The log-convexity of the poly-Cauchy numbers

Takao Komatsu *

School of Mathematics and Statistics Wuhan University, Wuhan, 430072, China komatsu@whu.edu.cn

Feng-Zhen Zhao †
Department of Mathematics
Shanghai University
Shanghai 200444, China
fengzhenzhao@shu.edu.cn

Abstract

In 2013, Komatsu introduced the poly-Cauchy numbers, which generalize Cauchy numbers. Several generalizations of poly-Cauchy numbers have been considered since then. One particular type of generalizations is that of multiparameter-poly-Cauchy numbers. In this paper, we study the log-convexity of the multiparameter-poly-Cauchy numbers of the first kind and of the second kind. In addition, we also discuss the log-behavior of multiparameter-poly-Cauchy numbers.

Key words: Cauchy numbers, Poly-Cauchy numbers, multiparameter-poly-Cauchy numbers, log-convexity, log-concavity.

2000 Mathematics Subject Classification: 05A19, 05A20, 11B83.

1 Introduction

Komatsu [10], introduced two kinds of poly-Cauchy numbers $c_n^{(k)}$ and $\hat{c}_n^{(k)}$. The first kind $c_n^{(k)}$ is given by

$$c_n^{(k)} = \underbrace{\int_0^1 \cdots \int_0^1 (x_1 x_2 \cdots x_k)_n dx_1 dx_2 \cdots dx_k}_{k},$$

and the second kind $\hat{c}_n^{(k)}$ is given by

$$\widehat{c}_n^{(k)} = (-1)^n \underbrace{\int_0^1 \cdots \int_0^1 \langle x_1 x_2 \cdots x_k \rangle_n dx_1 dx_2 \cdots dx_k,}_{k}$$

^{*}The first author was supported in part by the grant of Wuhan University and by the grant of Hubei Provincial Experts Program.

[†]The second author was supported by a grant of "The First-class Discipline of Universities in Shanghai".

where k is a positive integer, and $(x)_n = x(x-1)\cdots(x-n+1 \ (n \ge 1))$ with $(x)_0 = 1$ and $(x)_n = x(x+1)\cdots(x+n-1)$ with $(x)_0 = 1$. The first few values of $c_n^{(k)}$ and $\widehat{c}_n^{(k)}$ are

$$c_0^{(k)} = 1, c_1^{(k)} = \frac{1}{2^k}, c_2^{(k)} = -\frac{1}{2^k} + \frac{1}{3^k}, c_3^{(k)} = \frac{2}{2^k} - \frac{3}{3^k} + \frac{1}{4^k}, c_4^{(k)} = -\frac{6}{2^k} + \frac{11}{3^k} - \frac{6}{4^k} + \frac{1}{5^k}, \cdots$$

$$\hat{c}_0^{(k)} = 1, \hat{c}_1^{(k)} = -\frac{1}{2^k}, \hat{c}_2^{(k)} = \frac{1}{2^k} + \frac{1}{3^k}, \hat{c}_3^{(k)} = -\frac{2}{2^k} - \frac{3}{3^k} - \frac{1}{4^k}, \hat{c}_4^{(k)} = \frac{6}{2^k} + \frac{11}{3^k} + \frac{6}{4^k} + \frac{1}{5^k}, \cdots$$

Some sequences derived from denominators and numerators of poly-Cauchy numbers of the first kind and of the second kind can be found in [16, A224094–A224101,A219247,A224102–A224107,A224109]. When k=1, $c_n=c_n^{(1)}$ and $\widehat{c}_n=\widehat{c}_n^{(1)}$ are the Cauchy numbers of the first kind and the second kind, respectively (see [3]). The basic properties of the two kinds of the poly-Cauchy numbers are studied in [9, 10]. Several generalizations of poly-Cauchy numbers have been considered since then. One particular type of generalizations is that of the multiparameter-poly-Cauchy numbers ([12]). For a k-tuple of real numbers $L=(l_1,\ldots,l_k)$ and a n-tuple of real numbers $A=(\alpha_0,\alpha_1,\ldots,\alpha_{n-1})$, define the q-multiparameter-poly-Cauchy polynomials of the first kind $c_{n,L,A,q}^{(k)}(z)$ by

$$c_{n,L,A,q}^{(k)}(z) = \int_0^{l_1} \cdots \int_0^{l_k} (x_1 \cdots x_k - \alpha_0 - z) \cdots (x_1 \cdots x_k - \alpha_{n-1} - z) d_q x_1 \cdots d_q x_k.$$

