arXiv:1603.09411v2 [math.AG] 27 Sep 2017

Gauss-Manin Connection in Disguise: Dwork
Family[!

H. MOVASATIH AND Y. NIKDELAN

Abstract

We study the enhanced moduli space T of the Calabi-Yau n-folds arising from
Dwork family and describe a unique vector field R in T with certain properties with
respect to the underlying Gauss-Manin connection. For n = 1,2 we compute explicit
expressions of R and give a solution of R in terms of quasi-modular forms.

1 Introduction

The project Gauss-Manin connection in disguise started in the articles [Mov15, [AMSY16]
and the book [MovI16] aims to unify modular and automorphic forms with topological
string partition functions of string theory. The first group has a vast amount of applications
in number theory and so it is highly desirable to seek for such applications for the second
group. The main ingredient of this unification is a natural generalization of Ramanujan
relations between Eisenstein series interpreted as a vector field in a certain moduli space.
This has been extensively used in transcendental number theory, see [NePhl [Zud01] for an
overview of some results. The starting point is either a Picard-Fuchs equation or a family
of algebraic varieties. In direction of the first case, in [Mov16] the author has described
the construction of vector fields attached to Calabi-Yau equations of the list in |[GAZ10].
In direction of the second case, in this article we are going to consider the family of n-
dimensional Calabi-Yau varieties X = X, 9 € P! —{0,1, 00} obtained by a quotient and
desingularization of the so-called Dwork family:

(1.1) a2t 2l — (n+ 2)Yaomy L. = 0,

and from now on we call any X, a mirror (Calabi-Yau) variety (see Section 2] for more
details). This family and its periods are also the main object of study in some physics
articles like [GMP95]. In the present article we discuss this unification in the case of Dwork
family, namely we explain a construction of a modular vector field R,, = R attached to
Xy such that for n = 1,2 it has solutions in terms of (quasi)-modular forms, for n = 3
the topological partition functions are rational functions in the coordinates of a solution
of R, and for n > 4 one gets g-expansions beyond the so-far well-known special functions.
It is worth pointing out that we can consider the modular vector field R as an extension
of the systems of differential equations introduced by G. Darboux [Dar78], G. H. Halphen
[Hal81] and S. Ramanujan [Ram16] (for more details see [Mov12], [Nik15| § 1]).

For the purpose of the Introduction, we need only to know that for any mirror variety
X, dimHj3, (X) = n+ 1, where H]; (X) is the n-th algebraic de Rham cohomology of X,
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and its Hodge numbers h¥, i+ j = n, are all one. For n = 3 this is also called the family
of mirror quintic. Let T = T,, be the moduli of pairs (X, [a1,: -+, an, apnt1]), where

o c F’n+1—i \ FTL+2—i’ Z — 1’ . ’n’n + 1’

[{ei, j)] = @y

Here F' is the i-th piece of the Hodge filtration of H'z(X), (-,-) is the intersection form
in Hjz(X) and ® = ®,, is an explicit constant matrix given by

1 2 ¢ 07L+1 Jn+1
— 2 2
( ’ ) e —Jn+l 0n+1 !
2

2

if n is an odd positive integer, and

(13) (I)n = Jdn+1,

if n is an even positive integer, where by 0,k € N, we mean a k x k block of zeros, and
Ji is the following k£ x k block

0 0 0 1
0 0 1 0
(1.4) Je=| Do
0 1 0 0
1 0 0 0
We construct the universal family X — T together with global sections c;, i =1,--- ,n—+1

of the relative algebraic de Rham cohomology HJ, (X/T). Let
Vi Hig(X/T) = Q1 ®o; Hig(X/T),

be the algebraic Gauss-Manin connection on Hj; (X/T). Then we state below our main
theorem.

Theorem 1.1. There is a unique vector field R := R, in T such that the Gauss-Manin
connection of the universal family of n-fold mirror variety X over T composed with the
vector field R, namely VR, satisfies:

N 010 0 -~ 0 0 N
al 00Y, 0 -~ 0 0 al
2 00 0 Yy -+ 0 0 2
as a3
(1.5) VR : =1: : e : : ) )
. 00 0 0 Y, o 0 N
a" 00 0 0 -~ 0 —1 a"
n+1 O O O 0 0 0 n+1
Y

for some reqular functions Y; in T such that Y® + ®YY = 0. In fact,

! ),

(1.6) T := Spec(Q[ty, to, ..., tg,
tnio(tnpe — 1)1




where

w +1, ifnisodd
(1.7) d=d, = )

% +1, if n is even
and t is a product of s variables among t;’s, i = 1,2,...,d, i # 1,n+2 and s = ”T_l ifn
is an odd integer and s = "T_2 if n is an even integer.

In the proof of Theorem [Tl we will show more than what we declared in the statement
of the theorem. Indeed we will give the regular functions Y,’s explicitly, and we will find
an algorithm to express the modular vector field R. An explicit expression for Rz has
been given in [Mov15, Mov16] by the first author. In the next theorem we find R; and Ry
explicitly and express their solutions in terms of quasi-modular forms.

Theorem 1.2. For n = 1,2 the vector field R as an ordinary differential equation is
respectively given by

t) = —titg — 9(t5 — t3)
(1.8) Ry fo =81t (8 —t3) —t3

ts = —3tots
where>i<:3-q-g—z, and
t1 = t3 — t1ty

to = 2t2 — 113

(19) R2 : 5

t3 = —2tatg + 8t3

ty = —dtaty
in which % = —% -q - g—;, and the following polynomial equation holds among t;’s
(1.10) 12 = 4(t] — tq).

