cgﬂ) }n>2 is log-convex.
Recall the definition

-3 [l

It is easy to see that the sequence {m} is log-convex. By means of Lemma 2.1, we
m>0

get that the sequence {w£k)}n20 is log-convex. [ |

Theorem 2.2 For the sequence {w,(f)}nzg, we have

W [n]s 1
wk) < [Kn] mE::l T (2.2)
where K, is the index of the mazimal unsigned Stirling numbers of the first kind [ ] for all

fized n > 3.

Proof. For the Stirling numbers of the first kind, we know that

m < M coe [Kn"_l] < M > [KHZJ . H

where K, ~ =(n — o0) (see [7]). We note that

[701 = 0, n>1,
n 1 n 1
- < - 1<m< K,),
[mhm+nk hJUmHﬁ’ smsn (m# k)
By applying (Z1]), we obtain (2.2)). [ |

We now consider the log-convexity and unimodality of multiparameter-poly-Cauchy num-

bers of two kinds under some conditions.

Theorem 2.3 Assume that the sequence A = (0,c,...,Qy,...) satisfies that a; > 1, and
aj —aj_1 > 1 for j > 1. The sequences {cgﬂlx}nzg and {Eikl;}nzo are log-convex.



Proof. Since a; > 1 and aj —aj—1 > 1 (j > 1), for n > 3 we have

2
k k k
(¢5) = ehacth

1 1 2
/ ... / "L'l .. -wk(al — "L'l .. .‘,L.kf) ... (an_l — "L'l .. .‘,L.kf)dxl .. 'dwk
0 0

—_——
k
1 1
_/ .. ':Ul"'xk;(al_$1"'$k)"'(an—2_$1"'$k)d$1"'d$k
0 0
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1 1
X/--- xl...xk(al—xl---xk)...(an—xl...xk)dxl---dxk7
0 0
N—_——
k

1 1
:_/ / (1 xp)? (@) — 1) - (oo — 21 - - - g )day - - - day,
0 0
1 1
X/... wl...xk(al—wl...wk)...(an_l—wl...wk)dwl...dwk
0
1 1
_/ .. ':L'l...xk(al_$1...$k)...(an_2_;Ul...;l';k)d;vl...d;vk
0

1 1
X/ ... wl...xk(al—wl---wk)...(an_l—wl---wk)
0



Similarly, for n > 1 we have

k
@A)

1 1 9
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k
—)1 A/C\(-i)-lA

xk(xlxk+a1)(mlxk+an_2)dw‘1dwk

|
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1 1
0 0
1 1
S_/ /(xlxk)2(xlxk+al)(xlxk+an_1)dxldxk
0 0

1 1
0 0

—_———
k
<0
(k) ~(k) .
Hence, the sequence {c, "’ }n>2 and {¢, 4 }n>0 are log-convex. [ |

Note that Theorem 2.3 generalizes Theorem 2.1. Clearly, Theorem 2.3 becomes Theorem
2.1 when A= (0,1,2,...,n,...).

Theorem 2.4 Suppose that the sequence A = (0,aq,...,0n,...) satisfies that a;j > 0 for
j > 1. Then we have:

(i) if there exists | > 3 such that a; > 2 for 1 < j <l and oj =1 forj > 141, then {07(;?1)4}”21
1s unimodal, and its single peak is at | + 1;

(ii) if there exists | > 3 such that aj > 1 for 1 < j <l and oj = 0 for j > 1+ 1, then

{wflkl)éx}nzl is unimodal, and its single peak is at | + 1.

Proof. (i) Forn > 1,

o) (k)
n+1 AT n,

/ /a:l plag —xp-oxg) (a1 — 21 ap) (o — 1 — -+ xp)dey - - - dag,.

We can verify that 05521,14 — 0551)4 >0forl <n</[and 05521,14 — 0751)4 <0forn>10+1.

Hence, {aflkl)éx}nzl is unimodal, and its single peak is at [ + 1.



(ii) For n > 1,

(k) (k)
Wpi1,4 — YWpoA

1 1
0 0
k

We can verify that WS:ELA — wgi)éx >0for1 <n<|!and w(@LA - wﬁ% <0Oforn>1+1.

n

Therefore, {wfﬁ‘}nzl is unimodal, and its single peak is at [ + 1. [ |
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