
Dichotomic random number generators
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Abstract
We introduce several classes of pseudorandom sequences
which represent a natural extension of classical methods in
random number generation. The sequences are obtained from
constructions on labeled binary trees, generalizing the well-
known Stern-Brocot tree.
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1. Preliminaries

1. Preliminaries

Standing hypothesis 1.1 Let X be a non-empty set.
A vector is a finite (possibily void) sequence of elements of X. In the com-

binatorics of words a vector is also called a (finite) word and the set of all
words is denoted by X∗. We shall use both terminologies.

The length of a word v is denoted by |v|.

Remark 1.2 For experiments, examples and graphical outputs we em-
ployed the computer algebra system Pari/GP, using a collection of functions
we prepared which is available on felix.unife.it/++/paritools. The names of
all functions in this collection begin with t .

Definition 1.3 Let a = (a1, . . . , am) and b = (b1, . . . , bm+1) be two vectors
with |b| = |a|+ 1. Their interleave (or shuffle) a ↓ b is the vector

(b1, a1, b2, a2, b3, . . . , bm, am, bm+1)

One has
(a ↓ b)2j = aj for j = 1, . . . ,m

(a ↓ b)2j+1 = bj+1 for j = 0, . . . ,m

Definition 1.4 The natural binary tree (NBT) is the infinite binary tree
labeled by the elements of N+ 1 as in the figure:

The rows (row vectors) of the tree are called its levels, the k-th level (begin-
ning to count with 0) being denoted by L(∗, k).

Remark 1.5 If g : N + 1−→X is a function, we obtain a labeled tree L(g)
whose levels are denoted by L(g, k), as illustrated by the figure for
g(n) = n2.

Hence L(∗, k) = L(id, k), where id : N+ 1−→N+ 1 is the identity function,
and the NBT can be written as L(∗). More explicitly one has
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1. Preliminaries

L(∗, k) = (2k, 2k + 1, . . . , 2k+1 − 1)

and therefore
L(g, k) = (g(2k), g(2k + 1), . . . , g(2k+1 − 1))

We count the elements in each row of the tree beginning with 1 and denote
the i-th element of level k by L(g, k, i). Hence
L(g, k, i) := g(2k + i− 1)

Definition 1.6 Every n ∈ N+1 belongs to a unique level k and has therefore
a unique representation of the form
n = 2k + j

with k, j ∈ N and 0 ≤ j < 2k. In this case we write n = 2k ⊕ j.
We write also L(n) := k for the level of n. Hence j = n− 2L(n).
In Pari/GP one obtains L(n) as #binary(n)-1.

Remark 1.7 We project now the NBT to the unit interval [0, 1] in such a
way that for n = 2k ⊕ j the abscissa A(n) is given by

A(n) =
2j + 1

2k+1

We obtain then a new labeled tree L(A), which is called the dyadic tree. It

contains every dyadic number
2j + 1

2k+1
with k, j ∈ N and 0 ≤ j < 2k exactly

once.

Definition 1.8 Let g : N+1−→X be a function and S be a finite non-empty
subset of N+ 1. Assume that S has exactly m elements. Since the abscissa
function A of Remark 1.7 is injective, we can write S = {s1, . . . , sm} such
that A(s1) < A(s2) < . . . < A(sm). See also Remark 1.17.

The sequence E(g, S) := (g(s1), . . . , g(sm)) is then called the binary evolu-
tion sequence of g on S.

This is motivated by the following special case: For k ∈ N let
N(k) :=

{
n ∈ N+ 1 | n < 2k+1

}
be the full initial triangle up to level k of the
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1. Preliminaries

NBT. Then we can form the series of sequences

E(g, 0) := E(g,N(0)) = (g(1))

E(g, 1) := E(g,N(1)) = (g(2), g(1), g(3))

E(g, 2) := E(g,N(2)) = (g(4), g(2), g(5), g(1), g(6), g(3), g(7))

. . .

which is called the binary evolution scheme of g and will be denoted by E(g).
We define E(g,−1) as the void sequence.
Again we write E(∗, . . .) for E(id, . . .) and E(g, k, i) for the i-th element

of E(g, k). Hence
E(g, k, i) = g(E(∗, k, i))

Remark 1.9 In Def. 1.8 for every k ∈ N+ 1 one has
E(g, k) = E(g, k − 1) ↓ L(g, k)

From Definition 1.3 we have the recursion formulas
E(∗, k, 2j) = E(∗, k − 1, j) for j = 1, . . . , 2k − 1

E(∗, k, 2j + 1) = 2k + j = L(∗, k, j + 1) for j = 0, . . . , 2k − 1

which in particular imply that
E(∗, k + α, 2k) = 2α for every k, α ∈ N

Remark 1.10 The evolution scheme E(∗) is interesting and well known:
1

2 1 3

4 2 5 1 6 3 7

8 4 9 2 10 5 11 1 12 6 13 3 14 7 15

16 8 17 4 18 9 19 2 20 10 21 5 22 11 23 1 24 ...

32 16 33 8 34 17 35 4 36 18 37 9 38 19 39 2 40 ...

64 32 65 16 66 33 67 8 68 34 69 17 70 35 71 4 72 ...

128 64 129 32 130 65 131 16 132 66 133 33 134 67 135 8 136 ...

256 128 257 64 258 129 259 32 260 130 261 65 262 131 263 16 264 ...

512 256 513 128 514 257 515 64 516 258 517 129 518 259 519 32 520 ...
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1. Preliminaries

or, if we want to respect the positions of the elements on the tree:

1

2 1 3

4 2 5 1 6 3 7

8 4 9 2 10 5 11 1 12 6 13 3 14 7 15

16 8 17 4 18 9 19 2 20 10 21 5 22 11 23 1 24 12 25 6 26 13 27 3 28 14 29 7 30 15 31

Notice that E(∗, k) is always a permutation of N(k). This implies in particu-
lar that E(∗, k) has length |N(k)| = 2k+1 − 1.

