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NEW IDENTITIES FOR BINARY KRAWTCHOUK POLYNOMIALS,

BINOMIAL COEFFICIENTS AND CATALAN NUMBERS

RICARDO A. PODESTÁ

Abstract. We obtain new combinatorial identities for integral values of binary
Krawtchouk polynomials K2m

p (x), 0 ≤ p ≤ 2m, by computing the characters of
the p-exterior representations on certain elements of order 2 of SO(2m). From this
identities, we deduce several new relations for binomial coefficients and Catalan
numbers.

1. Introduction

For each 0 ≤ p ≤ n, the binary Krawtchouk polynomial (BKP for short) of order n
and degree p is defined by

(1.1) Kn
p (x) =

p
∑

j=0

(−1)j
(x
j

)(n−x
p−j

)

where
(x
j

)
= x(x − 1) · · · (x − j + 1)/j! for j ≥ 1 and

(x
0

)
= 1. Thus, by definition,

Kn
p (j) ∈ Z for every integer j. One can easily check that

(1.2) Kn
p (0) =

(
n
p

)
, Kn

p (1) = (1− 2p
n )
(
n
p

)
, Kn

p (n) = (−1)p
(
n
p

)

and that we also have Kn
0 (x) = 1 and Kn

1 (x) = n− 2x.
These polynomials form a discrete family {Kn

p (x)}
n
p=0 of orthogonal polynomials

with respect to the binomial distribution. They satisfy several identities such as
orthogonality, 3-term recursions in the 3 variables, modularity properties, integral
formulae, relations with other families of orthogonal polynomials, etc. See [14] for
a survey on binary Krawtchouk polynomials and its properties (also [4] and [13]).

Binary Krawtchouk polynomials appear in several problems related with the
abelian group Zk

2, for some k. The most commonly known examples of this are ap-
plications to combinatorial problems or to coding theory (see [13] for a survey). In
combinatorics, BKP’s appear in: (a) the existence or not of the inverse of the Radon
transform on Zk

2 ([5]), (b) reconstruction problems on graphs (switching, reorien-
tation, sign [25]) and (c) multiple perfect coverings of Zn

2 ([10], [27]). Also, in the
context of binary codes, BKP’s play a role in: (a) the existence or not of binary per-
fect codes ([26]), (b) alternative expressions for the MacWilliams identities relating
the weight enumerator of the code with the corresponding enumerator of its dual
([11]) and (c) in some universal bounds for codes ([15]). Notably, in all of these
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2 RICARDO A. PODESTÁ

problems, the relevant question is the existence or not of integral zeros of the BKP’s
involved (see [4], [7], [8], [9], [13] for results related to integral zeros of BKP’s).

Less known is the ubiquity of Krawtchouk polynomials in spectral geometry. In
this setting, BKP’s were used to study isospectrality problems for elliptic differential
operatorsD acting onZk

2-manifolds (i.e. compact flat Riemannian manifolds having
holonomy group isomorphic to Zk

2). Here, D is either a Dirac-type operator (spin
Dirac or signature operator, see [16], [17], [18], [19]) or a Laplacian (Hodge Lapla-
cian, p-Laplacian, full Laplacian, see [19], [20], [21], [22]). Again, the existence of
integral zeros play a key role in the results.

In brief, in the first two sections after the Introduction, we obtain new identities
for integral values of binary Krawtchouk polynomials and in the subsequent sec-
tions we give applications of them to binomial coefficients and Catalan numbers.

An outline of the paper is as follows. In Section 2, we first recall some facts on the
p-exterior representations of SO(2m), 0 ≤ p ≤ 2m, and give an explicit expression
for χp(x), the character values of these representations at elements x of the maximal
torus T2m of SO(2m). Then, by relating the p-characters χp(x) at elements x of order
2 with BKP’s, we obtain a new identity for binary Krawtchouk polynomials (see
Theorem 2.2) of even order at even values and degree p, i.e. K2m

p (2j), in terms of the
integral values Km

k (j) of polynomials of smaller degree k (see also Corollary 2.4).
In Section 3, we generalize the reduction formula obtained in Theorem 2.2 (see

Theorem 3.1) giving rise to a whole new family of identities for BKP’s of the form
K2rm

p (2sj). We then exhibit several explicit computations illustrating the results.
In Section 4, by evaluating the expressions previously obtained for BKP’s, we

present recursive relations between binomial coefficients (see (4.1)–(4.3)). In par-
ticular, expressions for

(
2m
2q

)
,
(

2m
2q+1

)
,
(
2m+1
2q

)
and

(
2m+1
2q+1

)
in terms of

(
m
q

)
and falling

factorials (q)0, (q)1, . . . , (q)q are given in Theorem 4.3. Also, for any r,m, q ∈ N0, we
obtain the values for

(
2rm
2rq

)
and

(
2rm
2rq+1

)
modulo 2, 4, 8 and 16 (see Proposition 4.7)

and modulo some higher powers of 2 (see Propositions 4.11 and 4.12).
In the last two sections, we apply the results of Section 4 to study central bino-

mial coefficients cm =
(2m
m

)
and Catalan numbers Cm. Explicit expressions and

recursions for cm can be found in (5.1) – (5.5) and Proposition 5.1, while mixed ex-
pressions between cm’s and integral values of BKP’s are given in Proposition 5.5.
In Proposition 6.1 we obtain new recursion formulas for Catalan numbers C2n and
C2n+1 in terms of C0, . . . , Cn. Finally, we give some congruence relations for Cm

modulo 2, 4, 8 and 16.

2. A reduction formula for binary Krawtchouk polynomials

As we mentioned in the Introduction, certain properties of binary Krawtchouk
polynomials lead to (spectral) geometrical results on Zk

2-manifolds. Here, in con-
trast, we will use a geometric result (characters of exterior representations) to obtain
a relation between Krawtchouk polynomials.

Characters of p-exterior representations. Let n = 2m with m ∈ N. Consider the special
orthogonal group SO(2m) = {A ∈ M2m(R) : AAt = AtA = I,detA = 1} of R2m.
The maximal torus of SO(2m) is T2m = {x(t1, . . . , tm) : t1, . . . , tm ∈ R} where

(2.1) x(t1, . . . , tm) = diag(B1, . . . , Bm),
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is the block diagonal matrix with blocks Bi =
(

cos ti − sin ti
sin ti cos ti

)

for i = 1, . . . ,m.

For 0 ≤ p ≤ m, let (τp,
∧p(R2m)C) be the p-exterior representation of SO(2m).

Each τp is irreducible for 0 ≤ p ≤ m− 1 and τm is the sum of 2 irreducible represen-
tations τ+m and τ−m given by the splitting

∧m(R2m)C =
∧m

+ (R2m)C ⊕
∧m

− (R2m)C. Let
χp and χ±

m denote the character of τp and τ±m, respectively.
For x ∈ T2m there are combinatorial expressions for χp(x), 0 ≤ p ≤ m, that we

now present (see Proposition 3.7 in [16]). If Im = {1, . . . ,m} and x = x(t1, . . . , tm)
then we have

(2.2) χp(x) =

p
∑

ℓ=0

(−1)ℓ+p=1

2ℓ
(m−ℓ

p−ℓ

2

) ∑

{j1,...,jℓ}⊂Im

( ℓ∏

h=1

cos tjh

)

for 0 ≤ p ≤ m − 1. By duality, χ2m−p(x) = χp(x), we know the characters also for
the values m+ 1 ≤ p ≤ 2m. Furthermore,

(2.3) χ±
m(x) =

(
m∑

ℓ=1
ℓ odd

2ℓ−1
(m−ℓ

m−ℓ
2

) ∑

{j1,...,jℓ}⊂Im

( ℓ∏

h=1

cos tjh

)
)

± 2m−1im
( m∏

j=1

sin tj

)

.

Note that by (2.3), since χ+
m + χ−

m = χm, (2.2) also holds for p = m.

Remark 2.1. Clearly, χn(id) = 2n. If x ∈ T2m is of order 2 then χn(x) = 0. In fact,
∧

=
∧0⊕ · · · ⊕

∧m
+ ⊕

∧m
− ⊕ · · ·⊕

∧n. Thus, by using (2.5) and (2.11) below, we have
χn(x) =

∑n
p=0 χp(x) =

∑n
p=0K

n
p (2j) = 0 for any 1 ≤ j ≤ m.

The reduction formula. By using (2.2), we will now express K2m
p (2j) as certain inte-

gral linear combination of Km
ℓ (j) for some alternating indices ℓ in {0, 1, . . . , p}.

Theorem 2.2. Let m ∈ N and j ∈ N0. For 0 ≤ p ≤ 2m we have

(2.4) K2m
p (2j) =

p
∑

ℓ=0
ℓ≡p (2)

2ℓ
(m−ℓ

p−ℓ

2

)
Km

ℓ (j).

