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PARTITIONS WITH FIXED LARGEST HOOK LENGTH

SHISHUO FU AND DAZHAO TANG

Abstract. Motivated by a recent paper of Straub, we study the distribution of integer
partitions according to the length of their largest hook, instead of the usual statistic,
namely the size of the partitions. We refine Straub’s analogue of Euler’s Odd-Distinct
partition theorem, derive a generalization in the spirit of Alder’s conjecture, as well as a
curious analogue of the first Rogers-Ramanujan identity. Moreover, we obtain a partition
theorem that is the counterpart of Euler’s pentagonal number theory in this setting, and
connect it with the Rogers-Fine identity. We concludes with some congruence properties.

1. Introduction

A partition [6] π of an integer n ∈ N is a finite sequence of positive integers (π1, π2, . . . , πr)
such that π1 ≥ π2 ≥ · · · ≥ πr ≥ 1 and π1+ π2 + · · ·+ πr = n. When n = 0, we consider the
empty partition as the only partition of 0, and for the most part of this paper, we choose
to neglect the empty partition. By convention [6], the integers π1, π2, · · · , πr are called the
parts of π, with π1 being its largest part, ℓ(π) := r the number of parts and |π| := n the
size of π. Such a partition π is frequently represented by its Young diagram (or Ferrers

graph) [6, Chapter 1.3], which we take to be a left-justified array of square boxes with r rows
such that the i-th row consists of πi boxes (see Figure 1). This graphical representation of
partitions naturally gives rise to further statistics defined on each partition. A notable one
is the notion of hook length. Each box ν is assigned a hook, which is composed of the box ν
itself as well as boxes to the right of ν (which is called the arm, with its length denoted as
a(ν)) and below ν (which is called the leg, with its length denoted as l(ν)). The hook length

of ν is the number of boxes the hook consists of, i.e., h(ν) = a(ν) + l(ν) + 1. In particular,
the largest hook of π, with length denoted as Γ(π), traverses the leftmost column as well
as the topmost row of cells, i.e.,

Γ(π) = π1 + ℓ(π)− 1.(1.1)

In 1748, Euler [11] proved arguably the most celebrated partition theorem. When phrased
in “partition language”, it goes as follows.

Theorem 1.1. Given any n ∈ N, there are as many partitions of n into distinct parts as

into odd parts.
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Figure 1. Young diagram for π = (2, 2, 1) with hook lengths filled in

In the following some three hundred years, numerous partition theorems have been dis-
covered and stated in the form of “there are as many partitions of n satisfying condition
A as those satisfying condition B”. All of these results keep the number being partitioned,
i.e., the size of the partition fixed. In a recent paper by Straub [18], however, he chose to
fix the largest hook length instead, and obtained among other things, the following nice
analogue of Theorem 1.1.

Theorem 1.2 (Theorem 1.4 in [18]). The number of partitions into distinct parts with

perimeter M is equal to the number of partitions into odd parts with perimeter M . Both

are enumerated by the Fibonacci number FM .

Note that Straub’s use of the term perimeter was following Corteel and Lovejoy [10,
Section 4.2] (up to a shift by 1), and it is equivalent to our largest hook length Γ(π) for a
given partition π.

Straub commented on his own analogue as “missing from the literature on partitions”,
and it certainly motivates us to explore further down the road and reveal more analogues
with Γ(π) replacing |π|, which have been unfortunately overlooked in the past. We present
one of our results below, which can be viewed as an analogue of Euler’s famous pentagonal
number theorem [12], see also [6, Corollary 1.7].

Definition 1.3. For all positive integer n, let H(n) (resp. h(n)) be the set (resp. the
number) of partitions π with Γ(π) = n. Moreover, we consider the following subsets with
respect to further restrictions, and their cardinalities will be denoted as h⋆(n) respectively.

• HD(n) : the set of partitions in H(n) with distinct parts;
• HO(n) : the set of partitions in H(n) with purely odd parts;
• HD,O(n) : the set of partitions in H(n) with distinct parts and the number of parts

being odd;
• HD,E(n) : the set of partitions in H(n) with distinct parts and the number of parts

being even.

Theorem 1.4. For all positive integer n,

e(n) := hD,E(n)− hD,O(n) =











0 n ≡ 0, 3 (mod 6);

−1 n ≡ 1, 2 (mod 6);

1 n ≡ 4, 5 (mod 6).