Moreover, for any complex number T with Imt > 0, if we set ¢ = €™, then we find the
following solutions of Ry and Ro respectively:

t1(q) = $(203(¢*)05(¢°) — 03(—¢*)03(—4")),

(1.11) ta(q) = 5(Ea(q®) — 9E2(¢%)),
ta(q) = 5L,
and
Bti(5h) = 27(03(¢%) +05(4%)),
(1.12) Lta(7h) = 51(B2(q?) + 2Ea(q")),



where Fa, n and 0;’s are the classical Eisenstein, eta and theta series, respectively, given
as follows:

(1.13) By(q) =1-24 " o(k)q" with o(k) = d,
k=1 dlk
(1.14) n(q) =q2 [J(1 -4,
k=1
(1.15) ba(g) = Y 2T b3 =142 2
k=—oc0 k=1

Remark 1.1. We recall that n and 6;’s are modular forms, and Es is a quasi-modular
form.

By studying of the coefficients of q-expansions of the solutions given in (LII) and
(LI2), we find some interesting enumerative properties. For example, in (LII]) the co-
efficients of t1(q) = > ;o tl,qu have the following enumerative property: Let k be a
non-negative integer. If k = 4m, m € N, then the equation x> + 3y> = k has 3t1, integer
solutions. Otherwise the equation has tyj, integer solutions. For more properties of this
type see Section [8.

The article is organized in the following way. First, in Section 2] we review and sum-
marize some basic facts, without proofs, about the structure of Dwork family from which
the mirror variety X, arises. In Section [§] we introduce the notion of moduli space of
holomorphic n-form S, and we see that S is two dimensional and present a coordinate
chart for it. Section M deals with the calculation of intersection form matrix of a given
basis of the de Rham cohomology of mirror variety. In Section Bl we present the moduli
space T and construct a complete coordinate system for T. Section [0l is devoted to the
computing of Gauss-Manin connection of the families X/S and X/T. In Section [ Theorem
[L1lis proved and the modular vector field is explicitly computed for n = 1,2,4. Finally,
in Section [§] after finding the solutions of R; and Ry in terms of quasi-modular forms, we
proceed with the studying of enumerative properties of the g-expansions of the solutions.
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his Postdoctoral research with the grant of ?CAPES”, and in particular he would likes to
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2 Dwork Family

Let fy be the polynomial in the left hand side of (LI). Let W, be an n-dimensional
hypersurface in P**! given by fu. We know that the first Chern class of Wy, is zero, from
which follows that W, is a Calabi-Yau manifold. Thus we have a family of Calabi-Yau
manifolds given by 7 : W — P, where W C P x C, Wy, = 7~ () and

We = {(:EOv:Elv"'yxn—l—l) | oLy ... Tyl = 0}

This family, which is known as n-fold Dwork family, was a favorite example of Dwork,
where he was developing his ”deformation theory” about zeta function of a nonsingular



hypersurface in a projective space (see [Dwo62, [Dwo66]). One can easily see that the
singular points of this family are "2 = 1,00. Let G be the following group

(21) G:= {(CO?CI? .- '7<n+1) | Cz'n+2 = 17 <0C1 s Cn-i—l = 1}7

which acts on Wy, as follow

(2.2) (€0sCis -+ Cng1)-(xo, 1, - - s Tpg1) = (Coxo, Q1215 - -+, Cng1Tng1)-

Evidently we see that this action is well defined. We denote by Yy, := W,,/G the quotient
space of this action, which is quite singular. Indeed Y, is singular in any = € W, that
its stabilizer in G is nontrivial. For ¢"*2 = 1,00 there exist a resolution X, — Yy of
singularities of Yy, such that X, is a Calabi-Yau n-fold with A% (Xy,) = 1, i +j = n.
Therefore we have a new family where the fibers are Calabi-Yau n-folds X, which is the
mirror family of Wy, (see [GMP95]). The standard variable which is used in literatures is
defined by z := 1)~ ("*2)_ By this change of variables, fy changes to f, given by

fo(xo, 1y Tpg1) i= z$8+2 + x’f” + xg” 44 :L"Zﬁ — (n+42)zpxr1T2 -+ Tpgq-
The new set of singularities is given by z = 0,1 and oo, and we have the families W, and
its mirror X, as well. From now on we call X, (or X) the mirror variety. There is a
global holomorphic (n,0)-form n € H}; (X.) which is given by

_dry Ndxo AL N dxgg
= a7 )

in the affine chart {zg = 1}. The periods [s7, ¢ € H,(X.,Z) satisfy the well-known
Picard-Fuchs equation

(2.3) L < /6 n> =0, where

1 2 n+1
- n+l _
(2.4) L = o 20+ )0 ) (0

),

in which ¥ = z%. Note that if n = 1,2 or 3 respectively, then X, is a family of elliptic
curves, K 3-surfaces or mirror quintic 3-folds, respectively.

3 Moduli Space of holomorphic n-forms

By moduli space of holomorphic n-forms S we mean the moduli of the pair (X, «), where
X is an n-dimensional mirror variety and « is a holomorphic n-form on X. We know that
the family X, is a one parameter family and the n-form « is unique, up to multiplication
by a constant, therefore dim S = 2. The multiplicative group G,, := (C*,-) acts on S by:

(X,a)ek=(X,k"a), k€G,, (X,a)€S.