Proof. If C ∈ Rn×n, let nC = dim (Rn)C , i.e. the dimension of the space fixed by C .
Let B be a diagonal matrix in SO(n) of order 1 or 2, that is

B = diag(−1, . . . ,−1
︸ ︷︷ ︸

e

, 1, . . . , 1
︸ ︷︷ ︸

f

)

where εi ∈ {±1}, 1 ≤ i ≤ n, with an even number of −1’s (since det(B) = 1). If
e1, . . . , en is the canonical basis of Rn, put IB = {1 ≤ i ≤ n : Bei = ei}, hence
nB = |IB |, and I ′B = {1 ≤ j ≤ n : j /∈ IB}. We have that

(2.5) χp(B) = Kn
p (n − nB) =

∑

J⊂In
|J |=p

(−1)|J∩I
′

B|

(see (3.2) and Remark 3.6 in in [22]). Actually, (2.5) holds for every B ∈ SO(n) of
order 2, not necessarily diagonal (see the proof of Theorem 2.1 in [19]).
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Now, let n = 2m and let B be any matrix in SO(2m) of order ≤ 2. Such B is
conjugate in SO(2m) to an element xB ∈ T2m as in (2.1), we denote this by B ∼ xB.
Without loss of generality we can assume that

B = diag(−1, . . . ,−1
︸ ︷︷ ︸

e

, 1, . . . , 1
︸ ︷︷ ︸

f

)

with e+ f = 2m (e = 0 if and only if B = Id). Clearly B is conjugate to xB, where

xB = x(π, . . . , π
︸ ︷︷ ︸

j

, 0, . . . , 0
︸ ︷︷ ︸

m−j

),

with e = 2j and f = 2(m− j). By evaluating (2.2) at xB, we have

(2.6) χp(xB) =

p
∑

ℓ=0

(−1)ℓ+p=1

2ℓ
(m−ℓ

p−ℓ

2

) ∑

J⊂Im
|J |=ℓ

(−1)|J∩Ij |.

Since B ∼ xB, the characters of B and xB coincide and we can equate (2.5) to
(2.6). Thus, since n− nB = e = 2j, we have

K2m
p (2j) = χp(B) = χp(xB) =

p
∑

ℓ=0

(−1)ℓ+p=1

2ℓ
(m−ℓ

p−ℓ
2

)
Km

ℓ (j)

for every 0 ≤ p ≤ n = 2m and 1 ≤ j ≤ m. �

Note that expression (2.4) trivially holds for j ∈ Zr{0, 1, . . . ,m} sinceKn
p (j) = 0

for every j < 0 or j > m.

Remark 2.3. Since 0 ≤ ℓ ≤ p ≤ 2m, we have
(

m−ℓ
(p−ℓ)/2

)
= 0 for ℓ > 2m − p and

Km
ℓ (j) = 0 for ℓ > m. Thus, the upper limit in the sum in Theorem 2.2, say ρ, is

actually the minimum between p,m and 2m− p, if p and m have the same parity; or
the minimum between p,m− 1 and 2m− p, otherwise. Thus, putting µp(m) = m if
p ≡ m (mod 2) and µp(m) = m− 1 if p 6≡ m (mod 2), we have that

ρ = ρ(p,m) = min{p, µp(m), 2m − p}

is the true upper limit in the summation in (2.4).

By considering the cases p even or odd separately, we get simpler expressions for
(2.4) as follows

K2m
2q (2j) =

q
∑

k=0

4k
(m−2k

q−k

)
Km

2k(j)

K2m
2q+1(2j) = 2

q
∑

k=0

4k
(m−2k−1

q−k

)
Km

2k+1(j)

(2.7)

with q ≤ m in the even case and q ≤ m− 1 in the odd case.

There are 3 basic symmetry relations between binary Krawtchouk polynomials;
namely, Kn

k (n− k) = Kn
n−k(k), K

n
k (j) = (−1)jKn

n−k(j) and

(2.8)
(n
j

)
Kn

k (j) =
(n
k

)
Kn

j (k).

By using (2.8) we can get an expression for K2m
2j (p) similar to (2.4).
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Corollary 2.4. For 0 ≤ j, p ≤ m ∈ N we have

(2.9) K2m
2j (p) =

(2m2j )
(2mp )(

m
j )

p
∑

ℓ=0
ℓ≡p (2)

2ℓ
(m−ℓ

p−ℓ

2

)(
m
ℓ

)
Km

j (ℓ).

Proof. The result follows directly by first applying (2.8) to K2m
2j (p) and then using

(2.4) and (2.8) again. �

Remark 2.5. With expressions (2.4) and (2.9), we can recursively compute K2m
p (j),

by using BKP’s of order 2m, for j even and any p or for p even and any j. It would
remain to cover the cases K2m

odd(odd), which are only m2 cases out of (2m + 1)2.
Hence, asymptotically, we cover 75% of the cases, as one could expect a priori. The
other symmetry relations are of no help for this matter.

As a direct consequence of the previous result we have the following cancellation
property for Krawtchouk polynomials.

Corollary 2.6. Let m, j ∈ N. For 0 ≤ p ≤ m we have

(2.10)
2m∑

p=0

p
∑

ℓ=0
ℓ≡p (2)

2ℓ
(m−ℓ

p−ℓ

2

)
Km

ℓ (j) = 2m
m∑

ℓ=0

Km
ℓ (j) = 0.

Proof. In [19] we have shown that

(2.11) Kn
0 (j) +Kn

1 (j) + · · ·+Kn
n(j) = 0

for every 1 ≤ j ≤ n, and hence the second identity in (2.10) follows. To get the

first identity in (2.10) we apply (2.11) to (2.4). Note that
2m∑

p=0

p∑

ℓ=0

=
2m∑

ℓ=0

2m∑

p=ℓ

and, since

Kn
k (j) = 0 for j > n and

(m−ℓ
p−ℓ

2

)
= 0 for p−ℓ

2 > m− ℓ, we have

2m∑

p=0

p
∑

ℓ=0
ℓ≡p (2)

2ℓ
(m−ℓ

p−ℓ

2

)
Km

ℓ (j) =

m∑

ℓ=0

2ℓ

(
2m−ℓ∑

p=ℓ
ℓ≡p (2)

(m−ℓ
p−ℓ

2

)

)

Km
ℓ (j).

Finally, since
2m−ℓ∑

p=ℓ
ℓ≡p (2)

(m−ℓ
p−ℓ

2

)
=

m−ℓ∑

k=0

(
m−ℓ
k

)
= 2m−ℓ

the left hand side of (2.10) equals 2m
∑m

ℓ=0K
m
ℓ (j), as desired. �

Example 2.7. We now illustrate the big cancellations present in the corollary. Let
m = 4 and j = 3. The terms of the inner sum of the left hand side of (2.10) are

p = 0, 1, 7, 8 20
(4
0

)
K4

0 (3), 21
(3
0

)
K4

1 (3), 21
(3
3

)
K4

1 (3), 20
(4
4

)
K4

0 (3)

p = 2, 6 20
(4
1

)
K4

0 (3) + 22
(2
0

)
K4

2 (3), 20
(4
3

)
K4

0 (3) + 22
(2
2

)
K4

2 (3)

p = 3, 5 21
(3
1

)
K4

1 (3) + 23
(1
0

)
K4

3 (3), 21
(3
2

)
K4

1 (3) + 23
(1
1

)
K4

3 (3)

p = 4 20
(4
2

)
K4

0 (3) + 22
(2
1

)
K4

2 (3) + 24
(0
0

)
K4

4 (3)
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respectively. The sum of all these terms is

20S4K
4
0 (3) + 21S3K

4
1 (3) + 22S2 K

4
2 (3) + 23S1K

4
3 (3) + 24S0K

4
4 (3).

where Sj =
(
j
0

)
+ · · · +

(
j
j

)
for 0 ≤ j ≤ 4. Thus, the left hand side of (2.10) is

8∑

p=0

p
∑

ℓ=0
ℓ≡p (2)

2ℓ
(4−ℓ

p−ℓ

2

)
K4

ℓ (3) = 24
(
K4

0 (3) +K4
1 (3) +K4

2 (3) +K4
3 (3) +K4

4 (3)
)
= 0

since the values for K4
i (3) with i = 0, . . . , 4 are 1,−2, 0, 2 and −1 respectively.

3. A family of identities for BKP’s

Formula (2.4) can be iterated to obtain (more involved) expressions forK2rm
p (2sj)

in terms of Km
p (j)’s for different p’s. For instance, for r = s = 2 and j ≤ m odd, we

have

K4m
p (4j) =

p
∑

ℓ=0
ℓ≡p (2)

2ℓ
(2m−ℓ

p−ℓ

2

)
K2m

ℓ (2j) =

p
∑

ℓ=0
ℓ≡p (2)

2ℓ
(2m−ℓ

p−ℓ

2

)
ℓ∑

k=0
k≡ℓ (2)

2k
(m−k

ℓ−k
2

)
Km

k (j),

where we have applied (2.4) twice. That is,

(3.1) K4m
p (4j) =

∑

0≤k≤ℓ≤p
k≡ℓ≡p (2)

2k+ℓ
(2m−ℓ

p−ℓ

2

) (m−k
ℓ−k
2

)
Km

k (j).

However, for K4m
p (2j) we can apply (2.4) only once.

A generalized reduction formula. By continuing with the previous process, we can
express the values of K2rm

p (x) for x even as linear combinations of values of some
BKP’s of much smaller orders, thus generalizing Theorem 2.2. We will need the
following notation. For r, s ∈ N, with r fixed, put

(3.2) f(s, r) := (r − s)χ
[1,r]

(s) =

{

r − s if s ≤ r,

0 if s > r,

where χ
[1,r]

is the characteristic function of the interval [1, r]. Note that f(t, t) = 0

for every t.