Concatenating the vectors E(∗, k) to an infinite sequence E(∗, 0)E(∗, 1) · · · ,
we obtain the sequence
(1, 2, 1, 3, 4, 2, 5, 1, 6, 3, 7, 8, 4, 9, 2, 10, 5, 11, 1, 12, 6, 13, 3, 14, 7, 15, 16, . . .)

which appears on OEIS as A131987. If one connects the same vectors by 0,
beginning with (0), one obtains the sequence
u = (0, 0, 1, 0, 2, 1, 3, 0, 4, 2, 5, 1, 6, 3, 7, 0, 8, 4, 9, 2, 10, 5, 11, 1, 12, 6, 13, 3, . . .)

known as A025480. It is described by the simple recursion
u2n = n, u2n+1 = un

beginning with n = 0.

Remark 1.11 We observe first that the position in E(∗, h) of a number n
which belongs to a level ≤ h is given by A(n) · 2h+1.

If in the second output of Remark 1.10 we write only the new elements of
each level, we obtain a textual output of the NBT:

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Definition 1.12 We recall the following terminology from number theory:
Let n ∈ N. If n > 0, then there exists a unique representation of the form

n = u · 2m where u is odd. We write odd(n) := u and call it the odd part of n.
Furthermore |n|2 := 2−m is the 2-adic absolute value of n.

We define odd(0) := 1 and |0|2 := 0. Then:
(1) If n > 0, then odd(n) is odd.
(2) n is odd iff odd(n) = n.
(3) |n|2 = 1 iff n is odd. In particular |1|2 = 1.
(4) odd(n) = 1 iff n = 0 or n is a power of 2.
(5) If n > 0, then n · |n|2 = odd(n).

Theorem 1.13 Let k ∈ N and 0 ≤ i < 2k+1. Then

E(∗, k, i) = 2k|i|2 +
odd(i)− 1

2
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1. Preliminaries

Proof. Write i = 2m odd(i) and odd(i) = 2j + 1. Then m ≤ k and 0 ≤ j < 2k,
so that from Remark 1.9 we obtain

E(∗, k, i) = E(∗, k −m, odd(i)) = E(∗, k −m, 2j + 1)

= 2k−m + j = 2k−m +
odd(i)− 1

2

Since 2−m = |i|2, the theorem follows. �

Corollary 1.14 Let k, j ∈ N and 0 ≤ j < 2k. Then:

(1) E(∗, k, 2k + j) =
2k+1 + 2k + j

2
|j|2 −

1

2
.

(2) If j is odd, then E(∗, k, 2k + j) = 2k + 2k−1 +
j − 1

2
.

Proof. (1) The hypotheses on j and k imply that |2k + j|2 = |j|2.
Since 2k + j > 0, from Theorem 1.13 we have

E(∗, k, 2k + j) = 2k|2k + j|2 +
odd(2k + j)− 1

2

= 2k|2k + j|2 +
(2k + j)|2k + j|2 − 1

2

= 2k|j|2 +
(2k + j)|j|2 − 1

2
=

2k+1 + 2k + j

2
|j|2 −

1

2

(2) This is a special case of (1) or also of Remark 1.9. �

Proposition 1.15 Let k, h ∈ N with h ≥ k and n = 2k ⊕ j ∈ L(∗, k). Then

n = E(∗, k, 2j + 1) = E(∗, h, (2j + 1) · 2h−k)
Proof. Immediate from Remark 1.9. �

Remark 1.16 If we represent the NBT L(∗) simply by its rows, we obtain
the scheme
1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 ...

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 ...

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 ...

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 ...

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 ...

The columns which appear in L(∗) coincide with the columns which appear
in the scheme E(∗) shown in Remark 1.10.
Proof. This is immediate from Remark 1.9:

(1) Fix i ∈ N + 1 and set j := i − 1. Then the i-th column in L(∗) consists
of the numbers L(∗, k, i) with k ∈ N such that i ≤ 2k+1, i.e. j < 2k+1. By
Remark 1.9 we have
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1. Preliminaries

L(∗, k, i) = L(∗, k, j + 1) = E(∗, k, 2j + 1) = E(∗, k, 2i− 1)

(2) Fix again i ∈ N + 1 and write i = 2m(2j + 1) with m, j ∈ N. As in the
proof of Theorem 1.13 we have
E(∗, k, i) = E(∗, k −m, 2j + 1) = L(∗, k −m, j + 1) �

Remark 1.17 (A very general method). 1. Let (M,≺) be totally ordered set
and g : M−→X be a mapping. Then each finite non-empty subset S ⊂ M
can be written in the form S = {s1, . . . , sm} where s1 ≺ s2 ≺ . . . ≺ sm, giving
rise to the vector (g(s1), . . . , g(sm)). In some cases one could consider this
vector as a pseudorandom sequence.

2. We shall apply this idea to the case M = N+ 1 and
n ≺ m ⇔ A(n) < A(m)

where A is defined as in Remark 1.7. This order is known as inorder in
computer science; cfr. Knuth [7 p. 316-317]. The sets S will be often the
sets N(k) - the sequences generated are then the rows E(g, k) of the binary
evolution scheme of g.

3. It could be interesting also to work with other subsets S ⊂ N+ 1.
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2. Generalized Stern-Brocot trees

2. Generalized Stern-Brocot trees

Standing hypothesis 2.1 Let X be a non-empty set. We use the standard
notations from combinatorics of words:

X∗ :=
∞⋃
n=0

Xn

X+ := X∗ \ ε =
∞⋃
n=1

Xn

where ε is the empty word. Every v ∈ X∗ belongs to exactly one Xn and we
define then the length of v as |v| := n. In particular |ε| = 0.