We present a chart (t1,t,42) for S. To do this, for any (t1,t,12) € C? we define the
following polynomial

L n+2 n+2 n+2 n+2
ftl,tn+2($0,x1,... ,a;n+1) = tn+2$0 +$1 +$2 +---+xn+1—(n+2)t1xox1x2 R 2 I



The discriminant of f;, ¢, is given by Ay 4, = (fns2 — 77 )tn42. Let Wy, 4., be the
following two parameter family of Calabi-Yau manifolds

Wi, tio o= {(@0, 21, -, Zg1) | oo tnse (@0, 215, Tpgr) = 0} C PP
W4, t,.. is singular if and only if A4, 4, ., = 0. For any
(t1tns2) € C2\ {(t1, tns2) | Aty e = 0}
we let Xy, ¢,., to be the resolution of the singularities of Wy, ;..,/G where the group G

and the group action are given by (ZI) and (Z2]). Next we fix the n-form w; on the family
Xty tn+2, where wy in the affine space {xg = 1} is given by

dry Ndza A ... ANdxpiq
w1 = .
dft1,tn+2
Proposition 3.1. We have
1

— tnt2)tnto

S = Spec(Q[t1, th+2, 77s
(t]

and the morphism X — S is the the universal family of (X, «), where X is an n-dimensional
marror variety and o is a holomorphic n-form on X. Moreover, the Gy,-action on S is
given by

(3.1) (tl,tn+2) ok = (k‘tl, k’n+2tn+2), (tl,tn+2) €S, keGy.

Proof. We have the map f which maps a point (t1,,42) € S to the pair (X, 4,,,,w1) in
the moduli space S as a set. Its inverse is given by

(Xzan) = (a7, za=0F2)),

Note that (X, 4,,,w1) and (X, tl_ln), where z = EZIS, in the moduli space S represent the

1
same element. The affirmation concerning the G,,-action follows from the isomorphism:

(3'2) (xktl,k"+2tn+27 kwl) = (xtl,tn+27wl)7
(xla T, 7xn+1) — (k_lx:h k_le, e 7k_1xn+1)7
given in the affine coordinates zg = 1. O

4 Intersection form and Gauss-Manin connection

Let X be an n-dimensional mirror variety and &1, € Hjz(X). Then in the context of
de Rham cohomology, the intersection form of & and &;, denoted by (£1,&2), is given by

1
= A&
(€1,&2) i /X& &2
We recall that (.,.) is a non-degenerate (—1)"-symmetric form, and

(4.1) (F',FIy =0, i+j>n+1,



where
F {0} =F""'CcF'Cc...cF'CcF'=HR(X), dmF' =n+1—i,

is the Hodge filtration of H](X).
Let

(4.2) V : Hig(X/S) — Q5 ®o, H(X/S)

be Gauss-Manin connection of the two parameter family of varieties X/S, and 8%1 be a

vector field on the moduli space S. By abuse of notation, we use the same notion aitl, to

show V o which is the composition of Gauss-Manin connection V with the vector field
oty

%. Now we define new n-forms w;, ¢ =1,2,...,n + 1, as follows

ai—l
4.3 P = —
( ) w 8t7i_1

(w1).

Later, in Lemma B.T] we will see that wy,ws, ..., wp4+1 form a basis of Hj, (X) compatible
with its Hodge filtration, i.e.

(4.4) wi € Frflmi\ pnt2=i i — 1.9 .. n+1.

We write the Gauss-Manin connection of X/S in the basis w as follow
(4.5) Vw = Aw,

and we denote by

(4.6) N=Q,:= ((wi7wj>)1§i,j§n+l )

the intersection form matrix in the basis w. We have

(4.7) dY = AQ + QA"

The entries of A and (2 are respectively regular differential 1-forms and functions in S. For
arbitrary n, we do not have a general formula for Q and A. We have only an algorithm
which computes the entries of 2 and A recursively. For n = 1,2,3,4 the Picard-Fuchs
equation associated with the n-form wy is given by

6n+1 t?-l-l " t? 8n71
4.8 — ==-5n+2,n+1 ——S3(n+2,n —
(4.8) ot "t 2 )t;‘” —tpyo Oty 2( )t;‘” — by Ot
t2 0 i
— S 42,2t G2, )t
2( )t?“ ~thae Oh 2( )t’;” —tnto

where Sy(r, s), r,s € N, refers to Stirling number of the second kind which is given by

(4.9) Sy (r,s) = ig(_ni ( : )(s_i)f.

This must be true for arbitrary n, however, we are only interested to compute this for
explicit n’s and so we skip the proof for arbitrary n.



Lemma 4.1. We have
(i) (wi,wj) =0, ifi+j<n+l

(ii) (wi,wni1) = (—(n+ 2))"%, where ¢, i a constant.

(iii) (wj,wn+2—j) = (1) " Hwi,wpt1), for j=1,2,...,n+ 1.
(iv) We can determine all the rest of (wi,w;)’s in a unique way.

Proof. Note that the intersection form is well-defined for all points in S, and so, (w;,w;)’s
are regular functions in S. This implies that they have poles only along t,+2 = 0 and
tnia —tTT2 =0,

(i) The Griffiths transversality implies that
wie FPH= i =19 . n+1.
This property and the property given in (4.I) complete the proof of (i).