Theorem 3.1. Let m, p, r, s ∈ N, j ∈ N0 such that 2(ν − 1) ≤ p ≤ 2rm and 2sj ≤ 2rm
where ν = min{r, s}. Then, we have

(3.3) K2rm
p (2sj) =

∑

0≤pν≤···≤p1≤p

pν≡···≡p1≡p (2)

2p1+···+pν

(
ν∏

k=1

(2r−km−pk
pk−1−pk

2

)

)

K2f(s,r)m
pν (2f(r,s)j)

where we use the convention p0 = p.

Note. If r = s there is a big simplification in (3.3), since in this case K2f(s,r)m
pν (2f(r,s)j)

equals Km
pr(j) for m, j odd. By taking r = s = 1 we get Theorem 2.2.
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Proof. We will apply Theorem 2.2 the maximum possible number of times, which is
ν. So, we will consider the cases s ≤ r and s > r separately.

(i) Assume first that s ≤ r. Hence we can apply (2.4) just s times. We proceed
by induction on r using (2.4). The first step in the induction, i.e. r = 2 (r = 1 is
just Theorem 2.2), is done in the observation before the statement. For the inductive
step, suppose first that s = r. By considering m′ = 2r−1m and j′ = 2r−1j, we can
apply Theorem 2.2 and get

K2rm
p (2rj) = K2m′

p (2j′) =
∑

0≤ℓ≤p

ℓ≡p (2)

2ℓ
(m′−p

p−ℓ

2

)
K2r−1m

ℓ (2r−1j).

Thus, by the inductive hypothesis,

K2rm
p (2rj) =

∑

0≤ℓ≤p

ℓ≡p (2)

2ℓ
(m′−p

p−ℓ

2

) ∑

0≤qr−1≤···≤q1≤ℓ

qr−1≡···≡q1≡p (2)

2q1+···+qr−1

r−1∏

k=1

(2r−1−km−qk
qk−1−qk

2

)
Km

qr−1
(j).

By renaming the indices as follows p1 = ℓ, p2 = q1, . . . , pr = qr−1, we get

(3.4) K2rm
p (2rj) =

∑

0≤pr≤···≤p1≤p

pr≡···≡p1≡p (2)

2p1+···+pr

(
r∏

k=1

(2r−km−pk
pk−1−pk

2

)

)

Km
pr(j),

which equals expression (3.3) with ν = s = r and f(r, r) = 0.
For the case when s < r, we proceed similarly as before. By applying (2.4) a

number s of times, we get

(3.5) K2rm
p (2sj) =

∑

0≤ps≤···≤p2≤p1≤p

ps≡···≡p1≡p (mod 2)

2p1+···+ps

(
s∏

k=1

(2r−km−pk
pk−1−pk

2

)

)

K2r−sm
ps (j),

which equals (3.3) since ν = s, f(s, r) = r − s and f(r, s) = 0, in this case.

(ii) When s > r, we can apply (2.4) a number r of times. By proceeding similarly
as before, we get

(3.6) K2rm
p (2sj) =

∑

0≤pr≤···≤p2≤p1≤p

pr≡···≡p1≡p (mod 2)

2p1+···+pr

(
r∏

k=1

(2r−km−pk
pk−1−pk

2

)

)

Km
pr(2

s−rj).

It is now clear that, by using (3.2), the expressions obtained in (3.4) – (3.6) take
the single form in (3.3), and the result thus follows. Finally, note that we need to
consider p ≥ 2(ν − 1), for if not the summation set would be empty. �

Typically, one will apply (3.3) when j and m are odd, for if not we can keep
absorbing the powers of 2. However, we also want to consider the case j = 0.

Remark 3.2. There are some redundancies in (3.3) because some terms can vanish.
A more accurate, though complicated, expression can be obtained by taking into
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account the exact limits of summation (see Remark 2.3). In this case we have

∑

0≤pν≤···≤p1≤p

pν≡···≡p1≡p (2)

 

ρν−1∑

pν=0
pν≡p (2)

· · ·

ρ1∑

p2=0
p2≡p (2)

ρ
∑

p1=0
p1≡p (2)

where the symbol  means that the first summation (which is easier to write)
should be replaced by the second summation (which looks more complicated but
involves much less terms) and where

ρi = min{ pi−1, µpi−1(2
r−i+1m), 2r−im− pi−1 }

for i = 0, . . . , ν − 1 with the conventions ρ0 = ρ and p0 = p.

Explicit computations. We will now illustrate the formulas obtained in Theorems 2.2
and 3.1 with some examples. It will be helpful to have the valuesKn

k (j), 0 ≤ i, j ≤ n,
for n = 1, 2, . . . , 8 at hand. Thus, we present them as matrices Kn = (Kn

ij) with
Kn

ij = Kn
i (j) in Table 1 below.

Table 1. The values of Kn
p (j) for 1 ≤ n ≤ 8 and 0 ≤ p, j ≤ n

K1 =

(

1 1
1 −1

)

K2 =





1 1 1
2 0 −2
1 −1 1



 K3 =









1 1 1 1
3 1 −1 −3
3 −1 −1 3
1 −1 1 −1









K4 =













1 1 1 1 1
4 2 0 −2 −4
6 0 −2 0 6
4 −2 0 2 −4
1 −1 1 −1 1













K5 =

















1 1 1 1 1 1
5 3 1 −1 −3 −5

10 2 −2 −2 2 10
10 −2 −2 2 2 −10
5 −3 1 1 −3 5
1 −1 1 −1 1 −1

















K6 =



















1 1 1 1 1 1 1

6 4 2 0 −2 −4 −6

15 5 −1 −3 −1 5 15

20 0 −4 0 4 0 −20

15 −5 −1 3 −1 −5 15

6 −4 2 0 2 4 −6

1 −1 1 −1 1 −1 1



















K7 =























1 1 1 1 1 1 1 1

7 5 3 1 −1 −3 −5 −7

21 9 1 −3 −3 1 9 21

35 5 −5 −3 3 5 −5 −35

35 −5 −5 3 3 −5 −5 35

21 −9 1 3 −3 −1 9 −21

7 −5 3 −1 −1 3 −5 7

1 −1 1 −1 1 −1 1 −1























K8 =

























1 1 1 1 1 1 1 1 1

8 6 4 2 0 −2 −4 −6 −8

28 14 4 −2 −4 −2 4 14 28

56 14 −4 −6 0 6 4 −14 −56

70 0 −10 0 6 0 −10 0 70

56 −14 −4 6 0 −6 4 14 −56

28 −14 4 2 −4 2 4 −14 28

8 −6 4 −2 0 2 −4 6 −8

1 −1 1 −1 1 −1 1 −1 1

























Note that the sum of the even rows (i.e., the odd numbered ones) vanish; that
is
∑n

j=0K
n
i (j) = 0 for i odd. This is a general fact proved in [4], see (5.1) – (5.5).

On the other hand, expression (2.11) accounts for the vanishing of the sum of the
columns (even or odd, except for the first one).

Observe that in the even matrices K2, K4, K6, K8, there are several entries divis-
ible by 2, 4 and 8. In the last two sections we will show that this is indeed a general
phenomenon.
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Example 3.3. Here we compute the single valueK8
2 (4) using 3 different expressions:

the definition (1.1) and Theorems 2.2 and 3.1. We have

K8
2 (4) =

(4
0

)(4
2

)
−
(4
1

)(4
1

)
+
(4
2

)(4
0

)
= 6− 16 + 6 = −4,

K8
2 (4) = 20

(4
1

)
K4

0 (2) + 22
(2
0

)
K4

2 (2) = 4 + 4(−2) = −4,

K8
2 (4) =

(4
1

)(2
0

)
K2

0 (1) + 22
(2
0

)(2
1

)
K2

0 (1) + 24
(2
0

)(0
0

)
K2

2 (1) = 4 + 8− 16 = −4,

by (1.1), (2.2) and (3.1), respectively.

Example 3.4. We will compute the values K8
4 (2j), 0 ≤ j ≤ 4. By (1.2), we have that

K8
4 (0) = K8

4 (8) =
(8
4

)
= 70. By Theorem 2.2, for j = 1, 3 we have

K8
4 (2j) =

∑

ℓ=0,2,4

2ℓ
(4−ℓ

4−ℓ
2

)
K4

ℓ (j) =
(4
2

)
K4

0 (j) + 22
(2
1

)
K4

2 (j) + 24
(0
0

)
K4

4 (j) = −10,

where we have used the second and fourth columns of K4 in Table 1.
Let us now compute K8

4 (4) with Theorem 3.1. By taking m = 2 and j = 1 in (3.1)
we have

K8
4 (4) =

∑

0≤k≤ℓ≤4

k,ℓ even

2k+ℓ
(4−ℓ

4−ℓ
2

)(2−k
ℓ−k
2

)
K2

k(1).

We only have to sum over the pairs (k, ℓ) of the form (0, 0), (0, 2), (2, 2) and (0, 4)
since (2, 4) and (4, 4) do not contribute to the sum because of the appearance of
(0
1

)
= 0 and K2

4 (1) = 0 in the corresponding terms. Thus, we get

K8
4 (4) =

(
4
2

)(
2
0

)
K2

0 (1) + 22
(
2
1

)(
2
1

)
K2

0 (1) + 24
(
2
1

)(
0
0

)
K2

2 (1) + 24
(
0
0

)(
2
2

)
K2

0 (1)

= (6 + 16 + 16)K2
0 (1) + 32K2

2 (1) = 38− 32 = 6

where we have used (the second column of) K2 in this case.
The computations we have obtained forK8

4 (2j) are in coincidence with the values
in (the fifth row of) K8. Similarly, one can compute K8

p(2j) for any 0 ≤ p ≤ 8, p 6= 4.