Definition 2.2 Let N := N ∪ {1/2}.
We extend now the function A of Remark 1.7 to a function N−→ [0, 1] by

defining

A(0) := 0

A(1/2) := 1

The artificial elements 0 and 1/2 belong, by definition, to level −1. We put
therefore L(∗,−1) := (0, 1/2)

Similarly we put, for any function g : N−→X and k ∈ N
E(g, k) := g(0)E(g, k)g(1/2)

and, as usual, E(∗, k) := E(id, k).
We shall not use the expressions E(g, k, i), but define instead

E(g, k, 0) := g(0)

E(g, k, 2k+1) := g(1/2)

Definition 2.3 Let D :=
{ a

2k
| a, k ∈ N with 0 < a < 2k

}
be the set of

dyadic numbers and put

D := D ∪ {0, 1} =
{ a

2k
| a, k ∈ N with 0 ≤ a ≤ 2k

}
The mapping A from Remark 1.7 can then be considered as a mapping:
A : N−→D
with A(0) := 0 and A(1/2) := 1.
Notice that this mapping is bijective by construction.

Remark 2.4 Let k ∈ N and 0 ≤ i < 2k+1. Then A(E(∗, k, i)) = i

2k+1
.

Proof. Clear, since the projections of the elements of N(k) are separated by

intervals of length
1

2k+1
.

Observe that the equation is true also for i = 0, since E(∗, k, 0) = 0. �

Proposition 2.5 Let a, k ∈ N with a ≤ 2k. Then
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2. Generalized Stern-Brocot trees

A−1
( a
2k

)
= 2k−1|a|2 +

odd(a)− 1

2

Proof. (1) Consider first the case 0 < a < 2k. Then
a

2k
2.4
= A(E(∗, k − 1, a)),

hence

A−1
( a
2k

)
= E(∗, k − 1, a)

1.13
= 2k−1|a|2 +

odd(a)− 1

2

(2) If a = 0, then 2k−1|a|2 +
odd(a)− 1

2
= 0 = A−1(0).

(3) If a = 2k, then 2k−1|a|2 +
odd(a)− 1

2
=

1

2
+ 0 =

1

2
= A−1(1). �

Proposition 2.6 Let k ∈ N and 1 ≤ i < 2k+1. If i is odd, then

E(∗, k, i) ≥ 2 · E(∗, k, i− 1) + 1

E(∗, k, i) ≥ 2 · E(∗, k, i+ 1)

Proof. Since i is odd, we have |i|2 = 1 and |i± 1|2 ≤
1

2
and also odd(i± 1) ≤

i± 1

2
. Writing for the moment ej := E(∗, k, j) (for fixed k), from Theorem

1.13 now follow

ei = 2k|i|2 +
odd(i)− 1

2
=

2k+1

2

ei−1 = 2k|i− 1|2 +
odd(i− 1)− 1

2
≤

2k + i−1
2 − 1

2

=
2k+1 + i− 1

4
− 1

2
=
ei − 1

2

ei+1 = 2k|i+ 1|2 +
odd(i+ 1)− 1

2
≤

2k + i+1
2 − 1

2

=
2k+1 + i− 1

4
=
ei
2

�

Definition 2.7 For k ∈ N, the sequence E(∗, k) contains, as noticed in Re-
mark 1.9, all elements of L(∗, k) in their natural order, interspersed with
the elements of E(∗, k − 1), these belonging to levels < k, as shown here for
level k = 3, where we appended the two artificial elements on both extrem-
ities:

0 8 4 9 2 10 5 11 1 12 6 13 3 14 7 15 1/2

The elements of L(∗, 3) are shown in boldface type. Similarly for every k ∈ N
each number n ∈ L(∗, k) has a left and a right neighbor in E(∗, k), which
belong to levels < k and are called the left support Ls(n) and the right
support Rs(n) of n respectively.

9



2. Generalized Stern-Brocot trees

It is also clear (by the very construction of A in Remark 1.7) that

A(Ls(n)) = A(n)− 1

2k+1

A(Rs(n)) = A(n) +
1

2k+1

Notice finally that, since every n ∈ N+1 belongs to a unique level k, the left
and the right support of n are well defined for every such n.

Remark 2.8 (1) For n ∈ N we have:

Ls(2n) = Ls(n) if n > 0
Ls(2n+ 1) = n

Rs(2n) = n if n > 0
Rs(2n+ 1) = Rs(n) if n > 0

Rs(n) = Ls(n+ 1) if n+ 1 is not a power of 2

(2) Moreover:

Ls(2k) = 0 for k ∈ N
Rs(2k − 1) = 1/2 for k ∈ N+ 1

(3) In particular Ls(1) = 0 and Rs(1) = 1/2.

Proof. This is clear from the NBT. �

Proposition 2.9 Let n ∈ N+ 1. Then Ls(n) =
odd(n)− 1

2
.

Proof. Write n = 2m odd(n) with odd(n) = 2i+ 1. By Remark 2.8 then

Ls(n) = Ls(2i+ 1) = i =
odd(n)− 1

2
�

Remark 2.10 Let n ∈ N+ 1.

(1) If n is even, then Rs(n) =
n

2
> 2Ls(n), hence n > 4Ls(n).

(2) If n is odd > 1, then Ls(n) =
n− 1

2
≥ 2Rs(n), hence n > 4Rs(n).

Proof. (1) From Remark 2.8 we know that Rs(n) =
n

2
. Now n is even,

therefore odd(n) ≤ n

2
. Hence

Ls(n)
2.9
=

odd(n)− 1

2
≤

n
2 − 1

2
=
n

4
− 1

2
thus
n

4
≥ Ls(n) +

1

2
> Ls(n)

(2) From Remark 2.8 we know that Ls(n) =
n− 1

2
.