Here, Jackson's q-integral is defined by

$$\int_0^x f(t)d_q t = (1 - q)x \sum_{n=0}^{\infty} f(q^n x)q^n \,,$$

and

$$[x]_q = \frac{1 - q^x}{1 - q} \to x \quad (q \to 1).$$

The q-multiparameter-poly-Cauchy polynomials of the first kind can be expressed explicitly in terms of the multiparameter Stirling numbers of the first kind $S_1(n, m, A)$, defined by

$$(t - \alpha_0)(t - \alpha_1) \cdots (t - \alpha_{n-1}) = \sum_{m=0}^{n} S_1(n, m, A)t^m.$$

Namely, we have

$$c_{n,L,A,q}^{(k)}(z) = \sum_{m=0}^{n} S_1(n,m,A) \sum_{i=0}^{m} {m \choose i} \frac{(-z)^i (l_1 \cdots l_k)^{m-i+1}}{[m-i+1]_q^k}$$

([12, Theorem 1]).

When $q \to 1$, $l_1 = \cdots = l_k = 1$ and z = 0, we have

$$c_{n,A}^{(k)} = \lim_{q \to 1} c_{n,(1,\dots,1),A,q}^{(k)}(0) = \sum_{m=0}^{n} \frac{S_1(n,m,A)}{(m+1)^k}.$$

Furthermore, if A = (0, 1, ..., n-1), then $S_1(n, m) = (-1)^{n-m} S_1(n, m, A)$ are the unsigned Stirling numbers of the first kind and $c_n^{(k)} = c_{n,(0,1,...,n-1)}^{(k)}$ are poly-Cauchy numbers of the first kind

Similarly, define the q-multiparameter-poly-Cauchy polynomials of the second kind $\widehat{c}_{n,L,A,q}^{(k)}(z)$ by

$$\widehat{c}_{n,L,A,q}^{(k)}(z) = \int_0^{l_1} \cdots \int_0^{l_k} (-x_1 \cdots x_k - \alpha_0 + z) \cdots (-x_1 \cdots x_k - \alpha_{n-1} + z) d_q x_1 \cdots d_q x_k.$$

When $q \to 1$, $l_1 = \cdots = l_k = 1$, $\alpha_i = i\rho$ $(i = 0, 1, \ldots, n-1)$ and z = 0, the number $\widehat{c}_{n,A}^{(k)}$ is reduced to the poly-Cauchy numbers of the second kind with a parameter ρ ([11]). Furthermore, if $\rho = 1$, then the number $\widehat{c}_{n,A}^{(k)}$ is reduced to the poly-Cauchy numbers of the second kind $\widehat{c}_n^{(k)}$ ([10]). If k = 1, then $\widehat{c}_n^{(1)} = \widehat{c}_n$ is the classical Cauchy number ([3]). The q-multiparameter-poly-Cauchy polynomials of the second kind can be also expressed explicitly in terms of the multiparameter Stirling numbers of the first kind as follows.

$$\widehat{c}_{n,L,A,q}^{(k)}(z) = \sum_{m=0}^{n} (-1)^m S_1(n,m,A) \sum_{i=0}^{m} {m \choose i} \frac{(-z)^i (l_1 \cdots l_k)^{m-i+1}}{[m-i+1]_q^k}$$

([12, Theorem 2]). When $q \to 1$, $l_1 = \cdots = l_k = 1$ and z = 0, we have

$$\widehat{c}_{n,A}^{(k)} = \lim_{q \to 1} \widehat{c}_{n,(1,\dots,1),A,q}^{(k)}(0) = \sum_{m=0}^{n} \frac{(-1)^m S_1(n,m,A)}{(m+1)^k}.$$

In [18], the log-convexity of Cauchy numbers of the first kind and of the second kind has been studied. We recall some other definitions and notations used in this paper.