(ii) If we present the Picard-Fuchs equation associated with holomorphic n-form 7 as
follow:

(4.10) 9" = ag(2) + a1(2)9 + ... + an(2)0",
then in account of (2.4]) we find

_n—l—l z
21—z

an(z)

One can verify the differential equation given bellow

. 2
¥(n, v 77>+n

o ()0, 9"n) = 0

from which we get (n,9"n) = c,exp (—niﬂ foz an(v)%’), where ¢, is a constant.
This yields

c
4.11 ') = ——.
(411) (") = 1
On the other hand in Section [} we saw z = z?—ig, which gets ¥ = z% = _%Htlaitl'
One can easily see that n = tjw;, hence
1 0
9" = (— t1— )" (tiw
n=( n—|—218t1) (tiwr)
1
=bjwi +...+byw, + (—H—H)nt?—i_lw,H_l,

where b;’s are rational functions in ¢q,¢,41. Therefore (i) implies

1
(n,9"n) = (tiwn, (—n—H)nt?meﬁ ,

which completes the proof of (ii).



(iii) By (i) we have (wj,wnt1—j) =0, j=1,2,...,n. Thus we get
0
a1, WirWnij) = (Gwi wnj) + (Wi, Gwni—)
= (Wj+1, Wn+1—j) + (W), Wny2—5) =0,
hence we obtain (wji1,wnt1—j) = —(Wj,wnt2—j) » J = 1,2,...,n, from which

follows (iii).

(iv) We present the desired algorithm. So far, we computed the first row of the matrix
Q. Suppose that we have the i-th row of Q, 1 <4 < n, and then determine (i + 1)-th
row. To compute (wiy1,w;), n+2—14i < j < n+ 1, we apply %(wi,wﬁ, which
implies

(Wit1,wj) = 8_tl<wi’wj> — (Wi wjt1) -

Note that if j = n + 1, then wp42 = %(wl) and we compute it by using of
1
Picard-Fuchs equation given in (Z38]).

U
The intersection form matrix for n = 1,2, 4 are respectively given as follows:
0 0 16co
O _ 3ca t%_t%
0, = t113_t3 0, — 0 _ 16¢c2 3202t1
1= 3c1 0 v R82 T t1—tq (tT—t4)2 )
t3—t3 16cs  32c2t]  —16cat (5t1—t4)
ti—ts  (t7—t4)? (t1—t4)3
4
0 0 0 0 e
t7—te
4 14 t5
9Xx6%cq
0 0 0 — :
t—ts _ (t9—t6)?
Oy — 0 0 6lcy _ 3x6%cat} 6%cat (718 +20t6)
T o (£ —t0)” (1§ ~t6)°
0 6%y _ 3x6%cqtf 6%cqt] (1425 —5t6) —6%cyt} (56112 435t§t6—102)
t(]jl—ta (t8—t6)2 (t8—t6)3 (t8—t6)4
6hcy  9Ix6cat]  6%cat](Tt8420ts)  —6%catd (561124351516 —10t2)  6%cat? (2731184238316 +217t012+13)

tS—ts  (t9—t6)? (t8—t6)3 (t8—t6)4 (t8—t6)5

5 Enhanced Moduli Space

By enhanced moduli space T = T,, we mean the moduli of the pair (X, [a1, g, ..., ant1]),
in which X is an n-fold mirror variety and {a, ag, ..., 41} is a basis of H (X)compatible
with its Hodge filtration, and such that the intersection matrix of this basis is constant,
that is,

(51) ( <Oéi, aj> )1§i7j§n+l = (I)

If we denote by d,, := dimT,,, then from [Nik15] Theorem 1 | we get (I7]). The objective
of this section is to construct a coordinates system for T.

In Section ] we fixed the basis {w1,ws,...,wpy1} of HYy(X) that is compatible with
its Hodge filtration. Let S = ( Sij )1 <ij<nil be a lower triangular matrix, whose entries
are indeterminates s;;, ¢ > j and s1; = 1. We define

a:= Sw,



where

t
w = ( w1 w2 ... Wp4il ) r.
We assume that ( (0, o) )1<ij<n+1 = @, and so, we get the following equation
(5.2) SQST = .
If we set ¥ = ( Wy, )1<Z. il T SQSY, then VU is a (—1)"-symmetric matrix and ¥;; = 0
fori=1,2,...,nand j < n+1—1i. Moreover, in the case that n is an odd integer we get

U;; =0,i=1,2,...,n+ 1. Therefore the equation (5.2]) gives us dy := w —d-—2
equations, where d is given by (L7)). The next argument shows that these equations
are independent from each other and so we can express dyp numbers of parameters s;;’s
in terms of other d — 2 parameters that we fix them as independent parameters. For

simplicity we write the first class of parameters as 1,2, ,%4, and the second class as
to,t3, ..., tnat, tnas, ..., tq. We put all these parameters inside S according to the following
rule which we write it only for n = 1,2, 3, 4:
1 0 0 0 0
1 0 O 1000 to t3 0 0 O
1 0 : ty t3 0 0 !
o )\ O 0 |0 | st 000
2 M fy 3 6 t4 {6 - ; ty 7 fs a0
T g ts tg ta 6

Note that we have already used t1,t,+1 as coordinates system of S in Section [l
Proposition 5.1. The equation SQSY = ® yields
(_1)n+i+1 t?+2 —t
Cn (’I’L + 2)” Sii

n+2

)

(5.3) S(n+2—i)(n+2—i) =
wherei=1,2,..., "TH if n is an odd integer, and i =1,2,..., "TH if n is an even integer.
Moreover, one can compute t;’s in terms of t;’s.