Suppose first that n+ 1 is not a power of 2. Then

Rs(n) = Ls(n+ 1) =
odd(n+ 1)− 1

2
≤

n+1
2 − 1

2
=
n− 1

4

10



2. Generalized Stern-Brocot trees

hence
n

4
≥ Rs(n) +

1

4
> Rs(n)

Otherwise, if n+ 1 is a power of 2, then Rs(n) =
1

2
<

3

4
≤ n

4
, since n ≥ 3 by

hypothesis. �

Definition 2.11 Let f : X × X−→X be a mapping and a, b ∈ X. Then we
define a mapping g := fab : N−→X in the following way:

g(0) := a

g(1/2) := b

g(n) := f(g(Ls(n)), g(Rs(n))) for n ∈ N+ 1

Since for n ∈ N + 1 the levels of Ls(n) and Rs(n) are both strictly smaller
than the level of n, the mapping fab is well defined.

Notice that always g(1) = f(a, b).
Substituting each n ∈ N + 1 in the NBT by fab(n), we obtain the labeled

binary tree L(fab) which can be considered as a generalized Stern-Brocot
tree, as we shall see (Proposition 2.14).

Remark 2.12 Let g : N−→X be a function and k ∈ N. Then
E(g, k) = L(g, k) ↓ E(g, k − 1)

Proof. This follows from Remark 1.9, because appending one element on
each side of the shorter sequence in Definition 1.3 corresponds to reversing
the order of the two sequences around the ↓ symbol. �

Remark 2.13 Let k ∈ N and n ∈ L(∗, k). Recall from Definition 2.7 that
Ls(n) and Rs(n) are the left and right neighbors of n in E(∗, k) and thus are
neighbors of each other in E(∗, k − 1).

Consider now any function g : N−→X. Then again g(Ls(n)) and g(Rs(n))

are neighbors of each other in E(g, k − 1) and g(n) is inserted between them
in E(g, k).

If follows that, if now f : X × X−→X, a, b ∈ X and g := fab, then g(n)

is the value of f evaluated on the left and right neighbors of g(n) in E(g, k)
(taken in the position determined by n if it appears more than once), which
both can be calculated on a lower level.

From Remark 2.12 we see that the sequence E(fab, k) is obtained from
x := E(fab, k − 1) by inserting between xi and xi+1 the value f(xi, xi+1).

Proposition 2.14 The NBT itself can be considered as a generalized Stern-
Brocot tree.

For this we define f : N× N−→N by

f(x, y) :=


2y if x < y

2x+ 1 if x > y

0 otherwise

11



2. Generalized Stern-Brocot trees

and choose a := 0, b := 1/2.Then fab(n) = n for every n ∈ N.
Proof. Let g := fab. By definition g(0) = 0, g(1/2) = 1/2.

Suppose n ∈ N+ 1. Then n ∈ L(∗, k) for some k ∈ N. We use Remark 2.10
and show the proposition by induction on k.

k = 0: Then n = 1. But g(1) = f(0, 1/2) = 2 · 1
2
= 1.

k − 1−→k: If n is even, then Rs(n) =
n

2
> Ls(n), hence

g(n) = f(g(Ls(n)), g(n/2))
IND
= f(Ls(n), n/2) = 2

n

2
= n

If n is odd, then Ls(n) =
n− 1

2
> Rs(n), hence

g(n) = f(g((n− 1)/2), g(Rs(n)))
IND
= f((n− 1)/2,Rs(n)) = n �

Definition 2.15 Let f : X ×X−→X be a mapping, and a, b ∈ X.
Then we may construct a mapping fab : N−→X as in Definition 2.11.
The triple (f, a, b) is called a dichotomic generator or simply a generator

(of random sequences).

Remark 2.16 Let f : X ×X−→X be mapping and a, b ∈ X.
For k ∈ N then the sequence E(fab, k) = (x1, . . . , x2k+1−1) can be calculated
by the general recursion formulas in Remark 1.9, but, as a consequence of
Remark 2.13, also by the following algorithm wich we describe in Pari/GP
and which justifies the name dichotomic generator:
dicho (f,n,i,j,a,b) = {my (m,x);

if (n==i,return(a), n==j, return(b)); m=(i+j)\2;

x=f(a,b); if (n==m,return(x));

if (n<m, dicho(f,n,i,m,a,x), dicho(f,n,m,j,x,b))}

\\ Example:

f (x,y) = (3*x+5*y+2)%7

p=2^101; q=2^94

v=[dicho(f,n,0,p,0,1) | n<-[q..q+40]]

t_to(v,60,,"")

\\ 06562615052102001446426543236352445110603

Notice that we may use this algorithm for calculating far away elements
of the sequence E(fab, k), as we did in this example, where, for f(x, y) =
(3x + 5y + 2) mod 7, a = 2, b = 3, k = 100, the elements xn are calculated
for n = 294, 294 + 1, . . . , 294 + 40. This calculation is done directly on these
indices without the need for calculating the preceding elements.
Remark 2.17 Each finite sequence x0 = a, . . . , xm = b of distinct elements
can be obtained by the method of Remark 2.16: We define f(x0, xm) := x[m/2]
and similarly f(xi, xj) := x[(i+j)/2], wherever these indices appear; all other
values of f can be chosen arbitrarily.
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2. Generalized Stern-Brocot trees

For example the sequence (x0, . . . , x11) can be obtained as a dichotomic
sequence if we define:

f(x0, x11) := x5

f(x0, x5) := x2

f(x5, x11) := x8

f(x0, x2) := x1

f(x2, x5) := x3

f(x5, x8) := x6

f(x8, x11) := x9

f(x6, x8) := x7

f(x3, x5) := x4

f(x9, x11) := x10

Remark 2.18 As far as we know, the idea of using Remark 2.13 for the
generation of random sequences appears in Centrella [2] (written under
the supervision of J. E.) and Kreindl [8].
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3. Continuative Mappings

3. Continuative Mappings

Remark 3.1 Let g : N+ 1−→X be a mapping.
We shall then consider the sequences E(g, k) as (finite) random sequences,

in the spirit of Remark 1.17.
For applications where unpredictability of the generated sequences is de-

sired, as for example in cryptology, it may be a pleasing aspect of the method
that the sequences E(g, k) for different k can be rather unrelated. For the-
oretical investigations, however, also the case that E(g, k + 1) is always a
continuation of E(g, k), i.e., that E(g, k) is always a prefix of E(g, k + 1), will
be interesting.

