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Abstract. We compute the number of triangulations of a convex k-gon each of whose

sides is subdivided by r−1 points. We find explicit formulas and generating functions,

and we determine the asymptotic behaviour of these numbers as k and/or r tend

to infinity. We connect these results with the question of finding the planar set of

points in general position that has the minimum possible number of triangulations —

a well-known open problem from computational geometry.

1. Introduction

Let k and r be two natural numbers, k ≥ 3, r ≥ 1. Let SC(k, r) denote a convex k-gon

in the plane each of whose sides is subdivided by r − 1 points. (Thus, the whole con-

figuration consists of kr points.) In what follows, the exact measures are not essential:

without loss of generality, we may consider a regular k-gon with sides subdivided by

evenly spaced points. The k vertices of the original (“basic”) k-gon will be called cor-

ners, and they will be denoted (say, clockwise) by P0,0, P1,0, . . . , Pk−1,0 (with arithmetic

modulo k in the first index, so that Pk,0 = P0,0). The r − 1 points that subdivide the

segment Pi,0Pi+1,0 (oriented from Pi,0 to Pi+1,0) will be denoted by Pi,1, Pi,2, . . . , Pi,r−1

(we shall also occasionally write Pi,r for Pi+1,0). The subdivided segments Pi,0Pi+1,0 —

that is, the point sequences of the form Pi,0, Pi,1, Pi,2, . . . , Pi,r−1, Pi+1,0 — will be referred

to as strings. Thus, the boundary of SC(k, r) consists of k strings, and each corner be-

longs to two strings. The reader is referred to Figure 1 for an illustration. For brevity,

a convex polygon with subdivided edges (not all of them necessarily subdivided by the

same number of points) will be referred to as a subdivided convex polygon. A subdivided

convex polygon is balanced if (as described above) all its sides are subdivided by the

same number of points.

A triangulation of a finite planar point set S is a dissection of its convex hull by

non-crossing diagonals1 into triangles. We emphasize that maximal triangulations are

meant; in particular, no triangle can have another point of the set in the interior of one

of its sides. The set of triangulations of a point set S will be denoted by TR(S).

Key words and phrases. Geometric graphs, triangulations, generating functions, asymptotic analy-

sis, Chebyshev polynomials, saddle-point method.
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1 By a “diagonal” we mean a straight-line segment connecting two points of the set S.
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Figure 1. The subdivided convex polygon SC(6,4) and one of its triangulations.

Triangulations of (structures equivalent or related to) subdivided convex polygons

have appeared in earlier work. Hurtado and Noy [11] considered triangulations of

almost convex polygons, which turn out to be equivalent to subdivided convex polygons

according to our terminology. They dealt with the non-balanced case — that is, k-gons

whose sides are subdivided, but not necessarily into the same number of points. In

particular, Hurtado and Noy derived an inclusion-exclusion formula for the number of

triangulations of a subdivided convex k-gon whose sides are subdivided by a1, a2, . . . , ak
points, and they showed that this number is independent of the specific distribution of

the subdivisions among the sides of the basic k-gon. On the other hand, Bacher and

Mouton [6, 7] considered triangulations of more general nearly convex polygons defined

as infinitesimal perturbations of subdivided convex polygons. They derived a formula

for the number of triangulations of such polygons in terms of certain polynomials that

depend on the shape of chains.

The main purpose of the present paper is to present enumeration formulas and precise

asymptotic results for the number of triangulations of a subdivided convex polygon in

the balanced case, that is, where each side of the polygon is subdivided into the same

number of points. Our enumeration formulas are more compact than those of Hurtado

and Noy or of Bacher and Mouton when specialised to the balanced case. We shall as

well provide formulas for some non-balanced cases.

Let us denote the number of triangulations of SC(k, r) by tr(k, r). For r = 1 our

configuration is just a convex k-gon, and, thus, tr(k,1) = Ck−2, where Cn = 1
n+1

(
2n
n
)

is the nth Catalan number. It is easy to find tr(k, r) for small values of k and r by
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Figure 2. All triangulations of SC(3,2), SC(3,3) and SC(4,2).

inspection. For example, we have tr(3,2) = 4, tr(3,3) = 29 and tr(4,2) = 30; see Figure 2

(there, symmetries must also be taken into account; for each triangulation it is shown

how many different triangulations can be obtained from it under symmetries). Values

of tr(k, r) for 1 ≤ k ≤ 7, 1 ≤ r ≤ 6 are shown in Table 1; the meaning of these values

for k = 2 — the central binomial coefficients — will be explained in Section 2 (see the

remark after the proof of Theorem 4). The sequence (tr(k,2))k≥3 is OEIS/A086452,

while the sequence (tr(3, r))r≥1 is OEIS/A087809 [13].

In the next section, we derive our formulas for the numbers tr(k, r). They are given in

the form of double sums, see Theorem 4, thus answering an open question posed in [11].

These formulas come from a representation of tr(k, r) in terms of a complex contour

integral (see Proposition 3), when interpreted as a coefficient extraction formula. We use

this integral representation to prove in Section 3 that the “vertical” generating functions

∑k≥2 tr(k, r)x
k as well as the “horizontal” generating functions ∑r≥1 tr(k, r)x

r are all

algebraic. More precisely, we find explicit expressions for these generating functions in

terms of roots of certain (explicit) polynomials. We devote a separate section, Section 4,

to the special case k = 3, since in that case several alternative formulas that are more

attractive than the formulas in Theorem 4 are available. Moreover, in Section 5 we also

consider the non-balanced case of k = 3: we count triangulations of a triangle whose

sides are subdivided by a, b, and c points, respectively. The resulting compact formulas

are presented in Propositions 8 and 9. Then, in Section 6, we determine the asymptotic

behaviour of tr(k, r) as r and/or k tend to infinity, see Theorems 11 and 12. This is

achieved by transforming the contour integral into a complex integral along a line in

the complex plane parallel to the imaginary axis that passes through the saddle point

of the integrand. In the final Section 7, we connect our results with a well-known open

problem from computational geometry: the problem of determining a planar set of n

points in general position with the minimum number of triangulations. We show that
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r = 1 2 3 4 5 6

k = 2 1 1 2 6 20 70

3 1 4 29 229 1847 14974

4 2 30 604 12168 238848 4569624

5 5 250 13740 699310 33138675 1484701075

6 14 2236 332842 42660740 4872907670 510909185422

7 42 20979 8419334 2711857491 745727424435 182814912101920

Table 1. Values of tr(k, r) for 1 ≤ k ≤ 7, 1 ≤ r ≤ 6.

Figure 3. Injection ϕk,r from TR(SC(k, r)) to TR(C(k ⋅ r))

our results support a conjecture of Aichholzer, Hurtado and Noy [3] that this minimum

is attained by the so-called double circle.

2. A formula for tr(k, r)

In this section we derive two — very similar — double sum formulas for tr(k, r),

given in (2.7) and (2.8). Starting point for finding these double sum expressions is the

inclusion-exclusion formula (2.2), which is equivalent to that found in [11] and in [6, 7].

We include its derivation for the sake of completeness.

We start by “inflating” SC(k, r). That is, we replace its strings by slightly curved

circular arcs so that a set of kr points in convex position is obtained. We keep the

labels for these points. Denote this point set by C(k ⋅ r). It is easy to see that each

triangulation of SC(k, r) is transformed into a triangulation of C(k ⋅ r), see Figure 3.

More formally, this “inflation” defines a natural injection ϕ = ϕk,r from TR(SC(k, r))

to TR(C(k ⋅ r)): for each D ∈ TR(SC(k, r)), triangulation ϕ(D) ∈ TR(C(k ⋅ r)) uses the

diagonals with the same labels as D. Thus tr(k, r) is the size of the image of ϕ. We

say that a triangulation of C(k ⋅ r) is legal if it belongs to the image of ϕ — that is,

corresponds to a (unique) triangulation of SC(k, r). It is easy to see the following.