We now present a more involved example to show how Theorem 3.1 really works.

Example 3.5. Let us compute K48
6 (40) = K243

6 (235). So m = 3, r = 4 and s = 3.
Thus, ν = 3, and by (3.3) we have

(3.7) K48
p (40) =

∑

0≤p3≤p2≤p1≤6
p3,p2,p1 even

2p1+p2+p3 · π(p3, p2, p1) ·K
6
p3(5)

since f(3, 4) = 1 and f(4, 3) = 0, where we have used the notation

(3.8) π(p3, p2, p1) :=

ν∏

k=1

(24−k3−pk
pk−1−pk

2

)
=
(24−p1

6−p1
2

)(12−p2
p1−p2

2

)( 6−p3
p2−p3

2

)
.

In this way, K48
6 (40) is only expressed in terms ofK6

p(5) with p even, which we know
have the values K6

0 (5) = K6
6 (5) = 1, K6

2 (5) = 2 and K6
4 (5) = −5, by Table 1.

The 20 allowed triplets in (3.7) are (0, 0, 0), (0, 0, 2), (0, 0, 4), (0, 2, 2), (0, 0, 6),
(0, 2, 4), (2, 2, 2), (0, 2, 6), (0, 4, 4), (2, 2, 4), (0, 4, 6), (2, 2, 6), (2, 4, 4), (0, 6, 6), (2, 4, 6),
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(4, 4, 4), (2, 6, 6), (4, 4, 6) and (6, 6, 6). Therefore, we have

K48
6 (40) = π(0, 0, 0) + 22π(0, 0, 2) + 24

(
π(0, 0, 4) + π(0, 2, 2)

)

+ 26
(
π(0, 0, 6) + π(0, 2, 4)

)
+ 28

(
π(0, 2, 6) + π(0, 4, 4)

)

+ 210π(0, 4, 6) + 212π(0, 6, 6) + 218π(6, 6, 6)

+ 5
{

26π(2, 2, 2) + 28π(2, 2, 4) + 210
(
π(2, 2, 6) + π(2, 4, 4)

)

+ 212
(
π(2, 4, 6) − π(4, 4, 4)

)
− 214π(4, 4, 6) − 216π(4, 6, 6)

}

where all the π(p3, p2, p1) can be easily computed by using (3.8).

4. Applications to binomial coefficients

As a direct consequence of Theorem 3.1 we get basic identities between binomial
coefficients, expressing

(
2rm
k

)
in terms of numbers

(
2tm
j

)
with t < r for some j’s. In

fact, under the assumptions of Theorem 3.1, taking j = 0 in (3.3) and using that
Kn

p (0) =
(n
p

)
, for any 1 ≤ s, r we have

(4.1)
(2rm

p

)
=

∑

0≤pν≤···≤p2≤p1≤p

pν≡···≡p1≡p (mod 2)

2p1+···+pν

(
ν∏

k=1

(2r−km−pk
pk−1−pk

2

)

)

(2f(s,r)m
pν

)

with ν = min{r, s}, where
(2f(s,r)m

pν

)
equals

(2r−sm
pν

)
or
(m
pν

)
depending on whether

s < r or s ≥ r. A much simpler expression is obtained when s = 1, namely

(4.2)
(2rm

p

)
=
∑

0≤ℓ≤p

ℓ≡p (2)

2ℓ
(2r−1m−ℓ

p−ℓ
2

) (2r−1m
ℓ

)
.

For the simplest case, i.e. r = s = 1, we can give more explicit expressions.

Lemma 4.1. For any integers 0 ≤ q ≤ m we have

(
2m
2q

)
=

q
∑

j=0

4j
(
m−2j
q−j

)(
m
2j

)
=

q
∑

j=0

4j
(

m
q+j

)(
q+j
2j

)
,

( 2m
2q+1

)
= 2

q
∑

j=0

4j
(m−2j−1

q−j

)( m
2j+1

)
= 2

q
∑

j=0

4j
( m
q+j+1

)(q+j+1
2j+1

)
,

(4.3)

where q < m in the second identity.

Proof. By taking j = 0 in (2.7), or taking r = 1 in (4.2), and considering the cases
p = 2q and p = 2q + 1, we get the first equalities in each of the expressions in (4.3).
To see the remaining equalities, notice that

(m−2j
q−j

)(m
2j

)
=
(m
2j

)( m−2j
q+j−2j

)
=
( m
q+j

)(q+j
2j

)
,

where in the second equality we have applied the relation
(
r
s

)(
s
t

)
=
(
r
t

)(
r−t
s−t

)
with

r = m, s = q + j and t = 2j. Thus, we get the second equality in the first row of
(4.3). Proceeding similarly for the odd case, one gets the desired expression in the
statement. �
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Remark 4.2. By Pascal’s identity, one can get similar formulas for
(
2m+1
2q+1

)
and

(
2m+1
2q

)

as in Lemma 4.1, by combining the expressions in (4.3).

4.1. Recursions. Next, we will give alternative expressions for
(2m
2q

)
,
( 2m
2q+1

)
,
(2m+1

2q

)

and
(
2m+1
2q+1

)
in terms of

(
m
q

)
. We will need to make use of the double factorial of n

n!! = n(n− 2)(n − 4) · · ·

i.e. n!! =
∏m

k=0(n− 2k) with m = ⌈n2 ⌉ − 1, and the Pochhammer symbol

(n)j =

j−1
∏

k=0

(n− k) = n(n− 1)(n − 2) · · · (n− j + 1)

also known as falling factorial.

Theorem 4.3. If q,m ∈ N0 then we have

(2m
2q

)
=
(m
q

)
q
∑

j=0

2j

j!(2j−1)!! (q)j(m− q)j ,(4.4)

( 2m
2q+1

)
= 2(m− q)

(m
q

)
q
∑

j=0

2j

j!(2j+1)!! (q)j(m− q − 1)j ,(4.5)

(2m+1
2q

)
= (2q + 1)

(m
q

)
q
∑

j=0

2j

j!(2j+1)!! (q)j(m− q)j ,(4.6)

(2m+1
2q+1

)
= (2(m− q) + 1)

(m
q

)
q
∑

j=0

2j

j!(2j+1)!! (q)j(m− q)j,(4.7)

where the sums are in Q.

Proof. Our starting point will be the expressions for
(2m
2q

)
and

( 2m
2q+1

)
in (4.3). First,

notice that

(4.8) (2j)! = 2j j!(2j − 1)!!

Thus, the general term in the first summation for
(2m
2q

)
can be written as follows

4j
(m−2j

q−j

)(m
2j

)
= 4j (m−2j)!

(q−j)!(m−q−j)!
m!

(2j)!(m−2j)! =
2j

j!(2j−1)!!
m!

(q−j)!(m−q−j)!

and hence, we get

(2m
2q

)
= m!

q
∑

j=0

2j

j!(2j−1)!!

(
(q − j)!(m− q − j)!

)−1
.

After performing the sum of the fractions involved, we get

(2m
2q

)
= m!

q!(m−q)!

q
∑

j=0

2j

j!(2j−1)!!

( j−1
∏

k=0

(q − k)(m− q − k)
)

=
(
m
q

)
q
∑

j=0

2j

j!(2j−1)!!

( j−1
∏

k=0

(q − k)
)( j−1
∏

k=0

(m− q − k)
)

,

and by using the Pochhammer symbols we finally obtain (4.4).
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For
(

2m
2q+1

)
we proceed similarly as before. By (4.8),

(4.9) (2j + 1)! = (2j + 1)(2j)! = 2jj!(2j + 1)!!

and hence, from the expression in the second row of (4.3) we get

( 2m
2q+1

)
= 2m!

q
∑

j=0

2j

j!(2j+1)!!

(
(q − j)!(m− q − 1− j)!

)−1

= 2m!
q!(m−1−q)!

q
∑

j=0

2j

j!(2j+1)!!

( j−1
∏

k=0

(q − k)
)( j−1
∏

k=0

(m− q − 1− k)
)

from which (4.5) readily follows.
Finally, since

(2m+1
2q

)
=
( 2m
2q−1

)
+
(2m+1

2q

)
and

(2m+1
2q+1

)
=
(2m
2q

)
+
( 2m
2q+1

)
, expressions

(4.6) and (4.7) follow directly from (4.4) and (4.5), after some tedious but straight-
forward computations. �

Remark 4.4. (i) Theorem 4.3 gives expressions for
(
2m+ε
2q+ε′

)
/
(
m
q

)
, with ε, ε′ ∈ {0, 1}.

(ii) It is known that (q)j =
∑j

i=0(−1)j−i s(j, i) qi. Hence, the Theorem 4.3 relates
binomial coefficients with Stirling numbers of the first kind (see A048994 in [23]).
For instance, (4.4) takes the form

(4.10)
(
2m
2q

)
=
(
m
q

)
q
∑

j=0

2j

j!(2j−1)!!

j
∑

k,l=0

(−1)k+l s(j, k)s(j, l) qk(m− q)l.