We shall now consider the question, when this happens, if g is of the form
fab as in Definition 2.11.

Definition 3.2 Let g : N + 1−→ X be a mapping. We define an infinite
sequence E(g,∞) : N+ 1−→X by setting
E(g,∞, n) := E(g,∞)(n) := E(g, k, n)

if n ∈ L(∗, k). This sequence consists of the values of g on the bold numbers
in the following scheme (see Remark 1.10):

1

2 1 3

4 2 5 1 6 3 7

8 4 9 2 10 5 11 1 12 6 13 3 14 7 15

16 8 17 4 18 9 19 2 20 10 21 5 22 11 23 1 24 12 25 6 26 13 27 3 28 14 29 7 30 15 31

The bold numbers themselves represent the sequence E(∗,∞).
The sequence E(g,∞), always defined, is of course interesting only if
E(g, k + 1) is a continuation of E(g, k) for every k ∈ N.

In this case the mapping g is called continuative.
If g is defined on some set containing N + 1 (usually on N or on N), this

means, by convention, that the restriction g|N+1 is continuative.

Remark 3.3 Since for k, j ∈ N+ 1 one has 2j + 1 ∈ L(∗, k) iff j ∈ L(∗, k− 1),
the recursion formulas of Remark 1.9 become now

E(g,∞, 1) = g(1)

E(g,∞, 2j) = E(g,∞, j) for j ∈ N+ 1

E(g,∞, 2j + 1) = g(2k + j) for k ∈ N and 2k−1 ≤ j < 2k

Proposition 3.4 Let g : N + 1−→ X be a mapping. Then the following
statements are equivalent:

(1) g is continuative.
(2) g is constant on each column of E(∗).
(3) g is constant on each column of L(∗).
(4) E(g,∞, 2j + 1) = g(2k + j) for every k, j ∈ N with j < 2k.
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3. Continuative Mappings

(5) g(2k + j) = g(2m + j) for every k,m, j ∈ N such that j < 2k ≤ 2m.
(6) g(n) = g(n+ 2L(n) · (2r − 1)) for every n ∈ N+ 1, r ∈ N.

Here L(n) is the level of n as in Definition 1.6. The rows and columns of
E(∗) were represented in Remark 1.10, those of L(∗) in Remark 1.16.

The columns of L(∗) appear also as leftward diagonals in the tree-like
representation (that is, in the NBT), as in the figure:

Proof. (1) ⇔ (2) ⇔ (4) ⇔ (5): By definition.
(2) ⇔ (3): We observed in Remark 1.16 that L(∗) and E(∗) have the same

columns - which in L(∗) appear only once, in E(∗) infinitely often.
(5) ⇔ (6): Clear. �

Lemma 3.5 Let f : X ×X−→X be a mapping and a, b ∈ X. For every k ∈ N
then
E(fab, k + 1) = E(fa,f(a,b), k) · f(a, b) · E(ff(a,b),b, k)

where the dot denotes concatenation of words.

Proof. Clear. �

Lemma 3.6 Let f : X × X−→X be a mapping and b, c ∈ X. Assume that
f(x, b) = f(x, c) for every x ∈ X.

Then fab = fac for every a ∈ X.

Proof. We show by induction on k ∈ N that E(fab, k) = E(fac, k) for every
a ∈ X and every k ∈ N.
k = 0: Applying the hypothesis to x = a we have f(a, b) = f(a, c), hence
E(fab, 0) = (f(a, b)) = (f(a, c)) = E(fac, 0)
k−→k + 1: One has

E(fab, k + 1)
3.5
= E(fa,f(a,b), k) · f(a, b) · E(ff(a,b),b, k)
= E(fa,f(a,c), k) · f(a, c) · E(ff(a,c),b, k)
IND
= E(fa,f(a,c), k) · f(a, c) · E(ff(a,c),c, k) = E(fac, k + 1)

15



3. Continuative Mappings

where we used again that f(a, b) = f(ac), applying in IND
= the induction

hypothesis on f(a, c) instead of a. �

Proposition 3.7 Let f : X × X−→X be a mapping and a, b ∈ X. Assume
that f(x, f(a, b)) = f(x, b) for every x ∈ X.

Then fab is continuative.

Proof. For every k ∈ N we have

E(fab, k + 1)
3.5
= E(fa,f(a,b), k) · f(a, b) · E(ff(a,b),b, k) (*)

The hypothesis f(x, b) = f(x, f(a, b)) for every x ∈ X implies by Lemma 3.6
that fa,f(a,b) = fab, hence (*) implies that E(fab, k) = E(fa,f(a,b), k) is a prefix
of E(fab, k + 1). �

Corollary 3.8 Let f : X ×X−→X be a mapping and a, b ∈ X.
If f(a, b) = b, then fab is continuative.

Remark 3.9 Let g : N−→X be a mapping and set a := g(0), b := g(1/2).
Consider the sequences E(g, k):

a g(1) b
a g(2) g(1) g(3) b
a g(4) g(2) g(5) g(1) g(6) g(3) g(7) b
. . .

Then, for any fixed k ∈ N, E(g, k + 1) is a continuation of E(g, k) iff E(g, k+1)
is a continuation of E(g, k) and, in addition, g(1) = b.

Corollary 3.10 Let f : X × X −→ X be a mapping and a, b ∈ X. The
following statements are equivalent:

(1) E(fab, k + 1) is a continuation of E(fab, k) for every k ∈ N.
(2) E(fab, k + 1) is a continuation of E(fab, k) for every k ∈ N and, in addi-

tion, f(a, b) = b.
(3) f(a, b) = b.

Proof. (1) ⇔ (2): Remark 3.9.
(2) ⇒ (3): Clear.
(3) ⇒ (2): Corollary 3.8.