Observation 1. Let T be a triangulation of C(k ⋅ r). T is legal if and only if it uses

no diagonal whose endpoints belong to the same string (that is, to the set {Pi,0, Pi,1, . . . ,

Pi,r−1, Pi+1,0} for some i).
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(a) (b)

Figure 4. Forbidden (a) and essentially forbidden (b) diagonals of C(4 ⋅ 4).

We call the diagonals mentioned in Observation 1 forbidden, and we need to exclude

triangulations that contain them from the set of all the triangulations of C(k ⋅ r).

Notice, however, that, if a triangulation of C(k ⋅ r) uses some forbidden diagonal, then

it necessarily (also) uses a forbidden diagonal that connects two points at distance 2

along the boundary of C(k ⋅ r). Therefore, the characterization of legal triangulations

from Observation 1 can be simplified as follows.

Observation 2. Let T be a triangulation of C(k ⋅ r). T is legal if and only if it uses

no diagonal of the form Pi,jPi,j+2 with 0 ≤ i ≤ k − 1 and 0 ≤ j ≤ r − 2.

We call the diagonals mentioned in Observation 1 essentially forbidden. Figure 4

shows (a) forbidden and (b) essentially forbidden diagonals of C(4 ⋅ 4).

Thus, we need to exclude triangulations of C(k ⋅ r) that use essentially forbidden

diagonals. The total number of essentially forbidden diagonals is k(r − 1), but the

neighbouring essentially forbidden diagonals (that is, Pi,jPi,j+2 and Pi,j+1Pi,j+3 for some

i and j with 0 ≤ i ≤ k − 1 and 0 ≤ j ≤ r − 3) cannot coexist in the same triangulation of

C(k ⋅ r). Thus, the number of possible choices of ` essentially forbidden diagonals from

the same string, where 0 ≤ ` ≤ ⌊r/2⌋, equals the number of `-subsets of {1,2, . . . , r −

1} that do not contain adjacent numbers. This is a simple exercise in elementary

combinatorics, and the answer is (
r−`
`
). Therefore, the number of ways to choose m

pairwise non-crossing essentially forbidden diagonals in C(k ⋅ r) is

ak,r,m ∶= [xm]
⎛

⎝

⌊r/2⌋

∑
`=0

(
r − `

`
)x`

⎞

⎠

k

,

where [xm]f(x) denotes the coefficient of xm in the polynomial of formal power series

f(x).

Once m essentially forbidden diagonals of C(k ⋅ r) are chosen, we are left with a

convex (kr−m)-gon to be triangulated. Therefore, the number of illegal triangulations

that use at least m essentially forbidden diagonals is ak,r,mCkr−m−2. At this point we

can apply the inclusion-exclusion principle and obtain

tr(k, r) =
⌊r/2⌋k

∑
m=0

(−1)m ak,r,mCkr−m−2. (2.1)
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Next, we observe that

⌊r/2⌋

∑
`=0

(
r − `

`
)(−x)` = xr/2Ur (

1

2
√
x
) ,

where Ur(x) is the rth Chebyshev polynomial of the second kind. Thus,

(−1)m ak,r,m = [xm] (xr/2Ur (
1

2
√
x
))

k

,

and (2.1) can be rewritten as

tr(k, r) = [xrk−2]
⎛

⎝
(xr/2Ur (

1

2
√
x
))

k

C(x)
⎞

⎠
, (2.2)

where

C(x) =
1 −

√
1 − 4x

2x
is the generating function for Catalan numbers. Since an explicit form of Ur(x) is

Ur(x) =
(x +

√
x2 − 1)

r+1
− (x −

√
x2 − 1)

r+1

2
√
x2 − 1

,

it follows that

tr(k, r) = [xrk−2] (
1

2(r+1)k(1 − 4x)k/2

⋅((1 +
√

1 − 4x)
r+1

− (1 −
√

1 − 4x)
r+1

)
k 1 −

√
1 − 4x

2x
) .

Using Cauchy’s integral formula, we may write this expression in terms of a complex

contour integral, namely as

tr(k, r) =
1

2πi ∫C

dx

2(r+1)k+1xrk(1 − 4x)k/2

⋅ ((1 +
√

1 − 4x)
r+1

− (1 −
√

1 − 4x)
r+1

)
k

(1 −
√

1 − 4x) , (2.3)

where C is a small contour encircling the origin once in positive direction. Next we

perform the substitution x = t(1− t), in which case dx = (1−2t)dt. This leads us to the

following integral representation of our numbers tr(k, r).

Proposition 3. For all positive integers k and r with rk ≥ 3, we have

tr(k, r) = −
1

4πi ∫C

dt

trk(1 − t)rk(1 − 2t)k−2
((1 − t)

r+1
− tr+1)

k
, (2.4)

where C is a contour close to 0 which encircles 0 once in positive direction.
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Proof. Carrying out the above described substitution in (2.3), we arrive at

tr(k, r) =
1

2πi ∫C′
(1 − 2t)dt

trk−1(1 − t)rk(1 − 2t)k
((1 − t)

r+1
− tr+1)

k
, (2.5)

where C′ is a(nother) contour close to the origin encircling the origin once in positive

direction. In order to obtain the more symmetric form (with respect to the substitution

t → 1 − t) in (2.4), we blow up the contour C′ so that it is sent to infinity. While doing

this, we must pass over the pole t = 1 of the integrand. (The point t = 1/2 is a removable

singularity of the integrand.) This must be compensated by taking the residue at t = 1

into account. The integrand is of the order O(t−rk+2) as ∣t∣→∞, and even of the order

O(t−rk+1) if r is odd. Together, this means that the integrand is of the order O(t−2) as

∣t∣ →∞ for rk ≥ 3. Hence, the integral along the contour near infinity vanishes. Thus,

we obtain

tr(k, r) = −Rest=1
1

trk−1(1 − t)rk(1 − 2t)k−1
((1 − t)

r+1
− tr+1)

k

= −
1

2πi ∫C

dt

(1 + t)rk−1(−t)rk(−1 − 2t)k−1
((−t)

r+1
− (1 + t)r+1)

k
, (2.6)

where C is a contour close to 0, which encircles 0 once in positive direction. We have

thus obtained two (slightly) different expressions for tr(k, r), namely (2.5) and (2.6).

Thus, tr(k, r) is also equal to their arithmetic mean. If this is worked out, after having

substituted −t for t in (2.6), one arrives at (2.4). �

We are now in the position to derive explicit formulas for tr(k, r) in terms of binomial

double sums.

Theorem 4. For all positive integers k and r with rk ≥ 3, we have

tr(k, r) =
k

∑
j=0

rk−(r+1)j−2

∑
`=0

(−1)j 2` (
k

j
)(
k − 2 + `

`
)(

(r − 1)k − ` − 3

rk − (r + 1)j − ` − 2
) (2.7)

=
k

∑
j=0

rk−(r+1)j−1

∑
`=0

(−1)j+1 2`−1 (
k

j
)(
k − 3 + `

`
)(

(r − 1)k − ` − 2

rk − (r + 1)j − ` − 1
). (2.8)

Proof. By Cauchy’s integral formula, Equation (2.5) can also be read as

tr(k, r) = [trk−2]
1

(1 − t)rk(1 − 2t)k−1
((1 − t)

r+1
− tr+1)

k
.

If we now expand ((1 − t)
r+1

− tr+1)
k

using the binomial theorem, and subsequently do

the same for powers of 1 − t and of 1 − 2t, then we are led to (2.7).