(1.2)
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The rest of the paper is organized as follows. In section 2 we study function h(n) and
its various relatives from scratch, deduce their generating functions combinatorially. This
eventually leads to three refinements of Theorem 1.2 as well as two generalizations. We
continue to consider a natural analogue of Euler’s pentagonal number theorem in section 3
and establish Theorem 1.4. Then Subbarao’s crucial observation [19] on Franklin’s involu-
tion leads us to identity (3.6) that encompasses both the pentagonal number theorem and
Theorem 1.4. In the last section, some congruence properties are obtained for hD(n) and
we conclude with some remarks.

2. Straub’s analogue of Euler’s theorem

2.1. Refinement of Straub’s analogue. We use P (resp. D, O) to denote the set of
non-empty partitions with parts being unrestricted (resp. distinct, odd).

Definition 2.1. Let H(q) :=
∑

π∈P qΓ(π) =
∑∞

n=1 h(n)q
n be the generating function for

h(n). Similarly we define HD(q) (resp. HO(q)) as the generating function for hD(n) (resp.
hO(n)). And we shall also consider the generating functions for the following refinements.

• H(x, y, q) :=
∑

π∈P

xπ1yℓ(π)qΓ(π) =
∞
∑

n=1

n
∑

m=1

h(m,n)xmyn+1−mqn;

• HD(x, y, q) :=
∑

π∈D

xπ1yℓ(π)qΓ(π) =
∞
∑

n=1

n
∑

m=1

hD(m,n)xmyn+1−mqn;

• HO(x, y, q) :=
∑

π∈O

xπ1yℓ(π)qΓ(π) =
∞
∑

n=1

n
∑

m=1

hO(m,n)xmyn+1−mqn.

Remark 2.2. Note that the relationship between the exponents of x, y and q is a direct
application of (1.1). And clearly H(1, 1, q) = H(q), HD(1, 1, q) = HD(q) and HO(1, 1, q) =
HO(q), with h(n) =

∑n
m=1 h(m,n), hD(n) =

∑n
m=1 hD(m,n) and hO(n) =

∑n
m=1 hO(m,n).

Now we proceed to derive the main results of this subsection, namely the closed form for
H(x, y, q), HD(x, y, q) and HO(x, y, q), by analysing the so-called profile of a given partition.
Following [15], for a given partition, we use profile to denote the set of southmost and
eastmost edges of the boxes in its Young diagram, as depicted in Figure 2. And when we
label the horizontal (resp. vertical) edges in the profile with E (resp. N), we see that the
profile of any non-empty partition in H(n) is in bijection with a word consists of two letters
E and N , whose length is n+ 1 and always begins with E, ends with N . This observation
essentially serves as a quick bijective proof of the fact that h(n) = 2n−1, see Corollary 2.4.
And it sets us up for our main theorem.

Theorem 2.3.

H(x, y, q) = xyq(1 + (xq + yq) + (xq + yq)2 + · · · ) = xyq

1− (xq + yq)
,(2.1)

HD(x, y, q) = xyq(1 + (xq + xyq2) + (xq + xyq2)2 + · · · ) = xyq

1− (xq + xyq2)
,(2.2)

HO(x, y, q) = xyq(1 + (yq + x2q2) + (yq + x2q2)2 + · · · ) = xyq

1− (yq + x2q2)
.(2.3)
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Figure 2. The profile of π = (2, 2, 1) labelled with E and N

Proof. We show (2.1) first, and explain the changes need to be made for deriving (2.2) and
(2.3). Given any partition in P, consider the word corresponding to its profile. As noted
earlier, this word must begin with E and end with N , together they contribute the factor
xyq (apply (1.1) to see why it is xyq, not xyq2). And all the remaining letters in between
could be either an E that contributes xq, or an N that contributes yq, this explains the
factor (1 + (xq + yq) + (xq + yq)2 + · · · ) and thus establishes (2.1). Next for partitions in
D, the same restriction applies to the first and the last letters, so we also have the factor
xyq. But now for the letters in the middle, “having distinct parts” translates to “having
no consecutive N ”. So we could have either an E still contributing xq, or a pair NE
contributing xyq2. This justifies the factor (1+(xq+xyq2)+(xq+xyq2)2+ · · · ) and proves
(2.2). Finally for partitions in O, all the parts are odd, which forces the corresponding
word to have an even number of Es between two consecutive N , and an even number of
Es after the first E. This explains the factor (1 + (x2q2 + yq) + (x2q2 + yq)2 + · · · ) and
completes the proof. �

The next two corollaries follow immediately from Theorem 2.3.

Corollary 2.4. For positive integer n, h(n) = 2n−1.