We found this result first in Kreindl [8]. �
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4. One-sided generators

4. One-sided generators

Standing hypothesis 4.1 Let X be a non-empty set.

Definition 4.2 If P is a property defined for mappings, we say that the
generator (f, a, b) has property P if the mapping fab has property P . Thus
for example the generator (f, a, b) is called continuative, if the mapping fab
is continuative.

Definition 4.3 A dichotomic generator (f, a, b) is called one-sided, if f(x, y)
depends only on x. In this case there exists a function φ : X−→X such that
f(x, y) = φ(x) for every x, y ∈ X.

Remark 4.4 Every one-sided generator is continuative.

Proof. Let (f, a, b) be a one-sided generator.
For every x ∈ X then f(x, f(a, b)) = f(x, b), since f does not depend on the

second argument. Hence fab is continuative by Proposition 3.6. �

Definition 4.5 Let φ : X −→ X be a mapping and a ∈ X. We define a
mapping g : N−→X in the following way:

g(0) := a

g(n) := φ(g(Ls(n))) for n ∈ N+ 1

and write also φa := g. Since for n > 0 always Ls(n) < n, the mapping is
well defined.

On its domain of definition φa coincides obviously with fab, if we define
f(x, y) := φ(x) and choose b ∈ X arbitrarily. Therefore we shall also call the
couple (φ, a) or, for short, the mapping φa itself, a one-sided generator.

Proposition 4.6 Let φ : X−→X be a mapping and a ∈ X. Then:

φa(2j) = φa(j)

φa(2j + 1) = φ(φa(j))

for every j ∈ N. In particular φa(1) = φ(a).

Proof. (1) This statement is trivial for j = 0. Assume j > 0. Then

φa(2j) = φ(φa(Ls(2j)))
2.8
= φ(φa(Ls(j))) = φa(j).

(2) φa(2j + 1) = φ(φa(Ls(2j + 1)))
2.8
= φ(φa(j)). �

Theorem 4.7 Let φ : X−→X be a mapping and a ∈ X. Then
aE(φa,∞) = φa

or, equivalently,
E(φa,∞, n) = φa(n)

for every n ∈ N+ 1.

Proof. Let u := aE(φa,∞), hence u0 = a and un = E(φa,∞, n) for n ∈ N+ 1.
(1) We show that u satisfies the same recursion rules as φa, i.e., that

17



4. One-sided generators

u1 = φ(a)

u2j = uj

u2j+1 = φ(uj)

for every j ∈ N+ 1. This clearly implies u = φa.
(2) Since by Remark 4.4 φa is continuative, from Proposition 3.4 we have

u1 = φa(1) = φ(a)

u2j = uj for j ∈ N+ 1

u2j+1 = φa(2
k + j) for every k, j ∈ N with j < 2k

(3) We show by induction on k ∈ N the following statement:
If 0 ≤ j < 2k, then u2j+1 = φ(uj).
k = 0: In this case j = 0 and we have to show that u1 = φ(u0) = φ(a), and

this is true.
k − 1−→k: Assume 0 ≤ j < 2k.
Suppose first that j is odd. Since now k > 0, also 2k + j is odd, thus

u2j+1 = φ(φa(Ls(2
k + j)))

2.8
= φ

(
φa

(
2k + j − 1

2

))

= φ

(
φa

(
2k−1 +

j − 1

2

))
(2)
= φ

(
u2 j−1

2 +1

)
= φ(uj)

since 0 ≤ j − 1

2
< 2k−1.

Suppose now that j is even. For j = 0 we have u1 = φ(u0) = φ(a) as before.
Otherwise write j = 2mr with r odd. Then 0 < m < k and

u2j+1
(2)
= φa(2

k + j) = φa(2
m(2k−m + r))

4.6
= φa(2

k−m + r)

(2)
= u2r+1

IND
= φ(ur) = φ

(
u j

2m

)
(2)
= φ(uj) �

Remark 4.8 The conclusion in Theorem 4.7 is not more true for general
continuative dichotomic generators, as the example (f, 1, 6) with f(x, y) =
(3x+ 2y + 7) mod 8 shows:
g=f_{1,6} : 6 6 5 6 5 3 2 6 5 3 2 7 2 2 1 6 5 3 2 7 2 2 1 7 2 4 7 2 ...

E(g,infinite) : 6 6 5 6 3 5 2 6 7 3 2 5 2 2 1 6 7 7 2 3 4 2 7 5 2 2 1 2 ...

Remark 4.9 Since in the proof of Theorem 4.7 u is uniquely determined by
the recursion rules (*), for a sequence u ∈ XN with a := u0 and a mapping
φ : X−→X the following statements are equivalent:

(1) u = φa.
(2) u = aE(φa,∞).
(3) For every j ∈ N we have u2j = uj and u2j+1 = φ(uj).

The infinite sequences which obey a recursion rule of type (3) are therefore
exactly the sequences obtained by a one-sided generator as in Theorem 4.7.
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4. One-sided generators

Example 4.10 Let u be the Thue-Morse sequence u ∈ {0, 1}N defined by
u0 := 0, u2j = uj , u2j+1 = 1− uj .

By Theorem 4.7 it can be obtained as u = 0E(φ0,∞), where φ(x) := 1− x.

Example 4.11 Consider the function β :=©
n
n+ 1 : N−→N and define

h := β0 : N−→N in accordance with Definition 4.5 by

h(0) := 0

h(n) := h(Ls(n)) + 1 for n ∈ N+ 1

Then by Theorem 4.7
h = 0E(h,∞) = 0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4 1 2 2 3 2 3 3 4 2 3 . . .

One can also show that h(n) is equal to the Hamming weight of n, i.e. to
the number of ones in the binary representation of n. This sequence is well
known and listed as A000120 in the OEIS.