Theorem 4.3 implies an expression for any product of m − q consecutive odd
(resp. even) positive numbers in terms of fractions of factors of small order.

Corollary 4.5. For q ≤ m − 1, with the convention (−1)!! = 1, the product of m − q
consecutive odd numbers is

N :=
m−1∏

j=q

(2j + 1) = (2(m− q)− 1)!!

q
∑

j=0

2j

j!(2j − 1)!!
(q)j(m− q)j

and hence the product of m− q consecutive even numbers is

M :=

m−1∏

j=q

(2j) = (2m−1)!
(2q−1)!N .

Proof. First note that, by (4.8), we have
(2m
2q

)
= (2m)!

(2q)!(2(m−q))! =
2mm!(2m−1)!!

2qq!(2q−1)!!2m−q(m−q)!(2(m−q)−1)!!
=
(m
q

) (2m−1)!!
(2(m−q)−1)!! (2q−1)!! .

Comparing this with (4.4) we have

(2m−1)(2m−3)···(2q+1)
(2(m−q)−1)!! =

q
∑

j=0

2j

j!(2j−1)!! (q)j(m− q)j

from which the expression for N follows. Since MN = (2m−1)!
(2q−1)! we are done. �
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Example 4.6. We want to compute N = 13 · 15 · 17 · 19 · 21. Hence q = 6, m = 11

and m− q = 5. By Corollary 4.5 we have N = 9!!
∑5

j=0
2j

j!(2j−1)!! (6)j(5)j . Thus,

N = 9!!
(
1 + 2 · 6 · 5 + 4

2·3!!(6 · 5)(5 · 4) +
8

3!5!!(6 · 5 · 4)(5 · 4 · 3)

+ 16
4!7!!(6 · 5 · 4 · 3)(5 · 4 · 3 · 2) +

32
5!9!!(6 · 5 · 4 · 3 · 2)(5 · 4 · 3 · 2 · 1)

)

and after some easy calculations we get

N = 9 · 7 · 5 · 3 · (1 + 60 + 400 + 640) + 9 · 5 · 3 · 1920 + 32 · 720 = 1.322.685.

Thus, we can also compute M = 12 · 14 · 16 · 18 · 20 by doing M = 21!
11!N = 967.680.

4.2. Congruences mod powers of 2. Using the previous results we will obtain the
values of

(
2rm
2rq

)
and

(
2rm
2rq+1

)
modulo 2t, for any r and small values of t.

We have the equalities
(2m
2q

)
=
(m
q

) (2m−1)!!
(2q−1)!!(2(m−q)−1)!!

( 2m
2q+1

)
= 2(m− q)

(m
q

) (2m−1)!!
(2q+1)!!(2(m−q)−1)!! .

(4.11)

Since all the double factorials above are odd, we deduce that

(4.12)
(2m
2q

)
≡
(m
q

)
(mod 2) and

( 2m
2q+1

)
≡ 0 (mod 2).

Actually, it is well known that
(n
k

)
≡ 0 mod 2 for n even and k odd, and

(n
k

)
≡
(⌊n/2⌋
⌊k/2⌋

)

mod 2 otherwise (hence by taking n = 2m and k = 2q, 2q + 1 one recovers (4.12)).
Obviously, we have

(
2rm
2sq+1

)
≡ 0 mod 2 for every s ≥ 0. However, by iterating

(4.12), we deduce that for any r ∈ N we have

(4.13)
(2rm
2rq

)
≡
(m
q

)
(mod 2).

As a corollary to Theorem 4.3 we have the following result improving (4.13).

Proposition 4.7. Let m, q ∈ N0.

(a) For any r ≥ 1 we have

(
2rm
2rq

)
≡







(m
q

)
(mod 2, 4),

(m
q

)
(1 + 2q(m− q)) (mod 8), (mod 16) with r = 1,

(m
q

)
(1 + 10q(m− q)) (mod 16), r ≥ 2.

(b) For 1 ≤ r ≤ 3 we have

( 2rm
2rq+1

)
≡

{

0 (mod 2r),

2r(m− q)
(
m
q

)
(mod 2r+1).

Proof. (a) By expanding the expressions in (4.3) for m, q ∈ N0 we have
(
2m
2q

)
=
(
m
q

)
+ 4
(
m−2
q−1

)(
m
2

)
+ 16

(
m−4
q−2

)(
m
4

)
+ terms divisible by 64,

( 2m
2q+1

)
= 2m

(m−1
q

)
+ 8
(m−3
q−1

)(m
3

)
+ terms divisible by 32.
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From this, since 4
(
m−2
q−1

)(
m
2

)
= 2q(m− q)

(
m
q

)
and 2m

(
m−1
q

)
= 2(m− q)

(
m
q

)
, it follows

that

(
2m
2q

)
≡

{(m
q

)
(mod 2, 4),

(m
q

)
(1 + 2q(m− q)) (mod 8, 16),

(
2m
2q+1

)
≡

{

0 (mod 2),

2(m− q)
(m
q

)
(mod 4, 8),

(4.14)

which improves (4.12).
The congruences for

(2rm
2rq

)
and

( 2rm
2rq+1

)
in the statement will follow directly from

induction on r, (4.14) being the inicial step. It is clear that
(2rm
2rq

)
≡
(m
q

)
mod 4 and

( 2rm
2rq+1

)
≡ 0 mod 2, for any r. By using (4.14) twice we have
(4m
4q

)
≡
(2m
2q

)
(1 + 8q(m− q)) ≡

(2m
2q

)
≡
(m
q

)
(1 + 2q(m− q)) (mod 8),

and hence, by induction, for any r ≥ 2 we have
(2rm
2rq

)
≡
(2r−1m
2r−1q

)
(1 + 22r−1q(m− q)) ≡

(2r−1m
2r−1q

)
≡
(m
q

)
(1 + 2q(m− q)) (mod 8).

For modulo 16 we proceed similarly, but now
(
4m
4q

)
≡
(
2m
2q

)
(1 + 8q(m− q)) ≡

(
m
q

)
(1 + 2q(m− q))(1 + 8q(m− q)) (mod 16)

and hence
(4m
4q

)
≡
(m
q

)
(1 + 10q(m − q)) mod 16. Thus, for any r ≥ 3 we have

(2rm
2rq

)
≡
(2r−1m
2r−1q

)
(1 + 22r−1q(m− q)) ≡

(2r−1m
2r−1q

)
≡
(m
q

)
(1 + 10q(m− q)) (mod 16).

(b) By (4.14), we have
( 4m
4q+1

)
≡ 4(m−q)

(2m
2q

)
mod 4, 8, and hence

( 4m
4q+1

)
≡ 0 mod 4

and
(

4m
4q+1

)
≡ 4(m−q)(1+2q(m−q))

(
m
q

)
≡ 4(m−q)

(
m
q

)
mod 8. Similarly, one proves

that
( 8m
8q+1

)
≡ 0 mod 8 and

( 8m
8q+1

)
≡ 8(m− q)

(m
q

)
mod 16, and we are done. �

Example 4.8. Consider
(48
16

)
= 2.254.848.913.647 and

(56
17

)
= 97.997.533.741.800.

Since
(48
16

)
=
(24·3
24·1

)
, by Proposition 4.7, with m = 3 and q = 1, we have

(48
16

)
≡
(3
1

)
= 3

mod 4,
(48
16

)
≡ 3(1+4) ≡ 7 mod 8 and

(48
16

)
≡ 3(1+20) ≡ 15 mod 16. Similarly, since

(56
17

)
=
(23·7
23·2

)
, we have that

(56
17

)
≡ 0 mod 8 and

(56
17

)
≡ 40

(7
2

)
≡ 8 mod 16.

Remark 4.9. Following the same procedure that lead us to (4.14), congruences with
bigger moduli can be obtained provided we impose some extra conditions on q or
m. For instance,

(2m
2q

)
≡
(m
q

)
{1 + 2q(m− q) + 2

3q(q − 1)(m− q)(m− q − 1)} (mod 32, 64)

if q ≡ 0, 1 mod 3 or m− q ≡ 0, 1 mod 3, and
( 2m
2q+1

)
≡ 2(m− q)

(m
q

)
{1 + 2

3q(m− q − 1)} (mod 16, 32)

if q or m− q − 1 are divisible by 3.

We will next need the arithmetic function ε : N0 → N0, where ε(k) is the biggest
power of 2 dividing k!, that is

(4.15) k! = 2ε(k)ℓk, ℓk odd.
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That is, ε(k) = ν2(k!) the 2-adic valuation of k!. By de Polignac’s formula we have
ε(k) = ⌊k2⌋+ ⌊ k

22
⌋+ · · · + ⌊ k

2t ⌋, with t = ⌊log2(k)⌋. It is thus clear that

(4.16) ε(2t) = 2t−1 + 2t−2 + · · ·+ 2 + 1 = 2t − 1.

In general, we have the following.

Lemma 4.10. For any k, r,m ∈ N0, m odd, we have

(a) ε(k) ≤ k − 1, with equality if k is a power of 2;

(b) ε(2rm) = ε(m) + (2r − 1)m;

(c) ε(2r + 1) = ε(2r − 1) + r; and

(d) ε is an increasing function (monotonic when restricted to even or to odd numbers).