Proof. Put x = y = 1 in (2.1) to get H(q) = q/(1− 2q) =
∑∞

n=1 2
n−1qn. �

Corollary 2.5. Theorem 1.2 is true.

Proof. Put x = y = 1 in both (2.2) and (2.3) to get HD(q) = HO(q) = q/(1− q− q2), which
is well-known as the generating function for the Fibonacci numbers. �

Remark 2.6. Euler’s original proof of Theorem 1.1 used generating function. Interested
readers are referred to [7, Chapter 2,5] for a gentle introduction and [6] for more serious
discussions. Straub [18] gave two proofs of his analogue, but neither of them used generating
function. So our Theorem 2.3 together with the above corollary can be viewed as the first
generating function proof of Theorem 1.2.

In his paper, Straub recalled two refinements [18, Example 1.7, 1.8] of Euler’s theorem
due to Fine [13], and raised the question of seeking similar refinements for his analogue. We
supply three candidates here, each of them is a direct result of evaluating x, y appropriately
in (2.2) and (2.3).
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Theorem 2.7. For integers n ≥ 1, 1 ≤ k ≤ ⌈n/2⌉. The number of partitions π into exactly

k parts, all distinct, and with Γ(π) = n is equal to the number of partitions λ into odd parts

with λ1 = 2k − 1 and Γ(λ) = n. Both are enumerated by
(

n−k
k−1

)

.

Proof. Take x = 1 in (2.2) and y = 1 in (2.3), then we see HD(1, y, q) =
yq

1− (q + yq2)

and HO(x, 1, q) =
xq

1− (q + x2q2)
, both are specializations of

aq

1− (q + bq2)
. Now we simply

compare the coefficients of abk−1qn from both cases to see they are equal as claimed. Next
for the exact enumeration, note that to resemble a term abk−1qn, besides the numerator aq,
we need to extract from (k − 1) + (n− 1− 2(k − 1)) = n− k copies of the factor q + bq2,
wherein k − 1 copies we must choose bq2 to guarantee bk−1, and the remaining n− 2k + 1
copies all choose q to make the total power of q exactly n, hence the count

(

n−k
k−1

)

. �

Example 2.8. Table 1 lists all partitions π into distinct parts with Γ(π) = 9, ℓ(π) = 4,
and the odd partitions λ they get matched with such that Γ(λ) = 9, λ1 = 7. Both columns
contain

(

9−4
4−1

)

=
(

5
3

)

= 10 partitions in total.

Table 1.

distinct partitions odd partitions
(6,5,4,3) (7,7,7)
(6,5,4,2) (7,7,5)
(6,5,4,1) (7,7,3)
(6,5,3,2) (7,7,1)
(6,5,3,1) (7,5,5)
(6,5,2,1) (7,5,3)
(6,4,3,2) (7,5,1)
(6,4,3,1) (7,3,3)
(6,4,2,1) (7,3,1)
(6,3,2,1) (7,1,1)

Theorem 2.9. For integers n ≥ 1, ⌈(n+ 1)/2⌉ ≤ k ≤ n. The number of partitions π into

distinct parts, with π1 = k and Γ(π) = n is equal to the number of partitions λ into odd

parts with λ1/2 + ℓ(λ) = k + 1/2 and Γ(λ) = n. Both are enumerated by
(

k−1
n−k

)

.

Proof. Take y = 1 in (2.2) and x = x1/2, y = x in (2.3), then we see HD(x, 1, q) =
xq

1− (xq + xq2)
and HO(x

1/2, x, q) =
x3/2q

1− (xq + xq2)
, which implies the statement in the

theorem immediately. And we can make the exact count similarly as in the proof of Theo-
rem 2.7. �

Example 2.10. Table 2 lists all partitions π into distinct parts with Γ(π) = 8, π1 = 6, and
the odd partitions λ they get matched with such that Γ(λ) = 8, λ1/2 + ℓ(λ) = 13/2. Both
columns contain

(

6−1
8−6

)

=
(

5
2

)

= 10 partitions in total.
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Table 2.

distinct partitions odd partitions
(6,5,4) (5,5,5,5)
(6,5,3) (5,5,5,3)
(6,5,2) (5,5,5,1)
(6,5,1) (5,5,3,3)
(6,4,3) (5,5,3,1)
(6,4,2) (5,5,1,1)
(6,4,1) (5,3,3,3)
(6,3,2) (5,3,3,1)
(6,3,1) (5,3,1,1)
(6,2,1) (5,1,1,1)

Theorem 2.11. For integers n ≥ 1, 0 ≤ k ≤ n − 1. The number of partitions π into

distinct parts, with rank(π) = k and Γ(π) = n is equal to the number of partitions λ into

odd parts with ℓ(λ) = k+1 and Γ(λ) = n, where rank(π) := π1−ℓ(π). Both are enumerated

by
(

(n+k−1)/2
k

)

. Note that n− 1 and k always have the same parity due to their definition.