Proposition 4.12 Let φ : X−→X be a mapping and a ∈ X.
Define h as in Example 4.11. Then
φa(n) = φh(n)(a)

for every n ∈ N.

Proof. We show the proposition by induction on n.
n = 0: φh(0)(a) = φ0(a) = a = φa(0).
n− 1−→n: Now n > 0 and we may write n = 2mr with r odd.

By Proposition 2.9 Ls(n) =
r − 1

2
, hence h(n) = h

(
r − 1

2

)
+ 1. Further

φa(n) = φa(2
mr)

4.6
= φa(r) = φ

(
φa

(
r − 1

2

))
IND
= φ

(
φh(

r−1
2 )(a)

)
= φh(

r−1
2 )+1(a) = φh(n)(a) �
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5. Examples

5. Examples

Remark 5.1 In the following chapter we present examples of dichotomic
generators.

For every generator are first indicated the function f : X ×X−→X (with
X usually tacitly understood) and the initial values a, b ∈ X.

Then follows the beginning of the binary evolution scheme (Definition 1.8)
of the function fab, from which the last row is selected. This vector of values
is represented graphically in a bar diagram; by a similar bar diagram we
represent also the absolute values of the discrete Fourier transform of the
vector, with the origin centered.

Using the values xi − µ as increments, where µ is the mean of the vector,
we obtain a random walk which is given too.

On the left then we present a usually longer vector of the same level of the
evolution scheme by points in the plane, which are calculated in the follow-
ing manner: As for the discrete Kolmogorov-Smirnov test (cf. Centrella [2])
first the vector is decomposed in ordered non-overlapping blocks of length
10. Then the Ruffini-Horner method for powers of 2 is applied to each block
giving us a vector of real numbers:

u := (u1, ..., ur)

where r is the number of blocks.
Finally each entry ui of u is divided by 210, which gives the vector

v := (v1, ..., vr) with vi :=
ui
210

.

Now from the pairs (v2k, v2k+1) we obtain a 2-dimensional representation of
the sequence.

Remark 5.2 Each time the numerical results of a battery of tests are given
using the following shortcuts:

runs ..................... run test (cf. Bassham a.o. [1], Maurer [10] and Fisz [5])

freq ..................... frequency test (cf. Bassham a.o. [1])

cusum ................... cumulative sum test (cf. Bassham a.o. [1])

blocks ................. blocks test (cf. Fisz [5])

autocorr .............. auto-correlation test (cf. Bassham a.o. [1])

longrun ................ longrun test (cf. Guibas & Odlyzko [6 p. 252-253])

2bits ................... 2-bit test (cf. Fisz [5 page 399] and Bassham a.o. [1])

ks discrete ........ discrete Kolmogorov-Smirnov test (cf. Kuipers &
Niederreiter [9 p. 90-92] and Fisz [5])
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5. Examples

DTF .............. discrete Fourier transform test (cf. Bassham a.o. [1])

Maurer ........ Maurer’s universal test (cf. Maurer [10], Coron & Naccache
[3], Doğanaksoy & Tezcan [4] and Bassham a.o. [1])

For every example we simply project the generate sequence onto Z/2Z and
we apply the above, most commonly used, bit tests, as described in the cited
references.
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5. Examples

Example 5.3
f(x, y) = (x+ y + 1) mod 7

a = 3, b = 5

2

621

3622410

033622520461206

4043033622521512305446114230065

145054134043033622521512410501426340653424461131640263401006554

5164356065346153145054134043033622521512410501420461206560216402263 ...

2501164413255600065523144611052351643560653461531450541340430336225 ...

6215602131164424615362154556001010065545126351642446113120651263250 ...

3622410556003241535131164424020446110523362241053435455600102120212 ...

0336225204612065455600104362046105232501535131164424020450323054244 ...

4043033622521512305446114230065534354556001021205413362230544611206 ...
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Example 5.4
f(x, y) = (x+ 3y + 3) mod 4

a = 3, b = 2

0

201

0210212

201201001201223

0210212210210030212210212232230

201201001201223201001201003003201201223201001201223223023223201

0210212210210030212210212232230210210030212210210030032030030210212 ...

2012010012012232010012010030032012012232010012012232230232232012010 ...

0210212210210030212210212232230210210030212210210030032030030210212 ...

2012010012012232010012010030032012012232010012012232230232232012010 ...

0210212210210030212210212232230210210030212210210030032030030210212 ...

2012010012012232010012010030032012012232010012012232230232232012010 ...
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Example 5.5
f(x, y) = (3x+ 5y + 2) mod 7

a = 3, b = 4

3

533

1543533

212524131543533

0261125562045163212524131543533

405236413112550556221014451106030261125562045163212524131543533

3400656223665451632131125505306505562242615001446445113150466033405 ...

5334002046355622422366163524451106030261632131125505306543404635306 ...

1543533400205210142603150556224204324223661641060315620464451131504 ...

2125241315435334002052106562615001443236603321253065055622420432101 ...

0261125562045163212524131543533400205210656261504635562236412530200 ...

4052364131125505562210144511060302611255620451632125241315435334002 ...
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Example 5.6
f(x, y) = (7x+ 4y) mod 9

a = 2, b = 3

8

185

0138452

504113880435728

7580745121138878207443550732185

676548201724353162012113887837081250172484435515801773220138452

2677168564681250418732344355237146525041620121138878370853474058616 ...

4226775781462845564476286162758074513837732283148443551572834781547 ...

3402422677576507086154765218043515564484271652188611465267654820172 ...

8314108234024226775765071685801740588611056427168572013820744355310 ...

1853715451705812831410823402422677576507168580178146284548204187241 ...

0138452347810564353187402548616218537154517058128314108234024226775 ...
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Example 5.7
f(x, y) = (7x+ 4y + 5) mod 9

a = 2, b = 5

3

431

8403315

685460832331556

7678052436201813724323315565164

276637587075328403561210018821630782840372432331556516458106048

0227668653072508870067257372685460831516612251305001883862510653806 ...