If the same is done starting from (2.4), then the formula in (2.8) is obtained. �

Remark. If we choose k = 2 in (2.8), then the only term which does not vanish is the one

with j = 1 and ` = 0. This term is (
2r−4
r−2

), a central binomial coefficient. If we interpret

tr(2, r) (consistently with the case k ≥ 3) as the number of triangulations of C(2 ⋅r) that
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do not use (essentially) forbidden diagonals, then it is easy to prove that this number

is indeed (
2r−4
r−2

). Indeed, one can construct a bijection between such triangulations and

balanced sequences over {a, b} using the same idea as in the proof of Theorem 8(1)

below. See Figure 5 which illustrates this bijection for r = 4.

a a

b b

aabb abab abba baab baba bbaa

Figure 5. Illustration of the fact tr(2, r) = (
2r−4
r−2

).

3. Generating functions

Starting from the integral representation (2.4), we now show that “horizontal” and

“vertical” generating functions for the numbers tr(k, r) are algebraic.

Theorem 5. For fixed r ≥ 2, we have

∑
k≥1

tr(k, r)xk = −
1

2

r

∑
i=1

ti(x)r(1 − ti(x))r(1 − 2ti(x))2

( ddtPr)(x; ti(x))
, (3.1)

where the ti(x), i = 1,2, . . . , r, are the “small” zeroes of the polynomial2

Pr(x; t) = tr(1 − t)r − x ((1 − t)
r+1

− tr+1) (1 − 2t)−1,

that is, those zeroes t(x) for which limx→0 t(x) = 0.

Proof. It should be noted that the right-hand side of (2.4) vanishes for k = 0. Hence,

multiplication of both sides of (2.4) by xk and subsequent summation of both sides over

k = 0,1, . . . by means of the summation formula for geometric series yield

∑
k≥1

tr(k, r)xk = −
1

4πi ∫C

(1 − 2t)2 dt

1 − x ((1 − t)
r+1

− tr+1) t−r(1 − t)−r(1 − 2t)−1

= −
1

4πi ∫C

tr(1 − t)r(1 − 2t)2

tr(1 − t)r − x ((1 − t)
r+1

− tr+1) (1 − 2t)−1
dt, (3.2)

provided

∣x∣ < ∣
tr(1 − t)r(1 − 2t)

(1 − t)
r+1

− tr+1
∣

for all t along the contour C. By the residue theorem, this integral equals the sum of

the residues at poles of the integrand inside C. The poles are the “small” zeroes of

the denominator polynomial Pr(x; t). By general theory, the zeroes ti(x) of Pr(x; t),

2 Pr(x; t) is indeed a polynomial in t since 1 − 2t is a polynomial divisor of (1 − t)r+1 − tr+1.
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i = 1,2, . . . ,2r, can be written in terms of Puiseux series in x. In order to identify the

“small” zeroes, we write the equation Pr(x; t) = 0 in the form

tr(1 − t)r(1 − 2t)

(1 − t)
r+1

− tr+1
= x.

Taking the rth root, we obtain

t(1 − t)(1 − 2t)1/r

((1 − t)
r+1

− tr+1)
1/r

= ωirx
1/r, i = 1,2, . . . , r,

where ωr = e2iπ/r is a primitive rth root of unity. It is easy to see that there exists a

unique power series solution t(X) to the equation

t(1 − t)(1 − 2t)1/r

((1 − t)
r+1

− tr+1)
1/r

=X.

We thus obtain the “small” zeroes of Pr(x; t) as ti(x) = t(ωirx
1/r), i = 1,2, . . . , r. Because

of the relation Pr(x; 1 − t) = Pr(x; t), the other zeroes of Pr(x; t) are 1 − ti(x), i =

1,2, . . . , r, which are not “small”. The ti(x) for i = 1,2, . . . , r are hence all “small”

zeroes.

In view of the above considerations, from (3.2) we get

∑
k≥1

tr(k, r)xk = −
1

4πi ∫C

tr(1 − t)r(1 − 2t)2

Pr(x; t)
dt

= −
1

2

r

∑
i=1

Rest=ti(x)
tr(1 − t)r(1 − 2t)2

Pr(x; t)

= −
1

2

r

∑
i=1

ti(x)r(1 − ti(x))r(1 − 2ti(x))2

( ddtPr)(x; ti(x))
,

as desired. �

We illustrate this theorem by considering the case where r = 2. In this case, the

polynomial Pr(x; t) becomes

P2(x; t) = t2(1 − t)2 − x(t2 − t + 1).

The zeroes of this polynomial are

ti(x) =
1

2
(1 ±

√

1 + 2x ± 2
√
x + 4

√
x) , i = 1,2,3,4.

The small zeroes are

t1(x) =
1

2
(1 −

√

1 + 2x − 2
√
x + 4

√
x) and t2(x) =

1

2
(1 −

√

1 + 2x + 2
√
x + 4

√
x) .

If all this is used in (3.1), then we obtain

∑
k≥1

tr(k,2)xk =
1

8

√
x

x + 4
(

√

1 + 2x + 2
√
x(x + 4) (

√
x +

√
x + 4)

2
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−

√

1 + 2x − 2
√
x(x + 4) (

√
x −

√
x + 4)

2
)

after some simplification.

Theorem 6. For fixed k ≥ 2, we have

∑
r≥1

tr(k, r)xr =
1

2

k

∑
j=0

(−1)j(
k

j
)

k−j

∑
i=1

tj+1
i,j (x)(1 − ti,j(x))k−j+1

(1 − 2ti,j(x))k−2 (k − j − kti,j(x))
, (3.3)

where the ti,j(x), i = 1,2, . . . , k − j, are the “small” zeroes of the polynomial

Qj,k(x; t) = tk−j(1 − t)j − x,

j = 1,2, . . . , k, that is, those zeroes t(x) for which limx→0 t(x) = 0.

Proof. We multiply both sides of (2.4) by xr and then sum both sides over r = 0,1, . . . .

Subsequently, we use the binomial theorem to expand ((1 − t)r+1 − tr+1)
k

and evaluate

the resulting sums over r by means of the summation formula for geometric series.

Taking into account that the right-hand side of (2.4) vanishes also for r = 0, this leads

us to

∞

∑
r=1

tr(k, r)xr = −
1

4πi ∫C

dt

(1 − 2t)k−2

k

∑
j=0

(−1)j(
k

j
)tj(1 − t)k−j

1

1 − xt−(k−j)(1 − t)−j

= −
1

4πi ∫C

tk(1 − t)k dt

(1 − 2t)k−2

k

∑
j=0

(−1)j(
k

j
)

1

tk−j(1 − t)j − x
. (3.4)

The remaining arguments are completely analogous to those of the proof of Theorem 5

and are therefore left to the reader. �

4. The case k = 3

The case of triangulations of a subdivided triangle, that is, the case where k = 3, is

particularly interesting from the point of view of exact enumeration formulas. By (2.8),

we know that

tr(3, r) = −
3r−1

∑
`=0

2`−1 (
3r − ` − 5

3r − ` − 1
) + 3

2r−2

∑
`=0

2`−1 (
3r − ` − 5

2r − ` − 2
) − 3

r−3

∑
`=0

2`−1 (
3r − ` − 5

r − ` − 3
). (4.1)

A simpler formula can be obtained if one reads coefficients from the right-hand side of

(2.4) in a way that differs from the one done in the proof of Theorem 4. Namely, we

write

tr(k, r) = −
1

4πi ∫C

dt

(1 − 2t)
(t−3r(1 − t)3 − 3t−2r+1(1 − t)−r+2 + 3t−r+2(1 − t)−2r+1)

= −
1

4πi ∫C

dt

(1 − 2t)
t−3r(1 − t)3 +

3

4πi ∫C

dt

(1 − 2t)
(t−2r+1(1 − t)−r+2 − t−r+2(1 − t)−2r+1)

= −
1

4πi ∫C

dt

(1 − 2t)
t−3r(1 − t)3 +

3

4πi ∫C

r

∑
j=0

t−2r+1+j(1 − t)−r+1−j dt.
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The second integral can again be interpreted as a coefficient extraction formula. In the

first integral, we blow up C so that it tends to the circle at infinity. While doing this,

we pass over the pole at t = 1/2. Hence, the residue at this point must be taken into

account. The integral along the circle at infinity vanishes since the integrand is of the

order O(t−2) as ∣t∣ → ∞. If this is taken into account, then we obtain the alternative

formula

tr(3, r) = −23r−5 +
3

2

r

∑
j=0

(
3r − 4

2r − 2 − j
) = −23r−5 +

3

2

r

∑
j=0

(
3r − 4

r − 2 + j
). (4.2)

Making use of the symmetry of binomial coefficients and of the binomial theorem, it is

a simple matter to verify that the above is equivalent to

tr(3, r) = 23r−4 − 3
r−3

∑
j=0

(
3r − 4

j
). (4.3)

We entered the sequence (tr(3, r))r≥1 into the On-line Encyclopedia of Integer Se-

quences [13]. This produced the hit OEIS/A087809, which in particular said that

(according to [13] a conjecture of Benoit Cloitre) another (elegant) formula must be

tr(3, r) = ∑
i,j,k≥0

(
r − 1

i + j
)(
r − 1

j + k
)(
r − 1

i + k
). (4.4)

We prove this conjecture, in a more general context, in the next section; see Theorem 9.