Proof. First note that for any k ≥ 0 we have

(4.17) ε(2k) = ε(2k + 1) and ε(2k) = ε(k) + k.

The first relation is obvious and the second one follows from (2k)! = 2ε(2k) ℓ2k and
(2k)! = 2k k!(2k − 1)!! = 2ε(k)+k ℓk (2k − 1)!! and the fact that ℓk, ℓ2k and (2k − 1)!!
are all odd numbers.

Now, the inequality in (a) follows directly by applying strong induction, since

ε(2(k + 1)) = ε(k + 1) + k + 1 ≤ 2k + 1 = 2(k + 1)− 1,

where we have used (4.17). The remaining assertion is clear.
The expression in (b) is obtained by repeated application of the second equality

in (4.17). Since (2r+1)! = (2r+1)2r(2r−1)!, the expression in (c) is straightforward
from the definition of ε. Finally, (d) follows from (4.17) and the fact that by definition
we have ε(k + 2) ≥ ε(k) + 1. �

The following result, which is probably known, complements the previous propo-
sition. We include a proof for completeness. We will need the following notation

(4.18) ε(m, q) := ε(m)− ε(q)− ε(m− q), q ≤ m.

Proposition 4.11. For every m, q, r ∈ N we have ε(m, q) ≥ 0 and

(4.19)

(2rm
2rq

)
≡

{

0 (mod 2ε(m,q)),
(m
q

)
(mod 2ε(m,q)+1),

( 2rm
2rq+1

)
≡

{(
m
q

)
(mod 2ε(m,q)),

0 (mod 2ε(m,q)+r).

In particular,
(2rm
2rq

)
≡
( 2rm
2rq+1

)
mod 2ε(m,q).

Proof. First note that
(
m
q

)
= 2ε(m)

2ε(q) 2ε(m−q)
ℓm

ℓq ℓm−q
= 2ε(m)−ε(q)−ε(m−q) ∈ Z.

Thus, since ℓm, ℓk and ℓm−q are odd numbers, we have that
(
m
q

)
= 2ε(m,q) ℓ, with ℓ

odd, and hence ε(m, q) ≥ 0.
Now, by (b) of Lemma 4.10 we have

(2rm
2rq

)
= 2ε(2

rm)

2ε(2rq) 2ε(2r(m−q))
ℓ2rm

ℓ2rq ℓ2r(m−q)
= 2ε(m)

2ε(q)+ε(m−q) ℓ
′
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with ℓ′ odd. In this way, we get
(2rm
2rq

)
≡ 0 mod 2ε(m,q) and

(2rm
2rq

)
−
(m
q

)
= 2ε(m,q)(ℓ′ − ℓ),

with ℓ, ℓ′ odd, and thus the first congruence is established.
On the other hand, we have

(
2rm
2rq+1

)
= (2rm)!

(2rq)!(2r(m−q))!
2r(m−q)
2rq+1 = 2ε(m,q)+r (m−q)ℓ′′

2rq+1

for some odd integer ℓ′′. Also,
( 2rm
2rq+1

)
−
(m
q

)
≡ 0 mod 2ε(m,q)+r , and the second

congruence in the statement follows.
The remaining assertion follows directly from (4.19). �

In particular, Proposition 4.11 implies that for any m, q, r ∈ N we have

(4.20)
( 2rm
2rq+s

)
≡
(m
q

)
(1− δs,t) (mod 2ε(m,q)+t)

where s, t ∈ {0, 1} and δs,t is the Kronecker δ-function.

In certain cases, Lemma 4.11 improves Proposition 4.7. This will be the case, for
instance, when ε(m, q) ≥ 4.

Proposition 4.12. Let r and t be natural numbers and for fixed t putmt = 2t, qt = 2t−1−1.

(a) For (m, q) = (mt + 1, qt), (mt + 1, qt − 1) or (mt, qt − 1) we have
(2rm
2rq

)
≡ 0 (mod 2t−1) and

(2rm
2rq

)
≡
(m
q

)
(mod 2t).

(b) Moreover,
(
2rmt

2rqt

)
≡ 0 (mod 2t) and

(
2rmt

2rqt

)
≡
(
mt

qt

)
(mod 2t+1).

Proof. (a) If t = 1 the result is trivial for mod 2t−1 and holds by Proposition 4.7
for mod 2t. For t ≥ 2 fixed, consider the numbers m = mt + 1 = 2t + 1 and
q = qt = 2t−1 − 1; hence m − q = 2t−1 + 2. By using (4.16) and (4.17) we have
ε(m) = ε(2t + 1) = ε(2t) = 2t − 1,

ε(q) = ε(2t−1 − 2) = ε
(
2(2t−2 − 1)

)
= ε(2t−2 − 1) + 2t−2 − 1,

ε(m− q) = ε(2t−1 + 2) = ε
(
2(2t−2 + 1)

)
= ε(2t−2 + 1) + 2t−2 + 1.

Now, by Lemma 4.10 (c) we have ε(q) = ε(2t−2 +1)− (t− 2) + 2t−2 +1. In this way,
by (4.18), we have

ε(m, q) = 2t − 1− {2ε(2t−2 + 1) + 2t−1 − (t− 2)}

= 2t − 1− {2(2t−2 − 1) + 2t−1 − (t− 2)}

= 2t − 1− (2t−1 + 2t−1 − t) = t− 1.

The result now follows directly by (4.19) in this case. Finally, by using Lemma 4.10,
it is easy to check that

ε(mt + 1, qt) = ε(mt + 1, qt − 1) = ε(mt, qt),

and hence the statement in (a) follows.

(b) Proceeding similarly as above we have ε(mt) = 2t−1, ε(qt) = 2t−1−1−(t−1)
and ε(mt − qt) = 2t−1 − 1. Thus, ε(mt, qt) = t, as we wanted to see. �
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5. Consequences for central binomial coefficients

We will apply the formulas for BKP’s of the previous sections to obtain some new
explicit and recursive expressions for the numbers

cm =
(2m
m

)
, m ≥ 0,

known as central binomial coefficients. For 0 ≤ m ≤ 12 we have 1, 2, 6, 20, 70, 252, 924,
3432, 12870, 48620, 184756, 705432 and 2704156 (see A000984 in [23]).

By taking r = 1 and p = m in (4.2) we get the expression

(5.1) cm =
∑

0≤ℓ≤m
ℓ≡m (2)

2ℓ
(m−ℓ

m−ℓ
2

)(
m
ℓ

)
= m!

∑

0≤ℓ≤m
ℓ≡m (2)

2ℓ

ℓ!{(m−ℓ
2

)!}2
,

or, distinguishing the cases m even or odd,

c2q = (2q)!

q
∑

j=0

2j

j!(2j−1)!!{(q−j)!}2
,

c2q+1 = 2(2q + 1)!

q
∑

j=0

2j

j!(2j+1)!!{(q−j)!}2
.

(5.2)

Also, by taking m = 2q, 2q + 1 in Lemma 4.1 we get

c2q =

q
∑

j=0

4j
(2q
2j

)
cq−j ,

c2q+1 = 2

q
∑

j=0

4j
(
2q+1
2j+1

)
cq−j .

(5.3)

The above identities recursively express c2q and c2q+1 in terms of the first q+1 central
binomial coefficients c0, c1, . . . , cq . In other words, we have

(5.4)

c2q = cq + 4
(
2q
2

)
cq−1 + 42

(
2q
4

)
cq−2 + · · · + 4q−1

(
2q

2q−2

)
c1 + 4q,

c2q+1 = 2
{(2q+1

1

)
cq + 4

(2q+1
3

)
cq−1 + 42

(2q+1
5

)
cq−2 + · · ·+ 4q−1

(2q+1
2q−1

)
c1 + 4q

}
,

since c0 = 1. It is well known that
(2m
m

)
are even numbers for any m ≥ 1. This is

trivial from (5.4), since c1 = 2.
Furthermore, by taking m = 2q in (4.4) and (4.10) we get the reduction formulas

(5.5) c2q = cq

q
∑

j=0

2j

j!(2j−1)!! (q)
2
j = cq

q
∑

j=0

2j

j!(2j−1)!!

q
∑

k,l=0

(−1)k+ls(j, k)s(j, l)qk+l

expressing c2q in terms of cq. This allows to give nice expressions for
(
4q
2q

)
/
(
2q
q

)
and

(4q
2q

)
−
(2q
q

)
, and by iteration for

(2r+1q
2rq

)
/
( 2rq
2r−1q

)
and

(2r+1q
2rq

)
−
( 2rq
2r−1q

)
, for any r.

We now give alternative expressions to (5.3) for the central binomial coefficients,
recursively expressing c2q and c2q+1 in terms of fractions involving c0, c1, . . . , cq.



18 RICARDO A. PODESTÁ

Proposition 5.1. For any q ∈ N we have

c2q =
4q−1
2q2

q
∑

j=1

4jj
(
2q
2j

)
cq−j ,

c2q+1 =
2(4q+1)
(2q+1)2

q
∑

j=0

4j(2j + 1)
(2q+1
2j+1

)
cq−j .

(5.6)

Note. Notice that c2q depends only on c0, c1, . . . , cq−1; compare with (5.3).