Let $\{z_n\}_{n\geq 0}$ be a sequence of positive numbers. If for all $j\geq 1, z_j^2\leq z_{j-1}z_{j+1}$ (respectively $z_j^2\geq z_{j-1}z_{j+1}$), the sequence $\{z_n\}_{n\geq 0}$ is called log-convex (respectively log-concave).

The log-behavior (log-convexity and log-concavity) are important properties of combinatorial sequences, and they play an important role in many subjects such as quantum physics, white noise theory, probability, economics and mathematical biology. See for instance [1, 2, 4, 5, 6, 8, 14, 15, 17].

If $z_0 \le z_1 \le \cdots \le z_{m-1} \le z_m \ge z_{m+1} \ge \cdots$ for some m, then $\{z_n\}_{n\ge 0}$ is called unimodal, and m is called a mode of the sequence.

In this paper, we study the log-convexity of multiparameter-poly-Cauchy numbers of the first kind and of the second kind. In addition, we also discuss the log-behavior of multiparameter-poly-Cauchy numbers.

2 The log-convexity of poly-Cauchy numbers

In this section, we mainly discuss the log-behavior of $\{c_n^{(k)}\}_{n\geq 2}$, $\{\widehat{c}_n^{(k)}\}_{n\geq 0}$, $\{c_{n,A}^{(k)}\}_{n\geq 2}$, and $\{\widehat{c}_{n,A}^{(k)}\}_{n\geq 0}$. For convenience, put

$$\sigma_n^{(k)} = (-1)^{n-1} c_n^{(k)}, \quad \sigma_{n,A}^{(k)} = (-1)^{n-1} c_{n,A}^{(k)} \quad (n \ge 1),$$

and

$$\omega_n^{(k)} = (-1)^n \widehat{c}_n^{(k)}, \quad \omega_{n,A}^{(k)} = (-1)^n \widehat{c}_{n,A}^{(k)} \quad (n \geq 0).$$

In [18], the log-convexity of Cauchy numbers was discussed. First, we shall investigate the log-convexity of the poly-Cauchy numbers of the two kinds.

Lemma 2.1 [13] If $\{y_n\}_{n\geq 0}$ is log-convex, then the Stirling transformation of the first kind $z_n = \sum_{m=0}^n {n \brack m} y_m$ preserves the log-convexity.

Theorem 2.1 The sequences $\{c_n^{(k)}\}_{n\geq 2}$ and $\{\widehat{c}_n^{(k)}\}_{n\geq 0}$ are log-convex.

Proof. We first prove the log-convexity of $\{\sigma_n^{(k)}\}_{n\geq 2}$. For $n\geq 1$,

$$\left(c_n^{(k)}\right)^2 - c_{n-1}^{(k)}c_{n+1}^{(k)}$$

$$= \left[\underbrace{\int_0^1 \cdots \int_0^1 x_1 \cdots x_k (1 - x_1 \cdots x_k) \cdots (n - 1 - x_1 \cdots x_k) dx_1 \cdots dx_k}_{k}\right]^2$$

$$-\underbrace{\int_0^1 \cdots \int_0^1 x_1 \cdots x_k (1 - x_1 \cdots x_k) \cdots (n - 2 - x_1 \cdots x_k) dx_1 d \cdots dx_k}_{k}$$

$$\times \underbrace{\int_0^1 \cdots \int_0^1 x_1 \cdots x_k (1 - x_1 \cdots x_k) \cdots (n - x_1 \cdots x_k) dx_1 \cdots dx_k}_{k}.$$