There is yet another (substantially) different formula for tr(3, r). By computer ex-

periments, utilizing the guessing features of Maple, we were led to conjecture that

tr(3, r + 2) = 3(
3r + 2

r
) +

r

∑
j=0

5j + 1

2j + 1
(
3j

j
)8r−j. (4.5)

This formula can be established in the following way. The (already established) formula

(4.3) for tr(3, r) satisfies the recurrence

tr(3, r + 1) − 8tr(3, r) =
3 (5r2 − 19r + 6) (3r − 4)!

(r − 2)! (2r)!
. (4.6)

This is easy to see by applying the relation

(
3r − 1

j
) = (

3r − 4

j
) + 3(

3r − 4

j − 1
) + 3(

3r − 4

j − 2
) + (

3r − 4

j − 3
)

to the binomial coefficient appearing in the definition of tr(3, r + 1) (or by entering the

sum in (4.3) into the Gosper–Zeilberger algorithm; cf. [14]). On the other hand, it is

routine to verify that the expression in (4.5) (with r replaced by r−2) satisfies the same

recurrence. Comparison of an initial value then completes the proof of (4.5).

Finally, our results also enable us to establish another conjecture reported in Entry

OEIS/A087809 of [13], namely an expression for the generating function of the numbers

tr(3, r) that is more compact than the expression produced by Theorem 6 for k = 3.

According to [13], this expression was found by Mark van Hoeij (presumably) by using
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his computer algebra tools. It reads

∑
r≥1

tr(3, r − 1)xr =
10g3(x) − 17g2(x) + 7g(x) − 1

(1 − 3g(x))(2g(x) − 1)(4g2(x) − 6g(x) + 1)
, (4.7)

where g(x)(1 − g(x))2 = x. Indeed, to see this, we first observe that

(2g(x) − 1)(4g2(x) − 6g(x) + 1) = 8g(x)(1 − g(x))2 − 1 = 8x − 1.

If we use this in (4.7), then we see that van Hoeij’s claim is

tr(3, r + 1) = [xr]
1 − 7g(x) + 17g2(x) − 10g3(x)

(1 − 3g(x))(1 − 8x)

=
∞

∑
j=0

[xr−j]8j
1 − 7g(x) + 17g2(x) − 10g3(x)

(1 − 3g(x))
. (4.8)

The coefficient of xr−j on the right-hand side is conveniently computed using the second

form of Lagrange inversion (see [12, Eq. (1.2)]). We obtain

[xn]
1 − 7g(x) + 17g2(x) − 10g3(x)

(1 − 3g(x))

= [x−1]
1 − 7x + 17x2 − 10x3

(1 − 3x)
(x(1 − x)2)

−n−1 d

dx
(x(1 − x)2)

= [xn](1 − 7x + 17x2 − 10x3) (1 − x)−2n−1

This is now substituted on the right-hand side of (4.8). It yields

∞

∑
j=0

8j(
3(r − j)

r − j
) − 7

∞

∑
j=0

8j(
3(r − j) − 1

r − j − 1
) + 17

∞

∑
j=0

8j(
3(r − j) − 2

r − j − 2
) − 10

∞

∑
j=0

8j(
3(r − j) − 3

r − j − 3
)

=
r

∑
j=0

8r−j(
3j

j
) − 7

r

∑
j=0

8r−j(
3j − 1

j − 1
) + 17

r

∑
j=0

8r−j(
3j − 2

j − 2
) − 10

r

∑
j=0

8r−j(
3j − 3

j − 3
).

In the first sum, we shift the index by replacing j by j − 1. Thus, we obtain

(
3r

r
) +

r

∑
j=0

8r−j (8(
3j − 3

j − 1
) − 7(

3j − 1

j − 1
) + 17(

3j − 2

j − 2
) − 10(

3j − 3

j − 3
))

= (
3r

r
) +

r

∑
j=1

8r−j
5j − 4

2j − 1
(
3j − 3

j − 1
)

= (
3r

r
) +

r−1

∑
j=0

8r−1−j 5j + 1

2j + 1
(
3j

j
).

By (4.5), this expression equals tr(3, r + 1), which establishes van Hoeij’s guess.
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5. The case k = 3, non-balanced version

In this section, we generalize two formulas for tr(3, r) that we obtained in Section 4

to the non-balanced case. The proofs use quite elementary tools and shed more light on

the structure of subdivided triangles. More precisely, we prove a generalization of (4.4)

by considering a trivariate generating function and subsequently performing coefficient

extraction, and a generalization of (4.3) by partitioning a triangulation of a subdivided

triangle into structural blocks.

First we introduce some notation. Let ∆(a, b, c) be the triangle ABC whose sides are

subdivided as follows: the side BC is subdivided by a points, the side CA by b points,

and the side AB by c points.

Let T be a triangulation of ∆(a, b, c). An ear is a triangle of T that contains a

corner of ABC. For example, the triangulation in Figure 6(a) has ears in all three

corners (marked in grey colour), while the triangulation in Figure 6(b) has ears in the

corners A and B (again marked in grey colour), but none in C. An ear diagonal is

the side of an ear that lies in the interior of ABC. A central triangle is a triangle

of T whose vertices are interior points of different sides of ABC. For example, the

triangulation in Figure 6(a) contains a central triangle (namely the green triangle),

while the triangulation in Figure 6(b) is one without central triangle. A regular triangle

is a triangle of T which is neither an ear nor a central triangle. A corner-side diagonal

is a diagonal of T one of whose endpoints is a corner of ABC and the other an interior

point of the opposite side. Examples of corner-side diagonals are the red diagonals in

the triangulation in Figure 6(b). On the other hand, the triangulation in Figure 6(a)

does not contain any corner-side diagonal.

It is easy to observe the following facts.

Observation 7. Triangulations of ∆(a, b, c) have the following properties:

(1) Each regular triangle shares exactly one edge with a side of ABC.

(2) Any triangulation of ∆(a, b, c) has corner-side diagonals emanating from at most

one corner.

(3) Any triangulation of ∆(a, b, c) has at most one central triangle.

More precisely: assume (a, b, c) ≠ (0,0,0), and let T be a triangulation of ∆(a, b, c).

Then either T has one central triangle, three ears, and no corner-side diagonal, or T

has no central triangle, two ears, and at least one corner-side diagonal emanating from

the remaining corner. Triangulations of the former kind will be called T-triangulations

(see Figure 6(a) for an example), and triangulations of the latter kind will be called

D-triangulations (see Figure 6(b) for an example). Moreover, a DA-triangulation is a

(D-)triangulation that contains a corner-side diagonal one of whose endpoints is A, and

DB- and DC-triangulations are similarly defined. The triangulation in Figure 6(b) is a

DC-triangulation.