Proof. Let us first count the number of equalities that we get from SQSY™ = ®. This is
w 4+ 1 —d. Note that the left upper triangle of this equality consisits of trivial
equalities 0 = 0. The equality (5.3)) follows from the (i,n + 2 — 7)-th entry of SQS™ = ®.
We have plugged the parameters ¢, = s;; inside S such that the equality corresponding to
the (n+2—j,1)-th entry of SQSY = & gives us an equation which computes £, in terms of
t., r < k and t,’s. Note that only divisions by s;;’s, ;42 — t?+2 and t,49 occurs. Another

way to see this is to redefine S := S~! and so we will have the equality S®S™ = Q. O

For n =1,2,4, we express ¢,’s in terms of ¢;’s as follows:

e n—=1: )
fo=—— (3 —t3).
1 301(1 3)

_ I
f=— (@ —t
1 1602(1 1),
5 1

5.4 Z2=—— (41—t

(5.4) 3 1662(1 4),

1 y
{3 = ——(—16cotats + 2t3
3 16c2( Catata + 2t7),

1

10



g, 8 —t6
1296¢,
Py — — t$ —tg
1296C4t3 ’
0 — tg
5.5 2 =2
(5:5) 37 1296¢4
i t8ta + 9t9ts — tats
4 1296¢4t5 ’
f _ —4320415553 — t?
5 432¢at5
f _ 129604t2t5£3 — 1296C4t3t4£3 + 3t?t2 + 20#{73
6 1296¢4t5 ’
;= —1296¢4t2 — 5t
259204t3
P 1296¢4t2t2 — 2592c4tity — 2592cqtstats + Stita + 20t5ts
8 2592¢4t5 ’
;_ —2592cataty — 1296cqt] + 17
? 2592¢4 '

6 Gauss-Manin connection

We return to the Gauss-Manin connection V, that was introduced in ([£.2)), and we proceed
with the computation of the Gauss-Manin connection matrix A, which is given in &5).

If we denote by A(z) the Gauss-Manin connection matrix of the family X; . in the
basis {n, %, A %}, ie.,

o an tr p) on tr
Vi(n o S aZZZ) =A(2)dz® (7 o S aZZZ) ,
then we get
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
Az) =
0 0 0 0 1
bl(Z) bg(z) bg(Z) b4(2) N bn+1(2)

in which the functions b;(z)’s are the coefficients of the Picard-Fuchs equation associated
with the n-form 7 that follows from (2.4 given below:

ontl o an
ST = ) HhG) oo+ b2
We calculate V with respect to the basis ([A.3) of Hjz(X/S). For this purpose we return
— tn+2

back to the one parameter case. For z := prEs R consider the map
1

9 K tpsn = X1,z

11



given by ([B.2]) with k = tl_l. We have g*n = tyjwi, where by abuse of notation we just writ
n = tiwi, and
o -1 "9

&_n+2tn+28t1'

From these two equalities we obtain the base change matrix S=25 (t1,tn+2) such that

o on tr S5—1 tr
(’I’} 6—2 82;7) =5 (w1 wy ... wn+1) .
Thus we find Gauss-Manin connection in the basis w;, 1 =1,2,...,n + 1 as follow:

:Qﬁ+§uuggya@ﬁ0.§i
1

n+2
751

Let A[z, j] be the (i, j)-th entry of the Gauss-Manin connection matrix A. We have

i

6.1 Ali,i] = ——————dt 1<4i<
( ) [271] (TL n 2)tn+2 n+2 St=n
~ t1 .
6.2) Ali,i+ = dtj — ———dtpys, 1 <i<n,
62) A+l = dh -
. , —So(n +2, )t So(n+2,7) ¢! ,
A[’I’L—l—l,j] = 54(_2 j) 1dt1+ 2( n«i_)2l dtn+27 1 <j<n,
11" = g2 (n+2)tn42(877" — tny2)
~ _ 2 1 n+1 n(n+1) tn+2 1 t
Aln+1,n+1] = 52(”7:2 A DT gy 2 +ffj; ) "2 Aty s
tp " = g2 (n+2)tn42(117" — tnto)

where Sa(r,s) is the Stirling number of the second kind defined in (4.9]), and the rest of
the entries of A are zero. The equalities (6.1)) and (6.2)) are easy to check and to those
with Stirling numbers are checked for n = 1,2,3,4. It would be interesting to prove this
statement for arbitrary n. We will not need such explicit expressions for the proof of our
main theorem. The Gauss-Manin connection matrix A for n = 1,2 are respectively given
as follows:

t
) 3 Ldt, dty — 5 dt
Al - )
“dty + 5 (ts sty ts L it + 3 it ;ztj dts
1
_Edt‘l dt, — ﬁdu 0
~ t
A2 — 0 T dt4 dt, — ﬁdt4
dt 7dt 7t -t st dt 3’* *3“ T dt

Let A to be the Gauss-Manin connection matrix of the family X/T written in the basis
a;, 1=1,2,...,apy1, i.e., Va = Aa. Then we calculate A as follow:

(6.3) A:@s+&A)s*,

where S is the base change matrix a = Sw.
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7 Proof of Theorem [1.1]

As we saw in (6.3]), the Gauss-Manin connection matrix of the family X/T in the basis «
is given by

(7.1) A=dS-S'1+S-A.-S71

For a moment, let us consider the entries s;;, j < 4,(¢,7) # (1,1) of S as independent
parameters with only the following relation:

(72) S(n+1)(n+1) + Spnsa2 = 0.

We denote by T and & the corresponding family of varieties and a basis of differential
forms.

The existence of a vector field in T with the desired property in relation with the
Gauss-Manin connection is equivalent to solve the equation

(7.3) S=YS—-S-AR).

Note that here @ := dz(R) is the derivation of the function z along the vector field R
in T. The equalities corresponding to the entries (4,7),5 <14, (i,5) # (1,1) serves as
the definition of sj;. The equality corresponding to (1,1)-th and (1,2)-th entries give us
respectively

il = t3 — t112, Lin+2 = —(n + 2)75275”+2.