Proof. The result will follow directly by considering p = m in Theorem 2.2 and
evaluating the resulting expressions (2.4) at j = 0 and j = 1. In fact, by (1.2) we
have Km

ℓ (0) =
(m
ℓ

)
and Km

ℓ (1) = (1 − 2ℓ
m )
(m
ℓ

)
. Taking j = 0 and j = 1 in (2.4)

respectively we have

(5.7)
(2m
m

)
=

∑

0≤ℓ≤m

ℓ≡m (2)

2ℓ
(m−ℓ
m−ℓ
2

)(m
ℓ

)
and K2m

m (2) =
∑

0≤ℓ≤m

ℓ≡m (2)

2ℓ
(m−ℓ
m−ℓ
2

)
Km

ℓ (1).

We now compute K2m
m (2). By (1.1), after some computations, we have

Kn
p (2) =

(n−2
p

)
− 2
(n−2
p−1

)
+
(n−2
p−2

)
=
(n
p

) (n−p)(n−p−1)−2p(n−p)+p(p−1)
n(n−1)

and hence, taking p = m and n = 2m we get

K2m
m (2) =

(2m
m

)m(m−1)−2m2+m(m−1)
2m(2m−1) = 1

1−2m

(2m
m

)
.

Putting all these things together into the second equality in (5.7) we have

1
1−2m

(2m
m

)
=

∑

0≤ℓ≤m

ℓ≡m (2)

2ℓ
(m−ℓ
m−ℓ
2

)
(1− 2ℓ

m )
(m
ℓ

)
=
(2m
m

)
− 2

m

∑

0≤ℓ≤m

ℓ≡m (2)

2ℓ ℓ
(m−ℓ
m−ℓ
2

)(m
ℓ

)
,

where we have used the first equation in (5.7). From this we get
(2m
m

)
= 2m−1

m2

∑

0≤ℓ≤m

ℓ≡m (2)

2ℓ ℓ
(m−ℓ
m−ℓ
2

)(m
ℓ

)

from which, by taking m = 2q and m = 2q + 1, the expressions in (5.6) follows
directly after some trivial computations. �

By combining the previous expressions obtained for c2q and c2q+1 we get two
other recursions for cq in terms of all the previous c0, . . . , cq−1, one in terms of ‘even’
binomials

(2q
2j

)
and the other in terms of ‘odd’ binomials

(2q+1
2j+1

)
, for 0 ≤ j ≤ q.

Corollary 5.2. For every q ∈ N we have

(5.8) cq =

q
∑

j=1

4j
(
2q
2j

) { 4q−1
2q2+1

j − 1
}
cq−j =

q
∑

j=1

4j
(
2q+1
2j+1

) {4q+1
2q2

j − 1
}
cq−j .

Proof. By equating the expressions for c2q in (5.3) and (5.6) and isolating the contri-
bution for j = 0 in the sums we get the first equality in (5.8). Proceeding similarly
with c2q+1, after some more calculations, we get the second equality in (5.8). �
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Example 5.3. We now compute c8 =
(
16
8

)
by using (5.3) and (5.6) and the values

c0 = 1, c1 = 2, c2 = 6, c3 = 20, c4 = 70. Taking q = 4, by (5.3) and (5.6) we
respectively have

c8 =
4∑

j=0

4j
( 8
2j

)
c4−j = c4 + 4

(8
2

)
c3 + 42

(8
4

)
c2 + 43

(8
6

)
c1 + 44,

c8 =
15
32

4∑

j=1

4j
( 8
2j

)
j c4−j =

15
32{4

(8
2

)
c3 + 42

(8
4

)
2c2 + 43

(8
6

)
3c1 + 45},

hence c8 = 12.870 = 15·27456
32 , as one can easily check.

Central binomial coefficients and Krawtchouk polynomials. We will now give a mixed
relation between central binomial coefficients and BKP’s of the form K2q

2t (q). For
q even, we will get a cancellation rule; while, if q is odd, we will get a recursive
formula for c2q in terms of c0, c1, . . . , cq−1. We will first need the following result.

Lemma 5.4. For any q ∈ N0 we have

K4q
2q (2q) = (−1)q

(2q
q

)
and K4q+2

2q+1 (2q + 1) = 0.

Proof. By (1.1) we have

K2p
p (p) =

p
∑

j=0

(−1)j
(p
j

)( p
p−j

)
=

p
∑

j=0

(−1)j
(p
j

)2
,

and it is well known that
p
∑

j=0

(−1)j
(
p
j

)2
=

{

0 p odd,

(−1)p/2
( p
p/2

)
p even.

Hence, the result follows directly by considering the cases p = 2q and p = 2q+1. �

It is known that Kn
k (

n
2 ) = 0 for k odd and Kn

k (
n
2 ) = (−1)k/2

(n/2
k/2

)
for k even (see

for instance (7) in [13]). We have included a direct proof of the case that we need for
completeness.

Proposition 5.5. Let q be natural number.

(a) If q is even then

(5.9)
q
∑

t=1

4t cq−tK
2q
2t (q) = 0.

(b) If q is odd then

(5.10) c2q = −

q
∑

t=1

22t−1 cq−tK
2q
2t (q).

Proof. By applying Theorem 2.2 with m = 2q = p, j = q, we get

K4q
2q (2q) =

∑

0≤ℓ≤2q
ℓ even

2ℓ
(2q−ℓ

2q−ℓ

2

)
K2q

ℓ (q).
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Also, by the previous Lemma we have K4q
2q (2q) = (−1)q

(
2q
q

)
. Thus, by equating

these values we obtain

(−1)q
(2q
q

)
=
(2q
q

)
+

∑

2≤ℓ≤2q
ℓ even

2ℓ
(2q−ℓ

2q−ℓ

2

)
K2q

ℓ (q),

that is to say

(2q
q

)(
(−1)q − 1

)
=

q
∑

t=1

4t
(2(q−t)

q−t

)
K2q

2t (q).

It is clear from this identity that we get the expressions in the statement, taking q
even or odd respectively. �

Example 5.6. If q = 3, the sum in (5.10) equals
(
6
3

)
= −

(
2
(
4
2

)
K6

2 (3) + 23
(
2
1

)
K6

4 (3) + 25
(
0
0

)
K6

6 (3)
)
= −(12(−3) + 16 · 3− 32) = 20.

For q = 4, the sum in (5.9) is 4
(
6
3

)
K8

2 (4) + 42
(
4
2

)
K8

4 (4) + 43
(
2
1

)
K8

6 (4) + 44
(
0
0

)
K8

8 (4)
which equals 80(−4) + 96 · 6 + 128(−4) + 256 = 0, as it should be.

6. Catalan numbers

For n ≥ 0, the Catalan numbers

Cn = (2n)!
n!(n+1)! =

(2n)!
(n+1)(n!)2 ,

which appear in several different counting problems, are closely related with central
binomial coefficients because of the relation

(6.1) Cn = 1
n+1

(
2n
n

)
=
(
2n
n

)
−
(

2n
n+1

)
.

The first seventeen Catalan numbers are (see A000108 in [23])

C0 = 1, C1 = 1, C2 = 2, C3 = 5, C4 = 14, C5 = 42, C6 = 132,

C7 = 429, C8 = 1.430, C9 = 4.862, C10 = 16.796, C11 = 58.786, C12 = 208.012,

C13 = 742.900, C14 = 2.674.440, C15 = 9.694.845, C16 = 35.357.670.

Note that C3, C7 and C15 are odd. It is a classic result that Cn is odd if and only if n
is a Mersenne number, i.e. n = Ma = 2a − 1 for some a ≥ 0 (see for instance [1]).

Note that by (6.1) we have cn = (n+1)Cn, hence all the expressions obtained for
central binomial coefficients in the previous section give rise to similar expressions
for Catalan numbers. For instance, by (5.1) we have

(6.2) Cm = 1
m+1

∑

0≤ℓ≤m
ℓ≡m (2)

2ℓ
(m−ℓ

m−ℓ
2

)(m
ℓ

)
= m!

m+1

∑

0≤ℓ≤m
ℓ≡m (2)

2ℓ

ℓ!{(m−ℓ
2

)!}2
.

By using (5.2) one gets similar expressions for C2q or C2q+1.
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Recursions. It is known that Catalan numbers satisfy the recursions

Cn+1 =
2(2n+1)
n+2 Cn and Cn+1 =

n∑

k=0

CkCn−k,

for any n ≥ 0, expressing Cn+1 in terms of all the previous numbers C0, C1, . . . , Cn.
By using recursions between binomial coefficients already obtained, it is possible
to give other recursion formulas for Catalan numbers, in which C2n and C2n+1 are
linear combinations of C0, C1, . . . , Cn only.

Proposition 6.1. For any non negative integer n we have

C2n = 1
2n+1

n∑

k=0

4k (n− k + 1)
(2n
2k

)
Cn−k,

C2n+1 =
1

n+1

n∑

k=0

4k (n− k + 1)
(
2n+1
2k+1

)
Cn−k.

(6.3)

Proof. The result follows directly from the relation Cm = 1
m+1

(2m
m

)
by applying (5.3)

with m = 2n and m = 2n+ 1, and then using the first equality in (6.1) again. �

Also from (5.6), by using (6.1), we get the alternative recursive expressions

C2n = 4n−1
(2n+1)2n2

n∑

k=1

4kk(n − k + 1)
(2n
2k

)
Cn−k,

C2n+1 =
4n+1

(n+1)(2n+1)2

n∑

k=0

4k(2k + 1)(n − k + 1)
(2n+1
2k+1

)
Cn−k.