1042022766867846457380678235401838870050263782355733078276780524362 ...

5130345210420227668678463758543604855733487026375862431524600188134 ...

3581638083648532513034521042022766867846375854365307250805240356203 ...

4315082106534870181356042805737235816380836485325130345210420227668 ...

8403315540186251302645736428870001882163151620345268707557330782431 ...
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Example 5.8

f(x, y) = (x3 + 2xy2 + x2y + 2y3 + 5x2 + 2xy + 7y2 + 6x+ 6y + 7) mod 9

a = 1, b = 8

8

883

8838236

883823686283766

8838236862837668860268231776766

883823686283766886026823177676683886700256686283713707764776766

8838236862837668860268231776766838867002566862837137077647767668236 ...

8838236862837668860268231776766838867002566862837137077647767668236 ...

8838236862837668860268231776766838867002566862837137077647767668236 ...

8838236862837668860268231776766838867002566862837137077647767668236 ...

8838236862837668860268231776766838867002566862837137077647767668236 ...

8838236862837668860268231776766838867002566862837137077647767668236 ...
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Example 5.9

f(x, y) = Axy , where A =


1 4 2 5 3
4 1 3 2 5
5 2 4 3 1
3 5 1 4 2
2 3 5 1 4


a = 1, b = 4

5

351

2315215

423351353241351

5452334315212315532224312315215

351425323343341351353241423351354553221212241351423351353241351

2315215452555322334334134334312315212315532224315452334315212315142 ...

4233513532413514253255454553221233433413433431233413433413514233513 ...

5452334315212315532224312315215452555322554514251425455322124142334 ...

3514253233433413513532414233513545532212122413514233513532413514253 ...

2315215452555322334334134334312315212315532224315452334315212315142 ...

4233513532413514253255454553221233433413433431233413433413514233513 ...
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Example 5.10

f(x, y) =

{
(3x+ 4y + 1) mod 9 if (x2 + y3) ≡ 1 mod 8

(7x+ 7y + 4) mod 9 otherwise

a = 3, b = 4

8

687

7638172

271643682167321

0247611624837638227116572302712

100214071681011662147803271643682252476101163577323310024761321

5140400271245087611638214051011676627124070860730247611624837638225 ...

6511245054504002476132144570681716810116436822712450351140510116571 ...

7635110132144570355445705450400214071681530271246445774016382167611 ...

2716436511014051530271246445774073652554644577403554457054504002712 ...

0247611624837635110140512450351115631002476132142624644577372450872 ...

1002140716810116621478032716436511014051245035113214457073651101011 ...

29



5. Examples

Example 5.11
f(x, y) = (altsum(31x+ 35y + 47) mod 9

a = 18, b = 11

where altsum(n) is the alternating sum of decimal digits of n.

0

203

4210738

848211804763287

5864082211316870040716831248172

857816844088223211315381267817006004404721267843815274080147428

5865775801267864344088382232531211315381051328015226575801470060462 ...

8578163577571578706152265758168413343440883843282232531275138152113 ...

5865775801268375775715772105775817004641056232263577157801267864815 ...

8578163577571578706152267843071577571577210577574211802577571578014 ...

5865775801268375775715772105775817004641056232265758641360472105775 ...

8578163577571578706152267843071577571577210577574211802577571578014 ...
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Example 5.12

f(x, y) =

([
x2

y

]
+

[
y2

x

])
mod 7 + 1

a = 3, b = 4

1

313

7331331

474373313373313

1417141347437331337347437331331

313431171134313314171413474373313373474314171413474373313373313

7331331413313117113133141331337331343117113431331417141347437331337 ...

4743733133733134313373313331311711313331337331343133733133734743733 ...

1417141347437331337347437331331413313373474373313373733133313117113 ...

3134311711343133141714134743733133734743141714134743733133733134313 ...

7331331413313117113133141331337331343117113431331417141347437331337 ...

4743733133733134313373313331311711313331337331343133733133734743733 ...
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Example 5.13

f(x, y) =

([
x2

y + 1

]
+ 3

)
mod 10

a = 3, b = 4

4

446

4464560

446456045566903

4464560455669034557566866940334

446456045566903455756686694033445575671566867826866994903353446

4464560455669034557566866940334455756715668678268669949033534464557 ...

4464560455669034557566866940334455756715668678268669949033534464557 ...

4464560455669034557566866940334455756715668678268669949033534464557 ...

4464560455669034557566866940334455756715668678268669949033534464557 ...

4464560455669034557566866940334455756715668678268669949033534464557 ...

4464560455669034557566866940334455756715668678268669949033534464557 ...
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5. Examples

Example 5.14
f(x, y) = (gcd(3x+ 4y + 1, xy + y2 + 4)) mod 5

a = 3, b = 4

2

221

2232114

223243221121441

2232432214032232112122114414114

223243221403223211441033223243221121221122321121441411441121441

2232432214032232114410332232432211214414114033232232432214032232112 ...

2232432214032232114410332232432211214414114033232232432214032232112 ...

2232432214032232114410332232432211214414114033232232432214032232112 ...

2232432214032232114410332232432211214414114033232232432214032232112 ...

2232432214032232114410332232432211214414114033232232432214032232112 ...

2232432214032232114410332232432211214414114033232232432214032232112 ...
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5. Examples

Example 5.15
f(x, y) = |x− y + 1|

a = 2, b = 7

4

142

2124324

122102142322142

2102122120122124320322122124324

122120122102122102300102122102142322302322122102122102142322142

2102122102300102122120122102122120120340100120122102122120122124320 ...

1221201221021221201203401001201221021221023001021221201221021221023 ...

2102122102300102122120122102122102300102302304500120100102300102122 ...

1221201221021221201203401001201221021221023001021221201221021221201 ...

2102122102300102122120122102122102300102302304500120100102300102122 ...

1221201221021221201203401001201221021221023001021221201221021221201 ...
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