Recall that to = s91 and t3 = so2. The equalities corresponding to (i,i + 1)-th, i =

2,---,n — 1, entries compute the quantities Y,’s:
t S
(7.4) Yig=—220 =923 ... n—1.
S(i4-1) (i41)

Finally the equality corresponding to the (n,n + 1)-th entry is given by (7.2)) which is
already implemented in the definition of T. All the rest are trivial equalities 0 = 0. We
conclude the statement of Theorem [II] for the moduli space T.

Now, let us prove the main theorem for the moduli space T. First, note that we have
a map

(7.5) T — Mat (1) (1) (C), (t1,En42,5) = SQSY

and T is the fiber of this map over the point ®. We prove that the vector field R is tangent
to the fiber of the above map over ®. This follows from

(SQS™) = SQSY 4 SOST + SQST
= (YS — SA)QSY + S(AQ + QAT)SY 4 SQ(SHYH — A SH)
= YO+ oYY
= 0.

where & := dx(R) is the derivation of the function x along the vector field R in T. The last
equality follows from (7.4]) and Proposition 5.l It follows that if n is an even integer then

13



—_

Yi1=—Yni, 1=2,...,5 and if n is an odd integer then Y; 1 = =Y, 4, i =2,..., %5
and

[\3‘

t3s?
3n+3 3 n+1 n;l

Vi = (-1)"% en(n+2)"

2
+2 :
2t

In other words
(7.6) Y® + YY" = 0.

To prove the uniqueness, first notice that (74]) guaranties the uniqueness of Y;’s. Suppose
that there are two vector fields R and R such that Vrka = Ya and Vga = Ya. If we set

H:=R-— IA?, then
(7.7) Vha = 0.

We need to prove that H = 0, and to do this it is enough to verify that any integral curve
of H is a constant point. Assume that - is an integral curve of H given as follow

v:(C,0) = T; x = y(x).

Let’s denote by C := v(C,0) C T the trajectory of v in T . We know that the members
of T are in the form of the pairs (X, [a1, @9, ..., an41]), in which X is an n-fold mirror
variety and {aq,ag,..., 41} is a basis of Hiz (X) compatible with its Hodge filtration
and has constant intersection form matrix ®. Thus, we can parameterize v in such a
way that for any = € (C,0) the vector field H on C reduces to %, and so, we have
v(z) = (X (z),[a1(z), az(x),. .. ,ant1(x)]). We know that X (x) is a member of mirror
family that depends only on the parameter z, hence x holomorphically depends to z.
From this we obtain a holomorphic function f such that x = f(z). We now proceed to
prove that f is constant. Otherwise, by contradiction suppose that f’ # 0. Then we get

0
(7.8) va%al = 8—;V 8 Q.

Oz

Equation (1) gives that V 201 = 0, but since a1 = wy, it follows that the right hand side
of (Z.8)) is not zero, which is a . contradiction. Thus f is constant and X (z) does not depend
on the parameter z. Since X (x) = X does not depends on z, we can write the Taylor
series of a;(x), 1 =1,2,3,...,n+ 1, in x at some point xg as «a;(x) = Z](JE — x0) 0y 5,
where «; ;’s are elements in H (X) independent of x. In this way the action of V 2 on

o is just the usual derivation %. Again according to (7.7) we get V o 0; = 0, and we

conclude that a;’s also do not depend on z. Therefore, the image of v is a point. O

The modular vector field R for n =1, 2, 4, are given as follows:

1?1 = 301( 3citity — (tl — t3))
(tl(tl — t3) — 9cit3)
ts = —3t2t3

—~~
3
=)

S~—
ZY

il

~
(V]
|
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e n = 2: We know that dimTo = 3, hence the modular vector field Ry should have
three components, but to avoid the second root of £ that comes from (5.4) we add
one more variable t3 := 5. Thus we find Ry as follow:

t = —tits + t3

Z€2 = —32102 (t% + 1662t%)

ZL;3 = —%(1602152153 + t‘?{) ’
ty = —4dtaty

(710) R2 :

such that following equation holds among ¢;’s

1
7.11 2= ———(t1 —t).
(7.11) 3 1602(1 4)

e n = 4: Here, analogously of the case n = 2, to avoid the second root of #3 given in
(5.5), we add the variable tg := f3 and we find:

ty =tz — 1t

; 1296¢4t3tats —tSt3+12t6

lg = G

t7—te
; 1296c4t3ts5ts—3t8tat3+3tatsts
i3 = 6
t7—te

i— —1296c4t3t7ts—tFtata+totats
(7.12) Ri:{ ' o

i = 1296c4t3t2ts—4tStats —2t8tata 45t tatg+4tatste+2tatats

> 2(t9—te)

tg = —6tats

i = 1296c4t3 —t3

2592cs  _
: —3t8tots+3t7tsts+3tatsts
lg = 6
t7—te
where
(7.13) t2 = ! (5 — tg).
1296¢4
In this case the functions Yy and Y, are given by
9 5 1296¢4t4

(7.14) Yi=(—Y9)? = 8,

8 Enumerative properties of g-expansions

Here to find the g-expansion of the solution of R we follow the process given in [Mov16l
§ 5.2] for the case n = 3. Consider the vector field R as follow

t:l — fl(t17t27' .- 7td)
to = fa(t1,t2,...,tq
(8.1) 2= o )

ta = fa(t1,t2,. ., ta)
where for 1 < j <d,
1

f’eQ[t17t27"'7td7 ~
’ tn+2(tn+2 - t?+2)t

I,
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and f is the same as Theorem [[LIl Let us assume that

oo
.
tj:Zt],kq , J=12,...,d,
k=0

form a solution of R, where ¢;;’s are subject to be constants, and * = a - q- g_:; in which a

is an unknown constant. By comparing the coefficients of ¢,k > 2 in both sides of (&.I))
we find recursions for ¢;’s. By notation, set

pr = (tigstog, - tap), K=1,2,3,....