Denote the sets of T-, D-, DA-, DB-, and DC-triangulations of ∆(a, b, c)

by TRT(∆(a, b, c)), TRD(∆(a, b, c)), TRDA
(∆(a, b, c)), TRDB

(∆(a, b, c)), and
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B

C

A B

C

A

(a) (b)

Figure 6. Two triangulations of ∆(3,4,6): (a) a T-triangulation; (b) a

DC-triangulation.

TRDC
(∆(a, b, c)), respectively. Similarly, denote their cardinalities by tr with appropri-

ate specification: trT(∆(a, b, c)), etc.

The theorem below summarizes our counting formulas for the various classes of tri-

angulations that we just defined. In particular, it provides the promised generalization

of (4.3) in (5.3).

Theorem 8. For any non-negative integers a, b, c not all equal to zero,

(1) the number of D-triangulations of ∆(a, b, c) is

trD(∆(a, b, c)) = (
a + b + c − 1

a − 1
) + (

a + b + c − 1

b − 1
) + (

a + b + c − 1

c − 1
); (5.1)

(2) the number of T-triangulations of ∆(a, b, c) is

trT(∆(a, b, c)) = 2a+b+c−1−
a−1

∑
`=0

(
a + b + c − 1

`
)−

b−1

∑
`=0

(
a + b + c − 1

`
)−

c−1

∑
`=0

(
a + b + c − 1

`
); (5.2)

(3) the total number of triangulations of (∆(a, b, c) is

tr(∆(a, b, c)) = 2a+b+c−1 −
a−2

∑
`=0

(
a + b + c − 1

`
) −

b−2

∑
`=0

(
a + b + c − 1

`
) −

c−2

∑
`=0

(
a + b + c − 1

`
). (5.3)

Proof. (1) We first show that

trDA
(∆(a, b, c)) = (

a + b + c − 1

a − 1
). (5.4)

In order to see that, consider T , a DA-triangulation of ∆(a, b, c). The triangles of

T can be linearly ordered as follows. Consider the directed segment CB, and shift it

slightly (“infinitesimally”) into the interior of ABC. The segment obtained in this way

intersects all the triangles of T and, thus, induces a linear order on them.

By Observation 7(1), each regular triangle of T shares exactly one edge with one of

the sides of ABC. We encode the regular triangles that share an edge with CB by 0,

and those that share an edge with CA or with AB by 1. Using the linear order that
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C

A

B

011010011101

0

1

1

0 0 0 0

1

1

1

1

1

Figure 7. Illustration for the proof of Theorem 8.1.

was described above, we obtain a {0,1}-sequence of length a+b+c−1, in which 0 occurs

a−1 times and 1 occurs b+c times. See Figure 7 for an illustration. It is easy to see that

this correspondence between DA-triangulations of ∆(a, b, c) and {0,1}-sequences with

a − 1 occurrences of 0 and b + c occurrences of 1 is bijective. (In particular, since b and

c are fixed, it is determined uniquely whether a triangle encoded by 1 shares an edge

with CA or with AB.) Since the number of such sequences is (
a+b+c−1
a−1

), we obtain (5.4).

Finally, due to symmetry, we get (5.1).

Remark. A special case of (5.4), the formula tr(∆(a, b,0)) = (
a+b
a
), was already men-

tioned in [11].

(2) Now we derive the formula (5.2) for the number of T-triangulations of ∆(a, b, c).

By definition and by Observation 7(3), any T-triangulation T of ∆(a, b, c) has a unique

central triangle. If we remove the central triangle from T , then T decomposes into

three triangulations: a triangulation of ∆(a2, b1,0), a triangulation of ∆(b2, c1,0), and

a triangulation of ∆(c2, a1,0), where a1 + a2 = a − 1, b1 + b2 = b − 1, c1 + c2 = c − 1.

Conversely, each (appropriately combined) triple of such triangulations generates a T-

triangulation of ∆(a, b, c). Since, as mentioned above, we have ∆(a, b,0) = (
a+b
a
), and

since 1
1−x−y is the bivariate generating function for the array ((

a+b
a
))
a,b≥0

, we conclude

that xyz
(1−x−y)(1−y−z)(1−z−x) is the trivariate generating function for (trT(∆(a, b, c)))a,b,c≥0.

To be precise, for each fixed triple (a, b, c), we have

trT(∆(a, b, c)) = [xaybzc]
xyz

(1 − x − y)(1 − y − z)(1 − z − x)
. (5.5)

In order to extract the coefficients, we ignore the factor xyz in the numerator for a

while. We have

[xaybzc]
1

(1 − x − y)(1 − y − z)(1 − z − x)
=

a

∑
i=0

b

∑
j=0

((
i + j

i
) ⋅

c

∑
k=0

(
b − j + k

b − j
)(
a − i + c − k

a − i
))

=
a

∑
i=0

b

∑
j=0

(
i + j

i
)(
a + b + c + 1 − i − j

a + b + 1 − i − j
)
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=
a

∑
i=0

b

∑
j=0

(
i + j

i
)(
a + b + c + 1 − i − j

c
). (5.6)

For the second equality we used the standard combinatorial identity

`

∑
i=0

(
m + i

m
)(
n + ` − i

n
) = (

m + n + ` + 1

m + n + 1
),

which is a special instance of Chu–Vandermonde summation. We may use it again in

order to evaluate the inner sum of the remaining double sum, for 0 ≤ j ≤ a + b + 1 − i

rather than 0 ≤ j ≤ b:

a+b+1−i

∑
j=0

(
i + j

i
)(
a + b + c + 1 − i − j

c
) = (

a + b + c + 2

c + 1 + i
). (5.7)

Now we continue simplifying (5.6). We use (5.7) and subtract the extra terms which

also have this form (up to an interchange of the summations over i and j). Writing

s = a + b + c + 2, we have

a

∑
i=0

b

∑
j=0

(
i + j

i
)(
a + b + c + 1 − i − j

c
)

=
a

∑
i=0

a+b+1−i

∑
j=0

(
i + j

i
)(
a + b + c + 1 − i − j

c
) −

a+b+1

∑
j=b+1

a+b+1−j

∑
i=0

(
i + j

i
)(
a + b + c + 1 − i − j

c
)

=
a

∑
i=0

(
s

c + 1 + i
) −

a+b+1

∑
j=b+1

(
s

c + 1 + j
) =

a+c+1

∑
`=c+1

(
s

`
) −

a+b+c+2

∑
`=b+c+2

(
s

`
) =

a+c+1

∑
`=c+1

(
s

`
) −

a

∑
`=0

(
s

`
)

=
s

∑
`=0

(
s

`
) −

a

∑
`=0

(
s

`
) −

c

∑
`=0

(
s

`
) −

s

∑
`=a+c+2

(
s

`
) = 2s −

a

∑
`=0

(
s

`
) −

b

∑
`=0

(
s

`
) −

c

∑
`=0

(
s

`
).

Taking into account the factor xyz in (5.5), we obtain (5.2).

(3) Finally, we obtain (5.3) by adding (5.1) and (5.2). �

Remarks. (1) For certain specific choices of parameters, formulas that can be further

simplified can be obtained. For example, we have trT(∆(a, b,1)) = (
a+b
a
) − 1. Recall

that tr(∆(a, b,0)) = (
a+b
a
). We leave it as an exercise for the reader to find a (simple)

“almost bijection” between TRT(∆(a, b,1)) and TR(∆(a, b,0)).

(2) Item (1) of Theorem 8 can also be proven in a way similar to our proof of Item (2)

— by considering a trivariate generating function and extracting coefficients. Doing this,

we obtain trDA
(∆(a, b, c)) = [xaybzc] xyz

(1−x)(1−x−y)(1−x−z) , and similarly for trDB
(∆(a, b, c))

and trDC
(∆(a, b, c)).

Next we prove the announced generalization of Formula (4.4) to the non-balanced

case.
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P2,1P2,2P2,s2 . . . . . .