Proof. Take y = x−1 in (2.2) and x = 1 in (2.3), then we see HD(x, x
−1, q) =

q

1− (xq + q2)

and HO(1, y, q) =
yq

1− (yq + q2)
, which implies the statement in the theorem immediately.

The exact count follows analogously as the previous two theorems. �

Example 2.12. Table 3 lists partitions π into distinct parts with Γ(π) = 7, rank(π) = 2,
and the odd partitions λ they get matched with such that Γ(λ) = 7, l(λ) = 3. Both columns

contain
(

(7+2−1)/2
2

)

= 6 partitions in total.

Table 3.

distinct partitions odd partitions
(5,4,3) (5,5,5)
(5,4,2) (5,5,3)
(5,4,1) (5,5,1)
(5,3,2) (5,3,3)
(5,3,1) (5,3,1)
(5,2,1) (5,1,1)

Remark 2.13. All the above three refinements could be given direct bijective proofs as
Straub did for Theorem 1.2. The idea is to correspond each E step (weighted as xq) in
distinct partition with each N step (weighted as yq) in odd partition, while each NE step
(weighted as xyq2) in distinct partition corresponds to each EE step (weighted as x2q2)
in odd partition, then keep track of how many steps of these types in them. We leave the
details to interested readers.
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2.2. Generalization to d-distinct partitions. Following [7], we call a partition d-distinct
if the difference between any two of its parts is at least d. In 1956, Alder [1] investigated
qd(n) and Qd(n), the number of partitions of n into d-distinct parts and into parts ≡ ±1
(mod d+ 3), respectively, and he conjectured that

qd(n) ≥ Qd(n).(2.4)

See [7, Chapter 4.3] for more information on this conjecture, and see [2,3,20] for its proof.
Alder’s pre-conjecture concerns us here because when d = 1, 2 we actually get “equality”
instead of “inequality” in (2.4). Indeed, the d = 1 case is Euler’s identity (Theorem 1.1),
and d = 2 produces the first Rogers-Ramanujan identity. While qd(n) = Qd(n) is too good
to be true for all d, in our case however, we can generalize Straub’s analogue (Theorem 1.2)
to d-distinct partitions and get equalities for all d.

Definition 2.14. For positive integers n and d, we denote hd(n) the number of d-distinct
partitions π with Γ(π) = n, and fd(n) the number of partitions λ into parts ≡ 1 (mod d+1)
with Γ(λ) = n. Similarly, we denote Hd the set of all d-distinct partitions, and Fd the set
of all partitions into parts ≡ 1 (mod d+ 1).

Note that with this new definition, we have h1(n) = hD(n), f1(n) = hO(n) and H1 =
D,F1 = O.

Theorem 2.15. For all d ≥ 1, we have

Hd(x, y, q) :=
∑

π∈Hd

xπ1yℓ(π)qΓ(π)
(2.5)

= xyq(1 + (xq + xdyqd+1) + (xq + xdyqd+1)2 + · · · ) = xyq

1− (xq + xdyqd+1)
,

Fd(x, y, q) :=
∑

π∈Fd

xπ1yℓ(π)qΓ(π)
(2.6)

= xyq(1 + (yq + xd+1qd+1) + (yq + xd+1qd+1)2 + · · · ) = xyq

1− (yq + xd+1qd+1)
.

In particular, we have for all n ≥ 1

hd(n) = fd(n).(2.7)

Proof. It will suffice to show (2.5) and (2.6), since (2.7) can be easily deduced from them
by taking x = y = 1 and then extracting the coefficient of qn from both. The proof of
(2.5) and (2.6) is analogous to that of (2.2) and (2.3). Given π ∈ Hd, the condition of
being d-distinct leads to the restriction on π’s profile. Indeed, the first and the last letter
of the corresponding word still produces xyq, while the middle letters could be either an E
contributing xq, or a single N followed by d copies of E, contributing (yq)(xq) · · · (xq) =
xdyqd+1, this gives us (2.5). Similarly, for Fd, to keep the parts always ≡ 1 (mod d + 1),
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we must have either an N contributing yq, or consecutive d + 1 copies of E contributing
xd+1qd+1, which explains the change in (2.6) and completes the proof. �

When d = 2, 2-distinct partitions are exactly those generated by the series side of the
first Rogers-Ramanujan identity, but partitions into parts ≡ 1 (mod 3) (or equivalently
≡ 1, 4 (mod 6)) do not agree with the product side of the first Rogers-Ramanujan identity,
which generates partitions into parts ≡ 1, 4 (mod 5). Actually, a quick look at Table 4
reveals that with Γ(π) ≤ 5, there are as many partitions into parts ≡ 1, 4 (mod 6) as there
are into parts ≡ 1, 4 (mod 5). But when Γ(π) ≥ 6, the former set of partitions is smaller.
For instance, partition (6) belongs to the latter but not to the former. This observation
suggests that if one wants to force modular 5 instead of modular 6, some further restrictions
need to be added, this is reminiscent of Schur’s fix for q3(n) > Q3(n) (see [7, Section 4.4]).
We are led to another partition theorem that involves d-distinct partitions.

Definition 2.16. For positive integers n and d, we denote Gd the set of all partitions
π = (π1, π2, . . . , πr) satisfying the following two conditions, and we denote gd(n) the number
of partitions π ∈ Gd with Γ(π) = n.

i. πi ≡ 1 or d+ 2 (mod 2d+ 1), for i = 1, 2, . . . , r;
ii. πi − πi+1 ≤ 2d+ 1, for i = 1, 2, . . . , r, where πr+1 = 0, with strict sign taken whenever

πi ≡ 1 (mod 2d+ 1).

Theorem 2.17. For all d ≥ 1, we have

Gd(x, y, q) :=
∑

π∈Gd

xπ1yℓ(π)qΓ(π) =
xyq(1− yq + xd+1qd+1)

1− 2yq + y2q2 − x2d+1yq2d+2
.(2.8)

In particular, we have for all n ≥ 1

hd(n) = fd(n) = gd(n).(2.9)

Proof. Take x = y = 1 in (2.8) gives

∑

n≥1

gd(n)q
n = Gd(1, 1, q) =

q(1− q + qd+1)

(1− q)2 − q2d+2
=

q

1− q − qd+1
= Hd(1, 1, q) = Fd(1, 1, q),

and we get (2.9). To prove (2.8) we need to translate conditions i and ii for a given partition
π ∈ Gd into restrictions on the word, say wπ, that corresponds to the profile of π. We claim
that we can always divide wπ uniquely into blocks of the following types, with all the middle
blocks having “type I, type II, type I, type II,. . .” alternately. In the following, j = 0, 1, 2, . . .
can be any natural number.

• Initial block: A single E followed by j consecutive Ns.
• Middle block of type I: A (d+ 1)-tuple EE · · ·E followed by j consecutive Ns.
• Middle block of type II: A (d+ 1)-tuple NE · · ·E followed by j consecutive Ns.
• Terminal block: consists of a single N .

Conversely, given any word that consists of these four types of blocks such that the middle
blocks, if any, start with type I and switch between type I and type II, we can uniquely
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realize it as the profile of certain partition in Gd. To prove this claim, one can trace the
profile of any π ∈ Gd, from the southwest-most edge to the northeast-most edge to see how
π is “outlined” edge by edge, and at the same time go through the word wπ letter by letter
from left to right. Then we see

• The initial block in wπ corresponds to j copies of 1 as parts in π.
• Having a middle block of type I corresponds to making the current largest part

(which is necessarily ≡ 1 (mod 2d+1)), say k(2d+1)+1, becomes k(2d+1)+d+2,
and adding j copies of it on top of the current sub-partition.

• Having a middle block of type II corresponds to keeping the current largest part
(which is necessarily ≡ d + 2 (mod 2d + 1)), say k(2d + 1) + d + 2, and adding j
copies of (k + 1)(2d+ 1) + 1 on top of the current sub-partition.

• The terminal block ends the process and we have a complete π, corresponding to
the completed word wπ.

A moment of reflection reveals that in the above process of traversing the profile of π, the
largest part for each sub-partition must be ≡ 1 (mod 2d+1) (resp. ≡ d+2 (mod 2d+1))
after each block of type II (resp. type I), and the two middle types alternate will force
condition ii, vice versa. We provide one example of d = 2 in Figure 3. Next we only need
to figure out the generating function for each type of block.

• Initial+terminal: xyq(1 + yq + y2q2 + · · · ) = xyq

1− yq
.