By comparing the coefficients of ¢° we get that pg is a singularity of R. The same for ¢!,
gives us some constrains on t; 1. Therefore, some of the coefficients ¢;, k = 0,1 are free
initial parameters of the recursion and we have to fix them by other means.

After finding the solutions, we proceed with the studying of the enumerative properties
of the g-expansions. Following we state the results in the cases n =1, 2, 4.

8.1 The case n=1
Considering the modular vector field Ry given in (T9), we find Sing(R1) = Sing; U Sings,

where
Singl : tg = tif — t3 = 0,
Sings : t3 = t% + 3cito = 0.

Thus we get

1
Po = (tl 0, ——t%O,O) c Singg.
’ 361 ’

The comparison of the coefficients of ¢! yields a = ét%,o and we find p; as follow:

If we choose ¢; = 373, tio= % and t3; = 1, then we find the solution given in (LIT]) for

Ri (to find this solution we use a Singular code).
In order to study the enumerative properties we first state the following lemma.

Lemma 8.1. The coefficient of ¢*, k = 0,1,2,3, ..., in 03(¢*")05(¢*), r,s € N, gives the
number of integer solutions of equation rx* + sy* = k, in which x and y are unknown
variables.

Proof. We know that 63(¢%) =1 + 2 Z‘;‘;l ¢'*, hence

o0 oo o0
(8.2) 93(q2r)93(q23) =14+ 2qu'2 + 2quj2 ) Z qri2+s]'2'
i=1 j=1 ij=1

If (4,0) or (0, j) is a solution, then (—i,0) or (0, —j), respectively, is another solution, and if
(4,7), with @ # 0, j # 0, is a solution, then (—i, ), (i,—j) and (—i, —j) are other solutions.
Therefore, on account of the above fact, the proof follows from equation (8.2)). O

16



Corollary 8.1. The coefficient of ¢°, k = 0,1,2,3,..., in 03(¢*)03(¢%) gives the number
of integer solutions of equation x> + 3y* = k.

For more information about the number of integer solutions of equation z? + 3y? = k,
one can see [Oei, A033716] and the references given there.

As we saw in (LII), ti(q) = (205(¢*)05(¢°) — 03(—¢?)05(—¢5)). If we denote by
t1(q) == D 1oy tl,qu, then in the following proposition we state enumerative property of

t1 k-
Proposition 8.1. Let k be a non-negative integer. If k = 4m for some m € Z, then the

equation x> + 3y% = k has 3t integer solutions, otherwise the equation has tyj integer
solutions.

Proof. Suppose that 05(q%)05(¢%) = S0 arg® and 03(—q?)03(—¢%) = >3 brd®. Fix a
non-negative integer k. If k = 4m for some m € Z, then a = by, otherwise ai = —by.
This fact together with Corollary B.1] complete the proof. O

Y. Martin in [Mar96] studied a more general class of n-quotients. By definition an
n-quotient is a function f(q) of the form

flo)=T]n"(d")
j=1

where t;’s are positive integers and r;’s are arbitrary integers. He gives an explicit finite
classification of modular forms of this type which is listed in [Mar96l Table I]. In (1T
we found

9/,.3

n°(q°)
7*(q)

which is the multiplicative n-quotient 3 presented by Y. Martin in Table I of [Mar96].

For more details and references about this 7-quotient the reader is referred to the Web

page [Oel, A106402].

Remark 8.1. If we define >_5° o arq® = ta(q) = $(Ea2(¢?) — 9E2(¢%)), then one can see
that 3 | ay for integers k > 1.

8.2 The case n =2
From (7.10) we get
Sing(Re) = {(t1, t2, t3,t4) | ta = t3 — trty = ] + 16¢at5 = 0},
hence we find
po = (t1,0, % kot1,0, i kot? o, 0) € Sing(Ry),

in which kg = \/% By comparing of the coefficients of ¢! we get a = —t1 oko and

Cc2

- 6 t31 1131 ; 64 tiots,l)
Py kot 1060 2 T 5 ky
2 4
where the equality t4; = —%tlviff’l follows from ((T.I1]). By considering co = —.é, ti0 = %
and t3 1 = —1, we find the solution given in (I.I2]) for Ry (here also we use a Singular code).

17



Ri[ti | 6|t | R [ 260G [ Dta(L) [ 10%(L)
@ 1131 -1 1 0 || ¢° 1/24 1/8 0
¢ 2|31 q* 1 -1 1
1o | -9 3 | ¢ 1 -5 -8
e 21159 | & 4 -4 12
| 2 |21 | 13 || ¢* 1 -13 64
@ | 0 | -18| 24 || ¢° 6 -6 -210
@ 0 |45 | 27 || ¢ 4 -20 -96
| 4 |24 50 || ¢ 8 -8 1016
@ | 0 |45 51 || ¢ 1 -29 -512
@ | 2 |69 |81 | ¢ 13 -13 -2043
@ 0 | -54 | 72 | ¢ 6 -30 1680
¢t | 0 | -36|120 | ¢ 12 -12 1092
g2 2 | 105 | 117 || ¢ 4 -52 768
g B | 4 | -42 | 170 || ¢ 14 -14 1382
g4l 0 | -72 | 150 || ¢ 8 -40 -8128
¢® | 0 | 90 | 216 | ¢'° 24 -24 -2520

Table 1: Coefficients of ¢¥, 0 < k < 15, in the g-expansion of the solutions of R; and Rs.