For $0 \le x_j \le 1$ $(1 \le j \le k)$, $n-1 \le n-x_1x_2\cdots x_k \le n$. Then for $n \ge 3$,

$$\left(c_n^{(k)}\right)^2 - c_{n-1}^{(k)}c_{n+1}^{(k)}$$

$$\leq \left[\underbrace{\int_0^1 \cdots \int_0^1 x_1 \cdots x_k (1-x_1\cdots x_k) \cdots (n-1-x_1\cdots x_k) dx_1 \cdots dx_k}_{k}\right]^2$$

$$-\underbrace{\int_0^1 \cdots \int_0^1 x_1 \cdots x_k (1-x_1\cdots x_k) \cdots (n-2-x_1\cdots x_k) dx_1 d\cdots dx_k}_{k}$$

$$\times (n-1)\underbrace{\int_0^1 \cdots \int_0^1 x_1 \cdots x_k (1-x_1\cdots x_k) \cdots (n-1-x_1\cdots x_k) dx_1 \cdots dx_k}_{k}$$

$$= -\underbrace{\int_0^1 \cdots \int_0^1 x_1 \cdots x_k (1-x_1\cdots x_k) \cdots (n-1-x_1\cdots x_k) dx_1 \cdots dx_k}_{k}$$

$$\times \underbrace{\int_0^1 \cdots \int_0^1 (x_1\cdots x_k)^2 (1-x_1\cdots x_k) \cdots (n-2-x_1\cdots x_k) dx_1 \cdots dx_k}_{k}$$

$$\leq 0.$$

Hence, sequence $\{c_n^{(k)}\}_{n\geq 2}$ is log-convex.

Recall the definition

$$\omega_n^{(k)} = \sum_{m=0}^n {n \brack m} \frac{1}{(m+1)^k}.$$
 (2.1)

It is easy to see that the sequence $\left\{\frac{1}{(m+1)^k}\right\}_{m\geq 0}$ is log-convex. By means of Lemma 2.1, we get that the sequence $\{\omega_n^{(k)}\}_{n\geq 0}$ is log-convex.

Theorem 2.2 For the sequence $\{\omega_n^{(k)}\}_{n\geq 3}$, we have

$$\omega_n^{(k)} < \begin{bmatrix} n \\ K_n \end{bmatrix} \sum_{m=1}^n \frac{1}{(m+1)^k},$$
 (2.2)

where K_n is the index of the maximal unsigned Stirling numbers of the first kind $\begin{bmatrix} n \\ m \end{bmatrix}$ for all fixed $n \geq 3$.

Proof. For the Stirling numbers of the first kind, we know that

$$\begin{bmatrix} n \\ 1 \end{bmatrix} < \begin{bmatrix} n \\ 2 \end{bmatrix} < \dots < \begin{bmatrix} n \\ K_n - 1 \end{bmatrix} < \begin{bmatrix} n \\ K_n \end{bmatrix} > \begin{bmatrix} n \\ K_n + 1 \end{bmatrix} > \dots > \begin{bmatrix} n \\ n \end{bmatrix}.$$

where $K_n \sim \frac{n}{\ln n} (n \to \infty)$ (see [7]). We note that

$$\begin{bmatrix} n \\ 0 \end{bmatrix} = 0, \quad n \ge 1,$$

$$\begin{bmatrix} n \\ m \end{bmatrix} \frac{1}{(m+1)^k} < \begin{bmatrix} n \\ K_n \end{bmatrix} \frac{1}{(m+1)^k}, \quad 1 \le m \le n \quad (m \ne K_n),$$

By applying (2.1), we obtain (2.2).

We now consider the log-convexity and unimodality of multiparameter-poly-Cauchy numbers of two kinds under some conditions.

Theorem 2.3 Assume that the sequence $A = (0, \alpha_1, \dots, \alpha_n, \dots)$ satisfies that $\alpha_j \geq 1$, and $\alpha_j - \alpha_{j-1} \geq 1$ for $j \geq 1$. The sequences $\{c_{n,A}^{(k)}\}_{n\geq 2}$ and $\{\widehat{c}_{n,A}^{(k)}\}_{n\geq 0}$ are log-convex.