• Type I: xd+1qd+1(1 + yq + y2q2 + · · · ) = xd+1qd+1

1− yq
.

• Type II: xdyqd+1(1 + yq + y2q2 + · · · ) = xdyqd+1

1− yq
.

Together we have

Gd(x, y, q) =
xyq

1− yq
(1 +

xd+1qd+1

1− yq
+

xd+1qd+1

1− yq

xdyqd+1

1− yq
+

xd+1qd+1

1− yq

xdyqd+1

1− yq

xd+1qd+1

1− yq
+ · · · )

=

xyq

1− yq
(1 +

xd+1qd+1

1− yq
)

1− xd+1qd+1

1− yq

xdyqd+1

1− yq

=
xyq(1− yq + xd+1qd+1)

1− 2yq + y2q2 − x2d+1yq2d+2
.

This completes the proof. �

When we take d = 2 in (2.9), we get the following intriguing analogue of the first Rogers-
Ramanujan identity.

Corollary 2.18. For any positive integer n, the number of 2-distinct partitions with perime-

ter n is equal to the number of partitions into parts ≡ 1, 4 (mod 5) with perimeter n and

satisfying condition ii with d = 2 in Definition 2.16.

Example 2.19. The partitions listed in Table 4 all satisfy Γ(π) ≤ 7. More precisely, we
have 2-distinct partitions in the first column, paired with partitions into parts ≡ 1 (mod 3)
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⇐⇒ ENNN | EEE | NEENNN | EEEN | N
initial type I type II type I terminal

Figure 3. Decomposition of wπ into blocks for π = (9, 9, 6, 6, 6, 4, 1, 1, 1)

in the second column, and with partitions into parts ≡ 1, 4 (mod 5) satisfying the extra
condition ii listed in the third column.

Table 4.

2-distinct ≡ 1 (mod 3) condition i, ii
(1) (1) (1)
(2) (1,1) (1,1)
(3) ( 1,1,1) (1,1,1)
(4) (1,1,1,1) (1,1,1,1)

(3,1) (4) (4)
(5) (1,1,1,1,1) (1,1,1,1,1)

(4,2) (4,1) (4,1)
(4,1) (4,4) (4,4)
(6) (1,1,1,1,1,1) (1,1,1,1,1,1)

(5,3) (4,1,1) (4,1,1)
(5,2) (4,4,1) (4,4,1)
(5,1) (4,4,4) (4,4,4)
(7) (1,1,1,1,1,1,1) (1,1,1,1,1,1,1)

(6,4) (4,1,1,1) (4,1,1,1)
(6,3) (4,4,1,1) (4,4,1,1)
(6,2) (4,4,4,1) (4,4,4,1)
(6,1) (4,4,4,4) (4,4,4,4)

(5,3,1) (7) (6,4)

3. An analogue of Euler’s pentagonal number theorem

3.1. Pentagonal number theorem and a new analogue. Straub’s novel decision to
fix Γ(π) instead of |π| proves successful in Theorem 1.2. This encourages us to seek for
other analogues of the classic partition theorems with this new mindset. As mentioned in



FIXED LARGEST HOOK LENGTH 11

the introduction, Theorem 1.4 is a new partition theorem that parallels Euler’s Pentagonal
Number Theorem nicely. We present two proofs of it in this subsetion, and we continue to
discuss yet another, purely combinatorial proof and its implications in next subsection.

1st proof of Theorem 1.4. For all partitions in HD(n), we want to calculate the number of
those with even number of parts in excess of those with odd number of parts. To this end,
we simply take x = 1, y = −1 in (2.2) and get

∞
∑

n=1

e(n)qn = HD(1,−1, q) =
−q

1− q + q2
=

−q

(1− ωq)(1− q/ω)

=
−1√
3 i

(
1

1− ωq
− 1

1− q/ω
) =

−1√
3 i

∞
∑

n=0

(ωn − ω−n)qn,

where ω = eπi/3 is a sixth root of unity. Now a simple calculation verifies (1.2). �

In preparation for our second proof of Theorem 1.4, we first derive the recurrence relation
for hD,E(n) and hD,O(n).

Proposition 3.1. The numbers hD,E(n) and hD,O(n) satisfy the following system of recur-

rence relations, for all n ≥ 3:

hD,E(n) = hD,E(n− 1) + hD,O(n− 2),(3.1)

hD,O(n) = hD,O(n− 1) + hD,E(n− 2),(3.2)

with the initial values

hD,E(1) = hD,E(2) = 0, hD,O(1) = hD,O(2) = 1.