(6.4)

Similarly, two more recursive expressions for Catalan numbers can be obtained from
(5.8) by using (6.1).

Note that (6.3) and (6.4) are very similar to Touchard’s identity

(6.5) Cn+1 =

[n/2]
∑

k=0

2n−2k
( n
2k

)
Ck (n ≥ 0)

(see for instance [24] and the references therein) which also enables one to recur-
sively obtain C2n from C0, . . . , Cn−1 and C2n+1 from C0, . . . , Cn. Another Touchard-
type identities are

(6.6) Cn = n+2
n(n−1)

⌊n/2⌋
∑

k=1

2n−2k k
(
n
2k

)
Ck,

for n ≥ 2, proved by Callan ([2]) and the very similar ones

(6.7) Cn+1 = (n+ 3)

⌊n−1
2

⌋
∑

k=0

1
k+2 2

n−2k
(n−1

2k

)
Ck,

for n ≥ 0, due to Hurtado-Noy ([12]), and

(6.8) Cn = n+3
2n

⌊n−1
2

⌋
∑

k=0

2k+1
k+2 2n−2k

( n
2k+1

)
Ck,
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for n ≥ 0, obtained by Amdeberhan (according to [2]).

Example 6.2. We will compute C8 in four ways. If n = 4, by (6.3) we have

C8 = 1
9

4∑

k=0

4k(5− k)
( 8
2k

)
Cn−k

= 1
9

{
5
(
8
0

)
C4 + 16

(
8
2

)
C3 + 423

(
8
4

)
C2 + 432

(
8
6

)
C1 + 44

(
8
8

)
C0

}

and by (6.4) we have

C8 =
5
96

4∑

k=1

4kk(5− k)
(
8
2k

)
C4−k = 5

96

{
16
(
8
2

)
C3 + 426

(
8
4

)
C2 + 436

(
8
6

)
C2 + 45

(
8
8

)
C1

}
.

Alternatively, using (6.5) we have n = 7 and

C8 =

3∑

k=0

27−2k
( 7
2k

)
Ck = 27

(7
0

)
C0 + 25

(7
2

)
C1 + 23

(7
4

)
C2 + 21

(7
6

)
C3,

and also, using (6.6), we get

C8 =
5
28

4∑

k=1

28−2kk
( 8
2k

)
Ck = 5

28

{
26
(8
2

)
C1 + 24

(8
4

)
2C2 + 22

(8
6

)
3C3 + 20

(8
8

)
4C4

}
.

It is reassuring that, since C0 = C1 = 1, C2 = 2, C3 = 5 and C4 = 14, in all the
cases we get the value C8 = 1430. One can also use expressions (6.7) and (6.8).

Remark 6.3. By (6.1), Proposition 5.5 relates Catalan numbers with BKP’s. In fact,
for q even we have the ‘orthogonality’ relation

(6.9)
q
∑

t=1

4t (q − t+ 1)Cq−tK
2q
2t (q) = 0 (q even),

and for q odd we have the recursion

(6.10) Cq = − 1
q+1

q
∑

t=1

22t−1 (q − t+ 1)Cq−t K
2q
2t (q) (q odd),

both involving integral values of BKP’s of the form K2q
2 (q),K2q

4 (q), . . . ,K2q
2q (q).

Congruences modulo 2, 4, 8 and 16. Notice that the the recursions (6.3) – (6.6) seem
well suited to study congruences of Catalan numbers modulo powers of 2 (this is
not the case for (6.7) and (6.8) since they involve fractions). In fact, by expanding
these expressions and reducing modulo 2r, for some 1 ≤ r ≤ n, one can obtain
congruence relations for C2n and C2n+1 in terms of Cn and Cn−1 mod 2r .

The simplest expressions are the ones obtained from Touchard’s identity. By
considering the cases n even or odd separately in (6.5), we get

C2n = 1
2

n−1∑

k=0

4n−k
(2n−1

2k

)
Ck, and C2n+1 =

n∑

k=0

4n−k
(2n
2k

)
Ck,
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and by expanding these expressions one can easily deduce that

C2n ≡ 0 (mod 2), C2n+1 ≡ Cn (mod 2),

C2n ≡ 2Cn−1 (mod 4), C2n+1 ≡ Cn (mod 4),(6.11)

C2n ≡ 2(2n − 1)Cn−1 (mod 8), C2n+1 ≡ Cn − 4nCn−1 (mod 8),

and

(6.12)
C2n ≡ 2(2n − 1)Cn−1 + 8

(2n−1
3

)
Cn−2 (mod 16),

C2n+1 ≡ Cn + 4n(2n − 1)Cn−1 (mod 16).

From the congruences mod 2 above, considering n = 2m and n = 2m+1, we get

C4m+1 ≡ C2m ≡ 0 (mod 2) and C4m+3 ≡ C2m+1 ≡ Cm (mod 2).

Taking m = 2k and m = 2k + 1 above we get

C8k+5 ≡ C8k+3 ≡ C8k+1 ≡ C4k+2 ≡ C4k+1 ≡ C4k ≡ C2k ≡ 0 (mod 2),

C8k+7 ≡ C4k+3 ≡ C2k+1 ≡ Ck (mod 2).

Iterating this process, for every k, ℓ ≥ 1 one has that

(6.13) C2kℓ+j ≡2

{

0 if 1 ≤ j < 2k − 1,

Cℓ if j = 2k − 1,

where ≡2 denotes congruence modulo 2. In particular, if ℓ = 1 in (6.13), for every
k ≥ 1, taking j = 2k − 1 we get

C2k+1−1 ≡ C1 ≡ 1 (mod 2).

From this and (6.13) we recover the fact that Cn is odd if and only if n is a Mersenne
number.

Now, considering the cases even and odd separately in Callan’s identity (6.6) we
obtain

C2n = n+1
n(2n−1)

n∑

k=1

4n−k k
(
2n
2k

)
Ck and C2n+1 =

2n+3
n(2n+1)

n∑

k=1

4n−k k
(
2n+1
2k

)
Ck;

and by expanding these expressions one gets

nC2n ≡ 0 (mod 2),

n(2n− 1)C2n ≡ n(n+ 1)Cn (mod 4, 8),(6.14)

n(2n− 1)C2n ≡ (n+ 1){4n(n − 1)(2n − 1)Cn−1 + nCn} (mod 16),

nC2n+1 ≡ nCn (mod 2),

n(2n+ 1)C2n+1 ≡ 3nCn (mod 4),(6.15)

n(2n+ 1)C2n+1 ≡ 4(n− 1)
(2n+1

3

)
Cn−1 − (4n2 + 3)nCn (mod 8, 16),

or equivalently nC2n+1 ≡ n(2n+ 3)Cn mod 4.
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On the other hand, by expanding (6.3) in Proposition 6.1, it follows directly that

C2n ≡ (n+ 1)Cn (mod 2),

(2n + 1)C2n ≡ (n+ 1)Cn (mod 4),(6.16)

(2n + 1)C2n ≡ (n+ 1)Cn − 4n2Cn−1 (mod 8),

(2n + 1)C2n ≡ (n+ 1)Cn + 4n2(2n− 1)Cn−1 (mod 16),

(n+ 1)C2n+1 ≡ (n + 1)Cn (mod 2),

(n+ 1)C2n+1 ≡ (n + 1)(2n + 1)Cn (mod 4),(6.17)

(n+ 1)C2n+1 ≡ (n + 1)(2n + 1)Cn + 4n
(2n+1

3

)
Cn−1 (mod 8, 16).

Congruences modulo 32 and 64, or even higher powers of 2, can also be obtained
in the same way, although with a fast increasing complexity.

Remark 6.4. The determination of the Catalan numbers mod 4 (resp. 8) is given in
Theorems 2.3 (resp. 4.2) in [6] by using ad hoc methods. In the mod 4 case, if we put
C4(i) = {Cn : Cn ≡ i (mod 4)} for 0 ≤ i ≤ 3 and Na,b = 2a + 2b − 1 = 2a + Mb

then C4(0) = {Cn : n 6= Na,b, a > b ≥ 0}, C4(1) = {Cn : n = Ma, a ≥ 0}
C4(2) = {Cn : n = Na,b, a > b ≥ 0} and C4(3) = ∅. Similar results hold for the mod
8 case. By using (6.5), shorter and easier proofs of these facts can be found in [28],
where also a systematic approach to Catalan numbers modulo 2r is carried out.

final remarks

(a) The method used to obtain Theorem 2.2 does not seem to apply for elements
x ∈ T2m of order> 2 because the p-traces χp(x) are not expressible, a priori, in terms
of (binary) Krawtchouk polynomial, as in (2.5).

(b) Is there any combinatorial proof for (or explanation to) each of the expressions
(6.2) – (6.4) obtained for Catalan numbers?

(c) The expressions for BKP’s obtained so far seem well suited to study the values
K2rm

p (2sj) modulo high powers of 2.

(d) The techniques and results in this paper could be of some utility in studying
recursions and congruences for the Motzkin numbers Mn because of the relations
Mn =

∑ℓ
k=0

( n
2k

)
Ck with ℓ = ⌊n/2⌋ and Cn+1 =

∑n
k=0

(n
k

)
Mk.
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