Remark 8.2. The demonstration of that (LII) and (LI2) are solutions of (L8) and
(T3A), respectively, can be done in a similar way as of Ramanugjan’s or Darbouz’s case, and
in order to keep the article short, we skip the proofs and just mention that we checked the
equality of first 100 coefficients of q-expansions, that we find by using of Singular, with the
coefficients of (quasi-)modular forms given in (LII) and (LI2). in Table [ we list the
first 16 coefficients.

The sum of positive odd divisors of a positive integer k, which is also known as odd
divisor function, was introduced by Glaisher [Gla07] in 1907. Let k be a positive integer.
We denote the sum of divisors, the sum of odd divisors and the sum of even divisors of k,
by o(k), 0°(k) and o¢(k), respectively, i.e.,

ok)=>d & o°(k)= Y d & o%(k)= ) d.

dk d|k dk

d is odd d is even

It is evident that o(k) = 0°(k) + 0¢(k). Also one can find that
0°(k) = o(k) — 20(k/2),

in which o(k/2) := 0if k is an odd integer. The generating function of odd divisor function
is given as follow

[e.e] . 1
> o%(k)g" = 51 (03(a%) +03(a%),
k=0
where by definition ¢°(0) = 1/24. On account of ([LI2]), one finds that

[e’¢) 10 q
E °(k)g" = —t1(-2).
o’(k)q 6 1(10)
k=0

Therefore we have the following result.

Proposition 8.2. t; generates the odd divisor function.

18



For more details about odd divisor function one can see [Oei, A000593].

By comparing the coefficients of to presented in Table [l with the integers sequence
given in the [Oel, A215947] we find that

3 (0°(2K) — o (K" = Vo) = S (Ba(?) + 2Bn(4")
k=0

where we define 0°(0) — 0¢(0) := 1/8 (we verified this for the first 100 coeficients). Thus
we get following proposition.

Proposition 8.3. to generates the function of difference between the sum of the odd
divisors and the sum of the even divisors of 2k, i.e., 0°(2k) — o¢(2k).

Another nice observation is about 10%4(5) = 7%(q)n®(¢?). The same as t3 in the case
of elliptic curve (see (8.3)), we see that t4 is the n-quotient #2 classified by Y. Martin in
Table I of [Mar96]. The interested reader can see |Oei, A002288] and the references given
there. It is worth to point out that this n-quotient appears in the work of Heekyoung
Hahn [Hah07]. She proved that 3 | usg, k = 0,1,2,..., where py is defined as follow

> g = n*(@n®(d?).
k=0

Also she found some partition congruences by using the notion of colored partitions (for
more details see [Hah07, §6]).

8.3 The case n =4
The set of the singularities of Ry contains the set of (¢1,%9,...,ts)’s that satisfy

(8.4) te =ty — tity = 6reqt? — t2 =ty — 6'eqt = t5 — 3t1ty = —t3 — tot; = 0.

Hence if we fix ¢; o and 2, then from (8.4) we get

1 1
= (t1.0, t2.0, t1.0t2.0; — —o—t1.0y — ——124, 0, ot
Po = (t1.0: f2.0:T10%2.0, = 35t1,0, =390, 0 —J5g5 too 36kg 0

in which ¢4 = k3. By comparing coefficients of ¢! we find

a = —6t270 N
R4 q() ql qz qd q4 q5 qb
a5t =5 1 4131 51734044 918902851011 19562918469120126 465569724397794578388
15 t2 — >tz 9 110703 | 2248267748 55181044614231 1498877559908208054 43378802521495632926652
Lits —=t7 11 | 115137 | 2265573692 54820079452449 1477052190387154386 42523861222488896739828
Srta -1 16 | 193131 | 3904146832 95619949713765 2594164605185043648 75018247757143686903060
Sts —Tia 45 | 469872 | 9215455916 | 222628516313454 | 5992746995783064438 | 172421735348939185816992
—6%tg 0 -1 1944 10066356 139857401664 2615615263199250 57453864811412558112
—Ltr - 7 32859 414746092 7395891627375 157811370338782458 3761184845284146266940
B | — o 7 54855 1034706148 24546181658391 653902684588247058 18687787944102314534628

Table 2: Coefficients of ¢*, 0 < k < 6, in the g-expansion of a solution of Ry.
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and

. (GOkot&l —162]€0t270t871 —66]€0t270t871 1615871 45t871 3888k/’Oti{),ot&l t&l " )
PV T a0, T T, 14T, 9%y 49 T 1512kgtigtag’
After fixing kg = —673, tio = %, too = —1 and tg1 = % we find the g-expansion of a

solution of Ry. We list the first seven coefficients of ¢*’s in Table @l As it was expected,
after multiplying ¢;’s by a constant, all the coefficients are integers.
If we compute the g-expansion of Y given in (7.I4)), then we find

1
gvf = 6 + 120960 ¢ + 4136832000 ¢2 + 148146924602880 > + 5420219848911544320 ¢*

+ 200623934537137119778560 ¢° + 7478994517395643259712737280 ¢°

+ 280135301818357004749298146851840 ¢” + 10528167289356385699173014219946393600 ¢°
+ 396658819202496234945300681212382224722560 ¢°

+ 14972930462574202465673643937107499992165427200 ¢*° + . . .

which is 4-point function discussed in [GMP95| Table 1, d = 4].
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