Proof. Since $\alpha_j \geq 1$ and $\alpha_j - \alpha_{j-1} \geq 1$ $(j \geq 1)$, for $n \geq 3$ we have

Similarly, for $n \geq 1$ we have

$$\begin{split} & \left(\widehat{c}_{n,A}^{(k)}\right)^2 - \widehat{c}_{n-1,A}^{(k)}\widehat{c}_{n+1,A}^{(k)} \\ &= \left[\underbrace{\int_0^1 \cdots \int_0^1 x_1 \cdots x_k (x_1 \cdots x_k + \alpha_1) \cdots (x_1 \cdots x_k + \alpha_{n-1}) dx_1 \cdots dx_k}_{k}\right]^2 \\ & - \underbrace{\int_0^1 \cdots \int_0^1 x_1 \cdots x_k (x_1 \cdots x_k + \alpha_1) \cdots (x_1 \cdots x_k + \alpha_{n-2}) dx_1 \cdots dx_k}_{k} \\ & \times \underbrace{\int_0^1 \cdots \int_0^1 x_1 \cdots x_k (x_1 \cdots x_k + \alpha_1) \cdots (x_1 \cdots x_k + \alpha_n) dx_1 \cdots dx_k}_{k} \\ & \leq - \underbrace{\int_0^1 \cdots \int_0^1 (x_1 \cdots x_k)^2 (x_1 \cdots x_k + \alpha_1) \cdots (x_1 \cdots x_k + \alpha_{n-1}) dx_1 \cdots dx_k}_{k} \\ & \times \underbrace{\int_0^1 \cdots \int_0^1 x_1 \cdots x_k (x_1 \cdots x_k + \alpha_1) \cdots (x_1 \cdots x_k + \alpha_{n-2}) dx_1 \cdots dx_k}_{k}, \\ & \leq 0. \end{split}$$

Hence, the sequence $\{c_{n,A}^{(k)}\}_{n\geq 2}$ and $\{\hat{c}_{n,A}^{(k)}\}_{n\geq 0}$ are log-convex.

Note that Theorem 2.3 generalizes Theorem 2.1. Clearly, Theorem 2.3 becomes Theorem 2.1 when $A = (0, 1, 2, \dots, n, \dots)$.

Theorem 2.4 Suppose that the sequence $A = (0, \alpha_1, ..., \alpha_n, ...)$ satisfies that $\alpha_j \geq 0$ for $j \geq 1$. Then we have:

- (i) if there exists $l \geq 3$ such that $\alpha_j \geq 2$ for $1 \leq j \leq l$ and $\alpha_j = 1$ for $j \geq l+1$, then $\{\sigma_{n,A}^{(k)}\}_{n\geq 1}$ is unimodal, and its single peak is at l+1;
- (ii) if there exists $l \geq 3$ such that $\alpha_j \geq 1$ for $1 \leq j \leq l$ and $\alpha_j = 0$ for $j \geq l+1$, then $\{\omega_{n,A}^{(k)}\}_{n\geq 1}$ is unimodal, and its single peak is at l+1.

Proof. (i) For $n \ge 1$,

$$\sigma_{n+1,A}^{(k)} - \sigma_{n,A}^{(k)}$$

$$= \underbrace{\int_0^1 \cdots \int_0^1 x_1 \cdots x_k (\alpha_1 - x_1 \cdots x_k) \cdots (\alpha_{n-1} - x_1 \cdots x_k) (\alpha_n - 1 - x_1 \cdots x_k) dx_1 \cdots dx_k}_{k}.$$