. . .

P0,1

P0,s0 P1,1

P1,2

P1,s1

P1 = P1,0 = P0,s0+1

P2 = P2,0 = P1,s1+1P0 = P0,0 = P2,s2+1

. . .
. . .

. . .
P0,2

Figure 8. Illustration for the proof of Theorem 9: notation and defini-

tion of FT . The diagonals shown in blue and red belong to T ; the diagonal

shown by crosses does not belong to T . Hence, the blue diagonal belongs

to FT .

Theorem 9. For any non-negative integers a, b, c, we have

tr(∆(a, b, c)) = ∑
α,β,γ≥0

(
a

α + β
)(

b

β + γ
)(

c

γ + α
). (5.8)

Proof. We use a uniform notation similarly to the notation that we used for the balanced

case (see Figure 8). We denote the corners of the triangle by P0 = P0,0, P1 = P1,0,

P2 = P2,0 (say, clockwise), with arithmetic mod 3 in the first index. For each i ∈ {0,1,2},

the side PiPi+1 is subdivided by si points Pi,1, Pi,2, . . . , Pi,si (in the direction from Pi to

Pi+1). Moreover, we set Pi,si+1 = Pi+1. In this notation, Formula (5.8) reads

tr(∆(s0, s1, s2)) = ∑
α1,α2,α3≥0

(
s0

α0 + α1

)(
s1

α1 + α2

)(
s2

α2 + α3

). (5.9)

Let F be some (possibly empty) set of diagonals of ∆(s0, s1, s2) which connect in-

terior points of two sides of the basic triangle (that is, F does not contain corner-side

diagonals), and which are pairwise disjoint (that is, they are not only non-crossing but

also do not share endpoints). Such sets will be called fundamental sets (of diagonals

of ∆(s0, s1, s2)). Each diagonal in a fundamental set F can be uniquely represented

as Pi−1,`Pi,m for some i ∈ {0,1,2}, 1 ≤ ` ≤ si−1, 1 ≤ m ≤ si. We say that this diagonal

separates the corner Pi.

We say that a fundamental set F has type (α0, α1, α2) if, for i ∈ {0,1,2}, the number

of elements of F that separate the corner Pi is exactly αi. Notice that F is uniquely

determined by the set of the endpoints of its elements. Indeed, if, for i ∈ {0,1,2}, exactly

βi endpoints of the elements of F lie on PiPi+1, then the type of F is (α0, α1, α2), where

αi = (βi−1 +βi −βi+1)/2. Once we know the set of endpoints of the elements of F and its

type, the elements of F themselves can be identified at once. It follows that the number

of fundamental sets of type (α0, α1, α2) is (
s0

α0+α1
)(

s1
α1+α2

)(
s2

α2+α3
), and the total number

of fundamental sets is precisely the right-hand side of (5.9). Thus, in order to prove
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(a) (b) (c)

Figure 9. Rules for reconstructing T from F = FT . Blue diagonals are

the elements of F . Red diagonals are the elements of F ′. (a) Definition

of F ′. (b) Triangulation of a block bounded by two elements of F ′. (c)

Triangulation of a block bounded by three elements of F ′.

the claim, it suffices to find a bijection between the set of triangulations of ∆(s0, s1, s2)

and the set of its fundamental sets.

Let T be a triangulation of ∆(s0, s1, s2). We define

FT ∶= {
Pi−1,`Pi,m∶ i ∈ {0,1,2}, 1 ≤ ` ≤ si−1, 1 ≤m ≤ si;

Pi−1,`Pi,m ∈ T, Pi−1,`Pi,m+1 ∈ T, Pi−1,`Pi,m+2 /∈ T
} .

(Notice that, if m = si, then Pi−1,`Pi,m+1 is a corner-side diagonal, and the last condition,

Pi−1,`Pi,m+2 /∈ T , is satisfied automatically.) Figure 8 illustrates this definition: the

diagonal coloured blue satisfies the just described condition and, therefore, is an element

of TF .

It is easy to verify that FT is a fundamental set. Moreover, next we show that,

given a fundamental set F , there is a unique triangulation T such that FT = F . This

triangulation T can be reconstructed from F by applying the following procedure.

Given F , we define another set of diagonals (a modified fundamental set), by

F ′ = {Pi−1,`Pi,m+1∶ Pi−1,`Pi,m ∈ F}.

In addition, for each corner Pi such that F ′ contains no corner-side diagonal one of

whose endpoints is Pi, we add the ear diagonal Pi−1,si−1Pi,1 to F ′. See Figure 9(a): a

“generic” element of F is coloured blue, the corresponding element of F ′ is coloured

red; another diagonal is coloured red because it is an ear diagonal.

The elements of F ′ are not necessarily disjoint — they can share endpoints, — but

still they are non-crossing. Therefore they partition ∆(s0, s1, s2) into several parts that

we call blocks. The boundary of each block contains at most three elements of F ′ (in

fact, we have two or three ears whose boundaries contain exactly one element of F ′,

at most one block whose boundary contains three elements of F ′, and all other blocks

whose boundaries contain exactly two elements of F ′).

Then we complete F ′ to a triangulation of ∆(s0, s1, s2) by triangulating the blocks

according to the following rules:
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0

2 2

0

0 3

1

1 2

0

1 3

1

1 1

0

0 0

Figure 10. Reconstructing T from F = FT . Blue points are the end-

points of the elements of F . Red diagonals are the elements of F ′. The

numbers at the corners are α0, α1 and α2.

● Suppose B is a block whose boundary contains exactly two elements of F ′:

Pi−1,`′Pi,m and Pi−1,`Pi,m′ , where i ∈ {0,1,2}, 0 ≤ ` ≤ `′ ≤ si−1, 1 ≤m ≤m′ ≤ si + 1.

Then we add the diagonal Pi−1,`Pi,m (unless it belongs to F ′, which would happen

if we have ` = `′ or m =m′). At this point there is only one way to complete the

triangulation of B. See Figure 9(b).

● Suppose B is a block whose boundary contains three elements of F ′: Pi−1,`′Pi,m,

Pi,m′Pi+1,p, and Pi+1,p′Pi+1,`, where i ∈ {0,1,2}, 1 ≤ ` ≤ `′ ≤ si−1, 1 ≤ m ≤ m′ ≤ si,

1 ≤ p ≤ p′ ≤ si+1 Then we add three diagonals (or, more precisely: those of them

that do not belong to F ′) that form the triangle Pi−1,`Pi,mPi+1,p. At this point

there is only one way to complete the triangulation of B. See Figure 9(c).
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Once this is done for all blocks, we have a triangulation T of ∆(s0, s1, s2). It is routine

to verify that T contains all the elements of F , and that T is the unique triangulation

of ∆(s0, s1, s2) such that FT = F . See Figure 10 for some examples.

We established a bijection between the set of triangulations of ∆(s0, s1, s2) and the

set of its fundamental sets. As explained above, this completes the proof of the claim.

To summarize: while fundamental sets are clearly enumerated by the right-hand

side of (5.8), it is modified fundamental sets that describe a very natural structural

decomposition of triangulations into blocks. �

6. Asymptotics

Here, we determine the asymptotic behaviour of tr(k, r). Our starting point is another

integral representation of tr(k, r). It is motivated by the fact that the integrand in (2.4),

Ir,k(t) say, has one saddle point at t = 1/2 for large k and/or r, which is easily verified

by solving the saddle point equation d
dtIr,k(t) = 0 for large k and/or r.3 (The subsequent

arguments can however be followed without that observation.)