Proof. We show (3.1) combinatorially by investigating the smallest part, say πr, in a given
partition π ∈ HD,E(n).

• πr = 1. Then πr−1 ≥ 2 and we can remove the leftmost column in the Ferrers graph
of π, or equivalently, subtract 1 from each part of π. This results in a new partition
π̂ with one fewer parts, thus ℓ(π̂) is odd and Γ(π̂) = n−2. This operation is clearly
seen to be invertible. Indeed, given a partition π̂ ∈ HD,O(n − 2), we simply add 1
to each part of π̂, as well as a new part of 1 to arrive at a partition π ∈ HD,E(n).

• πr > 1. We also subtract 1 from each part of π to get π̂. But this time π̂ has the
same number of parts as π, so ℓ(π̂) remains even and Γ(π̂) = n− 1. This operation
is also invertible.

Combining these two cases gives us (3.1). (3.2) can be deduced similarly and thus omitted.
�

It is now a routine exercise to check the following formulas for hD,E(n) and hD,O(n) using
Proposition 3.1 and the Pascal relation for the binomial coefficients. So we supply here a
direct combinatorial proof that do not need recurrence relations (3.1) and (3.2).
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Proposition 3.2. For any positive integer n ≥ 1,

hD,E(n) =
∑

k≥0

(

n− 2k − 2

2k + 1

)

,(3.3)

hD,O(n) =
∑

k≥0

(

n− 2k − 1

2k

)

.(3.4)

Proof. We show proof of (3.3) only, since (3.4) can be proved similarly. Recall from the
proof of (2.2) that for a distinct partition π, the profile word wπ can only have Es or
couples NE in the middle, with the fixed initial E and the terminal N . And between E
and NE, only NE can affect the value of ℓ(π). Therefore, if π ∈ HD,E(n), then with the
terminal N accounting for the largest part, we should have an odd number of NEs in wπ,
say 2k + 1 for some k ≥ 0. Since the total length of wπ is n + 1 (see (1.1)), we must have
n+ 1− 2(2k + 1)− 1− 1 = n− 4k − 3 copies of Es remained in the middle, excluding the
initial E. Now these n − 4k − 3 copies of Es and 2k + 1 copies of NEs can be arranged
in any possible order, which gives rise to

(

n−2k−2
2k+1

)

. We sum over all k ≥ 0 to finish the
proof. �

Our next proof builds on Proposition 3.1 and is free of generating function (2.2).

2nd proof of Theorem 1.4. For all positive integer n, define e(n) := hD,E(n)−hD,O(n). Now
we can subtract (3.2) from (3.1) to get e(n) = e(n− 1)− e(n− 2), then iterate it twice we
have

e(n) = −e(n− 3), ∀n ≥ 4.

Therefore e(n) has a period of 6, and it now suffice to calculate e(1) = e(2) = −1, e(3) = 0
so as to establish (1.2) and completes the proof. �

Remark 3.3. Not surprisingly, we are not the first to stumble on the sequence {hD,E(n)}n≥1,
see oeis:A024490. This is where we tracked Munarini and Salvi’s paper [16], in which both
our Proposition 3.1 and 3.2 have been derived in a quite different setting.

3.2. Franklin’s involution. Readers who are unfamiliar with Franklin’s ingenious proof
[14] of Euler’s pentagonal number theorem, are referred to [7, Section 3.5] for an enlightening
exposition. Now if one takes another look at Theorem 1.4 with Franklin’s involution in
mind, it should not take long before she/he realizes that, Franklin’s involution between
distinct partitions with even number of parts and those with odd number of parts not only
preserve the size of the two partitions that get paired up, but also keep their perimeter
unchanged! According to Andrews [5], this crucial observation was first made by Subbarao
[19], then Andrews [4] extended the idea considerably to give a combinatorial proof of the
following Rogers–Fine identity:

∞
∑

n=0

(α)n
(β)n

τn =
∞
∑

n=0

(α)n(ατq/β)nβ
nτnqn

2−n(1− ατq2n)

(β)n(τ)n+1
.(3.5)

http://oeis.org/A024490
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Here and in the sequel, we employ the customary notation (a; q)0 := 1, (a)n = (a; q)n :=
∏n−1

k=0(1−aqk), ∀n ≥ 1, (a)∞ = (a; q)∞ :=
∏∞

k=0(1−aqk), |q| < 1. One special case of (3.5)
that concerns us here is the following identity we take from Andrews’ paper [4, (3.2)∼(3.4)]:

∞
∑

n=0

(−1)ny2nqn(n+1)/2

(yq)n
= 1 +

∞
∑

n=1

∞
∑

r=1

(Qe(r, n)−Qo(r, n))y
rqn(3.6)

= 1 +

∞
∑

n=1

(−1)n(qn(3n−1)/2y3n−1 + qn(3n+1)/2y3n),

where Qe(r, n) (resp. Qo(r, n)) denotes the number of distinct partitions of n, say π, into
an even (resp. odd) number of parts such that π1 + ℓ(π) = r. Note that now both our
Theorem 1.4 and Euler’s pentagonal number theorem are special cases of (3.6), modulo a
nuance due to (1.1). Indeed, given a partition π, Subbarao’s original observation was on
π1 + ℓ(π), while our perimeter Γ(π) is always one less in value, and we discard entirely the
empty partition that corresponds to the isolated summand 1 in (3.6).

This new connection raises a natural question, is there a generalization of (3.6) in the
spirit of Sylvester’s generalization [5, (3.3)] of Euler’s pentagonal number theorem? We
give an affirmative answer with the following identity:

∞
∑

n=1

xnynqn(n+1)/2

(xq)n
=

∑

π∈D

xπ1yℓ(π)q|π| =

∞
∑

n=1

(−yq)n−1x
2n−1ynqn(3n−1)/2(1 + xyq2n)

(xq)n
.(3.7)

Note that upon taking x = y, y = −y in (3.7), we get back to (3.6).

Remark 3.4. Three remarks on (3.7) are in order.

• The first three entries from page 41 of Ramanujan’s lost notebook [17] deal with
the function

φ(a) :=
∞
∑

n=0

anqn(n+1)/2

(bq)n
.

It is a simple matter of variable change to see the equivalence between φ(a) and the
left extreme of (3.7). Consequently, (3.7) is equivalent to Entry 2.6 in [17].

• If we take β = xq, τ = −xyq/α, and let α → ∞ in (3.5), we immediately recover
the left extreme of (3.7), but the right hand side does not “look right”. Actually this
specialization gives rise to Entry 2.5 in [17]. We recommend [9] for combinatorial
proofs of all three aforementioned entries, and of many more related identities.

• If we take x = xq, y = yq, q = 1 in (3.7) and divide both sides by q to account for the

“−1” in (1.1), we see that both extremes reduce to the same rational
xyq

1− (xq + xyq2)
and we recover (2.2).
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4. Congruence properties for hD(n) and final remarks

The last statement in Theorem 1.2 links hD(n) = hO(n) to the n-th Fibonacci number
Fn, which we haven’t explored so far. Let us first recall two properties of the Fibonacci
numbers, and then use them to give congruence properties for hD(n).

Proposition 4.1. Let m ≥ 0,n ≥ 1 be integers, then

Fm+n = Fm+1Fn + FmFn−1.(4.1)

Proposition 4.2. Let m,n be positive integers, if m|n, then Fm|Fn.

Remark 4.3. Proposition 4.1 can be easily proved by induction, then Proposition 4.2
follows from (4.1) combined with induction. It is worth recommending the award-winning
book [8], where Benjamin and Quinn give an interesting tiling proof of Proposition 4.1,
among their masterful treatment of tons of other identities involving the Fibonacci numbers.

Now the following congruence properties for hD(n) should not come as surprise.

hD(3n) ≡ 0 (mod 2)(4.2)

hD(4n) ≡ 0 (mod 3)(4.3)

hD(5n) ≡ 0 (mod 5)(4.4)

hD(6n) ≡ 0 (mod 8)(4.5)

hD(6n+ 3) ≡ 2 (mod 16)(4.6)

hD,O(6n) = hD,E(6n) ≡ 0 (mod 4)(4.7)

hD,O(6n+ 3) = hD,E(6n+ 3) ≡ 1 (mod 8)(4.8)

Note that (4.2) through (4.5) require only Theorem 1.2, Proposition 4.2 and initial val-
ues, while (4.6) needs more patience to wait until a complete period for {Fn (mod 16)}n≥1

emerges. Finally (4.7) and (4.8) are direct results of (4.5) and (4.6), upon applying The-
orem 1.4. These results are by no means the complete list, but they raise the natural
question of seeking partition statistic analogous to the rank (or crank) that would pro-
vide a combinatorial interpretation of the above congruences. Lastly, it would certainly be
interesting to also try and generalize both (2.1) and (2.3) to the extent of (3.7).
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