We can verify that $\sigma_{n+1,A}^{(k)} - \sigma_{n,A}^{(k)} \ge 0$ for $1 \le n \le l$ and $\sigma_{n+1,A}^{(k)} - \sigma_{n,A}^{(k)} \le 0$ for $n \ge l+1$. Hence, $\{\sigma_{n,A}^{(k)}\}_{n\ge 1}$ is unimodal, and its single peak is at l+1. (ii) For $n \ge 1$,

$$\omega_{n+1,A}^{(k)} - \omega_{n,A}^{(k)} = \underbrace{\int_{0}^{1} \cdots \int_{0}^{1} x_{1} \cdots x_{k}(x_{1} \cdots x_{k} + \alpha_{1}) \cdots (x_{1} \cdots x_{k} + \alpha_{n-1})(x_{1} \cdots x_{k} + \alpha_{n} - 1) dx_{1} \cdots dx_{k}}_{k}.$$

We can verify that $\omega_{n+1,A}^{(k)} - \omega_{n,A}^{(k)} \ge 0$ for $1 \le n \le l$ and $\omega_{n+1,A}^{(k)} - \omega_{n,A}^{(k)} \le 0$ for $n \ge l+1$. Therefore, $\{\omega_{n,A}^{(k)}\}_{n\ge 1}$ is unimodal, and its single peak is at l+1.

3 Acknowledgements

The authors would like to thank an anonymous referee whose helpful suggestions and comments have led to much improvement of the paper.

References

- N. Asai, I. Kubo and H. H. Kubo, Roles of log-concavity, log-convexity and growth order in white noise analysis, Infinite Dimensional Analysis, Quantum Probability and Related Topics 4 (2001), 59–84.
- [2] F. Brenti, Log-concave and unimodal sequences in algebra, combinatorics, and geometry: An update, Contemporary Math. 178 (1994), 71–89.
- [3] L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, 1974.
- [4] T. Došlić, D. Svrtan and D. Veljan, Enumerative aspects of secondary structures, Discrete Math. 285 (2004), 67–82.
- [5] T. Došlić and D. Veljan, Logarithmic behavior of some combinatorial sequences, Discrete Math. 308 (2008), 2182–2212.
- [6] T. Došlić and D. Veljan, Calculus proofs of some combinatorial inequalities, Math. Inequal. Appl. 6 (2003), 197–209.
- [7] L. H. Harper, Stirling behavior is asymptotically normal, Ann. of Math. Stat. 38 (1967), 410–414.
- [8] J. R. Klauder, A. Pension and J. M. Sixdeniers, Constructing coherent states through solutions of Stieltjes and Hausdorff moment problems, Phys. Rev. A (3) 64 (2001), 013817– 013835.
- [9] T. Komatsu, Sums of products of Cauchy numbers, including poly-Cauchy numbers, J. Discrete Math. 2013 (2013), Article ID 625912.

- [10] T. Komatsu, *Poly-Cauchy numbers*, Kyushu J. Math. 67 (2013), 143–153.
- [11] T. Komatsu, *Poly-Cauchy numbers with a q parameter*, Ramanujan J. 31 (2013), 353–371.
- [12] T. Komatsu and L. Szalay, q-multiparameter-Bernoulli polynomials and q-multiparameter-Cauchy polynomials, Integers, (2016), to appear.
- [13] L. L. Liu and Y. Wang, On the log-convexity of combinatorial sequences, Adv. Appl. Math. 39 (2007), 453–476.
- [14] O. Milenkovic and K.J. Compton, *Probabilistic transforms for combinatorial urn models*, Combin. Probab. Comput. 13 (2004), 645–675.
- [15] D. Prelec, Decreasing impatience: A criterion for non-stationary time preference and hyperbolic discounting, Scand. J. Econ. 106 (2004), 511–532.
- [16] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, available at http://oeis.org.
- [17] R. P. Stanley, Log-concave and unimodal sequences in algebra, combinatorics, and geometry, Ann. of New York Acad. Sci. 576 (1989), 500–535.
- [18] F. Z. Zhao, The log-convexity of Cauchy numbers, J. Indian Math. Soc., New Ser. 80 (2013), 395–403.