Proposition 10. For all positive integers k and r with rk ≥ 3, we have

tr(k, r) = −
2(r−2)k

π ∫

∞

−∞

du

(1 + 4u2)rk(iu)k−2
((1 + 2iu)

r+1

− (1 − 2iu)
r+1

)

k

. (6.1)

Proof. We start with the integral representation (2.4). We deform the contour C so that

it passes through the point t = 1/2. More precisely, we consider the family of contours

{t ∶R(t) = 1
2 and ∣I(t)∣ ≤ ρ} ∪ {t ∶ ∣t − 1

2 ∣ = ρ and R(t) ≤ 1
2
} , (6.2)

parametrized by positive real numbers ρ ≥ 1, which are supposed to be oriented in

positive direction. In other words, these contours consist of a vertical straight line

segment of length 2ρ whose midpoint is 1/2, and the left half-circle whose diameter is

this very segment. The integral over these contours still equals tr(k, r) since t = 1/2 is

a removable singularity of the integrand.

Now we let ρ → ∞. As we already observed in the proof of Proposition 3, the

integrand is of the order O(t−2) as ∣t∣ → ∞ under our assumptions. Consequently, the

integral over the circle segment of the contour (6.2) will tend to zero as ρ →∞. Thus,

the number tr(k, r) equals the integral over the straight line {t ∶ R(t) = 1/2}. If we set

t = 1
2 + iu in (2.4), then we obtain (6.1) after little rearrangement. �

3 Strictly speaking, the point t = 1/2 is not a saddle point of the function t→ ∣Ir,k(t)∣, since its value

at t = 1/2 vanishes, that is, Ir,k(1/2) = 0. However, this is “just” caused by the factor (1 − 2t)2 in the

numerator (the factor (1− 2t)k in the denominator cancels with ((1− t)r+1 − tr+1)
k

in the numerator).

If we would ignore the factor (1 − 2t)2, that is, if we would instead consider Ir,k(t)/(1 − 2t)2, then

t = 1/2 is a true saddle point. So, “morally,” the point t = 1/2 is a saddle point of t → ∣Ir,k(t)∣, in the

sense that the main contribution to the integral comes from a small environment around t = 1/2. The

“only” effect of the factor (1− 2t)2 is to lower the polynomial factor in the asymptotic approximation,

while the exponential growth is not affected.
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The integral representation in Proposition 10 now allows for a convenient asymptotic

analysis of tr(k, r). We distinguish between two scenarios: (1) the number k of corners

is fixed, while the number of subdivisions r tends to infinity; (2) k tends to infinity,

leaving it open whether r remains fixed or not.

Theorem 11. For fixed k ≥ 3, we have

tr(k, r) =
2(r−1)krk−3

π
(∫

∞

−∞

du

uk−2
sink(2u)) (1 + o(1)), as r →∞. (6.3)

Proof. We start with the integral representation (6.1), in which we make the substitution

u→ u/r. This leads to

tr(k, r) = −
2(r−2)k rk−3

π ∫

∞

−∞

du

(1 + 4u2

r2
)
rk

(iu)k−2
((1 + 2iu

r )
r+1

− (1 − 2iu
r )

r+1

)

k

.

Making use of dominated convergence, we may now compute the limit of the above

integral as r →∞,

lim
r→∞
∫

∞

−∞

du

(1 + 4u2

r2
)
rk

(iu)k−2
((1 + 2iu

r )
r+1

− (1 − 2iu
r )

r+1

)

k

= ∫

∞

−∞

du

(iu)k−2
(e2iu − e−2iu)

k

= −2k ∫
∞

−∞

du

uk−2
sink(2u).

The assertion of the theorem follows immediately. �

Remark. It is well-known that the integral in (6.3) can be evaluated for any spe-

cific k, and it equals some rational multiple of π. More precisely (cf. [10, 333.17]

or [9, 3.821.12]), the relations

∫

∞

0

sinλ(x)

xk
dx =

λ

k − 1 ∫
∞

0

sinλ−1(x) cos(x)

xk−1
dx, for λ > k − 1 > 0, (6.4)

=
λ(λ − 1)

(k − 1)(k − 2) ∫
∞

0

sinλ−2(x)

xk−2
dx −

λ2

(k − 1)(k − 2) ∫
∞

0

sinλ(x)

xk−2
dx,

for λ > k − 1 > 1, (6.5)

together with the “initial conditions” (cf. [10, 333.14, 333.15] or [9, 3.821.7, 3.832.15])

∫

∞

−∞

sin2k−1(x)

x
dx =

√
πΓ(k − 1

2)

Γ(k)
. (6.6)

and

∫

∞

−∞

sin2k−1(x) cos(x)

x
dx =

√
πΓ(k − 1

2)

2 Γ(k + 1)
, (6.7)

allow for the recursive computation of the integral in (6.3) for any specific k. (Maple

and Mathematica know about this.)
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Theorem 12. We have

tr(k, r) =
(2r(r + 1))

k

16
√
π(r(r + 5)/6)3/2k3/2

(1 + o(1)), as k →∞, (6.8)

where r may or may not stay fixed.

Proof. We start again with the integral representation (6.1). Here we do the substitution

u→ u/
√
kR, where R is short for r(r + 5)/6. Thereby we obtain

tr(k, r) =
22rk−(r+1)k

(kR)3/2

1

π ∫
∞

−∞

u2 du

(1 + 4u2

kR )rk(2iu/(kR)1/2)k

⋅ ((1 + 2iu
(kR)1/2)

r+1

− (1 − 2iu
(kR)1/2)

r+1

)

k

. (6.9)

Once again, by dominated convergence, we may approximate the above integral as

k →∞,

∫

∞

−∞

u2 du

(1 + 4u2

kR )rk(2iu/(kR)1/2)k
((1 + 2iu

(kR)1/2)
r+1

− (1 − 2iu
(kR)1/2)

r+1

)

k

= 2k (r + 1)k (∫
∞

−∞

u2 du

exp(4u2r/R)
exp(

r(r − 1)

6

(2iu)2

R
))(1 + o(1))

= 2k (r + 1)k (∫
∞

−∞
u2 e−4u2 du)(1 + o(1))

= 2k (r + 1)k
√
π

16
(1 + o(1)),

as k →∞. If this is substituted back in (6.9), one obtains (6.8). �

7. Generalizations of the double circle and their triangulations

The present research was initially motivated by the following open problem from

computational geometry: what is the minimum number of triangulations that a planar

set of n points in general position4 can have, and for which set(s) is this minimum

attained?

This is one instance of the research direction concerning the minimum and the max-

imum number of plane geometric non-crossing graphs of various kinds, with respect

to the number of points. One typically fixes some naturally defined class C of such

geometric graphs (for example, triangulations, spanning trees, perfect matchings, etc.),

and asks for the minimum or the maximum number of graphs from C that a planar

set of n points in general position (playing the role of the vertex set) can have, and

for a characterization of point set(s) on which these extremal values are attained. To

our knowledge, in all such cases no exact results concerning maximum were found

except for trivialities), but rather lower and upper bounds, usually with substantial

4 General position means that no three points lie on the same line.
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(a) (b)

Figure 11. (a) Double Circle of size 12. (b) A generalized configuration.

Unavoidable edges are shown in blue colour.

gaps (see [16] for a summary of some results of this type). In contrast, for many nat-

ural families of plane graphs, the minimum is attained for sets in convex position:

Aichholzer et al. [2] proved that this is the case for any class of acyclic graphs (thus,

for spanning trees, forests, perfect matchings, etc.5), as well as for the family of all

plane graphs, and that of all connected plane graphs. However, this is not the case for

triangulations: in [3], Aichholzer, Hurtado and Noy presented a configuration, which

they called double circle, and which has less triangulations than sets of the same size

(that is, with the same number of points) in convex position. Indeed, as was shown by

Santos and Seidel in [15], the double circle of size n has Θ∗(
√

12
n
) triangulations. It

was proven by exhaustive computations [4, 1] that, for n ≤ 15, (only) the double circle

of size n has the minimal number of triangulations over all point sets of size n in general

position. Therefore it was conjectured in [3] that (only) the double circle minimizes the

number of triangulations for any n. As for the lower bound, Aichholzer et al. recently

proved that, for all point sets of size n in general position, the number of triangulations

is Ω(2.63n) (the first result of this kind, Ω(2.33n), was proven in [3]).

Next we recall the definition of the double circle of size n, which we denote by

DCn. For the sake of simplicity, we restrict ourselves to even n. In this case, DCn

consists of n/2 points, denoted by P1, P2, . . . , Pn/2, in convex position; and n/2 points,

Q1,Q2, . . . ,Qn/2, such that for each i, 1 ≤ i ≤ n/2, Qi lies in the interior of the con-

vex hull of {P1, P2, . . . , Pn/2}, very (“infinitesimally”) close to the midpoint of PiPi+1
6.

Figure 11(a) shows DC12 and one of its triangulations.

Notice that each triangulation of DCn necessarily uses the edges QiPi and QiPi+1 for

each i, 1 ≤ i ≤ n/2, and, of course, all the edges that form the boundary of its convex

hull. Therefore we refer to them as unavoidable edges. In Figure 11, unavoidable

edges are shown in blue colour. This observation leads to a simple bijection between

5 For some of these families it was proven earlier by other authors, but Aichholzer et al. gave a

unified proof.
6 By convention, Pn/2+1 = P1.
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TR(DCn) and TR(SC(n/2,2)): given a triangulation of DCn, move all the points Qi

“outwards”, until they lie on the segments PiPi+1. Thus, from this point of view,

triangulations of DCn are equivalent to triangulations of SC(n/2,2), and the above cited

bound tr(DCn) = Θ∗(
√

12
n
) is a special case of our Theorem 12 for r = 2, k = n/2→∞.

Our goal was to investigate whether the number of triangulations can decrease if

one inserts more points between the corners. A similar idea, applied to the so-called

double chain, led to an improvement of the lower bound on the maximum number of

triangulations [8] and of perfect matchings [5].

Let us define our construction precisely. For fixed k and r, we take SC(k, r) and

slightly pull the inner points of the strings into the convex hull so that, after this

transformation, they lie on circular arcs of sufficiently big radius. This radius is chosen

so that the orientation of triples of points which do not belong to the same string

is not changed. See Figure 11(b) for an illustration. We refer to this construction

as indented SC(k, r) and denote it by ISC(k, r). Notice that for r = 2 we have the

double circle: ISC(k,2) = DC(2k). Observe that the segments that connect consecutive

points of a string of ISC(k, r) are unavoidable for triangulations. Together with the

segments that form the boundary of the convex hull, they split the convex hull into

k+1 regions: k regions, each bounded by r+1 points in convex position, and one region

whose triangulations are essentially equivalent to triangulations of SC(k, r). Due to

this fact, the analysis of the number of triangulations of ISC(k, r) is now easy: we have

tr(ISC(k, r)) = tr(SC(k, r)) ⋅Ck
r−1. By our asymptotic result in Theorem 12, we see that

the exponential growth factor of the number of triangulations of SC(k, r) as k →∞ —

and thus the total number n = kr of points tends to infinity — is 2(r + 1)1/r.7 Hence

the growth factor for the number of triangulations of ISC(k, r) equals 2(r + 1)1/rC
1/r
r−1.

This expression is minimal for r = 2, that is, for the double circle. If, on the other hand,

we keep k fixed and let r tend to infinity — so that again the total number n = kr

of points tends to infinity — then similar reasoning using our asymptotic result in

Theorem 11 leads to the conclusion that the exponential growth factor of the number of

triangulations of ISC(k, r) is 8. Thus, somewhat disappointingly, the asymptotic count

of Θ∗(
√

12
n
) attained by DC(n) cannot be improved by using balanced generalizations

of the double circle, in whatever way n→∞.

Let us return to the case of fixed r and k → ∞. As stated above, the exponential

growth factor in this case is gr ∶= 2(r + 1)1/rC
1/r
r−1. As r → ∞, we have (r + 1)1/r ↘ 1

and C
1/r
r−1 ↗ 4, in both cases monotonically for r ≥ 1. Thus, the fact g2 < g1 can be

interpreted intuitively as follows: when we pass from r = 1 to r = 2, the former ex-

pression decreases, while the k regions in convex position are just triangles with the

unique (trivial) triangulation, and so there is no extra factor. On the other hand, for

r = 3 these k regions are convex quadrilaterals with two triangulations, and, as calcu-

lations above show, their “positive” contribution to the total number of triangulations

7 This result is also stated in [8]; however, the argument given there is non-rigorous since it relies

on [11, Theorem 3] which holds for fixed k rather than for k →∞.
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already dominates over the “negative” contribution of the central region. For r ≥ 3,

this tendency holds monotonically, and, thus, gr has its minimum at r = 2.

However, if one extends the expression gr for real values of r by using the Gamma

function in the definition of Catalan numbers (namely, Cn =
Γ(2n+1)

Γ(n+1)Γ(n+2)), one can

observe that gr has its minimum not at r = 2 but rather at r ≈ 1.4957. This may lead

to the idea that, perhaps, we may get less triangulations if we “mix” sides subdivided

by one point (corresponding to r = 2) and non-subdivided sides (corresponding to

r = 1). More precisely, let us consider a subdivided convex polygon in which s sides are

subdivided by one point, all other sides are not subdivided, and the total number of

points is N (where N ≥ 2s). We denote this partially subdivided polygon by C(N,s),

and its number of triangulations by tr∗(N,s). (Recall from the introduction that, by

[11], this number does not depend on the specific distribution of the subdivisions among

the sides of the polygon.)

Proceeding in analogy with the inclusion-exclusion argument in Section 2, we observe

that the number of ways to choose m pairwise non-crossing essentially forbidden diago-

nals in C(N,s) is (
s
m
). Once m essentially forbidden diagonals of C(N,s) are chosen, we

are left with a convex (N −m)-gon to be triangulated. Therefore, the number of illegal

triangulations that use at least m essentially forbidden diagonals is aN,s,mCN−m−2. We

apply the inclusion-exclusion principle to get

tr∗(N,s) =
s

∑
m=0

(−1)m aN,s,mCN−m−2 =
s

∑
m=0

(−1)m (
s

m
)CN−m−2.

Thus, the analogue of (2.3) in the current context reads

tr∗(N,s) =
1

2πi ∫C

dx

2xN
(1 − x)s (1 −

√
1 − 4x) , (7.1)

where C is a small contour encircling the origin once in positive direction. The substi-

tution x = t(1 − t), followed by the arguments used in the proof of Proposition 3, turns

this into

tr∗(N,s) = −
1

4πi ∫C

(1 − 2t)2 dt

tN(1 − t)N
(1 − t + t2)

s
. (7.2)

Deformation of the contour as described in the proof of Proposition 10 then leads us

to the following integral representation of tr∗(N,s).

Proposition 13. For all positive integers N and s with N ≥ 3 and N ≥ 2s, we have

tr∗(N,s) =
4N−s 3s

π ∫

∞

−∞

u2 du

(1 + 4u2)N
(1 − 4

3u
2)
s
. (7.3)

Finally, following the proof of Theorem 12, we obtain the following asymptotic es-

timate for tr∗(N,s), where both N and s tend to infinity under the condition of ap-

proaching a fixed ratio.

Theorem 14. Let α be a real number with 0 ≤ α ≤ 1/2. Then we have

tr∗(N,s) =
(41−α3α)

N

16
√
π(1 + α

3 )
3/2N3/2

(1 + o(1)), as N,s→∞ subject to s/N → α. (7.4)
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As is obvious from this asymptotic formula, the minimal exponential growth is at-

tained for the maximal possible α, that is, for α = 1/2. The corresponding polygon is

again the double circle.

In summary, our results provide further support for the conjecture of Aichholzer,

Hurtado and Noy that, asymptotically, the double circle yields the minimal number of

triangulations of n points in general position.
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